1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 80 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 *
26 */
27
28 #include <linux/config.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/mm.h>
32 #include <linux/pci.h>
33 #include <linux/interrupt.h>
34 #include <linux/kmod.h>
35 #include <linux/delay.h>
36 #include <linux/init.h>
37 #include <linux/nmi.h>
38 #include <asm/io.h>
39 #include <acpi/acpi_bus.h>
40 #include <acpi/acpi.h>
41
42 #ifdef CONFIG_ACPI_EFI
43 #include <linux/efi.h>
44 u64 efi_mem_attributes (u64 phys_addr);
45 #endif
46
47
48 #define _COMPONENT ACPI_OS_SERVICES
49 ACPI_MODULE_NAME ("osl")
50
51 #define PREFIX "ACPI: "
52
53 struct acpi_os_dpc
54 {
55 OSD_EXECUTION_CALLBACK function;
56 void *context;
57 };
58
59
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 extern char line_buf[80];
65 #endif /*ENABLE_DEBUGGER*/
66
67 static int acpi_irq_irq;
68 static OSD_HANDLER acpi_irq_handler;
69 static void *acpi_irq_context;
70
71
72 acpi_status
acpi_os_initialize(void)73 acpi_os_initialize(void)
74 {
75 return AE_OK;
76 }
77
78 acpi_status
acpi_os_initialize1(void)79 acpi_os_initialize1(void)
80 {
81 /*
82 * Initialize PCI configuration space access, as we'll need to access
83 * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
84 */
85 #ifdef CONFIG_ACPI_PCI
86 pcibios_config_init();
87 if (!pci_config_read || !pci_config_write) {
88 printk(KERN_ERR PREFIX "Access to PCI configuration space unavailable\n");
89 return AE_NULL_ENTRY;
90 }
91 #endif
92
93 return AE_OK;
94 }
95
96 acpi_status
acpi_os_terminate(void)97 acpi_os_terminate(void)
98 {
99 if (acpi_irq_handler) {
100 acpi_os_remove_interrupt_handler(acpi_irq_irq,
101 acpi_irq_handler);
102 }
103
104 return AE_OK;
105 }
106
107 void
acpi_os_printf(const char * fmt,...)108 acpi_os_printf(const char *fmt,...)
109 {
110 va_list args;
111 va_start(args, fmt);
112 acpi_os_vprintf(fmt, args);
113 va_end(args);
114 }
115
116 void
acpi_os_vprintf(const char * fmt,va_list args)117 acpi_os_vprintf(const char *fmt, va_list args)
118 {
119 static char buffer[512];
120
121 vsprintf(buffer, fmt, args);
122
123 #ifdef ENABLE_DEBUGGER
124 if (acpi_in_debugger) {
125 kdb_printf("%s", buffer);
126 } else {
127 printk("%s", buffer);
128 }
129 #else
130 printk("%s", buffer);
131 #endif
132 }
133
134 void *
acpi_os_allocate(acpi_size size)135 acpi_os_allocate(acpi_size size)
136 {
137 return kmalloc(size, GFP_KERNEL);
138 }
139
140 void
acpi_os_free(void * ptr)141 acpi_os_free(void *ptr)
142 {
143 kfree(ptr);
144 }
145
146 acpi_status
acpi_os_get_root_pointer(u32 flags,struct acpi_pointer * addr)147 acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
148 {
149 #ifdef CONFIG_ACPI_EFI
150 addr->pointer_type = ACPI_PHYSICAL_POINTER;
151 if (efi.acpi20)
152 addr->pointer.physical = (acpi_physical_address) virt_to_phys(efi.acpi20);
153 else if (efi.acpi)
154 addr->pointer.physical = (acpi_physical_address) virt_to_phys(efi.acpi);
155 else {
156 printk(KERN_ERR PREFIX "System description tables not found\n");
157 return AE_NOT_FOUND;
158 }
159 #else
160 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
161 printk(KERN_ERR PREFIX "System description tables not found\n");
162 return AE_NOT_FOUND;
163 }
164 #endif /*CONFIG_ACPI_EFI*/
165
166 return AE_OK;
167 }
168
169 acpi_status
acpi_os_map_memory(acpi_physical_address phys,acpi_size size,void ** virt)170 acpi_os_map_memory(acpi_physical_address phys, acpi_size size, void **virt)
171 {
172 #ifdef CONFIG_ACPI_EFI
173 if (EFI_MEMORY_WB & efi_mem_attributes(phys)) {
174 *virt = phys_to_virt(phys);
175 } else {
176 *virt = ioremap(phys, size);
177 }
178 #else
179 if (phys > ULONG_MAX) {
180 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
181 return AE_BAD_PARAMETER;
182 }
183 /*
184 * ioremap checks to ensure this is in reserved space
185 */
186 *virt = ioremap((unsigned long) phys, size);
187 #endif
188
189 if (!*virt)
190 return AE_NO_MEMORY;
191
192 return AE_OK;
193 }
194
195 void
acpi_os_unmap_memory(void * virt,acpi_size size)196 acpi_os_unmap_memory(void *virt, acpi_size size)
197 {
198 iounmap(virt);
199 }
200
201 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)202 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
203 {
204 if(!phys || !virt)
205 return AE_BAD_PARAMETER;
206
207 *phys = virt_to_phys(virt);
208
209 return AE_OK;
210 }
211
212 #define ACPI_MAX_OVERRIDE_LEN 100
213
214 static char __initdata acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
215
216 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)217 acpi_os_predefined_override (const struct acpi_predefined_names *init_val,
218 acpi_string *new_val)
219 {
220 if (!init_val || !new_val)
221 return AE_BAD_PARAMETER;
222
223 *new_val = NULL;
224 if (!memcmp (init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
225 printk(KERN_INFO PREFIX "Overriding _OS definition: %s\n",
226 acpi_os_name);
227 *new_val = acpi_os_name;
228 }
229
230 return AE_OK;
231 }
232
233 acpi_status
acpi_os_table_override(struct acpi_table_header * existing_table,struct acpi_table_header ** new_table)234 acpi_os_table_override (struct acpi_table_header *existing_table,
235 struct acpi_table_header **new_table)
236 {
237 if (!existing_table || !new_table)
238 return AE_BAD_PARAMETER;
239
240 *new_table = NULL;
241 return AE_OK;
242 }
243
244 static void
acpi_irq(int irq,void * dev_id,struct pt_regs * regs)245 acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
246 {
247 (*acpi_irq_handler)(acpi_irq_context);
248 }
249
250 acpi_status
acpi_os_install_interrupt_handler(u32 irq,OSD_HANDLER handler,void * context)251 acpi_os_install_interrupt_handler(u32 irq, OSD_HANDLER handler, void *context)
252 {
253 /*
254 * Ignore the irq from the core, and use the value in our copy of the
255 * FADT. It may not be the same if an interrupt source override exists
256 * for the SCI.
257 */
258 irq = acpi_fadt.sci_int;
259
260 #ifdef CONFIG_IA64
261 irq = acpi_irq_to_vector(irq);
262 if (irq < 0) {
263 printk(KERN_ERR PREFIX "SCI (ACPI interrupt %d) not registered\n",
264 acpi_fadt.sci_int);
265 return AE_OK;
266 }
267 #endif
268 acpi_irq_irq = irq;
269 acpi_irq_handler = handler;
270 acpi_irq_context = context;
271 if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
272 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
273 return AE_NOT_ACQUIRED;
274 }
275
276 return AE_OK;
277 }
278
279 acpi_status
acpi_os_remove_interrupt_handler(u32 irq,OSD_HANDLER handler)280 acpi_os_remove_interrupt_handler(u32 irq, OSD_HANDLER handler)
281 {
282 if (acpi_irq_handler) {
283 #ifdef CONFIG_IA64
284 irq = acpi_irq_to_vector(irq);
285 #endif
286 free_irq(irq, acpi_irq);
287 acpi_irq_handler = NULL;
288 }
289
290 return AE_OK;
291 }
292
293 /*
294 * Running in interpreter thread context, safe to sleep
295 */
296
297 void
acpi_os_sleep(u32 sec,u32 ms)298 acpi_os_sleep(u32 sec, u32 ms)
299 {
300 current->state = TASK_INTERRUPTIBLE;
301 schedule_timeout(HZ * sec + (ms * HZ) / 1000);
302 }
303
304 void
acpi_os_stall(u32 us)305 acpi_os_stall(u32 us)
306 {
307 while (us) {
308 u32 delay = 1000;
309
310 if (delay > us)
311 delay = us;
312 udelay(delay);
313 touch_nmi_watchdog();
314 us -= delay;
315 }
316 }
317
318 acpi_status
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)319 acpi_os_read_port(
320 acpi_io_address port,
321 u32 *value,
322 u32 width)
323 {
324 u32 dummy;
325
326 if (!value)
327 value = &dummy;
328
329 switch (width)
330 {
331 case 8:
332 *(u8*) value = inb(port);
333 break;
334 case 16:
335 *(u16*) value = inw(port);
336 break;
337 case 32:
338 *(u32*) value = inl(port);
339 break;
340 default:
341 BUG();
342 }
343
344 return AE_OK;
345 }
346
347 acpi_status
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)348 acpi_os_write_port(
349 acpi_io_address port,
350 u32 value,
351 u32 width)
352 {
353 switch (width)
354 {
355 case 8:
356 outb(value, port);
357 break;
358 case 16:
359 outw(value, port);
360 break;
361 case 32:
362 outl(value, port);
363 break;
364 default:
365 BUG();
366 }
367
368 return AE_OK;
369 }
370
371 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u32 * value,u32 width)372 acpi_os_read_memory(
373 acpi_physical_address phys_addr,
374 u32 *value,
375 u32 width)
376 {
377 u32 dummy;
378 void *virt_addr;
379
380 #ifdef CONFIG_ACPI_EFI
381 int iomem = 0;
382
383 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
384 virt_addr = phys_to_virt(phys_addr);
385 } else {
386 iomem = 1;
387 virt_addr = ioremap(phys_addr, width);
388 }
389 #else
390 virt_addr = phys_to_virt(phys_addr);
391 #endif
392 if (!value)
393 value = &dummy;
394
395 switch (width) {
396 case 8:
397 *(u8*) value = *(u8*) virt_addr;
398 break;
399 case 16:
400 *(u16*) value = *(u16*) virt_addr;
401 break;
402 case 32:
403 *(u32*) value = *(u32*) virt_addr;
404 break;
405 default:
406 BUG();
407 }
408
409 #ifdef CONFIG_ACPI_EFI
410 if (iomem)
411 iounmap(virt_addr);
412 #endif
413
414 return AE_OK;
415 }
416
417 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u32 value,u32 width)418 acpi_os_write_memory(
419 acpi_physical_address phys_addr,
420 u32 value,
421 u32 width)
422 {
423 void *virt_addr;
424
425 #ifdef CONFIG_ACPI_EFI
426 int iomem = 0;
427
428 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
429 virt_addr = phys_to_virt(phys_addr);
430 } else {
431 iomem = 1;
432 virt_addr = ioremap(phys_addr, width);
433 }
434 #else
435 virt_addr = phys_to_virt(phys_addr);
436 #endif
437
438 switch (width) {
439 case 8:
440 *(u8*) virt_addr = value;
441 break;
442 case 16:
443 *(u16*) virt_addr = value;
444 break;
445 case 32:
446 *(u32*) virt_addr = value;
447 break;
448 default:
449 BUG();
450 }
451
452 #ifdef CONFIG_ACPI_EFI
453 if (iomem)
454 iounmap(virt_addr);
455 #endif
456
457 return AE_OK;
458 }
459
460 #ifdef CONFIG_ACPI_PCI
461
462 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,void * value,u32 width)463 acpi_os_read_pci_configuration (
464 struct acpi_pci_id *pci_id,
465 u32 reg,
466 void *value,
467 u32 width)
468 {
469 int result = 0;
470 if (!value)
471 return AE_BAD_PARAMETER;
472
473 switch (width)
474 {
475 case 8:
476 result = pci_config_read(pci_id->segment, pci_id->bus,
477 pci_id->device, pci_id->function, reg, 1, value);
478 break;
479 case 16:
480 result = pci_config_read(pci_id->segment, pci_id->bus,
481 pci_id->device, pci_id->function, reg, 2, value);
482 break;
483 case 32:
484 result = pci_config_read(pci_id->segment, pci_id->bus,
485 pci_id->device, pci_id->function, reg, 4, value);
486 break;
487 default:
488 BUG();
489 }
490
491 return (result ? AE_ERROR : AE_OK);
492 }
493
494 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,acpi_integer value,u32 width)495 acpi_os_write_pci_configuration (
496 struct acpi_pci_id *pci_id,
497 u32 reg,
498 acpi_integer value,
499 u32 width)
500 {
501 int result = 0;
502
503 switch (width)
504 {
505 case 8:
506 result = pci_config_write(pci_id->segment, pci_id->bus,
507 pci_id->device, pci_id->function, reg, 1, value);
508 break;
509 case 16:
510 result = pci_config_write(pci_id->segment, pci_id->bus,
511 pci_id->device, pci_id->function, reg, 2, value);
512 break;
513 case 32:
514 result = pci_config_write(pci_id->segment, pci_id->bus,
515 pci_id->device, pci_id->function, reg, 4, value);
516 break;
517 default:
518 BUG();
519 }
520
521 return (result ? AE_ERROR : AE_OK);
522 }
523
524 static void
acpi_os_derive_pci_id_2(acpi_handle rhandle,acpi_handle chandle,struct acpi_pci_id ** id,int * is_bridge,u8 * bus_number)525 acpi_os_derive_pci_id_2 (
526 acpi_handle rhandle, /* upper bound */
527 acpi_handle chandle, /* current node */
528 struct acpi_pci_id **id,
529 int *is_bridge,
530 u8 *bus_number)
531 {
532 acpi_handle handle;
533 struct acpi_pci_id *pci_id = *id;
534 acpi_status status;
535 unsigned long temp;
536 acpi_object_type type;
537 u8 tu8;
538
539 acpi_get_parent(chandle, &handle);
540 if (handle != rhandle) {
541 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge, bus_number);
542
543 status = acpi_get_type(handle, &type);
544 if ( (ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE) )
545 return;
546
547 status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL, &temp);
548 if (ACPI_SUCCESS(status)) {
549 pci_id->device = ACPI_HIWORD (ACPI_LODWORD (temp));
550 pci_id->function = ACPI_LOWORD (ACPI_LODWORD (temp));
551
552 if (*is_bridge)
553 pci_id->bus = *bus_number;
554
555 /* any nicer way to get bus number of bridge ? */
556 status = acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8, 8);
557 if (ACPI_SUCCESS(status) &&
558 ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
559 status = acpi_os_read_pci_configuration(pci_id, 0x18, &tu8, 8);
560 if (!ACPI_SUCCESS(status)) {
561 /* Certainly broken... FIX ME */
562 return;
563 }
564 *is_bridge = 1;
565 pci_id->bus = tu8;
566 status = acpi_os_read_pci_configuration(pci_id, 0x19, &tu8, 8);
567 if (ACPI_SUCCESS(status)) {
568 *bus_number = tu8;
569 }
570 } else
571 *is_bridge = 0;
572 }
573 }
574 }
575
576 void
acpi_os_derive_pci_id(acpi_handle rhandle,acpi_handle chandle,struct acpi_pci_id ** id)577 acpi_os_derive_pci_id (
578 acpi_handle rhandle, /* upper bound */
579 acpi_handle chandle, /* current node */
580 struct acpi_pci_id **id)
581 {
582 int is_bridge = 1;
583 u8 bus_number = (*id)->bus;
584
585 acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
586 }
587
588 #else /*!CONFIG_ACPI_PCI*/
589
590 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,acpi_integer value,u32 width)591 acpi_os_write_pci_configuration (
592 struct acpi_pci_id *pci_id,
593 u32 reg,
594 acpi_integer value,
595 u32 width)
596 {
597 return (AE_SUPPORT);
598 }
599
600 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,void * value,u32 width)601 acpi_os_read_pci_configuration (
602 struct acpi_pci_id *pci_id,
603 u32 reg,
604 void *value,
605 u32 width)
606 {
607 return (AE_SUPPORT);
608 }
609
610 void
acpi_os_derive_pci_id(acpi_handle rhandle,acpi_handle chandle,struct acpi_pci_id ** id)611 acpi_os_derive_pci_id (
612 acpi_handle rhandle, /* upper bound */
613 acpi_handle chandle, /* current node */
614 struct acpi_pci_id **id)
615 {
616 }
617
618 #endif /*CONFIG_ACPI_PCI*/
619
620 static void
acpi_os_execute_deferred(void * context)621 acpi_os_execute_deferred (
622 void *context)
623 {
624 struct acpi_os_dpc *dpc = NULL;
625
626 ACPI_FUNCTION_TRACE ("os_execute_deferred");
627
628 dpc = (struct acpi_os_dpc *) context;
629 if (!dpc) {
630 ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
631 return_VOID;
632 }
633
634 dpc->function(dpc->context);
635
636 kfree(dpc);
637
638 return_VOID;
639 }
640
641 acpi_status
acpi_os_queue_for_execution(u32 priority,OSD_EXECUTION_CALLBACK function,void * context)642 acpi_os_queue_for_execution(
643 u32 priority,
644 OSD_EXECUTION_CALLBACK function,
645 void *context)
646 {
647 acpi_status status = AE_OK;
648 struct acpi_os_dpc *dpc = NULL;
649 struct tq_struct *task;
650
651 ACPI_FUNCTION_TRACE ("os_queue_for_execution");
652
653 ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Scheduling function [%p(%p)] for deferred execution.\n", function, context));
654
655 if (!function)
656 return_ACPI_STATUS (AE_BAD_PARAMETER);
657
658 /*
659 * Allocate/initialize DPC structure. Note that this memory will be
660 * freed by the callee. The kernel handles the tq_struct list in a
661 * way that allows us to also free its memory inside the callee.
662 * Because we may want to schedule several tasks with different
663 * parameters we can't use the approach some kernel code uses of
664 * having a static tq_struct.
665 * We can save time and code by allocating the DPC and tq_structs
666 * from the same memory.
667 */
668 dpc = kmalloc(sizeof(struct acpi_os_dpc)+sizeof(struct tq_struct), GFP_ATOMIC);
669 if (!dpc)
670 return_ACPI_STATUS (AE_NO_MEMORY);
671
672 dpc->function = function;
673 dpc->context = context;
674
675 task = (void *)(dpc+1);
676 INIT_TQUEUE(task, acpi_os_execute_deferred, (void*)dpc);
677
678 if (!schedule_task(task)) {
679 ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Call to schedule_task() failed.\n"));
680 kfree(dpc);
681 status = AE_ERROR;
682 }
683
684 return_ACPI_STATUS (status);
685 }
686
687 /*
688 * Allocate the memory for a spinlock and initialize it.
689 */
690 acpi_status
acpi_os_create_lock(acpi_handle * out_handle)691 acpi_os_create_lock (
692 acpi_handle *out_handle)
693 {
694 spinlock_t *lock_ptr;
695
696 ACPI_FUNCTION_TRACE ("os_create_lock");
697
698 lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
699
700 spin_lock_init(lock_ptr);
701
702 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
703
704 *out_handle = lock_ptr;
705
706 return_ACPI_STATUS (AE_OK);
707 }
708
709
710 /*
711 * Deallocate the memory for a spinlock.
712 */
713 void
acpi_os_delete_lock(acpi_handle handle)714 acpi_os_delete_lock (
715 acpi_handle handle)
716 {
717 ACPI_FUNCTION_TRACE ("os_create_lock");
718
719 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
720
721 acpi_os_free(handle);
722
723 return_VOID;
724 }
725
726 /*
727 * Acquire a spinlock.
728 *
729 * handle is a pointer to the spinlock_t.
730 * flags is *not* the result of save_flags - it is an ACPI-specific flag variable
731 * that indicates whether we are at interrupt level.
732 */
733 void
acpi_os_acquire_lock(acpi_handle handle,u32 flags)734 acpi_os_acquire_lock (
735 acpi_handle handle,
736 u32 flags)
737 {
738 ACPI_FUNCTION_TRACE ("os_acquire_lock");
739
740 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Acquiring spinlock[%p] from %s level\n", handle,
741 ((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt")));
742
743 if (flags & ACPI_NOT_ISR)
744 ACPI_DISABLE_IRQS();
745
746 spin_lock((spinlock_t *)handle);
747
748 return_VOID;
749 }
750
751
752 /*
753 * Release a spinlock. See above.
754 */
755 void
acpi_os_release_lock(acpi_handle handle,u32 flags)756 acpi_os_release_lock (
757 acpi_handle handle,
758 u32 flags)
759 {
760 ACPI_FUNCTION_TRACE ("os_release_lock");
761
762 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Releasing spinlock[%p] from %s level\n", handle,
763 ((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt")));
764
765 spin_unlock((spinlock_t *)handle);
766
767 if (flags & ACPI_NOT_ISR)
768 ACPI_ENABLE_IRQS();
769
770 return_VOID;
771 }
772
773
774 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)775 acpi_os_create_semaphore(
776 u32 max_units,
777 u32 initial_units,
778 acpi_handle *handle)
779 {
780 struct semaphore *sem = NULL;
781
782 ACPI_FUNCTION_TRACE ("os_create_semaphore");
783
784 sem = acpi_os_allocate(sizeof(struct semaphore));
785 if (!sem)
786 return_ACPI_STATUS (AE_NO_MEMORY);
787 memset(sem, 0, sizeof(struct semaphore));
788
789 sema_init(sem, initial_units);
790
791 *handle = (acpi_handle*)sem;
792
793 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", *handle, initial_units));
794
795 return_ACPI_STATUS (AE_OK);
796 }
797
798
799 /*
800 * TODO: A better way to delete semaphores? Linux doesn't have a
801 * 'delete_semaphore()' function -- may result in an invalid
802 * pointer dereference for non-synchronized consumers. Should
803 * we at least check for blocked threads and signal/cancel them?
804 */
805
806 acpi_status
acpi_os_delete_semaphore(acpi_handle handle)807 acpi_os_delete_semaphore(
808 acpi_handle handle)
809 {
810 struct semaphore *sem = (struct semaphore*) handle;
811
812 ACPI_FUNCTION_TRACE ("os_delete_semaphore");
813
814 if (!sem)
815 return_ACPI_STATUS (AE_BAD_PARAMETER);
816
817 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
818
819 acpi_os_free(sem); sem = NULL;
820
821 return_ACPI_STATUS (AE_OK);
822 }
823
824
825 /*
826 * TODO: The kernel doesn't have a 'down_timeout' function -- had to
827 * improvise. The process is to sleep for one scheduler quantum
828 * until the semaphore becomes available. Downside is that this
829 * may result in starvation for timeout-based waits when there's
830 * lots of semaphore activity.
831 *
832 * TODO: Support for units > 1?
833 */
834 acpi_status
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)835 acpi_os_wait_semaphore(
836 acpi_handle handle,
837 u32 units,
838 u16 timeout)
839 {
840 acpi_status status = AE_OK;
841 struct semaphore *sem = (struct semaphore*)handle;
842 int ret = 0;
843
844 ACPI_FUNCTION_TRACE ("os_wait_semaphore");
845
846 if (!sem || (units < 1))
847 return_ACPI_STATUS (AE_BAD_PARAMETER);
848
849 if (units > 1)
850 return_ACPI_STATUS (AE_SUPPORT);
851
852 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", handle, units, timeout));
853
854 if (in_interrupt())
855 timeout = 0;
856
857 switch (timeout)
858 {
859 /*
860 * No Wait:
861 * --------
862 * A zero timeout value indicates that we shouldn't wait - just
863 * acquire the semaphore if available otherwise return AE_TIME
864 * (a.k.a. 'would block').
865 */
866 case 0:
867 if(down_trylock(sem))
868 status = AE_TIME;
869 break;
870
871 /*
872 * Wait Indefinitely:
873 * ------------------
874 */
875 case ACPI_WAIT_FOREVER:
876 down(sem);
877 break;
878
879 /*
880 * Wait w/ Timeout:
881 * ----------------
882 */
883 default:
884 // TODO: A better timeout algorithm?
885 {
886 int i = 0;
887 static const int quantum_ms = 1000/HZ;
888
889 ret = down_trylock(sem);
890 for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) {
891 current->state = TASK_INTERRUPTIBLE;
892 schedule_timeout(1);
893 ret = down_trylock(sem);
894 }
895
896 if (ret != 0)
897 status = AE_TIME;
898 }
899 break;
900 }
901
902 if (ACPI_FAILURE(status)) {
903 ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Failed to acquire semaphore[%p|%d|%d], %s\n",
904 handle, units, timeout, acpi_format_exception(status)));
905 }
906 else {
907 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Acquired semaphore[%p|%d|%d]\n", handle, units, timeout));
908 }
909
910 return_ACPI_STATUS (status);
911 }
912
913
914 /*
915 * TODO: Support for units > 1?
916 */
917 acpi_status
acpi_os_signal_semaphore(acpi_handle handle,u32 units)918 acpi_os_signal_semaphore(
919 acpi_handle handle,
920 u32 units)
921 {
922 struct semaphore *sem = (struct semaphore *) handle;
923
924 ACPI_FUNCTION_TRACE ("os_signal_semaphore");
925
926 if (!sem || (units < 1))
927 return_ACPI_STATUS (AE_BAD_PARAMETER);
928
929 if (units > 1)
930 return_ACPI_STATUS (AE_SUPPORT);
931
932 ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, units));
933
934 up(sem);
935
936 return_ACPI_STATUS (AE_OK);
937 }
938
939 u32
acpi_os_get_line(char * buffer)940 acpi_os_get_line(char *buffer)
941 {
942
943 #ifdef ENABLE_DEBUGGER
944 if (acpi_in_debugger) {
945 u32 chars;
946
947 kdb_read(buffer, sizeof(line_buf));
948
949 /* remove the CR kdb includes */
950 chars = strlen(buffer) - 1;
951 buffer[chars] = '\0';
952 }
953 #endif
954
955 return 0;
956 }
957
958 /*
959 * We just have to assume we're dealing with valid memory
960 */
961
962 u8
acpi_os_readable(void * ptr,acpi_size len)963 acpi_os_readable(void *ptr, acpi_size len)
964 {
965 return 1;
966 }
967
968 u8
acpi_os_writable(void * ptr,acpi_size len)969 acpi_os_writable(void *ptr, acpi_size len)
970 {
971 return 1;
972 }
973
974 u32
acpi_os_get_thread_id(void)975 acpi_os_get_thread_id (void)
976 {
977 if (!in_interrupt())
978 return current->pid;
979
980 return 0;
981 }
982
983 acpi_status
acpi_os_signal(u32 function,void * info)984 acpi_os_signal (
985 u32 function,
986 void *info)
987 {
988 switch (function)
989 {
990 case ACPI_SIGNAL_FATAL:
991 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
992 break;
993 case ACPI_SIGNAL_BREAKPOINT:
994 {
995 char *bp_info = (char*) info;
996
997 printk(KERN_ERR "ACPI breakpoint: %s\n", bp_info);
998 }
999 default:
1000 break;
1001 }
1002
1003 return AE_OK;
1004 }
1005
1006 int __init
acpi_os_name_setup(char * str)1007 acpi_os_name_setup(char *str)
1008 {
1009 char *p = acpi_os_name;
1010 int count = ACPI_MAX_OVERRIDE_LEN-1;
1011
1012 if (!str || !*str)
1013 return 0;
1014
1015 for (; count-- && str && *str; str++) {
1016 if (isalnum(*str) || *str == ' ' || *str == ':')
1017 *p++ = *str;
1018 else if (*str == '\'' || *str == '"')
1019 continue;
1020 else
1021 break;
1022 }
1023 *p = 0;
1024
1025 return 1;
1026
1027 }
1028
1029 __setup("acpi_os_name=", acpi_os_name_setup);
1030
1031 /*
1032 * _OSI control
1033 * empty string disables _OSI
1034 * TBD additional string adds to _OSI
1035 */
1036 int __init
acpi_osi_setup(char * str)1037 acpi_osi_setup(char *str)
1038 {
1039 if (str == NULL || *str == '\0') {
1040 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1041 acpi_gbl_create_osi_method = FALSE;
1042 } else
1043 {
1044 /* TBD */
1045 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n", str);
1046 }
1047
1048 return 1;
1049 }
1050
1051 __setup("acpi_osi=", acpi_osi_setup);
1052
1053 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1054 int __init
acpi_serialize_setup(char * str)1055 acpi_serialize_setup(char *str)
1056 {
1057 printk(KERN_INFO PREFIX "serialize enabled\n");
1058
1059 acpi_gbl_all_methods_serialized = TRUE;
1060
1061 return 1;
1062 }
1063
1064 __setup("acpi_serialize", acpi_serialize_setup);
1065
1066 /*
1067 * Wake and Run-Time GPES are expected to be separate.
1068 * We disable wake-GPEs at run-time to prevent spurious
1069 * interrupts.
1070 *
1071 * However, if a system exists that shares Wake and
1072 * Run-time events on the same GPE this flag is available
1073 * to tell Linux to keep the wake-time GPEs enabled at run-time.
1074 */
1075 int __init
acpi_wake_gpes_always_on_setup(char * str)1076 acpi_wake_gpes_always_on_setup(char *str)
1077 {
1078 printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1079
1080 acpi_gbl_leave_wake_gpes_disabled = FALSE;
1081
1082 return 1;
1083 }
1084
1085 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1086
1087