/* * acpi_osl.c - OS-dependent functions ($Revision: 80 $) * * Copyright (C) 2000 Andrew Henroid * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ACPI_EFI #include u64 efi_mem_attributes (u64 phys_addr); #endif #define _COMPONENT ACPI_OS_SERVICES ACPI_MODULE_NAME ("osl") #define PREFIX "ACPI: " struct acpi_os_dpc { OSD_EXECUTION_CALLBACK function; void *context; }; #ifdef ENABLE_DEBUGGER #include /* stuff for debugger support */ int acpi_in_debugger; extern char line_buf[80]; #endif /*ENABLE_DEBUGGER*/ static int acpi_irq_irq; static OSD_HANDLER acpi_irq_handler; static void *acpi_irq_context; acpi_status acpi_os_initialize(void) { return AE_OK; } acpi_status acpi_os_initialize1(void) { /* * Initialize PCI configuration space access, as we'll need to access * it while walking the namespace (bus 0 and root bridges w/ _BBNs). */ #ifdef CONFIG_ACPI_PCI pcibios_config_init(); if (!pci_config_read || !pci_config_write) { printk(KERN_ERR PREFIX "Access to PCI configuration space unavailable\n"); return AE_NULL_ENTRY; } #endif return AE_OK; } acpi_status acpi_os_terminate(void) { if (acpi_irq_handler) { acpi_os_remove_interrupt_handler(acpi_irq_irq, acpi_irq_handler); } return AE_OK; } void acpi_os_printf(const char *fmt,...) { va_list args; va_start(args, fmt); acpi_os_vprintf(fmt, args); va_end(args); } void acpi_os_vprintf(const char *fmt, va_list args) { static char buffer[512]; vsprintf(buffer, fmt, args); #ifdef ENABLE_DEBUGGER if (acpi_in_debugger) { kdb_printf("%s", buffer); } else { printk("%s", buffer); } #else printk("%s", buffer); #endif } void * acpi_os_allocate(acpi_size size) { return kmalloc(size, GFP_KERNEL); } void acpi_os_free(void *ptr) { kfree(ptr); } acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr) { #ifdef CONFIG_ACPI_EFI addr->pointer_type = ACPI_PHYSICAL_POINTER; if (efi.acpi20) addr->pointer.physical = (acpi_physical_address) virt_to_phys(efi.acpi20); else if (efi.acpi) addr->pointer.physical = (acpi_physical_address) virt_to_phys(efi.acpi); else { printk(KERN_ERR PREFIX "System description tables not found\n"); return AE_NOT_FOUND; } #else if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) { printk(KERN_ERR PREFIX "System description tables not found\n"); return AE_NOT_FOUND; } #endif /*CONFIG_ACPI_EFI*/ return AE_OK; } acpi_status acpi_os_map_memory(acpi_physical_address phys, acpi_size size, void **virt) { #ifdef CONFIG_ACPI_EFI if (EFI_MEMORY_WB & efi_mem_attributes(phys)) { *virt = phys_to_virt(phys); } else { *virt = ioremap(phys, size); } #else if (phys > ULONG_MAX) { printk(KERN_ERR PREFIX "Cannot map memory that high\n"); return AE_BAD_PARAMETER; } /* * ioremap checks to ensure this is in reserved space */ *virt = ioremap((unsigned long) phys, size); #endif if (!*virt) return AE_NO_MEMORY; return AE_OK; } void acpi_os_unmap_memory(void *virt, acpi_size size) { iounmap(virt); } acpi_status acpi_os_get_physical_address(void *virt, acpi_physical_address *phys) { if(!phys || !virt) return AE_BAD_PARAMETER; *phys = virt_to_phys(virt); return AE_OK; } #define ACPI_MAX_OVERRIDE_LEN 100 static char __initdata acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; acpi_status acpi_os_predefined_override (const struct acpi_predefined_names *init_val, acpi_string *new_val) { if (!init_val || !new_val) return AE_BAD_PARAMETER; *new_val = NULL; if (!memcmp (init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { printk(KERN_INFO PREFIX "Overriding _OS definition: %s\n", acpi_os_name); *new_val = acpi_os_name; } return AE_OK; } acpi_status acpi_os_table_override (struct acpi_table_header *existing_table, struct acpi_table_header **new_table) { if (!existing_table || !new_table) return AE_BAD_PARAMETER; *new_table = NULL; return AE_OK; } static void acpi_irq(int irq, void *dev_id, struct pt_regs *regs) { (*acpi_irq_handler)(acpi_irq_context); } acpi_status acpi_os_install_interrupt_handler(u32 irq, OSD_HANDLER handler, void *context) { /* * Ignore the irq from the core, and use the value in our copy of the * FADT. It may not be the same if an interrupt source override exists * for the SCI. */ irq = acpi_fadt.sci_int; #ifdef CONFIG_IA64 irq = acpi_irq_to_vector(irq); if (irq < 0) { printk(KERN_ERR PREFIX "SCI (ACPI interrupt %d) not registered\n", acpi_fadt.sci_int); return AE_OK; } #endif acpi_irq_irq = irq; acpi_irq_handler = handler; acpi_irq_context = context; if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) { printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq); return AE_NOT_ACQUIRED; } return AE_OK; } acpi_status acpi_os_remove_interrupt_handler(u32 irq, OSD_HANDLER handler) { if (acpi_irq_handler) { #ifdef CONFIG_IA64 irq = acpi_irq_to_vector(irq); #endif free_irq(irq, acpi_irq); acpi_irq_handler = NULL; } return AE_OK; } /* * Running in interpreter thread context, safe to sleep */ void acpi_os_sleep(u32 sec, u32 ms) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(HZ * sec + (ms * HZ) / 1000); } void acpi_os_stall(u32 us) { while (us) { u32 delay = 1000; if (delay > us) delay = us; udelay(delay); touch_nmi_watchdog(); us -= delay; } } acpi_status acpi_os_read_port( acpi_io_address port, u32 *value, u32 width) { u32 dummy; if (!value) value = &dummy; switch (width) { case 8: *(u8*) value = inb(port); break; case 16: *(u16*) value = inw(port); break; case 32: *(u32*) value = inl(port); break; default: BUG(); } return AE_OK; } acpi_status acpi_os_write_port( acpi_io_address port, u32 value, u32 width) { switch (width) { case 8: outb(value, port); break; case 16: outw(value, port); break; case 32: outl(value, port); break; default: BUG(); } return AE_OK; } acpi_status acpi_os_read_memory( acpi_physical_address phys_addr, u32 *value, u32 width) { u32 dummy; void *virt_addr; #ifdef CONFIG_ACPI_EFI int iomem = 0; if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) { virt_addr = phys_to_virt(phys_addr); } else { iomem = 1; virt_addr = ioremap(phys_addr, width); } #else virt_addr = phys_to_virt(phys_addr); #endif if (!value) value = &dummy; switch (width) { case 8: *(u8*) value = *(u8*) virt_addr; break; case 16: *(u16*) value = *(u16*) virt_addr; break; case 32: *(u32*) value = *(u32*) virt_addr; break; default: BUG(); } #ifdef CONFIG_ACPI_EFI if (iomem) iounmap(virt_addr); #endif return AE_OK; } acpi_status acpi_os_write_memory( acpi_physical_address phys_addr, u32 value, u32 width) { void *virt_addr; #ifdef CONFIG_ACPI_EFI int iomem = 0; if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) { virt_addr = phys_to_virt(phys_addr); } else { iomem = 1; virt_addr = ioremap(phys_addr, width); } #else virt_addr = phys_to_virt(phys_addr); #endif switch (width) { case 8: *(u8*) virt_addr = value; break; case 16: *(u16*) virt_addr = value; break; case 32: *(u32*) virt_addr = value; break; default: BUG(); } #ifdef CONFIG_ACPI_EFI if (iomem) iounmap(virt_addr); #endif return AE_OK; } #ifdef CONFIG_ACPI_PCI acpi_status acpi_os_read_pci_configuration ( struct acpi_pci_id *pci_id, u32 reg, void *value, u32 width) { int result = 0; if (!value) return AE_BAD_PARAMETER; switch (width) { case 8: result = pci_config_read(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 1, value); break; case 16: result = pci_config_read(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 2, value); break; case 32: result = pci_config_read(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 4, value); break; default: BUG(); } return (result ? AE_ERROR : AE_OK); } acpi_status acpi_os_write_pci_configuration ( struct acpi_pci_id *pci_id, u32 reg, acpi_integer value, u32 width) { int result = 0; switch (width) { case 8: result = pci_config_write(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 1, value); break; case 16: result = pci_config_write(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 2, value); break; case 32: result = pci_config_write(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 4, value); break; default: BUG(); } return (result ? AE_ERROR : AE_OK); } static void acpi_os_derive_pci_id_2 ( acpi_handle rhandle, /* upper bound */ acpi_handle chandle, /* current node */ struct acpi_pci_id **id, int *is_bridge, u8 *bus_number) { acpi_handle handle; struct acpi_pci_id *pci_id = *id; acpi_status status; unsigned long temp; acpi_object_type type; u8 tu8; acpi_get_parent(chandle, &handle); if (handle != rhandle) { acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge, bus_number); status = acpi_get_type(handle, &type); if ( (ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE) ) return; status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL, &temp); if (ACPI_SUCCESS(status)) { pci_id->device = ACPI_HIWORD (ACPI_LODWORD (temp)); pci_id->function = ACPI_LOWORD (ACPI_LODWORD (temp)); if (*is_bridge) pci_id->bus = *bus_number; /* any nicer way to get bus number of bridge ? */ status = acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8, 8); if (ACPI_SUCCESS(status) && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) { status = acpi_os_read_pci_configuration(pci_id, 0x18, &tu8, 8); if (!ACPI_SUCCESS(status)) { /* Certainly broken... FIX ME */ return; } *is_bridge = 1; pci_id->bus = tu8; status = acpi_os_read_pci_configuration(pci_id, 0x19, &tu8, 8); if (ACPI_SUCCESS(status)) { *bus_number = tu8; } } else *is_bridge = 0; } } } void acpi_os_derive_pci_id ( acpi_handle rhandle, /* upper bound */ acpi_handle chandle, /* current node */ struct acpi_pci_id **id) { int is_bridge = 1; u8 bus_number = (*id)->bus; acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number); } #else /*!CONFIG_ACPI_PCI*/ acpi_status acpi_os_write_pci_configuration ( struct acpi_pci_id *pci_id, u32 reg, acpi_integer value, u32 width) { return (AE_SUPPORT); } acpi_status acpi_os_read_pci_configuration ( struct acpi_pci_id *pci_id, u32 reg, void *value, u32 width) { return (AE_SUPPORT); } void acpi_os_derive_pci_id ( acpi_handle rhandle, /* upper bound */ acpi_handle chandle, /* current node */ struct acpi_pci_id **id) { } #endif /*CONFIG_ACPI_PCI*/ static void acpi_os_execute_deferred ( void *context) { struct acpi_os_dpc *dpc = NULL; ACPI_FUNCTION_TRACE ("os_execute_deferred"); dpc = (struct acpi_os_dpc *) context; if (!dpc) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid (NULL) context.\n")); return_VOID; } dpc->function(dpc->context); kfree(dpc); return_VOID; } acpi_status acpi_os_queue_for_execution( u32 priority, OSD_EXECUTION_CALLBACK function, void *context) { acpi_status status = AE_OK; struct acpi_os_dpc *dpc = NULL; struct tq_struct *task; ACPI_FUNCTION_TRACE ("os_queue_for_execution"); ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Scheduling function [%p(%p)] for deferred execution.\n", function, context)); if (!function) return_ACPI_STATUS (AE_BAD_PARAMETER); /* * Allocate/initialize DPC structure. Note that this memory will be * freed by the callee. The kernel handles the tq_struct list in a * way that allows us to also free its memory inside the callee. * Because we may want to schedule several tasks with different * parameters we can't use the approach some kernel code uses of * having a static tq_struct. * We can save time and code by allocating the DPC and tq_structs * from the same memory. */ dpc = kmalloc(sizeof(struct acpi_os_dpc)+sizeof(struct tq_struct), GFP_ATOMIC); if (!dpc) return_ACPI_STATUS (AE_NO_MEMORY); dpc->function = function; dpc->context = context; task = (void *)(dpc+1); INIT_TQUEUE(task, acpi_os_execute_deferred, (void*)dpc); if (!schedule_task(task)) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Call to schedule_task() failed.\n")); kfree(dpc); status = AE_ERROR; } return_ACPI_STATUS (status); } /* * Allocate the memory for a spinlock and initialize it. */ acpi_status acpi_os_create_lock ( acpi_handle *out_handle) { spinlock_t *lock_ptr; ACPI_FUNCTION_TRACE ("os_create_lock"); lock_ptr = acpi_os_allocate(sizeof(spinlock_t)); spin_lock_init(lock_ptr); ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr)); *out_handle = lock_ptr; return_ACPI_STATUS (AE_OK); } /* * Deallocate the memory for a spinlock. */ void acpi_os_delete_lock ( acpi_handle handle) { ACPI_FUNCTION_TRACE ("os_create_lock"); ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle)); acpi_os_free(handle); return_VOID; } /* * Acquire a spinlock. * * handle is a pointer to the spinlock_t. * flags is *not* the result of save_flags - it is an ACPI-specific flag variable * that indicates whether we are at interrupt level. */ void acpi_os_acquire_lock ( acpi_handle handle, u32 flags) { ACPI_FUNCTION_TRACE ("os_acquire_lock"); ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Acquiring spinlock[%p] from %s level\n", handle, ((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt"))); if (flags & ACPI_NOT_ISR) ACPI_DISABLE_IRQS(); spin_lock((spinlock_t *)handle); return_VOID; } /* * Release a spinlock. See above. */ void acpi_os_release_lock ( acpi_handle handle, u32 flags) { ACPI_FUNCTION_TRACE ("os_release_lock"); ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Releasing spinlock[%p] from %s level\n", handle, ((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt"))); spin_unlock((spinlock_t *)handle); if (flags & ACPI_NOT_ISR) ACPI_ENABLE_IRQS(); return_VOID; } acpi_status acpi_os_create_semaphore( u32 max_units, u32 initial_units, acpi_handle *handle) { struct semaphore *sem = NULL; ACPI_FUNCTION_TRACE ("os_create_semaphore"); sem = acpi_os_allocate(sizeof(struct semaphore)); if (!sem) return_ACPI_STATUS (AE_NO_MEMORY); memset(sem, 0, sizeof(struct semaphore)); sema_init(sem, initial_units); *handle = (acpi_handle*)sem; ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", *handle, initial_units)); return_ACPI_STATUS (AE_OK); } /* * TODO: A better way to delete semaphores? Linux doesn't have a * 'delete_semaphore()' function -- may result in an invalid * pointer dereference for non-synchronized consumers. Should * we at least check for blocked threads and signal/cancel them? */ acpi_status acpi_os_delete_semaphore( acpi_handle handle) { struct semaphore *sem = (struct semaphore*) handle; ACPI_FUNCTION_TRACE ("os_delete_semaphore"); if (!sem) return_ACPI_STATUS (AE_BAD_PARAMETER); ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); acpi_os_free(sem); sem = NULL; return_ACPI_STATUS (AE_OK); } /* * TODO: The kernel doesn't have a 'down_timeout' function -- had to * improvise. The process is to sleep for one scheduler quantum * until the semaphore becomes available. Downside is that this * may result in starvation for timeout-based waits when there's * lots of semaphore activity. * * TODO: Support for units > 1? */ acpi_status acpi_os_wait_semaphore( acpi_handle handle, u32 units, u16 timeout) { acpi_status status = AE_OK; struct semaphore *sem = (struct semaphore*)handle; int ret = 0; ACPI_FUNCTION_TRACE ("os_wait_semaphore"); if (!sem || (units < 1)) return_ACPI_STATUS (AE_BAD_PARAMETER); if (units > 1) return_ACPI_STATUS (AE_SUPPORT); ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", handle, units, timeout)); if (in_interrupt()) timeout = 0; switch (timeout) { /* * No Wait: * -------- * A zero timeout value indicates that we shouldn't wait - just * acquire the semaphore if available otherwise return AE_TIME * (a.k.a. 'would block'). */ case 0: if(down_trylock(sem)) status = AE_TIME; break; /* * Wait Indefinitely: * ------------------ */ case ACPI_WAIT_FOREVER: down(sem); break; /* * Wait w/ Timeout: * ---------------- */ default: // TODO: A better timeout algorithm? { int i = 0; static const int quantum_ms = 1000/HZ; ret = down_trylock(sem); for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(1); ret = down_trylock(sem); } if (ret != 0) status = AE_TIME; } break; } if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Failed to acquire semaphore[%p|%d|%d], %s\n", handle, units, timeout, acpi_format_exception(status))); } else { ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Acquired semaphore[%p|%d|%d]\n", handle, units, timeout)); } return_ACPI_STATUS (status); } /* * TODO: Support for units > 1? */ acpi_status acpi_os_signal_semaphore( acpi_handle handle, u32 units) { struct semaphore *sem = (struct semaphore *) handle; ACPI_FUNCTION_TRACE ("os_signal_semaphore"); if (!sem || (units < 1)) return_ACPI_STATUS (AE_BAD_PARAMETER); if (units > 1) return_ACPI_STATUS (AE_SUPPORT); ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, units)); up(sem); return_ACPI_STATUS (AE_OK); } u32 acpi_os_get_line(char *buffer) { #ifdef ENABLE_DEBUGGER if (acpi_in_debugger) { u32 chars; kdb_read(buffer, sizeof(line_buf)); /* remove the CR kdb includes */ chars = strlen(buffer) - 1; buffer[chars] = '\0'; } #endif return 0; } /* * We just have to assume we're dealing with valid memory */ u8 acpi_os_readable(void *ptr, acpi_size len) { return 1; } u8 acpi_os_writable(void *ptr, acpi_size len) { return 1; } u32 acpi_os_get_thread_id (void) { if (!in_interrupt()) return current->pid; return 0; } acpi_status acpi_os_signal ( u32 function, void *info) { switch (function) { case ACPI_SIGNAL_FATAL: printk(KERN_ERR PREFIX "Fatal opcode executed\n"); break; case ACPI_SIGNAL_BREAKPOINT: { char *bp_info = (char*) info; printk(KERN_ERR "ACPI breakpoint: %s\n", bp_info); } default: break; } return AE_OK; } int __init acpi_os_name_setup(char *str) { char *p = acpi_os_name; int count = ACPI_MAX_OVERRIDE_LEN-1; if (!str || !*str) return 0; for (; count-- && str && *str; str++) { if (isalnum(*str) || *str == ' ' || *str == ':') *p++ = *str; else if (*str == '\'' || *str == '"') continue; else break; } *p = 0; return 1; } __setup("acpi_os_name=", acpi_os_name_setup); /* * _OSI control * empty string disables _OSI * TBD additional string adds to _OSI */ int __init acpi_osi_setup(char *str) { if (str == NULL || *str == '\0') { printk(KERN_INFO PREFIX "_OSI method disabled\n"); acpi_gbl_create_osi_method = FALSE; } else { /* TBD */ printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n", str); } return 1; } __setup("acpi_osi=", acpi_osi_setup); /* enable serialization to combat AE_ALREADY_EXISTS errors */ int __init acpi_serialize_setup(char *str) { printk(KERN_INFO PREFIX "serialize enabled\n"); acpi_gbl_all_methods_serialized = TRUE; return 1; } __setup("acpi_serialize", acpi_serialize_setup); /* * Wake and Run-Time GPES are expected to be separate. * We disable wake-GPEs at run-time to prevent spurious * interrupts. * * However, if a system exists that shares Wake and * Run-time events on the same GPE this flag is available * to tell Linux to keep the wake-time GPEs enabled at run-time. */ int __init acpi_wake_gpes_always_on_setup(char *str) { printk(KERN_INFO PREFIX "wake GPEs not disabled\n"); acpi_gbl_leave_wake_gpes_disabled = FALSE; return 1; } __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);