1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 2010,2011 Thomas Renninger <trenn@suse.de>, Novell Inc.
4 */
5
6 #if defined(__i386__) || defined(__x86_64__)
7
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <limits.h>
13
14 #include <cpufreq.h>
15
16 #include "helpers/helpers.h"
17 #include "idle_monitor/cpupower-monitor.h"
18
19 #define MSR_APERF 0xE8
20 #define MSR_MPERF 0xE7
21
22 #define RDPRU ".byte 0x0f, 0x01, 0xfd"
23 #define RDPRU_ECX_MPERF 0
24 #define RDPRU_ECX_APERF 1
25
26 #define MSR_TSC 0x10
27
28 #define MSR_AMD_HWCR 0xc0010015
29
30 enum mperf_id { C0 = 0, Cx, AVG_FREQ, MPERF_CSTATE_COUNT };
31
32 static int mperf_get_count_percent(unsigned int self_id, double *percent,
33 unsigned int cpu);
34 static int mperf_get_count_freq(unsigned int id, unsigned long long *count,
35 unsigned int cpu);
36 static struct timespec time_start, time_end;
37
38 static cstate_t mperf_cstates[MPERF_CSTATE_COUNT] = {
39 {
40 .name = "C0",
41 .desc = N_("Processor Core not idle"),
42 .id = C0,
43 .range = RANGE_THREAD,
44 .get_count_percent = mperf_get_count_percent,
45 },
46 {
47 .name = "Cx",
48 .desc = N_("Processor Core in an idle state"),
49 .id = Cx,
50 .range = RANGE_THREAD,
51 .get_count_percent = mperf_get_count_percent,
52 },
53
54 {
55 .name = "Freq",
56 .desc = N_("Average Frequency (including boost) in MHz"),
57 .id = AVG_FREQ,
58 .range = RANGE_THREAD,
59 .get_count = mperf_get_count_freq,
60 },
61 };
62
63 enum MAX_FREQ_MODE { MAX_FREQ_SYSFS, MAX_FREQ_TSC_REF };
64 static int max_freq_mode;
65 /*
66 * The max frequency mperf is ticking at (in C0), either retrieved via:
67 * 1) calculated after measurements if we know TSC ticks at mperf/P0 frequency
68 * 2) cpufreq /sys/devices/.../cpu0/cpufreq/cpuinfo_max_freq at init time
69 * 1. Is preferred as it also works without cpufreq subsystem (e.g. on Xen)
70 */
71 static unsigned long max_frequency;
72
73 static unsigned long long *tsc_at_measure_start;
74 static unsigned long long *tsc_at_measure_end;
75 static unsigned long long *mperf_previous_count;
76 static unsigned long long *aperf_previous_count;
77 static unsigned long long *mperf_current_count;
78 static unsigned long long *aperf_current_count;
79
80 /* valid flag for all CPUs. If a MSR read failed it will be zero */
81 static int *is_valid;
82
mperf_get_tsc(unsigned long long * tsc)83 static int mperf_get_tsc(unsigned long long *tsc)
84 {
85 int ret;
86
87 ret = read_msr(base_cpu, MSR_TSC, tsc);
88 if (ret)
89 dprint("Reading TSC MSR failed, returning %llu\n", *tsc);
90 return ret;
91 }
92
get_aperf_mperf(int cpu,unsigned long long * aval,unsigned long long * mval)93 static int get_aperf_mperf(int cpu, unsigned long long *aval,
94 unsigned long long *mval)
95 {
96 unsigned long low_a, high_a;
97 unsigned long low_m, high_m;
98 int ret;
99
100 /*
101 * Running on the cpu from which we read the registers will
102 * prevent APERF/MPERF from going out of sync because of IPI
103 * latency introduced by read_msr()s.
104 */
105 if (mperf_monitor.flags.per_cpu_schedule) {
106 if (bind_cpu(cpu))
107 return 1;
108 }
109
110 if (cpupower_cpu_info.caps & CPUPOWER_CAP_AMD_RDPRU) {
111 asm volatile(RDPRU
112 : "=a" (low_a), "=d" (high_a)
113 : "c" (RDPRU_ECX_APERF));
114 asm volatile(RDPRU
115 : "=a" (low_m), "=d" (high_m)
116 : "c" (RDPRU_ECX_MPERF));
117
118 *aval = ((low_a) | (high_a) << 32);
119 *mval = ((low_m) | (high_m) << 32);
120
121 return 0;
122 }
123
124 ret = read_msr(cpu, MSR_APERF, aval);
125 ret |= read_msr(cpu, MSR_MPERF, mval);
126
127 return ret;
128 }
129
mperf_init_stats(unsigned int cpu)130 static int mperf_init_stats(unsigned int cpu)
131 {
132 unsigned long long aval, mval;
133 int ret;
134
135 ret = get_aperf_mperf(cpu, &aval, &mval);
136 aperf_previous_count[cpu] = aval;
137 mperf_previous_count[cpu] = mval;
138 is_valid[cpu] = !ret;
139
140 return 0;
141 }
142
mperf_measure_stats(unsigned int cpu)143 static int mperf_measure_stats(unsigned int cpu)
144 {
145 unsigned long long aval, mval;
146 int ret;
147
148 ret = get_aperf_mperf(cpu, &aval, &mval);
149 aperf_current_count[cpu] = aval;
150 mperf_current_count[cpu] = mval;
151 is_valid[cpu] = !ret;
152
153 return 0;
154 }
155
mperf_get_count_percent(unsigned int id,double * percent,unsigned int cpu)156 static int mperf_get_count_percent(unsigned int id, double *percent,
157 unsigned int cpu)
158 {
159 unsigned long long aperf_diff, mperf_diff, tsc_diff;
160 unsigned long long timediff;
161
162 if (!is_valid[cpu])
163 return -1;
164
165 if (id != C0 && id != Cx)
166 return -1;
167
168 mperf_diff = mperf_current_count[cpu] - mperf_previous_count[cpu];
169 aperf_diff = aperf_current_count[cpu] - aperf_previous_count[cpu];
170
171 if (max_freq_mode == MAX_FREQ_TSC_REF) {
172 tsc_diff = tsc_at_measure_end[cpu] - tsc_at_measure_start[cpu];
173 *percent = 100.0 * mperf_diff / tsc_diff;
174 dprint("%s: TSC Ref - mperf_diff: %llu, tsc_diff: %llu\n",
175 mperf_cstates[id].name, mperf_diff, tsc_diff);
176 } else if (max_freq_mode == MAX_FREQ_SYSFS) {
177 timediff = max_frequency * timespec_diff_us(time_start, time_end);
178 *percent = 100.0 * mperf_diff / timediff;
179 dprint("%s: MAXFREQ - mperf_diff: %llu, time_diff: %llu\n",
180 mperf_cstates[id].name, mperf_diff, timediff);
181 } else
182 return -1;
183
184 if (id == Cx)
185 *percent = 100.0 - *percent;
186
187 dprint("%s: previous: %llu - current: %llu - (%u)\n",
188 mperf_cstates[id].name, mperf_diff, aperf_diff, cpu);
189 dprint("%s: %f\n", mperf_cstates[id].name, *percent);
190 return 0;
191 }
192
mperf_get_count_freq(unsigned int id,unsigned long long * count,unsigned int cpu)193 static int mperf_get_count_freq(unsigned int id, unsigned long long *count,
194 unsigned int cpu)
195 {
196 unsigned long long aperf_diff, mperf_diff, time_diff, tsc_diff;
197
198 if (id != AVG_FREQ)
199 return 1;
200
201 if (!is_valid[cpu])
202 return -1;
203
204 mperf_diff = mperf_current_count[cpu] - mperf_previous_count[cpu];
205 aperf_diff = aperf_current_count[cpu] - aperf_previous_count[cpu];
206
207 if (max_freq_mode == MAX_FREQ_TSC_REF) {
208 /* Calculate max_freq from TSC count */
209 tsc_diff = tsc_at_measure_end[cpu] - tsc_at_measure_start[cpu];
210 time_diff = timespec_diff_us(time_start, time_end);
211 max_frequency = tsc_diff / time_diff;
212 }
213
214 *count = max_frequency * ((double)aperf_diff / mperf_diff);
215 dprint("%s: Average freq based on %s maximum frequency:\n",
216 mperf_cstates[id].name,
217 (max_freq_mode == MAX_FREQ_TSC_REF) ? "TSC calculated" : "sysfs read");
218 dprint("max_frequency: %lu\n", max_frequency);
219 dprint("aperf_diff: %llu\n", aperf_diff);
220 dprint("mperf_diff: %llu\n", mperf_diff);
221 dprint("avg freq: %llu\n", *count);
222 return 0;
223 }
224
mperf_start(void)225 static int mperf_start(void)
226 {
227 int cpu;
228
229 clock_gettime(CLOCK_REALTIME, &time_start);
230
231 for (cpu = 0; cpu < cpu_count; cpu++) {
232 mperf_get_tsc(&tsc_at_measure_start[cpu]);
233 mperf_init_stats(cpu);
234 }
235
236 return 0;
237 }
238
mperf_stop(void)239 static int mperf_stop(void)
240 {
241 int cpu;
242
243 for (cpu = 0; cpu < cpu_count; cpu++) {
244 mperf_measure_stats(cpu);
245 mperf_get_tsc(&tsc_at_measure_end[cpu]);
246 }
247
248 clock_gettime(CLOCK_REALTIME, &time_end);
249 return 0;
250 }
251
252 /*
253 * Mperf register is defined to tick at P0 (maximum) frequency
254 *
255 * Instead of reading out P0 which can be tricky to read out from HW,
256 * we use TSC counter if it reliably ticks at P0/mperf frequency.
257 *
258 * Still try to fall back to:
259 * /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq
260 * on older Intel HW without invariant TSC feature.
261 * Or on AMD machines where TSC does not tick at P0 (do not exist yet, but
262 * it's still double checked (MSR_AMD_HWCR)).
263 *
264 * On these machines the user would still get useful mperf
265 * stats when acpi-cpufreq driver is loaded.
266 */
init_maxfreq_mode(void)267 static int init_maxfreq_mode(void)
268 {
269 int ret;
270 unsigned long long hwcr;
271 unsigned long min;
272
273 if (!(cpupower_cpu_info.caps & CPUPOWER_CAP_INV_TSC))
274 goto use_sysfs;
275
276 if (cpupower_cpu_info.vendor == X86_VENDOR_AMD ||
277 cpupower_cpu_info.vendor == X86_VENDOR_HYGON) {
278 /* MSR_AMD_HWCR tells us whether TSC runs at P0/mperf
279 * freq.
280 * A test whether hwcr is accessable/available would be:
281 * (cpupower_cpu_info.family > 0x10 ||
282 * cpupower_cpu_info.family == 0x10 &&
283 * cpupower_cpu_info.model >= 0x2))
284 * This should be the case for all aperf/mperf
285 * capable AMD machines and is therefore safe to test here.
286 * Compare with Linus kernel git commit: acf01734b1747b1ec4
287 */
288 ret = read_msr(0, MSR_AMD_HWCR, &hwcr);
289 /*
290 * If the MSR read failed, assume a Xen system that did
291 * not explicitly provide access to it and assume TSC works
292 */
293 if (ret != 0) {
294 dprint("TSC read 0x%x failed - assume TSC working\n",
295 MSR_AMD_HWCR);
296 return 0;
297 } else if (1 & (hwcr >> 24)) {
298 max_freq_mode = MAX_FREQ_TSC_REF;
299 return 0;
300 } else { /* Use sysfs max frequency if available */ }
301 } else if (cpupower_cpu_info.vendor == X86_VENDOR_INTEL) {
302 /*
303 * On Intel we assume mperf (in C0) is ticking at same
304 * rate than TSC
305 */
306 max_freq_mode = MAX_FREQ_TSC_REF;
307 return 0;
308 }
309 use_sysfs:
310 if (cpufreq_get_hardware_limits(0, &min, &max_frequency)) {
311 dprint("Cannot retrieve max freq from cpufreq kernel "
312 "subsystem\n");
313 return -1;
314 }
315 max_freq_mode = MAX_FREQ_SYSFS;
316 max_frequency /= 1000; /* Default automatically to MHz value */
317 return 0;
318 }
319
320 /*
321 * This monitor provides:
322 *
323 * 1) Average frequency a CPU resided in
324 * This always works if the CPU has aperf/mperf capabilities
325 *
326 * 2) C0 and Cx (any sleep state) time a CPU resided in
327 * Works if mperf timer stops ticking in sleep states which
328 * seem to be the case on all current HW.
329 * Both is directly retrieved from HW registers and is independent
330 * from kernel statistics.
331 */
332 struct cpuidle_monitor mperf_monitor;
mperf_register(void)333 struct cpuidle_monitor *mperf_register(void)
334 {
335 if (!(cpupower_cpu_info.caps & CPUPOWER_CAP_APERF))
336 return NULL;
337
338 if (init_maxfreq_mode())
339 return NULL;
340
341 if (cpupower_cpu_info.vendor == X86_VENDOR_AMD)
342 mperf_monitor.flags.per_cpu_schedule = 1;
343
344 /* Free this at program termination */
345 is_valid = calloc(cpu_count, sizeof(int));
346 mperf_previous_count = calloc(cpu_count, sizeof(unsigned long long));
347 aperf_previous_count = calloc(cpu_count, sizeof(unsigned long long));
348 mperf_current_count = calloc(cpu_count, sizeof(unsigned long long));
349 aperf_current_count = calloc(cpu_count, sizeof(unsigned long long));
350 tsc_at_measure_start = calloc(cpu_count, sizeof(unsigned long long));
351 tsc_at_measure_end = calloc(cpu_count, sizeof(unsigned long long));
352 mperf_monitor.name_len = strlen(mperf_monitor.name);
353 return &mperf_monitor;
354 }
355
mperf_unregister(void)356 void mperf_unregister(void)
357 {
358 free(mperf_previous_count);
359 free(aperf_previous_count);
360 free(mperf_current_count);
361 free(aperf_current_count);
362 free(tsc_at_measure_start);
363 free(tsc_at_measure_end);
364 free(is_valid);
365 }
366
367 struct cpuidle_monitor mperf_monitor = {
368 .name = "Mperf",
369 .hw_states_num = MPERF_CSTATE_COUNT,
370 .hw_states = mperf_cstates,
371 .start = mperf_start,
372 .stop = mperf_stop,
373 .do_register = mperf_register,
374 .unregister = mperf_unregister,
375 .flags.needs_root = 1,
376 .overflow_s = 922000000 /* 922337203 seconds TSC overflow
377 at 20GHz */
378 };
379 #endif /* #if defined(__i386__) || defined(__x86_64__) */
380