1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <linux/un.h>
85 #include <net/xdp_sock_drv.h>
86
87 static const struct bpf_func_proto *
88 bpf_sk_base_func_proto(enum bpf_func_id func_id);
89
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)90 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
91 {
92 if (in_compat_syscall()) {
93 struct compat_sock_fprog f32;
94
95 if (len != sizeof(f32))
96 return -EINVAL;
97 if (copy_from_sockptr(&f32, src, sizeof(f32)))
98 return -EFAULT;
99 memset(dst, 0, sizeof(*dst));
100 dst->len = f32.len;
101 dst->filter = compat_ptr(f32.filter);
102 } else {
103 if (len != sizeof(*dst))
104 return -EINVAL;
105 if (copy_from_sockptr(dst, src, sizeof(*dst)))
106 return -EFAULT;
107 }
108
109 return 0;
110 }
111 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
112
113 /**
114 * sk_filter_trim_cap - run a packet through a socket filter
115 * @sk: sock associated with &sk_buff
116 * @skb: buffer to filter
117 * @cap: limit on how short the eBPF program may trim the packet
118 *
119 * Run the eBPF program and then cut skb->data to correct size returned by
120 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
121 * than pkt_len we keep whole skb->data. This is the socket level
122 * wrapper to bpf_prog_run. It returns 0 if the packet should
123 * be accepted or -EPERM if the packet should be tossed.
124 *
125 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)126 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
127 {
128 int err;
129 struct sk_filter *filter;
130
131 /*
132 * If the skb was allocated from pfmemalloc reserves, only
133 * allow SOCK_MEMALLOC sockets to use it as this socket is
134 * helping free memory
135 */
136 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
137 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
138 return -ENOMEM;
139 }
140 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
141 if (err)
142 return err;
143
144 err = security_sock_rcv_skb(sk, skb);
145 if (err)
146 return err;
147
148 rcu_read_lock();
149 filter = rcu_dereference(sk->sk_filter);
150 if (filter) {
151 struct sock *save_sk = skb->sk;
152 unsigned int pkt_len;
153
154 skb->sk = sk;
155 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
156 skb->sk = save_sk;
157 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
158 }
159 rcu_read_unlock();
160
161 return err;
162 }
163 EXPORT_SYMBOL(sk_filter_trim_cap);
164
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)165 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
166 {
167 return skb_get_poff(skb);
168 }
169
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)170 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
171 {
172 struct nlattr *nla;
173
174 if (skb_is_nonlinear(skb))
175 return 0;
176
177 if (skb->len < sizeof(struct nlattr))
178 return 0;
179
180 if (a > skb->len - sizeof(struct nlattr))
181 return 0;
182
183 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
184 if (nla)
185 return (void *) nla - (void *) skb->data;
186
187 return 0;
188 }
189
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)190 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
191 {
192 struct nlattr *nla;
193
194 if (skb_is_nonlinear(skb))
195 return 0;
196
197 if (skb->len < sizeof(struct nlattr))
198 return 0;
199
200 if (a > skb->len - sizeof(struct nlattr))
201 return 0;
202
203 nla = (struct nlattr *) &skb->data[a];
204 if (nla->nla_len > skb->len - a)
205 return 0;
206
207 nla = nla_find_nested(nla, x);
208 if (nla)
209 return (void *) nla - (void *) skb->data;
210
211 return 0;
212 }
213
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)214 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
215 data, int, headlen, int, offset)
216 {
217 u8 tmp, *ptr;
218 const int len = sizeof(tmp);
219
220 if (offset >= 0) {
221 if (headlen - offset >= len)
222 return *(u8 *)(data + offset);
223 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
224 return tmp;
225 } else {
226 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
227 if (likely(ptr))
228 return *(u8 *)ptr;
229 }
230
231 return -EFAULT;
232 }
233
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)234 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
235 int, offset)
236 {
237 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
238 offset);
239 }
240
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)241 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
242 data, int, headlen, int, offset)
243 {
244 __be16 tmp, *ptr;
245 const int len = sizeof(tmp);
246
247 if (offset >= 0) {
248 if (headlen - offset >= len)
249 return get_unaligned_be16(data + offset);
250 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
251 return be16_to_cpu(tmp);
252 } else {
253 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
254 if (likely(ptr))
255 return get_unaligned_be16(ptr);
256 }
257
258 return -EFAULT;
259 }
260
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)261 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
262 int, offset)
263 {
264 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
265 offset);
266 }
267
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)268 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
269 data, int, headlen, int, offset)
270 {
271 __be32 tmp, *ptr;
272 const int len = sizeof(tmp);
273
274 if (likely(offset >= 0)) {
275 if (headlen - offset >= len)
276 return get_unaligned_be32(data + offset);
277 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
278 return be32_to_cpu(tmp);
279 } else {
280 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
281 if (likely(ptr))
282 return get_unaligned_be32(ptr);
283 }
284
285 return -EFAULT;
286 }
287
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)288 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
289 int, offset)
290 {
291 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
292 offset);
293 }
294
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)295 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
296 struct bpf_insn *insn_buf)
297 {
298 struct bpf_insn *insn = insn_buf;
299
300 switch (skb_field) {
301 case SKF_AD_MARK:
302 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
303
304 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
305 offsetof(struct sk_buff, mark));
306 break;
307
308 case SKF_AD_PKTTYPE:
309 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
310 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
311 #ifdef __BIG_ENDIAN_BITFIELD
312 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
313 #endif
314 break;
315
316 case SKF_AD_QUEUE:
317 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
318
319 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
320 offsetof(struct sk_buff, queue_mapping));
321 break;
322
323 case SKF_AD_VLAN_TAG:
324 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
325
326 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
327 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
328 offsetof(struct sk_buff, vlan_tci));
329 break;
330 case SKF_AD_VLAN_TAG_PRESENT:
331 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
332 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
333 offsetof(struct sk_buff, vlan_all));
334 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
335 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
336 break;
337 }
338
339 return insn - insn_buf;
340 }
341
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)342 static bool convert_bpf_extensions(struct sock_filter *fp,
343 struct bpf_insn **insnp)
344 {
345 struct bpf_insn *insn = *insnp;
346 u32 cnt;
347
348 switch (fp->k) {
349 case SKF_AD_OFF + SKF_AD_PROTOCOL:
350 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
351
352 /* A = *(u16 *) (CTX + offsetof(protocol)) */
353 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
354 offsetof(struct sk_buff, protocol));
355 /* A = ntohs(A) [emitting a nop or swap16] */
356 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
357 break;
358
359 case SKF_AD_OFF + SKF_AD_PKTTYPE:
360 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
361 insn += cnt - 1;
362 break;
363
364 case SKF_AD_OFF + SKF_AD_IFINDEX:
365 case SKF_AD_OFF + SKF_AD_HATYPE:
366 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
367 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
368
369 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
370 BPF_REG_TMP, BPF_REG_CTX,
371 offsetof(struct sk_buff, dev));
372 /* if (tmp != 0) goto pc + 1 */
373 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
374 *insn++ = BPF_EXIT_INSN();
375 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
376 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
377 offsetof(struct net_device, ifindex));
378 else
379 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
380 offsetof(struct net_device, type));
381 break;
382
383 case SKF_AD_OFF + SKF_AD_MARK:
384 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
385 insn += cnt - 1;
386 break;
387
388 case SKF_AD_OFF + SKF_AD_RXHASH:
389 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
390
391 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
392 offsetof(struct sk_buff, hash));
393 break;
394
395 case SKF_AD_OFF + SKF_AD_QUEUE:
396 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
397 insn += cnt - 1;
398 break;
399
400 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
401 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
402 BPF_REG_A, BPF_REG_CTX, insn);
403 insn += cnt - 1;
404 break;
405
406 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
407 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
408 BPF_REG_A, BPF_REG_CTX, insn);
409 insn += cnt - 1;
410 break;
411
412 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
413 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
414
415 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
416 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
417 offsetof(struct sk_buff, vlan_proto));
418 /* A = ntohs(A) [emitting a nop or swap16] */
419 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
420 break;
421
422 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
423 case SKF_AD_OFF + SKF_AD_NLATTR:
424 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
425 case SKF_AD_OFF + SKF_AD_CPU:
426 case SKF_AD_OFF + SKF_AD_RANDOM:
427 /* arg1 = CTX */
428 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
429 /* arg2 = A */
430 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
431 /* arg3 = X */
432 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
433 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
434 switch (fp->k) {
435 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
436 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
437 break;
438 case SKF_AD_OFF + SKF_AD_NLATTR:
439 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
440 break;
441 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
442 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
443 break;
444 case SKF_AD_OFF + SKF_AD_CPU:
445 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
446 break;
447 case SKF_AD_OFF + SKF_AD_RANDOM:
448 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
449 bpf_user_rnd_init_once();
450 break;
451 }
452 break;
453
454 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
455 /* A ^= X */
456 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
457 break;
458
459 default:
460 /* This is just a dummy call to avoid letting the compiler
461 * evict __bpf_call_base() as an optimization. Placed here
462 * where no-one bothers.
463 */
464 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
465 return false;
466 }
467
468 *insnp = insn;
469 return true;
470 }
471
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)472 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
473 {
474 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
475 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
476 bool endian = BPF_SIZE(fp->code) == BPF_H ||
477 BPF_SIZE(fp->code) == BPF_W;
478 bool indirect = BPF_MODE(fp->code) == BPF_IND;
479 const int ip_align = NET_IP_ALIGN;
480 struct bpf_insn *insn = *insnp;
481 int offset = fp->k;
482
483 if (!indirect &&
484 ((unaligned_ok && offset >= 0) ||
485 (!unaligned_ok && offset >= 0 &&
486 offset + ip_align >= 0 &&
487 offset + ip_align % size == 0))) {
488 bool ldx_off_ok = offset <= S16_MAX;
489
490 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
491 if (offset)
492 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
493 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
494 size, 2 + endian + (!ldx_off_ok * 2));
495 if (ldx_off_ok) {
496 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 BPF_REG_D, offset);
498 } else {
499 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
500 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
501 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
502 BPF_REG_TMP, 0);
503 }
504 if (endian)
505 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
506 *insn++ = BPF_JMP_A(8);
507 }
508
509 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
510 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
511 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
512 if (!indirect) {
513 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
514 } else {
515 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
516 if (fp->k)
517 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
518 }
519
520 switch (BPF_SIZE(fp->code)) {
521 case BPF_B:
522 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
523 break;
524 case BPF_H:
525 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
526 break;
527 case BPF_W:
528 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
529 break;
530 default:
531 return false;
532 }
533
534 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
535 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
536 *insn = BPF_EXIT_INSN();
537
538 *insnp = insn;
539 return true;
540 }
541
542 /**
543 * bpf_convert_filter - convert filter program
544 * @prog: the user passed filter program
545 * @len: the length of the user passed filter program
546 * @new_prog: allocated 'struct bpf_prog' or NULL
547 * @new_len: pointer to store length of converted program
548 * @seen_ld_abs: bool whether we've seen ld_abs/ind
549 *
550 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
551 * style extended BPF (eBPF).
552 * Conversion workflow:
553 *
554 * 1) First pass for calculating the new program length:
555 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
556 *
557 * 2) 2nd pass to remap in two passes: 1st pass finds new
558 * jump offsets, 2nd pass remapping:
559 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
560 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)561 static int bpf_convert_filter(struct sock_filter *prog, int len,
562 struct bpf_prog *new_prog, int *new_len,
563 bool *seen_ld_abs)
564 {
565 int new_flen = 0, pass = 0, target, i, stack_off;
566 struct bpf_insn *new_insn, *first_insn = NULL;
567 struct sock_filter *fp;
568 int *addrs = NULL;
569 u8 bpf_src;
570
571 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
572 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
573
574 if (len <= 0 || len > BPF_MAXINSNS)
575 return -EINVAL;
576
577 if (new_prog) {
578 first_insn = new_prog->insnsi;
579 addrs = kcalloc(len, sizeof(*addrs),
580 GFP_KERNEL | __GFP_NOWARN);
581 if (!addrs)
582 return -ENOMEM;
583 }
584
585 do_pass:
586 new_insn = first_insn;
587 fp = prog;
588
589 /* Classic BPF related prologue emission. */
590 if (new_prog) {
591 /* Classic BPF expects A and X to be reset first. These need
592 * to be guaranteed to be the first two instructions.
593 */
594 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
595 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
596
597 /* All programs must keep CTX in callee saved BPF_REG_CTX.
598 * In eBPF case it's done by the compiler, here we need to
599 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
600 */
601 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
602 if (*seen_ld_abs) {
603 /* For packet access in classic BPF, cache skb->data
604 * in callee-saved BPF R8 and skb->len - skb->data_len
605 * (headlen) in BPF R9. Since classic BPF is read-only
606 * on CTX, we only need to cache it once.
607 */
608 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
609 BPF_REG_D, BPF_REG_CTX,
610 offsetof(struct sk_buff, data));
611 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
612 offsetof(struct sk_buff, len));
613 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
614 offsetof(struct sk_buff, data_len));
615 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
616 }
617 } else {
618 new_insn += 3;
619 }
620
621 for (i = 0; i < len; fp++, i++) {
622 struct bpf_insn tmp_insns[32] = { };
623 struct bpf_insn *insn = tmp_insns;
624
625 if (addrs)
626 addrs[i] = new_insn - first_insn;
627
628 switch (fp->code) {
629 /* All arithmetic insns and skb loads map as-is. */
630 case BPF_ALU | BPF_ADD | BPF_X:
631 case BPF_ALU | BPF_ADD | BPF_K:
632 case BPF_ALU | BPF_SUB | BPF_X:
633 case BPF_ALU | BPF_SUB | BPF_K:
634 case BPF_ALU | BPF_AND | BPF_X:
635 case BPF_ALU | BPF_AND | BPF_K:
636 case BPF_ALU | BPF_OR | BPF_X:
637 case BPF_ALU | BPF_OR | BPF_K:
638 case BPF_ALU | BPF_LSH | BPF_X:
639 case BPF_ALU | BPF_LSH | BPF_K:
640 case BPF_ALU | BPF_RSH | BPF_X:
641 case BPF_ALU | BPF_RSH | BPF_K:
642 case BPF_ALU | BPF_XOR | BPF_X:
643 case BPF_ALU | BPF_XOR | BPF_K:
644 case BPF_ALU | BPF_MUL | BPF_X:
645 case BPF_ALU | BPF_MUL | BPF_K:
646 case BPF_ALU | BPF_DIV | BPF_X:
647 case BPF_ALU | BPF_DIV | BPF_K:
648 case BPF_ALU | BPF_MOD | BPF_X:
649 case BPF_ALU | BPF_MOD | BPF_K:
650 case BPF_ALU | BPF_NEG:
651 case BPF_LD | BPF_ABS | BPF_W:
652 case BPF_LD | BPF_ABS | BPF_H:
653 case BPF_LD | BPF_ABS | BPF_B:
654 case BPF_LD | BPF_IND | BPF_W:
655 case BPF_LD | BPF_IND | BPF_H:
656 case BPF_LD | BPF_IND | BPF_B:
657 /* Check for overloaded BPF extension and
658 * directly convert it if found, otherwise
659 * just move on with mapping.
660 */
661 if (BPF_CLASS(fp->code) == BPF_LD &&
662 BPF_MODE(fp->code) == BPF_ABS &&
663 convert_bpf_extensions(fp, &insn))
664 break;
665 if (BPF_CLASS(fp->code) == BPF_LD &&
666 convert_bpf_ld_abs(fp, &insn)) {
667 *seen_ld_abs = true;
668 break;
669 }
670
671 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
672 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
673 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
674 /* Error with exception code on div/mod by 0.
675 * For cBPF programs, this was always return 0.
676 */
677 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
678 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
679 *insn++ = BPF_EXIT_INSN();
680 }
681
682 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
683 break;
684
685 /* Jump transformation cannot use BPF block macros
686 * everywhere as offset calculation and target updates
687 * require a bit more work than the rest, i.e. jump
688 * opcodes map as-is, but offsets need adjustment.
689 */
690
691 #define BPF_EMIT_JMP \
692 do { \
693 const s32 off_min = S16_MIN, off_max = S16_MAX; \
694 s32 off; \
695 \
696 if (target >= len || target < 0) \
697 goto err; \
698 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
699 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
700 off -= insn - tmp_insns; \
701 /* Reject anything not fitting into insn->off. */ \
702 if (off < off_min || off > off_max) \
703 goto err; \
704 insn->off = off; \
705 } while (0)
706
707 case BPF_JMP | BPF_JA:
708 target = i + fp->k + 1;
709 insn->code = fp->code;
710 BPF_EMIT_JMP;
711 break;
712
713 case BPF_JMP | BPF_JEQ | BPF_K:
714 case BPF_JMP | BPF_JEQ | BPF_X:
715 case BPF_JMP | BPF_JSET | BPF_K:
716 case BPF_JMP | BPF_JSET | BPF_X:
717 case BPF_JMP | BPF_JGT | BPF_K:
718 case BPF_JMP | BPF_JGT | BPF_X:
719 case BPF_JMP | BPF_JGE | BPF_K:
720 case BPF_JMP | BPF_JGE | BPF_X:
721 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
722 /* BPF immediates are signed, zero extend
723 * immediate into tmp register and use it
724 * in compare insn.
725 */
726 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
727
728 insn->dst_reg = BPF_REG_A;
729 insn->src_reg = BPF_REG_TMP;
730 bpf_src = BPF_X;
731 } else {
732 insn->dst_reg = BPF_REG_A;
733 insn->imm = fp->k;
734 bpf_src = BPF_SRC(fp->code);
735 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
736 }
737
738 /* Common case where 'jump_false' is next insn. */
739 if (fp->jf == 0) {
740 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
741 target = i + fp->jt + 1;
742 BPF_EMIT_JMP;
743 break;
744 }
745
746 /* Convert some jumps when 'jump_true' is next insn. */
747 if (fp->jt == 0) {
748 switch (BPF_OP(fp->code)) {
749 case BPF_JEQ:
750 insn->code = BPF_JMP | BPF_JNE | bpf_src;
751 break;
752 case BPF_JGT:
753 insn->code = BPF_JMP | BPF_JLE | bpf_src;
754 break;
755 case BPF_JGE:
756 insn->code = BPF_JMP | BPF_JLT | bpf_src;
757 break;
758 default:
759 goto jmp_rest;
760 }
761
762 target = i + fp->jf + 1;
763 BPF_EMIT_JMP;
764 break;
765 }
766 jmp_rest:
767 /* Other jumps are mapped into two insns: Jxx and JA. */
768 target = i + fp->jt + 1;
769 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
770 BPF_EMIT_JMP;
771 insn++;
772
773 insn->code = BPF_JMP | BPF_JA;
774 target = i + fp->jf + 1;
775 BPF_EMIT_JMP;
776 break;
777
778 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
779 case BPF_LDX | BPF_MSH | BPF_B: {
780 struct sock_filter tmp = {
781 .code = BPF_LD | BPF_ABS | BPF_B,
782 .k = fp->k,
783 };
784
785 *seen_ld_abs = true;
786
787 /* X = A */
788 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
789 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
790 convert_bpf_ld_abs(&tmp, &insn);
791 insn++;
792 /* A &= 0xf */
793 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
794 /* A <<= 2 */
795 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
796 /* tmp = X */
797 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
798 /* X = A */
799 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
800 /* A = tmp */
801 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
802 break;
803 }
804 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
805 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
806 */
807 case BPF_RET | BPF_A:
808 case BPF_RET | BPF_K:
809 if (BPF_RVAL(fp->code) == BPF_K)
810 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
811 0, fp->k);
812 *insn = BPF_EXIT_INSN();
813 break;
814
815 /* Store to stack. */
816 case BPF_ST:
817 case BPF_STX:
818 stack_off = fp->k * 4 + 4;
819 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
820 BPF_ST ? BPF_REG_A : BPF_REG_X,
821 -stack_off);
822 /* check_load_and_stores() verifies that classic BPF can
823 * load from stack only after write, so tracking
824 * stack_depth for ST|STX insns is enough
825 */
826 if (new_prog && new_prog->aux->stack_depth < stack_off)
827 new_prog->aux->stack_depth = stack_off;
828 break;
829
830 /* Load from stack. */
831 case BPF_LD | BPF_MEM:
832 case BPF_LDX | BPF_MEM:
833 stack_off = fp->k * 4 + 4;
834 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
836 -stack_off);
837 break;
838
839 /* A = K or X = K */
840 case BPF_LD | BPF_IMM:
841 case BPF_LDX | BPF_IMM:
842 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
843 BPF_REG_A : BPF_REG_X, fp->k);
844 break;
845
846 /* X = A */
847 case BPF_MISC | BPF_TAX:
848 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
849 break;
850
851 /* A = X */
852 case BPF_MISC | BPF_TXA:
853 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
854 break;
855
856 /* A = skb->len or X = skb->len */
857 case BPF_LD | BPF_W | BPF_LEN:
858 case BPF_LDX | BPF_W | BPF_LEN:
859 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
860 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
861 offsetof(struct sk_buff, len));
862 break;
863
864 /* Access seccomp_data fields. */
865 case BPF_LDX | BPF_ABS | BPF_W:
866 /* A = *(u32 *) (ctx + K) */
867 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
868 break;
869
870 /* Unknown instruction. */
871 default:
872 goto err;
873 }
874
875 insn++;
876 if (new_prog)
877 memcpy(new_insn, tmp_insns,
878 sizeof(*insn) * (insn - tmp_insns));
879 new_insn += insn - tmp_insns;
880 }
881
882 if (!new_prog) {
883 /* Only calculating new length. */
884 *new_len = new_insn - first_insn;
885 if (*seen_ld_abs)
886 *new_len += 4; /* Prologue bits. */
887 return 0;
888 }
889
890 pass++;
891 if (new_flen != new_insn - first_insn) {
892 new_flen = new_insn - first_insn;
893 if (pass > 2)
894 goto err;
895 goto do_pass;
896 }
897
898 kfree(addrs);
899 BUG_ON(*new_len != new_flen);
900 return 0;
901 err:
902 kfree(addrs);
903 return -EINVAL;
904 }
905
906 /* Security:
907 *
908 * As we dont want to clear mem[] array for each packet going through
909 * __bpf_prog_run(), we check that filter loaded by user never try to read
910 * a cell if not previously written, and we check all branches to be sure
911 * a malicious user doesn't try to abuse us.
912 */
check_load_and_stores(const struct sock_filter * filter,int flen)913 static int check_load_and_stores(const struct sock_filter *filter, int flen)
914 {
915 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
916 int pc, ret = 0;
917
918 BUILD_BUG_ON(BPF_MEMWORDS > 16);
919
920 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
921 if (!masks)
922 return -ENOMEM;
923
924 memset(masks, 0xff, flen * sizeof(*masks));
925
926 for (pc = 0; pc < flen; pc++) {
927 memvalid &= masks[pc];
928
929 switch (filter[pc].code) {
930 case BPF_ST:
931 case BPF_STX:
932 memvalid |= (1 << filter[pc].k);
933 break;
934 case BPF_LD | BPF_MEM:
935 case BPF_LDX | BPF_MEM:
936 if (!(memvalid & (1 << filter[pc].k))) {
937 ret = -EINVAL;
938 goto error;
939 }
940 break;
941 case BPF_JMP | BPF_JA:
942 /* A jump must set masks on target */
943 masks[pc + 1 + filter[pc].k] &= memvalid;
944 memvalid = ~0;
945 break;
946 case BPF_JMP | BPF_JEQ | BPF_K:
947 case BPF_JMP | BPF_JEQ | BPF_X:
948 case BPF_JMP | BPF_JGE | BPF_K:
949 case BPF_JMP | BPF_JGE | BPF_X:
950 case BPF_JMP | BPF_JGT | BPF_K:
951 case BPF_JMP | BPF_JGT | BPF_X:
952 case BPF_JMP | BPF_JSET | BPF_K:
953 case BPF_JMP | BPF_JSET | BPF_X:
954 /* A jump must set masks on targets */
955 masks[pc + 1 + filter[pc].jt] &= memvalid;
956 masks[pc + 1 + filter[pc].jf] &= memvalid;
957 memvalid = ~0;
958 break;
959 }
960 }
961 error:
962 kfree(masks);
963 return ret;
964 }
965
chk_code_allowed(u16 code_to_probe)966 static bool chk_code_allowed(u16 code_to_probe)
967 {
968 static const bool codes[] = {
969 /* 32 bit ALU operations */
970 [BPF_ALU | BPF_ADD | BPF_K] = true,
971 [BPF_ALU | BPF_ADD | BPF_X] = true,
972 [BPF_ALU | BPF_SUB | BPF_K] = true,
973 [BPF_ALU | BPF_SUB | BPF_X] = true,
974 [BPF_ALU | BPF_MUL | BPF_K] = true,
975 [BPF_ALU | BPF_MUL | BPF_X] = true,
976 [BPF_ALU | BPF_DIV | BPF_K] = true,
977 [BPF_ALU | BPF_DIV | BPF_X] = true,
978 [BPF_ALU | BPF_MOD | BPF_K] = true,
979 [BPF_ALU | BPF_MOD | BPF_X] = true,
980 [BPF_ALU | BPF_AND | BPF_K] = true,
981 [BPF_ALU | BPF_AND | BPF_X] = true,
982 [BPF_ALU | BPF_OR | BPF_K] = true,
983 [BPF_ALU | BPF_OR | BPF_X] = true,
984 [BPF_ALU | BPF_XOR | BPF_K] = true,
985 [BPF_ALU | BPF_XOR | BPF_X] = true,
986 [BPF_ALU | BPF_LSH | BPF_K] = true,
987 [BPF_ALU | BPF_LSH | BPF_X] = true,
988 [BPF_ALU | BPF_RSH | BPF_K] = true,
989 [BPF_ALU | BPF_RSH | BPF_X] = true,
990 [BPF_ALU | BPF_NEG] = true,
991 /* Load instructions */
992 [BPF_LD | BPF_W | BPF_ABS] = true,
993 [BPF_LD | BPF_H | BPF_ABS] = true,
994 [BPF_LD | BPF_B | BPF_ABS] = true,
995 [BPF_LD | BPF_W | BPF_LEN] = true,
996 [BPF_LD | BPF_W | BPF_IND] = true,
997 [BPF_LD | BPF_H | BPF_IND] = true,
998 [BPF_LD | BPF_B | BPF_IND] = true,
999 [BPF_LD | BPF_IMM] = true,
1000 [BPF_LD | BPF_MEM] = true,
1001 [BPF_LDX | BPF_W | BPF_LEN] = true,
1002 [BPF_LDX | BPF_B | BPF_MSH] = true,
1003 [BPF_LDX | BPF_IMM] = true,
1004 [BPF_LDX | BPF_MEM] = true,
1005 /* Store instructions */
1006 [BPF_ST] = true,
1007 [BPF_STX] = true,
1008 /* Misc instructions */
1009 [BPF_MISC | BPF_TAX] = true,
1010 [BPF_MISC | BPF_TXA] = true,
1011 /* Return instructions */
1012 [BPF_RET | BPF_K] = true,
1013 [BPF_RET | BPF_A] = true,
1014 /* Jump instructions */
1015 [BPF_JMP | BPF_JA] = true,
1016 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1017 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1018 [BPF_JMP | BPF_JGE | BPF_K] = true,
1019 [BPF_JMP | BPF_JGE | BPF_X] = true,
1020 [BPF_JMP | BPF_JGT | BPF_K] = true,
1021 [BPF_JMP | BPF_JGT | BPF_X] = true,
1022 [BPF_JMP | BPF_JSET | BPF_K] = true,
1023 [BPF_JMP | BPF_JSET | BPF_X] = true,
1024 };
1025
1026 if (code_to_probe >= ARRAY_SIZE(codes))
1027 return false;
1028
1029 return codes[code_to_probe];
1030 }
1031
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1032 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1033 unsigned int flen)
1034 {
1035 if (filter == NULL)
1036 return false;
1037 if (flen == 0 || flen > BPF_MAXINSNS)
1038 return false;
1039
1040 return true;
1041 }
1042
1043 /**
1044 * bpf_check_classic - verify socket filter code
1045 * @filter: filter to verify
1046 * @flen: length of filter
1047 *
1048 * Check the user's filter code. If we let some ugly
1049 * filter code slip through kaboom! The filter must contain
1050 * no references or jumps that are out of range, no illegal
1051 * instructions, and must end with a RET instruction.
1052 *
1053 * All jumps are forward as they are not signed.
1054 *
1055 * Returns 0 if the rule set is legal or -EINVAL if not.
1056 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1057 static int bpf_check_classic(const struct sock_filter *filter,
1058 unsigned int flen)
1059 {
1060 bool anc_found;
1061 int pc;
1062
1063 /* Check the filter code now */
1064 for (pc = 0; pc < flen; pc++) {
1065 const struct sock_filter *ftest = &filter[pc];
1066
1067 /* May we actually operate on this code? */
1068 if (!chk_code_allowed(ftest->code))
1069 return -EINVAL;
1070
1071 /* Some instructions need special checks */
1072 switch (ftest->code) {
1073 case BPF_ALU | BPF_DIV | BPF_K:
1074 case BPF_ALU | BPF_MOD | BPF_K:
1075 /* Check for division by zero */
1076 if (ftest->k == 0)
1077 return -EINVAL;
1078 break;
1079 case BPF_ALU | BPF_LSH | BPF_K:
1080 case BPF_ALU | BPF_RSH | BPF_K:
1081 if (ftest->k >= 32)
1082 return -EINVAL;
1083 break;
1084 case BPF_LD | BPF_MEM:
1085 case BPF_LDX | BPF_MEM:
1086 case BPF_ST:
1087 case BPF_STX:
1088 /* Check for invalid memory addresses */
1089 if (ftest->k >= BPF_MEMWORDS)
1090 return -EINVAL;
1091 break;
1092 case BPF_JMP | BPF_JA:
1093 /* Note, the large ftest->k might cause loops.
1094 * Compare this with conditional jumps below,
1095 * where offsets are limited. --ANK (981016)
1096 */
1097 if (ftest->k >= (unsigned int)(flen - pc - 1))
1098 return -EINVAL;
1099 break;
1100 case BPF_JMP | BPF_JEQ | BPF_K:
1101 case BPF_JMP | BPF_JEQ | BPF_X:
1102 case BPF_JMP | BPF_JGE | BPF_K:
1103 case BPF_JMP | BPF_JGE | BPF_X:
1104 case BPF_JMP | BPF_JGT | BPF_K:
1105 case BPF_JMP | BPF_JGT | BPF_X:
1106 case BPF_JMP | BPF_JSET | BPF_K:
1107 case BPF_JMP | BPF_JSET | BPF_X:
1108 /* Both conditionals must be safe */
1109 if (pc + ftest->jt + 1 >= flen ||
1110 pc + ftest->jf + 1 >= flen)
1111 return -EINVAL;
1112 break;
1113 case BPF_LD | BPF_W | BPF_ABS:
1114 case BPF_LD | BPF_H | BPF_ABS:
1115 case BPF_LD | BPF_B | BPF_ABS:
1116 anc_found = false;
1117 if (bpf_anc_helper(ftest) & BPF_ANC)
1118 anc_found = true;
1119 /* Ancillary operation unknown or unsupported */
1120 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1121 return -EINVAL;
1122 }
1123 }
1124
1125 /* Last instruction must be a RET code */
1126 switch (filter[flen - 1].code) {
1127 case BPF_RET | BPF_K:
1128 case BPF_RET | BPF_A:
1129 return check_load_and_stores(filter, flen);
1130 }
1131
1132 return -EINVAL;
1133 }
1134
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1135 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1136 const struct sock_fprog *fprog)
1137 {
1138 unsigned int fsize = bpf_classic_proglen(fprog);
1139 struct sock_fprog_kern *fkprog;
1140
1141 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1142 if (!fp->orig_prog)
1143 return -ENOMEM;
1144
1145 fkprog = fp->orig_prog;
1146 fkprog->len = fprog->len;
1147
1148 fkprog->filter = kmemdup(fp->insns, fsize,
1149 GFP_KERNEL | __GFP_NOWARN);
1150 if (!fkprog->filter) {
1151 kfree(fp->orig_prog);
1152 return -ENOMEM;
1153 }
1154
1155 return 0;
1156 }
1157
bpf_release_orig_filter(struct bpf_prog * fp)1158 static void bpf_release_orig_filter(struct bpf_prog *fp)
1159 {
1160 struct sock_fprog_kern *fprog = fp->orig_prog;
1161
1162 if (fprog) {
1163 kfree(fprog->filter);
1164 kfree(fprog);
1165 }
1166 }
1167
__bpf_prog_release(struct bpf_prog * prog)1168 static void __bpf_prog_release(struct bpf_prog *prog)
1169 {
1170 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1171 bpf_prog_put(prog);
1172 } else {
1173 bpf_release_orig_filter(prog);
1174 bpf_prog_free(prog);
1175 }
1176 }
1177
__sk_filter_release(struct sk_filter * fp)1178 static void __sk_filter_release(struct sk_filter *fp)
1179 {
1180 __bpf_prog_release(fp->prog);
1181 kfree(fp);
1182 }
1183
1184 /**
1185 * sk_filter_release_rcu - Release a socket filter by rcu_head
1186 * @rcu: rcu_head that contains the sk_filter to free
1187 */
sk_filter_release_rcu(struct rcu_head * rcu)1188 static void sk_filter_release_rcu(struct rcu_head *rcu)
1189 {
1190 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1191
1192 __sk_filter_release(fp);
1193 }
1194
1195 /**
1196 * sk_filter_release - release a socket filter
1197 * @fp: filter to remove
1198 *
1199 * Remove a filter from a socket and release its resources.
1200 */
sk_filter_release(struct sk_filter * fp)1201 static void sk_filter_release(struct sk_filter *fp)
1202 {
1203 if (refcount_dec_and_test(&fp->refcnt))
1204 call_rcu(&fp->rcu, sk_filter_release_rcu);
1205 }
1206
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1207 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1208 {
1209 u32 filter_size = bpf_prog_size(fp->prog->len);
1210
1211 atomic_sub(filter_size, &sk->sk_omem_alloc);
1212 sk_filter_release(fp);
1213 }
1214
1215 /* try to charge the socket memory if there is space available
1216 * return true on success
1217 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1218 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1219 {
1220 u32 filter_size = bpf_prog_size(fp->prog->len);
1221 int optmem_max = READ_ONCE(sysctl_optmem_max);
1222
1223 /* same check as in sock_kmalloc() */
1224 if (filter_size <= optmem_max &&
1225 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1226 atomic_add(filter_size, &sk->sk_omem_alloc);
1227 return true;
1228 }
1229 return false;
1230 }
1231
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1232 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1233 {
1234 if (!refcount_inc_not_zero(&fp->refcnt))
1235 return false;
1236
1237 if (!__sk_filter_charge(sk, fp)) {
1238 sk_filter_release(fp);
1239 return false;
1240 }
1241 return true;
1242 }
1243
bpf_migrate_filter(struct bpf_prog * fp)1244 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1245 {
1246 struct sock_filter *old_prog;
1247 struct bpf_prog *old_fp;
1248 int err, new_len, old_len = fp->len;
1249 bool seen_ld_abs = false;
1250
1251 /* We are free to overwrite insns et al right here as it won't be used at
1252 * this point in time anymore internally after the migration to the eBPF
1253 * instruction representation.
1254 */
1255 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1256 sizeof(struct bpf_insn));
1257
1258 /* Conversion cannot happen on overlapping memory areas,
1259 * so we need to keep the user BPF around until the 2nd
1260 * pass. At this time, the user BPF is stored in fp->insns.
1261 */
1262 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1263 GFP_KERNEL | __GFP_NOWARN);
1264 if (!old_prog) {
1265 err = -ENOMEM;
1266 goto out_err;
1267 }
1268
1269 /* 1st pass: calculate the new program length. */
1270 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1271 &seen_ld_abs);
1272 if (err)
1273 goto out_err_free;
1274
1275 /* Expand fp for appending the new filter representation. */
1276 old_fp = fp;
1277 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1278 if (!fp) {
1279 /* The old_fp is still around in case we couldn't
1280 * allocate new memory, so uncharge on that one.
1281 */
1282 fp = old_fp;
1283 err = -ENOMEM;
1284 goto out_err_free;
1285 }
1286
1287 fp->len = new_len;
1288
1289 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1290 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1291 &seen_ld_abs);
1292 if (err)
1293 /* 2nd bpf_convert_filter() can fail only if it fails
1294 * to allocate memory, remapping must succeed. Note,
1295 * that at this time old_fp has already been released
1296 * by krealloc().
1297 */
1298 goto out_err_free;
1299
1300 fp = bpf_prog_select_runtime(fp, &err);
1301 if (err)
1302 goto out_err_free;
1303
1304 kfree(old_prog);
1305 return fp;
1306
1307 out_err_free:
1308 kfree(old_prog);
1309 out_err:
1310 __bpf_prog_release(fp);
1311 return ERR_PTR(err);
1312 }
1313
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1314 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1315 bpf_aux_classic_check_t trans)
1316 {
1317 int err;
1318
1319 fp->bpf_func = NULL;
1320 fp->jited = 0;
1321
1322 err = bpf_check_classic(fp->insns, fp->len);
1323 if (err) {
1324 __bpf_prog_release(fp);
1325 return ERR_PTR(err);
1326 }
1327
1328 /* There might be additional checks and transformations
1329 * needed on classic filters, f.e. in case of seccomp.
1330 */
1331 if (trans) {
1332 err = trans(fp->insns, fp->len);
1333 if (err) {
1334 __bpf_prog_release(fp);
1335 return ERR_PTR(err);
1336 }
1337 }
1338
1339 /* Probe if we can JIT compile the filter and if so, do
1340 * the compilation of the filter.
1341 */
1342 bpf_jit_compile(fp);
1343
1344 /* JIT compiler couldn't process this filter, so do the eBPF translation
1345 * for the optimized interpreter.
1346 */
1347 if (!fp->jited)
1348 fp = bpf_migrate_filter(fp);
1349
1350 return fp;
1351 }
1352
1353 /**
1354 * bpf_prog_create - create an unattached filter
1355 * @pfp: the unattached filter that is created
1356 * @fprog: the filter program
1357 *
1358 * Create a filter independent of any socket. We first run some
1359 * sanity checks on it to make sure it does not explode on us later.
1360 * If an error occurs or there is insufficient memory for the filter
1361 * a negative errno code is returned. On success the return is zero.
1362 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1363 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1364 {
1365 unsigned int fsize = bpf_classic_proglen(fprog);
1366 struct bpf_prog *fp;
1367
1368 /* Make sure new filter is there and in the right amounts. */
1369 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1370 return -EINVAL;
1371
1372 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1373 if (!fp)
1374 return -ENOMEM;
1375
1376 memcpy(fp->insns, fprog->filter, fsize);
1377
1378 fp->len = fprog->len;
1379 /* Since unattached filters are not copied back to user
1380 * space through sk_get_filter(), we do not need to hold
1381 * a copy here, and can spare us the work.
1382 */
1383 fp->orig_prog = NULL;
1384
1385 /* bpf_prepare_filter() already takes care of freeing
1386 * memory in case something goes wrong.
1387 */
1388 fp = bpf_prepare_filter(fp, NULL);
1389 if (IS_ERR(fp))
1390 return PTR_ERR(fp);
1391
1392 *pfp = fp;
1393 return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(bpf_prog_create);
1396
1397 /**
1398 * bpf_prog_create_from_user - create an unattached filter from user buffer
1399 * @pfp: the unattached filter that is created
1400 * @fprog: the filter program
1401 * @trans: post-classic verifier transformation handler
1402 * @save_orig: save classic BPF program
1403 *
1404 * This function effectively does the same as bpf_prog_create(), only
1405 * that it builds up its insns buffer from user space provided buffer.
1406 * It also allows for passing a bpf_aux_classic_check_t handler.
1407 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1408 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1409 bpf_aux_classic_check_t trans, bool save_orig)
1410 {
1411 unsigned int fsize = bpf_classic_proglen(fprog);
1412 struct bpf_prog *fp;
1413 int err;
1414
1415 /* Make sure new filter is there and in the right amounts. */
1416 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1417 return -EINVAL;
1418
1419 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1420 if (!fp)
1421 return -ENOMEM;
1422
1423 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1424 __bpf_prog_free(fp);
1425 return -EFAULT;
1426 }
1427
1428 fp->len = fprog->len;
1429 fp->orig_prog = NULL;
1430
1431 if (save_orig) {
1432 err = bpf_prog_store_orig_filter(fp, fprog);
1433 if (err) {
1434 __bpf_prog_free(fp);
1435 return -ENOMEM;
1436 }
1437 }
1438
1439 /* bpf_prepare_filter() already takes care of freeing
1440 * memory in case something goes wrong.
1441 */
1442 fp = bpf_prepare_filter(fp, trans);
1443 if (IS_ERR(fp))
1444 return PTR_ERR(fp);
1445
1446 *pfp = fp;
1447 return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1450
bpf_prog_destroy(struct bpf_prog * fp)1451 void bpf_prog_destroy(struct bpf_prog *fp)
1452 {
1453 __bpf_prog_release(fp);
1454 }
1455 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1456
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1457 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1458 {
1459 struct sk_filter *fp, *old_fp;
1460
1461 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1462 if (!fp)
1463 return -ENOMEM;
1464
1465 fp->prog = prog;
1466
1467 if (!__sk_filter_charge(sk, fp)) {
1468 kfree(fp);
1469 return -ENOMEM;
1470 }
1471 refcount_set(&fp->refcnt, 1);
1472
1473 old_fp = rcu_dereference_protected(sk->sk_filter,
1474 lockdep_sock_is_held(sk));
1475 rcu_assign_pointer(sk->sk_filter, fp);
1476
1477 if (old_fp)
1478 sk_filter_uncharge(sk, old_fp);
1479
1480 return 0;
1481 }
1482
1483 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1484 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1485 {
1486 unsigned int fsize = bpf_classic_proglen(fprog);
1487 struct bpf_prog *prog;
1488 int err;
1489
1490 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1491 return ERR_PTR(-EPERM);
1492
1493 /* Make sure new filter is there and in the right amounts. */
1494 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1495 return ERR_PTR(-EINVAL);
1496
1497 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1498 if (!prog)
1499 return ERR_PTR(-ENOMEM);
1500
1501 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1502 __bpf_prog_free(prog);
1503 return ERR_PTR(-EFAULT);
1504 }
1505
1506 prog->len = fprog->len;
1507
1508 err = bpf_prog_store_orig_filter(prog, fprog);
1509 if (err) {
1510 __bpf_prog_free(prog);
1511 return ERR_PTR(-ENOMEM);
1512 }
1513
1514 /* bpf_prepare_filter() already takes care of freeing
1515 * memory in case something goes wrong.
1516 */
1517 return bpf_prepare_filter(prog, NULL);
1518 }
1519
1520 /**
1521 * sk_attach_filter - attach a socket filter
1522 * @fprog: the filter program
1523 * @sk: the socket to use
1524 *
1525 * Attach the user's filter code. We first run some sanity checks on
1526 * it to make sure it does not explode on us later. If an error
1527 * occurs or there is insufficient memory for the filter a negative
1528 * errno code is returned. On success the return is zero.
1529 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1530 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1531 {
1532 struct bpf_prog *prog = __get_filter(fprog, sk);
1533 int err;
1534
1535 if (IS_ERR(prog))
1536 return PTR_ERR(prog);
1537
1538 err = __sk_attach_prog(prog, sk);
1539 if (err < 0) {
1540 __bpf_prog_release(prog);
1541 return err;
1542 }
1543
1544 return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(sk_attach_filter);
1547
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1548 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1549 {
1550 struct bpf_prog *prog = __get_filter(fprog, sk);
1551 int err;
1552
1553 if (IS_ERR(prog))
1554 return PTR_ERR(prog);
1555
1556 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1557 err = -ENOMEM;
1558 else
1559 err = reuseport_attach_prog(sk, prog);
1560
1561 if (err)
1562 __bpf_prog_release(prog);
1563
1564 return err;
1565 }
1566
__get_bpf(u32 ufd,struct sock * sk)1567 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1568 {
1569 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1570 return ERR_PTR(-EPERM);
1571
1572 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1573 }
1574
sk_attach_bpf(u32 ufd,struct sock * sk)1575 int sk_attach_bpf(u32 ufd, struct sock *sk)
1576 {
1577 struct bpf_prog *prog = __get_bpf(ufd, sk);
1578 int err;
1579
1580 if (IS_ERR(prog))
1581 return PTR_ERR(prog);
1582
1583 err = __sk_attach_prog(prog, sk);
1584 if (err < 0) {
1585 bpf_prog_put(prog);
1586 return err;
1587 }
1588
1589 return 0;
1590 }
1591
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1592 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1593 {
1594 struct bpf_prog *prog;
1595 int err;
1596
1597 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1598 return -EPERM;
1599
1600 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1601 if (PTR_ERR(prog) == -EINVAL)
1602 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1603 if (IS_ERR(prog))
1604 return PTR_ERR(prog);
1605
1606 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1607 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1608 * bpf prog (e.g. sockmap). It depends on the
1609 * limitation imposed by bpf_prog_load().
1610 * Hence, sysctl_optmem_max is not checked.
1611 */
1612 if ((sk->sk_type != SOCK_STREAM &&
1613 sk->sk_type != SOCK_DGRAM) ||
1614 (sk->sk_protocol != IPPROTO_UDP &&
1615 sk->sk_protocol != IPPROTO_TCP) ||
1616 (sk->sk_family != AF_INET &&
1617 sk->sk_family != AF_INET6)) {
1618 err = -ENOTSUPP;
1619 goto err_prog_put;
1620 }
1621 } else {
1622 /* BPF_PROG_TYPE_SOCKET_FILTER */
1623 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1624 err = -ENOMEM;
1625 goto err_prog_put;
1626 }
1627 }
1628
1629 err = reuseport_attach_prog(sk, prog);
1630 err_prog_put:
1631 if (err)
1632 bpf_prog_put(prog);
1633
1634 return err;
1635 }
1636
sk_reuseport_prog_free(struct bpf_prog * prog)1637 void sk_reuseport_prog_free(struct bpf_prog *prog)
1638 {
1639 if (!prog)
1640 return;
1641
1642 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1643 bpf_prog_put(prog);
1644 else
1645 bpf_prog_destroy(prog);
1646 }
1647
1648 struct bpf_scratchpad {
1649 union {
1650 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1651 u8 buff[MAX_BPF_STACK];
1652 };
1653 };
1654
1655 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1656
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1657 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1658 unsigned int write_len)
1659 {
1660 return skb_ensure_writable(skb, write_len);
1661 }
1662
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1663 static inline int bpf_try_make_writable(struct sk_buff *skb,
1664 unsigned int write_len)
1665 {
1666 int err = __bpf_try_make_writable(skb, write_len);
1667
1668 bpf_compute_data_pointers(skb);
1669 return err;
1670 }
1671
bpf_try_make_head_writable(struct sk_buff * skb)1672 static int bpf_try_make_head_writable(struct sk_buff *skb)
1673 {
1674 return bpf_try_make_writable(skb, skb_headlen(skb));
1675 }
1676
bpf_push_mac_rcsum(struct sk_buff * skb)1677 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1678 {
1679 if (skb_at_tc_ingress(skb))
1680 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682
bpf_pull_mac_rcsum(struct sk_buff * skb)1683 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1684 {
1685 if (skb_at_tc_ingress(skb))
1686 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1687 }
1688
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1689 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1690 const void *, from, u32, len, u64, flags)
1691 {
1692 void *ptr;
1693
1694 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1695 return -EINVAL;
1696 if (unlikely(offset > INT_MAX))
1697 return -EFAULT;
1698 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1699 return -EFAULT;
1700
1701 ptr = skb->data + offset;
1702 if (flags & BPF_F_RECOMPUTE_CSUM)
1703 __skb_postpull_rcsum(skb, ptr, len, offset);
1704
1705 memcpy(ptr, from, len);
1706
1707 if (flags & BPF_F_RECOMPUTE_CSUM)
1708 __skb_postpush_rcsum(skb, ptr, len, offset);
1709 if (flags & BPF_F_INVALIDATE_HASH)
1710 skb_clear_hash(skb);
1711
1712 return 0;
1713 }
1714
1715 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1716 .func = bpf_skb_store_bytes,
1717 .gpl_only = false,
1718 .ret_type = RET_INTEGER,
1719 .arg1_type = ARG_PTR_TO_CTX,
1720 .arg2_type = ARG_ANYTHING,
1721 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1722 .arg4_type = ARG_CONST_SIZE,
1723 .arg5_type = ARG_ANYTHING,
1724 };
1725
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1726 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1727 u32 len, u64 flags)
1728 {
1729 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1730 }
1731
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1732 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1733 void *, to, u32, len)
1734 {
1735 void *ptr;
1736
1737 if (unlikely(offset > INT_MAX))
1738 goto err_clear;
1739
1740 ptr = skb_header_pointer(skb, offset, len, to);
1741 if (unlikely(!ptr))
1742 goto err_clear;
1743 if (ptr != to)
1744 memcpy(to, ptr, len);
1745
1746 return 0;
1747 err_clear:
1748 memset(to, 0, len);
1749 return -EFAULT;
1750 }
1751
1752 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1753 .func = bpf_skb_load_bytes,
1754 .gpl_only = false,
1755 .ret_type = RET_INTEGER,
1756 .arg1_type = ARG_PTR_TO_CTX,
1757 .arg2_type = ARG_ANYTHING,
1758 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1759 .arg4_type = ARG_CONST_SIZE,
1760 };
1761
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1762 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1763 {
1764 return ____bpf_skb_load_bytes(skb, offset, to, len);
1765 }
1766
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1767 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1768 const struct bpf_flow_dissector *, ctx, u32, offset,
1769 void *, to, u32, len)
1770 {
1771 void *ptr;
1772
1773 if (unlikely(offset > 0xffff))
1774 goto err_clear;
1775
1776 if (unlikely(!ctx->skb))
1777 goto err_clear;
1778
1779 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1780 if (unlikely(!ptr))
1781 goto err_clear;
1782 if (ptr != to)
1783 memcpy(to, ptr, len);
1784
1785 return 0;
1786 err_clear:
1787 memset(to, 0, len);
1788 return -EFAULT;
1789 }
1790
1791 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1792 .func = bpf_flow_dissector_load_bytes,
1793 .gpl_only = false,
1794 .ret_type = RET_INTEGER,
1795 .arg1_type = ARG_PTR_TO_CTX,
1796 .arg2_type = ARG_ANYTHING,
1797 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1798 .arg4_type = ARG_CONST_SIZE,
1799 };
1800
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1801 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1802 u32, offset, void *, to, u32, len, u32, start_header)
1803 {
1804 u8 *end = skb_tail_pointer(skb);
1805 u8 *start, *ptr;
1806
1807 if (unlikely(offset > 0xffff))
1808 goto err_clear;
1809
1810 switch (start_header) {
1811 case BPF_HDR_START_MAC:
1812 if (unlikely(!skb_mac_header_was_set(skb)))
1813 goto err_clear;
1814 start = skb_mac_header(skb);
1815 break;
1816 case BPF_HDR_START_NET:
1817 start = skb_network_header(skb);
1818 break;
1819 default:
1820 goto err_clear;
1821 }
1822
1823 ptr = start + offset;
1824
1825 if (likely(ptr + len <= end)) {
1826 memcpy(to, ptr, len);
1827 return 0;
1828 }
1829
1830 err_clear:
1831 memset(to, 0, len);
1832 return -EFAULT;
1833 }
1834
1835 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1836 .func = bpf_skb_load_bytes_relative,
1837 .gpl_only = false,
1838 .ret_type = RET_INTEGER,
1839 .arg1_type = ARG_PTR_TO_CTX,
1840 .arg2_type = ARG_ANYTHING,
1841 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1842 .arg4_type = ARG_CONST_SIZE,
1843 .arg5_type = ARG_ANYTHING,
1844 };
1845
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1846 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1847 {
1848 /* Idea is the following: should the needed direct read/write
1849 * test fail during runtime, we can pull in more data and redo
1850 * again, since implicitly, we invalidate previous checks here.
1851 *
1852 * Or, since we know how much we need to make read/writeable,
1853 * this can be done once at the program beginning for direct
1854 * access case. By this we overcome limitations of only current
1855 * headroom being accessible.
1856 */
1857 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1858 }
1859
1860 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1861 .func = bpf_skb_pull_data,
1862 .gpl_only = false,
1863 .ret_type = RET_INTEGER,
1864 .arg1_type = ARG_PTR_TO_CTX,
1865 .arg2_type = ARG_ANYTHING,
1866 };
1867
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1868 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1869 {
1870 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1871 }
1872
1873 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1874 .func = bpf_sk_fullsock,
1875 .gpl_only = false,
1876 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1877 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1878 };
1879
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1880 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1881 unsigned int write_len)
1882 {
1883 return __bpf_try_make_writable(skb, write_len);
1884 }
1885
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1886 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1887 {
1888 /* Idea is the following: should the needed direct read/write
1889 * test fail during runtime, we can pull in more data and redo
1890 * again, since implicitly, we invalidate previous checks here.
1891 *
1892 * Or, since we know how much we need to make read/writeable,
1893 * this can be done once at the program beginning for direct
1894 * access case. By this we overcome limitations of only current
1895 * headroom being accessible.
1896 */
1897 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1898 }
1899
1900 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1901 .func = sk_skb_pull_data,
1902 .gpl_only = false,
1903 .ret_type = RET_INTEGER,
1904 .arg1_type = ARG_PTR_TO_CTX,
1905 .arg2_type = ARG_ANYTHING,
1906 };
1907
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1908 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1909 u64, from, u64, to, u64, flags)
1910 {
1911 __sum16 *ptr;
1912
1913 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1914 return -EINVAL;
1915 if (unlikely(offset > 0xffff || offset & 1))
1916 return -EFAULT;
1917 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1918 return -EFAULT;
1919
1920 ptr = (__sum16 *)(skb->data + offset);
1921 switch (flags & BPF_F_HDR_FIELD_MASK) {
1922 case 0:
1923 if (unlikely(from != 0))
1924 return -EINVAL;
1925
1926 csum_replace_by_diff(ptr, to);
1927 break;
1928 case 2:
1929 csum_replace2(ptr, from, to);
1930 break;
1931 case 4:
1932 csum_replace4(ptr, from, to);
1933 break;
1934 default:
1935 return -EINVAL;
1936 }
1937
1938 return 0;
1939 }
1940
1941 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1942 .func = bpf_l3_csum_replace,
1943 .gpl_only = false,
1944 .ret_type = RET_INTEGER,
1945 .arg1_type = ARG_PTR_TO_CTX,
1946 .arg2_type = ARG_ANYTHING,
1947 .arg3_type = ARG_ANYTHING,
1948 .arg4_type = ARG_ANYTHING,
1949 .arg5_type = ARG_ANYTHING,
1950 };
1951
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1952 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1953 u64, from, u64, to, u64, flags)
1954 {
1955 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1956 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1957 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1958 __sum16 *ptr;
1959
1960 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1961 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1962 return -EINVAL;
1963 if (unlikely(offset > 0xffff || offset & 1))
1964 return -EFAULT;
1965 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1966 return -EFAULT;
1967
1968 ptr = (__sum16 *)(skb->data + offset);
1969 if (is_mmzero && !do_mforce && !*ptr)
1970 return 0;
1971
1972 switch (flags & BPF_F_HDR_FIELD_MASK) {
1973 case 0:
1974 if (unlikely(from != 0))
1975 return -EINVAL;
1976
1977 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1978 break;
1979 case 2:
1980 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1981 break;
1982 case 4:
1983 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1984 break;
1985 default:
1986 return -EINVAL;
1987 }
1988
1989 if (is_mmzero && !*ptr)
1990 *ptr = CSUM_MANGLED_0;
1991 return 0;
1992 }
1993
1994 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1995 .func = bpf_l4_csum_replace,
1996 .gpl_only = false,
1997 .ret_type = RET_INTEGER,
1998 .arg1_type = ARG_PTR_TO_CTX,
1999 .arg2_type = ARG_ANYTHING,
2000 .arg3_type = ARG_ANYTHING,
2001 .arg4_type = ARG_ANYTHING,
2002 .arg5_type = ARG_ANYTHING,
2003 };
2004
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2005 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2006 __be32 *, to, u32, to_size, __wsum, seed)
2007 {
2008 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2009 u32 diff_size = from_size + to_size;
2010 int i, j = 0;
2011
2012 /* This is quite flexible, some examples:
2013 *
2014 * from_size == 0, to_size > 0, seed := csum --> pushing data
2015 * from_size > 0, to_size == 0, seed := csum --> pulling data
2016 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2017 *
2018 * Even for diffing, from_size and to_size don't need to be equal.
2019 */
2020 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2021 diff_size > sizeof(sp->diff)))
2022 return -EINVAL;
2023
2024 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2025 sp->diff[j] = ~from[i];
2026 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
2027 sp->diff[j] = to[i];
2028
2029 return csum_partial(sp->diff, diff_size, seed);
2030 }
2031
2032 static const struct bpf_func_proto bpf_csum_diff_proto = {
2033 .func = bpf_csum_diff,
2034 .gpl_only = false,
2035 .pkt_access = true,
2036 .ret_type = RET_INTEGER,
2037 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2038 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2039 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2040 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2041 .arg5_type = ARG_ANYTHING,
2042 };
2043
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2044 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2045 {
2046 /* The interface is to be used in combination with bpf_csum_diff()
2047 * for direct packet writes. csum rotation for alignment as well
2048 * as emulating csum_sub() can be done from the eBPF program.
2049 */
2050 if (skb->ip_summed == CHECKSUM_COMPLETE)
2051 return (skb->csum = csum_add(skb->csum, csum));
2052
2053 return -ENOTSUPP;
2054 }
2055
2056 static const struct bpf_func_proto bpf_csum_update_proto = {
2057 .func = bpf_csum_update,
2058 .gpl_only = false,
2059 .ret_type = RET_INTEGER,
2060 .arg1_type = ARG_PTR_TO_CTX,
2061 .arg2_type = ARG_ANYTHING,
2062 };
2063
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2064 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2065 {
2066 /* The interface is to be used in combination with bpf_skb_adjust_room()
2067 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2068 * is passed as flags, for example.
2069 */
2070 switch (level) {
2071 case BPF_CSUM_LEVEL_INC:
2072 __skb_incr_checksum_unnecessary(skb);
2073 break;
2074 case BPF_CSUM_LEVEL_DEC:
2075 __skb_decr_checksum_unnecessary(skb);
2076 break;
2077 case BPF_CSUM_LEVEL_RESET:
2078 __skb_reset_checksum_unnecessary(skb);
2079 break;
2080 case BPF_CSUM_LEVEL_QUERY:
2081 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2082 skb->csum_level : -EACCES;
2083 default:
2084 return -EINVAL;
2085 }
2086
2087 return 0;
2088 }
2089
2090 static const struct bpf_func_proto bpf_csum_level_proto = {
2091 .func = bpf_csum_level,
2092 .gpl_only = false,
2093 .ret_type = RET_INTEGER,
2094 .arg1_type = ARG_PTR_TO_CTX,
2095 .arg2_type = ARG_ANYTHING,
2096 };
2097
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2098 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2099 {
2100 return dev_forward_skb_nomtu(dev, skb);
2101 }
2102
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2104 struct sk_buff *skb)
2105 {
2106 int ret = ____dev_forward_skb(dev, skb, false);
2107
2108 if (likely(!ret)) {
2109 skb->dev = dev;
2110 ret = netif_rx(skb);
2111 }
2112
2113 return ret;
2114 }
2115
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2116 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2117 {
2118 int ret;
2119
2120 if (dev_xmit_recursion()) {
2121 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2122 kfree_skb(skb);
2123 return -ENETDOWN;
2124 }
2125
2126 skb->dev = dev;
2127 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2128 skb_clear_tstamp(skb);
2129
2130 dev_xmit_recursion_inc();
2131 ret = dev_queue_xmit(skb);
2132 dev_xmit_recursion_dec();
2133
2134 return ret;
2135 }
2136
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2137 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2138 u32 flags)
2139 {
2140 unsigned int mlen = skb_network_offset(skb);
2141
2142 if (unlikely(skb->len <= mlen)) {
2143 kfree_skb(skb);
2144 return -ERANGE;
2145 }
2146
2147 if (mlen) {
2148 __skb_pull(skb, mlen);
2149
2150 /* At ingress, the mac header has already been pulled once.
2151 * At egress, skb_pospull_rcsum has to be done in case that
2152 * the skb is originated from ingress (i.e. a forwarded skb)
2153 * to ensure that rcsum starts at net header.
2154 */
2155 if (!skb_at_tc_ingress(skb))
2156 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2157 }
2158 skb_pop_mac_header(skb);
2159 skb_reset_mac_len(skb);
2160 return flags & BPF_F_INGRESS ?
2161 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2162 }
2163
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2164 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2165 u32 flags)
2166 {
2167 /* Verify that a link layer header is carried */
2168 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2169 kfree_skb(skb);
2170 return -ERANGE;
2171 }
2172
2173 bpf_push_mac_rcsum(skb);
2174 return flags & BPF_F_INGRESS ?
2175 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2176 }
2177
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2178 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2179 u32 flags)
2180 {
2181 if (dev_is_mac_header_xmit(dev))
2182 return __bpf_redirect_common(skb, dev, flags);
2183 else
2184 return __bpf_redirect_no_mac(skb, dev, flags);
2185 }
2186
2187 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2188 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2189 struct net_device *dev, struct bpf_nh_params *nh)
2190 {
2191 u32 hh_len = LL_RESERVED_SPACE(dev);
2192 const struct in6_addr *nexthop;
2193 struct dst_entry *dst = NULL;
2194 struct neighbour *neigh;
2195
2196 if (dev_xmit_recursion()) {
2197 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2198 goto out_drop;
2199 }
2200
2201 skb->dev = dev;
2202 skb_clear_tstamp(skb);
2203
2204 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2205 skb = skb_expand_head(skb, hh_len);
2206 if (!skb)
2207 return -ENOMEM;
2208 }
2209
2210 rcu_read_lock();
2211 if (!nh) {
2212 dst = skb_dst(skb);
2213 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2214 &ipv6_hdr(skb)->daddr);
2215 } else {
2216 nexthop = &nh->ipv6_nh;
2217 }
2218 neigh = ip_neigh_gw6(dev, nexthop);
2219 if (likely(!IS_ERR(neigh))) {
2220 int ret;
2221
2222 sock_confirm_neigh(skb, neigh);
2223 local_bh_disable();
2224 dev_xmit_recursion_inc();
2225 ret = neigh_output(neigh, skb, false);
2226 dev_xmit_recursion_dec();
2227 local_bh_enable();
2228 rcu_read_unlock();
2229 return ret;
2230 }
2231 rcu_read_unlock_bh();
2232 if (dst)
2233 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2234 out_drop:
2235 kfree_skb(skb);
2236 return -ENETDOWN;
2237 }
2238
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2239 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2240 struct bpf_nh_params *nh)
2241 {
2242 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2243 struct net *net = dev_net(dev);
2244 int err, ret = NET_XMIT_DROP;
2245
2246 if (!nh) {
2247 struct dst_entry *dst;
2248 struct flowi6 fl6 = {
2249 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2250 .flowi6_mark = skb->mark,
2251 .flowlabel = ip6_flowinfo(ip6h),
2252 .flowi6_oif = dev->ifindex,
2253 .flowi6_proto = ip6h->nexthdr,
2254 .daddr = ip6h->daddr,
2255 .saddr = ip6h->saddr,
2256 };
2257
2258 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2259 if (IS_ERR(dst))
2260 goto out_drop;
2261
2262 skb_dst_set(skb, dst);
2263 } else if (nh->nh_family != AF_INET6) {
2264 goto out_drop;
2265 }
2266
2267 err = bpf_out_neigh_v6(net, skb, dev, nh);
2268 if (unlikely(net_xmit_eval(err)))
2269 dev->stats.tx_errors++;
2270 else
2271 ret = NET_XMIT_SUCCESS;
2272 goto out_xmit;
2273 out_drop:
2274 dev->stats.tx_errors++;
2275 kfree_skb(skb);
2276 out_xmit:
2277 return ret;
2278 }
2279 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2280 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2281 struct bpf_nh_params *nh)
2282 {
2283 kfree_skb(skb);
2284 return NET_XMIT_DROP;
2285 }
2286 #endif /* CONFIG_IPV6 */
2287
2288 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2289 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2290 struct net_device *dev, struct bpf_nh_params *nh)
2291 {
2292 u32 hh_len = LL_RESERVED_SPACE(dev);
2293 struct neighbour *neigh;
2294 bool is_v6gw = false;
2295
2296 if (dev_xmit_recursion()) {
2297 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2298 goto out_drop;
2299 }
2300
2301 skb->dev = dev;
2302 skb_clear_tstamp(skb);
2303
2304 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2305 skb = skb_expand_head(skb, hh_len);
2306 if (!skb)
2307 return -ENOMEM;
2308 }
2309
2310 rcu_read_lock();
2311 if (!nh) {
2312 struct dst_entry *dst = skb_dst(skb);
2313 struct rtable *rt = container_of(dst, struct rtable, dst);
2314
2315 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2316 } else if (nh->nh_family == AF_INET6) {
2317 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2318 is_v6gw = true;
2319 } else if (nh->nh_family == AF_INET) {
2320 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2321 } else {
2322 rcu_read_unlock();
2323 goto out_drop;
2324 }
2325
2326 if (likely(!IS_ERR(neigh))) {
2327 int ret;
2328
2329 sock_confirm_neigh(skb, neigh);
2330 local_bh_disable();
2331 dev_xmit_recursion_inc();
2332 ret = neigh_output(neigh, skb, is_v6gw);
2333 dev_xmit_recursion_dec();
2334 local_bh_enable();
2335 rcu_read_unlock();
2336 return ret;
2337 }
2338 rcu_read_unlock();
2339 out_drop:
2340 kfree_skb(skb);
2341 return -ENETDOWN;
2342 }
2343
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2344 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2345 struct bpf_nh_params *nh)
2346 {
2347 const struct iphdr *ip4h = ip_hdr(skb);
2348 struct net *net = dev_net(dev);
2349 int err, ret = NET_XMIT_DROP;
2350
2351 if (!nh) {
2352 struct flowi4 fl4 = {
2353 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2354 .flowi4_mark = skb->mark,
2355 .flowi4_tos = RT_TOS(ip4h->tos),
2356 .flowi4_oif = dev->ifindex,
2357 .flowi4_proto = ip4h->protocol,
2358 .daddr = ip4h->daddr,
2359 .saddr = ip4h->saddr,
2360 };
2361 struct rtable *rt;
2362
2363 rt = ip_route_output_flow(net, &fl4, NULL);
2364 if (IS_ERR(rt))
2365 goto out_drop;
2366 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2367 ip_rt_put(rt);
2368 goto out_drop;
2369 }
2370
2371 skb_dst_set(skb, &rt->dst);
2372 }
2373
2374 err = bpf_out_neigh_v4(net, skb, dev, nh);
2375 if (unlikely(net_xmit_eval(err)))
2376 dev->stats.tx_errors++;
2377 else
2378 ret = NET_XMIT_SUCCESS;
2379 goto out_xmit;
2380 out_drop:
2381 dev->stats.tx_errors++;
2382 kfree_skb(skb);
2383 out_xmit:
2384 return ret;
2385 }
2386 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2387 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2388 struct bpf_nh_params *nh)
2389 {
2390 kfree_skb(skb);
2391 return NET_XMIT_DROP;
2392 }
2393 #endif /* CONFIG_INET */
2394
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2395 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2396 struct bpf_nh_params *nh)
2397 {
2398 struct ethhdr *ethh = eth_hdr(skb);
2399
2400 if (unlikely(skb->mac_header >= skb->network_header))
2401 goto out;
2402 bpf_push_mac_rcsum(skb);
2403 if (is_multicast_ether_addr(ethh->h_dest))
2404 goto out;
2405
2406 skb_pull(skb, sizeof(*ethh));
2407 skb_unset_mac_header(skb);
2408 skb_reset_network_header(skb);
2409
2410 if (skb->protocol == htons(ETH_P_IP))
2411 return __bpf_redirect_neigh_v4(skb, dev, nh);
2412 else if (skb->protocol == htons(ETH_P_IPV6))
2413 return __bpf_redirect_neigh_v6(skb, dev, nh);
2414 out:
2415 kfree_skb(skb);
2416 return -ENOTSUPP;
2417 }
2418
2419 /* Internal, non-exposed redirect flags. */
2420 enum {
2421 BPF_F_NEIGH = (1ULL << 1),
2422 BPF_F_PEER = (1ULL << 2),
2423 BPF_F_NEXTHOP = (1ULL << 3),
2424 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2425 };
2426
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2427 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2428 {
2429 struct net_device *dev;
2430 struct sk_buff *clone;
2431 int ret;
2432
2433 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2434 return -EINVAL;
2435
2436 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2437 if (unlikely(!dev))
2438 return -EINVAL;
2439
2440 clone = skb_clone(skb, GFP_ATOMIC);
2441 if (unlikely(!clone))
2442 return -ENOMEM;
2443
2444 /* For direct write, we need to keep the invariant that the skbs
2445 * we're dealing with need to be uncloned. Should uncloning fail
2446 * here, we need to free the just generated clone to unclone once
2447 * again.
2448 */
2449 ret = bpf_try_make_head_writable(skb);
2450 if (unlikely(ret)) {
2451 kfree_skb(clone);
2452 return -ENOMEM;
2453 }
2454
2455 return __bpf_redirect(clone, dev, flags);
2456 }
2457
2458 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2459 .func = bpf_clone_redirect,
2460 .gpl_only = false,
2461 .ret_type = RET_INTEGER,
2462 .arg1_type = ARG_PTR_TO_CTX,
2463 .arg2_type = ARG_ANYTHING,
2464 .arg3_type = ARG_ANYTHING,
2465 };
2466
2467 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2468 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2469
skb_do_redirect(struct sk_buff * skb)2470 int skb_do_redirect(struct sk_buff *skb)
2471 {
2472 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2473 struct net *net = dev_net(skb->dev);
2474 struct net_device *dev;
2475 u32 flags = ri->flags;
2476
2477 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2478 ri->tgt_index = 0;
2479 ri->flags = 0;
2480 if (unlikely(!dev))
2481 goto out_drop;
2482 if (flags & BPF_F_PEER) {
2483 const struct net_device_ops *ops = dev->netdev_ops;
2484
2485 if (unlikely(!ops->ndo_get_peer_dev ||
2486 !skb_at_tc_ingress(skb)))
2487 goto out_drop;
2488 dev = ops->ndo_get_peer_dev(dev);
2489 if (unlikely(!dev ||
2490 !(dev->flags & IFF_UP) ||
2491 net_eq(net, dev_net(dev))))
2492 goto out_drop;
2493 skb->dev = dev;
2494 dev_sw_netstats_rx_add(dev, skb->len);
2495 return -EAGAIN;
2496 }
2497 return flags & BPF_F_NEIGH ?
2498 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2499 &ri->nh : NULL) :
2500 __bpf_redirect(skb, dev, flags);
2501 out_drop:
2502 kfree_skb(skb);
2503 return -EINVAL;
2504 }
2505
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2506 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2507 {
2508 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2509
2510 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2511 return TC_ACT_SHOT;
2512
2513 ri->flags = flags;
2514 ri->tgt_index = ifindex;
2515
2516 return TC_ACT_REDIRECT;
2517 }
2518
2519 static const struct bpf_func_proto bpf_redirect_proto = {
2520 .func = bpf_redirect,
2521 .gpl_only = false,
2522 .ret_type = RET_INTEGER,
2523 .arg1_type = ARG_ANYTHING,
2524 .arg2_type = ARG_ANYTHING,
2525 };
2526
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2527 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2528 {
2529 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2530
2531 if (unlikely(flags))
2532 return TC_ACT_SHOT;
2533
2534 ri->flags = BPF_F_PEER;
2535 ri->tgt_index = ifindex;
2536
2537 return TC_ACT_REDIRECT;
2538 }
2539
2540 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2541 .func = bpf_redirect_peer,
2542 .gpl_only = false,
2543 .ret_type = RET_INTEGER,
2544 .arg1_type = ARG_ANYTHING,
2545 .arg2_type = ARG_ANYTHING,
2546 };
2547
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2548 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2549 int, plen, u64, flags)
2550 {
2551 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2552
2553 if (unlikely((plen && plen < sizeof(*params)) || flags))
2554 return TC_ACT_SHOT;
2555
2556 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2557 ri->tgt_index = ifindex;
2558
2559 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2560 if (plen)
2561 memcpy(&ri->nh, params, sizeof(ri->nh));
2562
2563 return TC_ACT_REDIRECT;
2564 }
2565
2566 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2567 .func = bpf_redirect_neigh,
2568 .gpl_only = false,
2569 .ret_type = RET_INTEGER,
2570 .arg1_type = ARG_ANYTHING,
2571 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2572 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2573 .arg4_type = ARG_ANYTHING,
2574 };
2575
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2576 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2577 {
2578 msg->apply_bytes = bytes;
2579 return 0;
2580 }
2581
2582 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2583 .func = bpf_msg_apply_bytes,
2584 .gpl_only = false,
2585 .ret_type = RET_INTEGER,
2586 .arg1_type = ARG_PTR_TO_CTX,
2587 .arg2_type = ARG_ANYTHING,
2588 };
2589
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2590 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2591 {
2592 msg->cork_bytes = bytes;
2593 return 0;
2594 }
2595
sk_msg_reset_curr(struct sk_msg * msg)2596 static void sk_msg_reset_curr(struct sk_msg *msg)
2597 {
2598 u32 i = msg->sg.start;
2599 u32 len = 0;
2600
2601 do {
2602 len += sk_msg_elem(msg, i)->length;
2603 sk_msg_iter_var_next(i);
2604 if (len >= msg->sg.size)
2605 break;
2606 } while (i != msg->sg.end);
2607
2608 msg->sg.curr = i;
2609 msg->sg.copybreak = 0;
2610 }
2611
2612 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2613 .func = bpf_msg_cork_bytes,
2614 .gpl_only = false,
2615 .ret_type = RET_INTEGER,
2616 .arg1_type = ARG_PTR_TO_CTX,
2617 .arg2_type = ARG_ANYTHING,
2618 };
2619
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2620 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2621 u32, end, u64, flags)
2622 {
2623 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2624 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2625 struct scatterlist *sge;
2626 u8 *raw, *to, *from;
2627 struct page *page;
2628
2629 if (unlikely(flags || end <= start))
2630 return -EINVAL;
2631
2632 /* First find the starting scatterlist element */
2633 i = msg->sg.start;
2634 do {
2635 offset += len;
2636 len = sk_msg_elem(msg, i)->length;
2637 if (start < offset + len)
2638 break;
2639 sk_msg_iter_var_next(i);
2640 } while (i != msg->sg.end);
2641
2642 if (unlikely(start >= offset + len))
2643 return -EINVAL;
2644
2645 first_sge = i;
2646 /* The start may point into the sg element so we need to also
2647 * account for the headroom.
2648 */
2649 bytes_sg_total = start - offset + bytes;
2650 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2651 goto out;
2652
2653 /* At this point we need to linearize multiple scatterlist
2654 * elements or a single shared page. Either way we need to
2655 * copy into a linear buffer exclusively owned by BPF. Then
2656 * place the buffer in the scatterlist and fixup the original
2657 * entries by removing the entries now in the linear buffer
2658 * and shifting the remaining entries. For now we do not try
2659 * to copy partial entries to avoid complexity of running out
2660 * of sg_entry slots. The downside is reading a single byte
2661 * will copy the entire sg entry.
2662 */
2663 do {
2664 copy += sk_msg_elem(msg, i)->length;
2665 sk_msg_iter_var_next(i);
2666 if (bytes_sg_total <= copy)
2667 break;
2668 } while (i != msg->sg.end);
2669 last_sge = i;
2670
2671 if (unlikely(bytes_sg_total > copy))
2672 return -EINVAL;
2673
2674 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2675 get_order(copy));
2676 if (unlikely(!page))
2677 return -ENOMEM;
2678
2679 raw = page_address(page);
2680 i = first_sge;
2681 do {
2682 sge = sk_msg_elem(msg, i);
2683 from = sg_virt(sge);
2684 len = sge->length;
2685 to = raw + poffset;
2686
2687 memcpy(to, from, len);
2688 poffset += len;
2689 sge->length = 0;
2690 put_page(sg_page(sge));
2691
2692 sk_msg_iter_var_next(i);
2693 } while (i != last_sge);
2694
2695 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2696
2697 /* To repair sg ring we need to shift entries. If we only
2698 * had a single entry though we can just replace it and
2699 * be done. Otherwise walk the ring and shift the entries.
2700 */
2701 WARN_ON_ONCE(last_sge == first_sge);
2702 shift = last_sge > first_sge ?
2703 last_sge - first_sge - 1 :
2704 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2705 if (!shift)
2706 goto out;
2707
2708 i = first_sge;
2709 sk_msg_iter_var_next(i);
2710 do {
2711 u32 move_from;
2712
2713 if (i + shift >= NR_MSG_FRAG_IDS)
2714 move_from = i + shift - NR_MSG_FRAG_IDS;
2715 else
2716 move_from = i + shift;
2717 if (move_from == msg->sg.end)
2718 break;
2719
2720 msg->sg.data[i] = msg->sg.data[move_from];
2721 msg->sg.data[move_from].length = 0;
2722 msg->sg.data[move_from].page_link = 0;
2723 msg->sg.data[move_from].offset = 0;
2724 sk_msg_iter_var_next(i);
2725 } while (1);
2726
2727 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2728 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2729 msg->sg.end - shift;
2730 out:
2731 sk_msg_reset_curr(msg);
2732 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2733 msg->data_end = msg->data + bytes;
2734 return 0;
2735 }
2736
2737 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2738 .func = bpf_msg_pull_data,
2739 .gpl_only = false,
2740 .ret_type = RET_INTEGER,
2741 .arg1_type = ARG_PTR_TO_CTX,
2742 .arg2_type = ARG_ANYTHING,
2743 .arg3_type = ARG_ANYTHING,
2744 .arg4_type = ARG_ANYTHING,
2745 };
2746
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2747 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2748 u32, len, u64, flags)
2749 {
2750 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2751 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2752 u8 *raw, *to, *from;
2753 struct page *page;
2754
2755 if (unlikely(flags))
2756 return -EINVAL;
2757
2758 if (unlikely(len == 0))
2759 return 0;
2760
2761 /* First find the starting scatterlist element */
2762 i = msg->sg.start;
2763 do {
2764 offset += l;
2765 l = sk_msg_elem(msg, i)->length;
2766
2767 if (start < offset + l)
2768 break;
2769 sk_msg_iter_var_next(i);
2770 } while (i != msg->sg.end);
2771
2772 if (start >= offset + l)
2773 return -EINVAL;
2774
2775 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2776
2777 /* If no space available will fallback to copy, we need at
2778 * least one scatterlist elem available to push data into
2779 * when start aligns to the beginning of an element or two
2780 * when it falls inside an element. We handle the start equals
2781 * offset case because its the common case for inserting a
2782 * header.
2783 */
2784 if (!space || (space == 1 && start != offset))
2785 copy = msg->sg.data[i].length;
2786
2787 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2788 get_order(copy + len));
2789 if (unlikely(!page))
2790 return -ENOMEM;
2791
2792 if (copy) {
2793 int front, back;
2794
2795 raw = page_address(page);
2796
2797 psge = sk_msg_elem(msg, i);
2798 front = start - offset;
2799 back = psge->length - front;
2800 from = sg_virt(psge);
2801
2802 if (front)
2803 memcpy(raw, from, front);
2804
2805 if (back) {
2806 from += front;
2807 to = raw + front + len;
2808
2809 memcpy(to, from, back);
2810 }
2811
2812 put_page(sg_page(psge));
2813 } else if (start - offset) {
2814 psge = sk_msg_elem(msg, i);
2815 rsge = sk_msg_elem_cpy(msg, i);
2816
2817 psge->length = start - offset;
2818 rsge.length -= psge->length;
2819 rsge.offset += start;
2820
2821 sk_msg_iter_var_next(i);
2822 sg_unmark_end(psge);
2823 sg_unmark_end(&rsge);
2824 sk_msg_iter_next(msg, end);
2825 }
2826
2827 /* Slot(s) to place newly allocated data */
2828 new = i;
2829
2830 /* Shift one or two slots as needed */
2831 if (!copy) {
2832 sge = sk_msg_elem_cpy(msg, i);
2833
2834 sk_msg_iter_var_next(i);
2835 sg_unmark_end(&sge);
2836 sk_msg_iter_next(msg, end);
2837
2838 nsge = sk_msg_elem_cpy(msg, i);
2839 if (rsge.length) {
2840 sk_msg_iter_var_next(i);
2841 nnsge = sk_msg_elem_cpy(msg, i);
2842 }
2843
2844 while (i != msg->sg.end) {
2845 msg->sg.data[i] = sge;
2846 sge = nsge;
2847 sk_msg_iter_var_next(i);
2848 if (rsge.length) {
2849 nsge = nnsge;
2850 nnsge = sk_msg_elem_cpy(msg, i);
2851 } else {
2852 nsge = sk_msg_elem_cpy(msg, i);
2853 }
2854 }
2855 }
2856
2857 /* Place newly allocated data buffer */
2858 sk_mem_charge(msg->sk, len);
2859 msg->sg.size += len;
2860 __clear_bit(new, msg->sg.copy);
2861 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2862 if (rsge.length) {
2863 get_page(sg_page(&rsge));
2864 sk_msg_iter_var_next(new);
2865 msg->sg.data[new] = rsge;
2866 }
2867
2868 sk_msg_reset_curr(msg);
2869 sk_msg_compute_data_pointers(msg);
2870 return 0;
2871 }
2872
2873 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2874 .func = bpf_msg_push_data,
2875 .gpl_only = false,
2876 .ret_type = RET_INTEGER,
2877 .arg1_type = ARG_PTR_TO_CTX,
2878 .arg2_type = ARG_ANYTHING,
2879 .arg3_type = ARG_ANYTHING,
2880 .arg4_type = ARG_ANYTHING,
2881 };
2882
sk_msg_shift_left(struct sk_msg * msg,int i)2883 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2884 {
2885 int prev;
2886
2887 do {
2888 prev = i;
2889 sk_msg_iter_var_next(i);
2890 msg->sg.data[prev] = msg->sg.data[i];
2891 } while (i != msg->sg.end);
2892
2893 sk_msg_iter_prev(msg, end);
2894 }
2895
sk_msg_shift_right(struct sk_msg * msg,int i)2896 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2897 {
2898 struct scatterlist tmp, sge;
2899
2900 sk_msg_iter_next(msg, end);
2901 sge = sk_msg_elem_cpy(msg, i);
2902 sk_msg_iter_var_next(i);
2903 tmp = sk_msg_elem_cpy(msg, i);
2904
2905 while (i != msg->sg.end) {
2906 msg->sg.data[i] = sge;
2907 sk_msg_iter_var_next(i);
2908 sge = tmp;
2909 tmp = sk_msg_elem_cpy(msg, i);
2910 }
2911 }
2912
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2913 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2914 u32, len, u64, flags)
2915 {
2916 u32 i = 0, l = 0, space, offset = 0;
2917 u64 last = start + len;
2918 int pop;
2919
2920 if (unlikely(flags))
2921 return -EINVAL;
2922
2923 /* First find the starting scatterlist element */
2924 i = msg->sg.start;
2925 do {
2926 offset += l;
2927 l = sk_msg_elem(msg, i)->length;
2928
2929 if (start < offset + l)
2930 break;
2931 sk_msg_iter_var_next(i);
2932 } while (i != msg->sg.end);
2933
2934 /* Bounds checks: start and pop must be inside message */
2935 if (start >= offset + l || last >= msg->sg.size)
2936 return -EINVAL;
2937
2938 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2939
2940 pop = len;
2941 /* --------------| offset
2942 * -| start |-------- len -------|
2943 *
2944 * |----- a ----|-------- pop -------|----- b ----|
2945 * |______________________________________________| length
2946 *
2947 *
2948 * a: region at front of scatter element to save
2949 * b: region at back of scatter element to save when length > A + pop
2950 * pop: region to pop from element, same as input 'pop' here will be
2951 * decremented below per iteration.
2952 *
2953 * Two top-level cases to handle when start != offset, first B is non
2954 * zero and second B is zero corresponding to when a pop includes more
2955 * than one element.
2956 *
2957 * Then if B is non-zero AND there is no space allocate space and
2958 * compact A, B regions into page. If there is space shift ring to
2959 * the rigth free'ing the next element in ring to place B, leaving
2960 * A untouched except to reduce length.
2961 */
2962 if (start != offset) {
2963 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2964 int a = start;
2965 int b = sge->length - pop - a;
2966
2967 sk_msg_iter_var_next(i);
2968
2969 if (pop < sge->length - a) {
2970 if (space) {
2971 sge->length = a;
2972 sk_msg_shift_right(msg, i);
2973 nsge = sk_msg_elem(msg, i);
2974 get_page(sg_page(sge));
2975 sg_set_page(nsge,
2976 sg_page(sge),
2977 b, sge->offset + pop + a);
2978 } else {
2979 struct page *page, *orig;
2980 u8 *to, *from;
2981
2982 page = alloc_pages(__GFP_NOWARN |
2983 __GFP_COMP | GFP_ATOMIC,
2984 get_order(a + b));
2985 if (unlikely(!page))
2986 return -ENOMEM;
2987
2988 sge->length = a;
2989 orig = sg_page(sge);
2990 from = sg_virt(sge);
2991 to = page_address(page);
2992 memcpy(to, from, a);
2993 memcpy(to + a, from + a + pop, b);
2994 sg_set_page(sge, page, a + b, 0);
2995 put_page(orig);
2996 }
2997 pop = 0;
2998 } else if (pop >= sge->length - a) {
2999 pop -= (sge->length - a);
3000 sge->length = a;
3001 }
3002 }
3003
3004 /* From above the current layout _must_ be as follows,
3005 *
3006 * -| offset
3007 * -| start
3008 *
3009 * |---- pop ---|---------------- b ------------|
3010 * |____________________________________________| length
3011 *
3012 * Offset and start of the current msg elem are equal because in the
3013 * previous case we handled offset != start and either consumed the
3014 * entire element and advanced to the next element OR pop == 0.
3015 *
3016 * Two cases to handle here are first pop is less than the length
3017 * leaving some remainder b above. Simply adjust the element's layout
3018 * in this case. Or pop >= length of the element so that b = 0. In this
3019 * case advance to next element decrementing pop.
3020 */
3021 while (pop) {
3022 struct scatterlist *sge = sk_msg_elem(msg, i);
3023
3024 if (pop < sge->length) {
3025 sge->length -= pop;
3026 sge->offset += pop;
3027 pop = 0;
3028 } else {
3029 pop -= sge->length;
3030 sk_msg_shift_left(msg, i);
3031 }
3032 sk_msg_iter_var_next(i);
3033 }
3034
3035 sk_mem_uncharge(msg->sk, len - pop);
3036 msg->sg.size -= (len - pop);
3037 sk_msg_reset_curr(msg);
3038 sk_msg_compute_data_pointers(msg);
3039 return 0;
3040 }
3041
3042 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3043 .func = bpf_msg_pop_data,
3044 .gpl_only = false,
3045 .ret_type = RET_INTEGER,
3046 .arg1_type = ARG_PTR_TO_CTX,
3047 .arg2_type = ARG_ANYTHING,
3048 .arg3_type = ARG_ANYTHING,
3049 .arg4_type = ARG_ANYTHING,
3050 };
3051
3052 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3053 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3054 {
3055 return __task_get_classid(current);
3056 }
3057
3058 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3059 .func = bpf_get_cgroup_classid_curr,
3060 .gpl_only = false,
3061 .ret_type = RET_INTEGER,
3062 };
3063
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3064 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3065 {
3066 struct sock *sk = skb_to_full_sk(skb);
3067
3068 if (!sk || !sk_fullsock(sk))
3069 return 0;
3070
3071 return sock_cgroup_classid(&sk->sk_cgrp_data);
3072 }
3073
3074 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3075 .func = bpf_skb_cgroup_classid,
3076 .gpl_only = false,
3077 .ret_type = RET_INTEGER,
3078 .arg1_type = ARG_PTR_TO_CTX,
3079 };
3080 #endif
3081
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3082 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3083 {
3084 return task_get_classid(skb);
3085 }
3086
3087 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3088 .func = bpf_get_cgroup_classid,
3089 .gpl_only = false,
3090 .ret_type = RET_INTEGER,
3091 .arg1_type = ARG_PTR_TO_CTX,
3092 };
3093
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3094 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3095 {
3096 return dst_tclassid(skb);
3097 }
3098
3099 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3100 .func = bpf_get_route_realm,
3101 .gpl_only = false,
3102 .ret_type = RET_INTEGER,
3103 .arg1_type = ARG_PTR_TO_CTX,
3104 };
3105
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3106 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3107 {
3108 /* If skb_clear_hash() was called due to mangling, we can
3109 * trigger SW recalculation here. Later access to hash
3110 * can then use the inline skb->hash via context directly
3111 * instead of calling this helper again.
3112 */
3113 return skb_get_hash(skb);
3114 }
3115
3116 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3117 .func = bpf_get_hash_recalc,
3118 .gpl_only = false,
3119 .ret_type = RET_INTEGER,
3120 .arg1_type = ARG_PTR_TO_CTX,
3121 };
3122
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3123 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3124 {
3125 /* After all direct packet write, this can be used once for
3126 * triggering a lazy recalc on next skb_get_hash() invocation.
3127 */
3128 skb_clear_hash(skb);
3129 return 0;
3130 }
3131
3132 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3133 .func = bpf_set_hash_invalid,
3134 .gpl_only = false,
3135 .ret_type = RET_INTEGER,
3136 .arg1_type = ARG_PTR_TO_CTX,
3137 };
3138
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3139 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3140 {
3141 /* Set user specified hash as L4(+), so that it gets returned
3142 * on skb_get_hash() call unless BPF prog later on triggers a
3143 * skb_clear_hash().
3144 */
3145 __skb_set_sw_hash(skb, hash, true);
3146 return 0;
3147 }
3148
3149 static const struct bpf_func_proto bpf_set_hash_proto = {
3150 .func = bpf_set_hash,
3151 .gpl_only = false,
3152 .ret_type = RET_INTEGER,
3153 .arg1_type = ARG_PTR_TO_CTX,
3154 .arg2_type = ARG_ANYTHING,
3155 };
3156
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3157 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3158 u16, vlan_tci)
3159 {
3160 int ret;
3161
3162 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3163 vlan_proto != htons(ETH_P_8021AD)))
3164 vlan_proto = htons(ETH_P_8021Q);
3165
3166 bpf_push_mac_rcsum(skb);
3167 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3168 bpf_pull_mac_rcsum(skb);
3169
3170 bpf_compute_data_pointers(skb);
3171 return ret;
3172 }
3173
3174 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3175 .func = bpf_skb_vlan_push,
3176 .gpl_only = false,
3177 .ret_type = RET_INTEGER,
3178 .arg1_type = ARG_PTR_TO_CTX,
3179 .arg2_type = ARG_ANYTHING,
3180 .arg3_type = ARG_ANYTHING,
3181 };
3182
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3183 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3184 {
3185 int ret;
3186
3187 bpf_push_mac_rcsum(skb);
3188 ret = skb_vlan_pop(skb);
3189 bpf_pull_mac_rcsum(skb);
3190
3191 bpf_compute_data_pointers(skb);
3192 return ret;
3193 }
3194
3195 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3196 .func = bpf_skb_vlan_pop,
3197 .gpl_only = false,
3198 .ret_type = RET_INTEGER,
3199 .arg1_type = ARG_PTR_TO_CTX,
3200 };
3201
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3202 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3203 {
3204 /* Caller already did skb_cow() with len as headroom,
3205 * so no need to do it here.
3206 */
3207 skb_push(skb, len);
3208 memmove(skb->data, skb->data + len, off);
3209 memset(skb->data + off, 0, len);
3210
3211 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3212 * needed here as it does not change the skb->csum
3213 * result for checksum complete when summing over
3214 * zeroed blocks.
3215 */
3216 return 0;
3217 }
3218
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3219 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3220 {
3221 void *old_data;
3222
3223 /* skb_ensure_writable() is not needed here, as we're
3224 * already working on an uncloned skb.
3225 */
3226 if (unlikely(!pskb_may_pull(skb, off + len)))
3227 return -ENOMEM;
3228
3229 old_data = skb->data;
3230 __skb_pull(skb, len);
3231 skb_postpull_rcsum(skb, old_data + off, len);
3232 memmove(skb->data, old_data, off);
3233
3234 return 0;
3235 }
3236
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3237 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3238 {
3239 bool trans_same = skb->transport_header == skb->network_header;
3240 int ret;
3241
3242 /* There's no need for __skb_push()/__skb_pull() pair to
3243 * get to the start of the mac header as we're guaranteed
3244 * to always start from here under eBPF.
3245 */
3246 ret = bpf_skb_generic_push(skb, off, len);
3247 if (likely(!ret)) {
3248 skb->mac_header -= len;
3249 skb->network_header -= len;
3250 if (trans_same)
3251 skb->transport_header = skb->network_header;
3252 }
3253
3254 return ret;
3255 }
3256
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3257 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3258 {
3259 bool trans_same = skb->transport_header == skb->network_header;
3260 int ret;
3261
3262 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3263 ret = bpf_skb_generic_pop(skb, off, len);
3264 if (likely(!ret)) {
3265 skb->mac_header += len;
3266 skb->network_header += len;
3267 if (trans_same)
3268 skb->transport_header = skb->network_header;
3269 }
3270
3271 return ret;
3272 }
3273
bpf_skb_proto_4_to_6(struct sk_buff * skb)3274 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3275 {
3276 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3277 u32 off = skb_mac_header_len(skb);
3278 int ret;
3279
3280 ret = skb_cow(skb, len_diff);
3281 if (unlikely(ret < 0))
3282 return ret;
3283
3284 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3285 if (unlikely(ret < 0))
3286 return ret;
3287
3288 if (skb_is_gso(skb)) {
3289 struct skb_shared_info *shinfo = skb_shinfo(skb);
3290
3291 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3292 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3293 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3294 shinfo->gso_type |= SKB_GSO_TCPV6;
3295 }
3296 }
3297
3298 skb->protocol = htons(ETH_P_IPV6);
3299 skb_clear_hash(skb);
3300
3301 return 0;
3302 }
3303
bpf_skb_proto_6_to_4(struct sk_buff * skb)3304 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3305 {
3306 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3307 u32 off = skb_mac_header_len(skb);
3308 int ret;
3309
3310 ret = skb_unclone(skb, GFP_ATOMIC);
3311 if (unlikely(ret < 0))
3312 return ret;
3313
3314 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3315 if (unlikely(ret < 0))
3316 return ret;
3317
3318 if (skb_is_gso(skb)) {
3319 struct skb_shared_info *shinfo = skb_shinfo(skb);
3320
3321 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3322 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3323 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3324 shinfo->gso_type |= SKB_GSO_TCPV4;
3325 }
3326 }
3327
3328 skb->protocol = htons(ETH_P_IP);
3329 skb_clear_hash(skb);
3330
3331 return 0;
3332 }
3333
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3334 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3335 {
3336 __be16 from_proto = skb->protocol;
3337
3338 if (from_proto == htons(ETH_P_IP) &&
3339 to_proto == htons(ETH_P_IPV6))
3340 return bpf_skb_proto_4_to_6(skb);
3341
3342 if (from_proto == htons(ETH_P_IPV6) &&
3343 to_proto == htons(ETH_P_IP))
3344 return bpf_skb_proto_6_to_4(skb);
3345
3346 return -ENOTSUPP;
3347 }
3348
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3349 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3350 u64, flags)
3351 {
3352 int ret;
3353
3354 if (unlikely(flags))
3355 return -EINVAL;
3356
3357 /* General idea is that this helper does the basic groundwork
3358 * needed for changing the protocol, and eBPF program fills the
3359 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3360 * and other helpers, rather than passing a raw buffer here.
3361 *
3362 * The rationale is to keep this minimal and without a need to
3363 * deal with raw packet data. F.e. even if we would pass buffers
3364 * here, the program still needs to call the bpf_lX_csum_replace()
3365 * helpers anyway. Plus, this way we keep also separation of
3366 * concerns, since f.e. bpf_skb_store_bytes() should only take
3367 * care of stores.
3368 *
3369 * Currently, additional options and extension header space are
3370 * not supported, but flags register is reserved so we can adapt
3371 * that. For offloads, we mark packet as dodgy, so that headers
3372 * need to be verified first.
3373 */
3374 ret = bpf_skb_proto_xlat(skb, proto);
3375 bpf_compute_data_pointers(skb);
3376 return ret;
3377 }
3378
3379 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3380 .func = bpf_skb_change_proto,
3381 .gpl_only = false,
3382 .ret_type = RET_INTEGER,
3383 .arg1_type = ARG_PTR_TO_CTX,
3384 .arg2_type = ARG_ANYTHING,
3385 .arg3_type = ARG_ANYTHING,
3386 };
3387
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3388 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3389 {
3390 /* We only allow a restricted subset to be changed for now. */
3391 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3392 !skb_pkt_type_ok(pkt_type)))
3393 return -EINVAL;
3394
3395 skb->pkt_type = pkt_type;
3396 return 0;
3397 }
3398
3399 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3400 .func = bpf_skb_change_type,
3401 .gpl_only = false,
3402 .ret_type = RET_INTEGER,
3403 .arg1_type = ARG_PTR_TO_CTX,
3404 .arg2_type = ARG_ANYTHING,
3405 };
3406
bpf_skb_net_base_len(const struct sk_buff * skb)3407 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3408 {
3409 switch (skb->protocol) {
3410 case htons(ETH_P_IP):
3411 return sizeof(struct iphdr);
3412 case htons(ETH_P_IPV6):
3413 return sizeof(struct ipv6hdr);
3414 default:
3415 return ~0U;
3416 }
3417 }
3418
3419 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3420 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3421
3422 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3423 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3424
3425 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3426 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3427 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3428 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3429 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3430 BPF_F_ADJ_ROOM_ENCAP_L2( \
3431 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3432 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3433
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3434 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3435 u64 flags)
3436 {
3437 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3438 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3439 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3440 unsigned int gso_type = SKB_GSO_DODGY;
3441 int ret;
3442
3443 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3444 /* udp gso_size delineates datagrams, only allow if fixed */
3445 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3446 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3447 return -ENOTSUPP;
3448 }
3449
3450 ret = skb_cow_head(skb, len_diff);
3451 if (unlikely(ret < 0))
3452 return ret;
3453
3454 if (encap) {
3455 if (skb->protocol != htons(ETH_P_IP) &&
3456 skb->protocol != htons(ETH_P_IPV6))
3457 return -ENOTSUPP;
3458
3459 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3460 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3461 return -EINVAL;
3462
3463 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3464 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3465 return -EINVAL;
3466
3467 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3468 inner_mac_len < ETH_HLEN)
3469 return -EINVAL;
3470
3471 if (skb->encapsulation)
3472 return -EALREADY;
3473
3474 mac_len = skb->network_header - skb->mac_header;
3475 inner_net = skb->network_header;
3476 if (inner_mac_len > len_diff)
3477 return -EINVAL;
3478 inner_trans = skb->transport_header;
3479 }
3480
3481 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3482 if (unlikely(ret < 0))
3483 return ret;
3484
3485 if (encap) {
3486 skb->inner_mac_header = inner_net - inner_mac_len;
3487 skb->inner_network_header = inner_net;
3488 skb->inner_transport_header = inner_trans;
3489
3490 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3491 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3492 else
3493 skb_set_inner_protocol(skb, skb->protocol);
3494
3495 skb->encapsulation = 1;
3496 skb_set_network_header(skb, mac_len);
3497
3498 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3499 gso_type |= SKB_GSO_UDP_TUNNEL;
3500 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3501 gso_type |= SKB_GSO_GRE;
3502 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3503 gso_type |= SKB_GSO_IPXIP6;
3504 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3505 gso_type |= SKB_GSO_IPXIP4;
3506
3507 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3508 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3509 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3510 sizeof(struct ipv6hdr) :
3511 sizeof(struct iphdr);
3512
3513 skb_set_transport_header(skb, mac_len + nh_len);
3514 }
3515
3516 /* Match skb->protocol to new outer l3 protocol */
3517 if (skb->protocol == htons(ETH_P_IP) &&
3518 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3519 skb->protocol = htons(ETH_P_IPV6);
3520 else if (skb->protocol == htons(ETH_P_IPV6) &&
3521 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3522 skb->protocol = htons(ETH_P_IP);
3523 }
3524
3525 if (skb_is_gso(skb)) {
3526 struct skb_shared_info *shinfo = skb_shinfo(skb);
3527
3528 /* Due to header grow, MSS needs to be downgraded. */
3529 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3530 skb_decrease_gso_size(shinfo, len_diff);
3531
3532 /* Header must be checked, and gso_segs recomputed. */
3533 shinfo->gso_type |= gso_type;
3534 shinfo->gso_segs = 0;
3535 }
3536
3537 return 0;
3538 }
3539
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3540 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3541 u64 flags)
3542 {
3543 int ret;
3544
3545 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3546 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3547 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3548 return -EINVAL;
3549
3550 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3551 /* udp gso_size delineates datagrams, only allow if fixed */
3552 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3553 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3554 return -ENOTSUPP;
3555 }
3556
3557 ret = skb_unclone(skb, GFP_ATOMIC);
3558 if (unlikely(ret < 0))
3559 return ret;
3560
3561 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3562 if (unlikely(ret < 0))
3563 return ret;
3564
3565 /* Match skb->protocol to new outer l3 protocol */
3566 if (skb->protocol == htons(ETH_P_IP) &&
3567 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3568 skb->protocol = htons(ETH_P_IPV6);
3569 else if (skb->protocol == htons(ETH_P_IPV6) &&
3570 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3571 skb->protocol = htons(ETH_P_IP);
3572
3573 if (skb_is_gso(skb)) {
3574 struct skb_shared_info *shinfo = skb_shinfo(skb);
3575
3576 /* Due to header shrink, MSS can be upgraded. */
3577 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3578 skb_increase_gso_size(shinfo, len_diff);
3579
3580 /* Header must be checked, and gso_segs recomputed. */
3581 shinfo->gso_type |= SKB_GSO_DODGY;
3582 shinfo->gso_segs = 0;
3583 }
3584
3585 return 0;
3586 }
3587
3588 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3589
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3590 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3591 u32, mode, u64, flags)
3592 {
3593 u32 len_diff_abs = abs(len_diff);
3594 bool shrink = len_diff < 0;
3595 int ret = 0;
3596
3597 if (unlikely(flags || mode))
3598 return -EINVAL;
3599 if (unlikely(len_diff_abs > 0xfffU))
3600 return -EFAULT;
3601
3602 if (!shrink) {
3603 ret = skb_cow(skb, len_diff);
3604 if (unlikely(ret < 0))
3605 return ret;
3606 __skb_push(skb, len_diff_abs);
3607 memset(skb->data, 0, len_diff_abs);
3608 } else {
3609 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3610 return -ENOMEM;
3611 __skb_pull(skb, len_diff_abs);
3612 }
3613 if (tls_sw_has_ctx_rx(skb->sk)) {
3614 struct strp_msg *rxm = strp_msg(skb);
3615
3616 rxm->full_len += len_diff;
3617 }
3618 return ret;
3619 }
3620
3621 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3622 .func = sk_skb_adjust_room,
3623 .gpl_only = false,
3624 .ret_type = RET_INTEGER,
3625 .arg1_type = ARG_PTR_TO_CTX,
3626 .arg2_type = ARG_ANYTHING,
3627 .arg3_type = ARG_ANYTHING,
3628 .arg4_type = ARG_ANYTHING,
3629 };
3630
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3631 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3632 u32, mode, u64, flags)
3633 {
3634 u32 len_cur, len_diff_abs = abs(len_diff);
3635 u32 len_min = bpf_skb_net_base_len(skb);
3636 u32 len_max = BPF_SKB_MAX_LEN;
3637 __be16 proto = skb->protocol;
3638 bool shrink = len_diff < 0;
3639 u32 off;
3640 int ret;
3641
3642 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3643 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3644 return -EINVAL;
3645 if (unlikely(len_diff_abs > 0xfffU))
3646 return -EFAULT;
3647 if (unlikely(proto != htons(ETH_P_IP) &&
3648 proto != htons(ETH_P_IPV6)))
3649 return -ENOTSUPP;
3650
3651 off = skb_mac_header_len(skb);
3652 switch (mode) {
3653 case BPF_ADJ_ROOM_NET:
3654 off += bpf_skb_net_base_len(skb);
3655 break;
3656 case BPF_ADJ_ROOM_MAC:
3657 break;
3658 default:
3659 return -ENOTSUPP;
3660 }
3661
3662 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3663 if (!shrink)
3664 return -EINVAL;
3665
3666 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3667 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3668 len_min = sizeof(struct iphdr);
3669 break;
3670 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3671 len_min = sizeof(struct ipv6hdr);
3672 break;
3673 default:
3674 return -EINVAL;
3675 }
3676 }
3677
3678 len_cur = skb->len - skb_network_offset(skb);
3679 if ((shrink && (len_diff_abs >= len_cur ||
3680 len_cur - len_diff_abs < len_min)) ||
3681 (!shrink && (skb->len + len_diff_abs > len_max &&
3682 !skb_is_gso(skb))))
3683 return -ENOTSUPP;
3684
3685 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3686 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3687 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3688 __skb_reset_checksum_unnecessary(skb);
3689
3690 bpf_compute_data_pointers(skb);
3691 return ret;
3692 }
3693
3694 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3695 .func = bpf_skb_adjust_room,
3696 .gpl_only = false,
3697 .ret_type = RET_INTEGER,
3698 .arg1_type = ARG_PTR_TO_CTX,
3699 .arg2_type = ARG_ANYTHING,
3700 .arg3_type = ARG_ANYTHING,
3701 .arg4_type = ARG_ANYTHING,
3702 };
3703
__bpf_skb_min_len(const struct sk_buff * skb)3704 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3705 {
3706 u32 min_len = skb_network_offset(skb);
3707
3708 if (skb_transport_header_was_set(skb))
3709 min_len = skb_transport_offset(skb);
3710 if (skb->ip_summed == CHECKSUM_PARTIAL)
3711 min_len = skb_checksum_start_offset(skb) +
3712 skb->csum_offset + sizeof(__sum16);
3713 return min_len;
3714 }
3715
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3716 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3717 {
3718 unsigned int old_len = skb->len;
3719 int ret;
3720
3721 ret = __skb_grow_rcsum(skb, new_len);
3722 if (!ret)
3723 memset(skb->data + old_len, 0, new_len - old_len);
3724 return ret;
3725 }
3726
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3727 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3728 {
3729 return __skb_trim_rcsum(skb, new_len);
3730 }
3731
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3732 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3733 u64 flags)
3734 {
3735 u32 max_len = BPF_SKB_MAX_LEN;
3736 u32 min_len = __bpf_skb_min_len(skb);
3737 int ret;
3738
3739 if (unlikely(flags || new_len > max_len || new_len < min_len))
3740 return -EINVAL;
3741 if (skb->encapsulation)
3742 return -ENOTSUPP;
3743
3744 /* The basic idea of this helper is that it's performing the
3745 * needed work to either grow or trim an skb, and eBPF program
3746 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3747 * bpf_lX_csum_replace() and others rather than passing a raw
3748 * buffer here. This one is a slow path helper and intended
3749 * for replies with control messages.
3750 *
3751 * Like in bpf_skb_change_proto(), we want to keep this rather
3752 * minimal and without protocol specifics so that we are able
3753 * to separate concerns as in bpf_skb_store_bytes() should only
3754 * be the one responsible for writing buffers.
3755 *
3756 * It's really expected to be a slow path operation here for
3757 * control message replies, so we're implicitly linearizing,
3758 * uncloning and drop offloads from the skb by this.
3759 */
3760 ret = __bpf_try_make_writable(skb, skb->len);
3761 if (!ret) {
3762 if (new_len > skb->len)
3763 ret = bpf_skb_grow_rcsum(skb, new_len);
3764 else if (new_len < skb->len)
3765 ret = bpf_skb_trim_rcsum(skb, new_len);
3766 if (!ret && skb_is_gso(skb))
3767 skb_gso_reset(skb);
3768 }
3769 return ret;
3770 }
3771
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3772 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3773 u64, flags)
3774 {
3775 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3776
3777 bpf_compute_data_pointers(skb);
3778 return ret;
3779 }
3780
3781 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3782 .func = bpf_skb_change_tail,
3783 .gpl_only = false,
3784 .ret_type = RET_INTEGER,
3785 .arg1_type = ARG_PTR_TO_CTX,
3786 .arg2_type = ARG_ANYTHING,
3787 .arg3_type = ARG_ANYTHING,
3788 };
3789
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3790 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3791 u64, flags)
3792 {
3793 return __bpf_skb_change_tail(skb, new_len, flags);
3794 }
3795
3796 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3797 .func = sk_skb_change_tail,
3798 .gpl_only = false,
3799 .ret_type = RET_INTEGER,
3800 .arg1_type = ARG_PTR_TO_CTX,
3801 .arg2_type = ARG_ANYTHING,
3802 .arg3_type = ARG_ANYTHING,
3803 };
3804
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3805 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3806 u64 flags)
3807 {
3808 u32 max_len = BPF_SKB_MAX_LEN;
3809 u32 new_len = skb->len + head_room;
3810 int ret;
3811
3812 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3813 new_len < skb->len))
3814 return -EINVAL;
3815
3816 ret = skb_cow(skb, head_room);
3817 if (likely(!ret)) {
3818 /* Idea for this helper is that we currently only
3819 * allow to expand on mac header. This means that
3820 * skb->protocol network header, etc, stay as is.
3821 * Compared to bpf_skb_change_tail(), we're more
3822 * flexible due to not needing to linearize or
3823 * reset GSO. Intention for this helper is to be
3824 * used by an L3 skb that needs to push mac header
3825 * for redirection into L2 device.
3826 */
3827 __skb_push(skb, head_room);
3828 memset(skb->data, 0, head_room);
3829 skb_reset_mac_header(skb);
3830 skb_reset_mac_len(skb);
3831 }
3832
3833 return ret;
3834 }
3835
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3836 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3837 u64, flags)
3838 {
3839 int ret = __bpf_skb_change_head(skb, head_room, flags);
3840
3841 bpf_compute_data_pointers(skb);
3842 return ret;
3843 }
3844
3845 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3846 .func = bpf_skb_change_head,
3847 .gpl_only = false,
3848 .ret_type = RET_INTEGER,
3849 .arg1_type = ARG_PTR_TO_CTX,
3850 .arg2_type = ARG_ANYTHING,
3851 .arg3_type = ARG_ANYTHING,
3852 };
3853
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3854 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3855 u64, flags)
3856 {
3857 return __bpf_skb_change_head(skb, head_room, flags);
3858 }
3859
3860 static const struct bpf_func_proto sk_skb_change_head_proto = {
3861 .func = sk_skb_change_head,
3862 .gpl_only = false,
3863 .ret_type = RET_INTEGER,
3864 .arg1_type = ARG_PTR_TO_CTX,
3865 .arg2_type = ARG_ANYTHING,
3866 .arg3_type = ARG_ANYTHING,
3867 };
3868
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3869 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3870 {
3871 return xdp_get_buff_len(xdp);
3872 }
3873
3874 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3875 .func = bpf_xdp_get_buff_len,
3876 .gpl_only = false,
3877 .ret_type = RET_INTEGER,
3878 .arg1_type = ARG_PTR_TO_CTX,
3879 };
3880
3881 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3882
3883 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3884 .func = bpf_xdp_get_buff_len,
3885 .gpl_only = false,
3886 .arg1_type = ARG_PTR_TO_BTF_ID,
3887 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3888 };
3889
xdp_get_metalen(const struct xdp_buff * xdp)3890 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3891 {
3892 return xdp_data_meta_unsupported(xdp) ? 0 :
3893 xdp->data - xdp->data_meta;
3894 }
3895
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3896 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3897 {
3898 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3899 unsigned long metalen = xdp_get_metalen(xdp);
3900 void *data_start = xdp_frame_end + metalen;
3901 void *data = xdp->data + offset;
3902
3903 if (unlikely(data < data_start ||
3904 data > xdp->data_end - ETH_HLEN))
3905 return -EINVAL;
3906
3907 if (metalen)
3908 memmove(xdp->data_meta + offset,
3909 xdp->data_meta, metalen);
3910 xdp->data_meta += offset;
3911 xdp->data = data;
3912
3913 return 0;
3914 }
3915
3916 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3917 .func = bpf_xdp_adjust_head,
3918 .gpl_only = false,
3919 .ret_type = RET_INTEGER,
3920 .arg1_type = ARG_PTR_TO_CTX,
3921 .arg2_type = ARG_ANYTHING,
3922 };
3923
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3924 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3925 void *buf, unsigned long len, bool flush)
3926 {
3927 unsigned long ptr_len, ptr_off = 0;
3928 skb_frag_t *next_frag, *end_frag;
3929 struct skb_shared_info *sinfo;
3930 void *src, *dst;
3931 u8 *ptr_buf;
3932
3933 if (likely(xdp->data_end - xdp->data >= off + len)) {
3934 src = flush ? buf : xdp->data + off;
3935 dst = flush ? xdp->data + off : buf;
3936 memcpy(dst, src, len);
3937 return;
3938 }
3939
3940 sinfo = xdp_get_shared_info_from_buff(xdp);
3941 end_frag = &sinfo->frags[sinfo->nr_frags];
3942 next_frag = &sinfo->frags[0];
3943
3944 ptr_len = xdp->data_end - xdp->data;
3945 ptr_buf = xdp->data;
3946
3947 while (true) {
3948 if (off < ptr_off + ptr_len) {
3949 unsigned long copy_off = off - ptr_off;
3950 unsigned long copy_len = min(len, ptr_len - copy_off);
3951
3952 src = flush ? buf : ptr_buf + copy_off;
3953 dst = flush ? ptr_buf + copy_off : buf;
3954 memcpy(dst, src, copy_len);
3955
3956 off += copy_len;
3957 len -= copy_len;
3958 buf += copy_len;
3959 }
3960
3961 if (!len || next_frag == end_frag)
3962 break;
3963
3964 ptr_off += ptr_len;
3965 ptr_buf = skb_frag_address(next_frag);
3966 ptr_len = skb_frag_size(next_frag);
3967 next_frag++;
3968 }
3969 }
3970
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)3971 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3972 {
3973 u32 size = xdp->data_end - xdp->data;
3974 struct skb_shared_info *sinfo;
3975 void *addr = xdp->data;
3976 int i;
3977
3978 if (unlikely(offset > 0xffff || len > 0xffff))
3979 return ERR_PTR(-EFAULT);
3980
3981 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3982 return ERR_PTR(-EINVAL);
3983
3984 if (likely(offset < size)) /* linear area */
3985 goto out;
3986
3987 sinfo = xdp_get_shared_info_from_buff(xdp);
3988 offset -= size;
3989 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3990 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3991
3992 if (offset < frag_size) {
3993 addr = skb_frag_address(&sinfo->frags[i]);
3994 size = frag_size;
3995 break;
3996 }
3997 offset -= frag_size;
3998 }
3999 out:
4000 return offset + len <= size ? addr + offset : NULL;
4001 }
4002
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4003 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4004 void *, buf, u32, len)
4005 {
4006 void *ptr;
4007
4008 ptr = bpf_xdp_pointer(xdp, offset, len);
4009 if (IS_ERR(ptr))
4010 return PTR_ERR(ptr);
4011
4012 if (!ptr)
4013 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4014 else
4015 memcpy(buf, ptr, len);
4016
4017 return 0;
4018 }
4019
4020 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4021 .func = bpf_xdp_load_bytes,
4022 .gpl_only = false,
4023 .ret_type = RET_INTEGER,
4024 .arg1_type = ARG_PTR_TO_CTX,
4025 .arg2_type = ARG_ANYTHING,
4026 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4027 .arg4_type = ARG_CONST_SIZE,
4028 };
4029
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4030 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4031 {
4032 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4033 }
4034
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4035 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4036 void *, buf, u32, len)
4037 {
4038 void *ptr;
4039
4040 ptr = bpf_xdp_pointer(xdp, offset, len);
4041 if (IS_ERR(ptr))
4042 return PTR_ERR(ptr);
4043
4044 if (!ptr)
4045 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4046 else
4047 memcpy(ptr, buf, len);
4048
4049 return 0;
4050 }
4051
4052 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4053 .func = bpf_xdp_store_bytes,
4054 .gpl_only = false,
4055 .ret_type = RET_INTEGER,
4056 .arg1_type = ARG_PTR_TO_CTX,
4057 .arg2_type = ARG_ANYTHING,
4058 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4059 .arg4_type = ARG_CONST_SIZE,
4060 };
4061
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4062 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4063 {
4064 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4065 }
4066
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4067 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4068 {
4069 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4070 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4071 struct xdp_rxq_info *rxq = xdp->rxq;
4072 unsigned int tailroom;
4073
4074 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4075 return -EOPNOTSUPP;
4076
4077 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4078 if (unlikely(offset > tailroom))
4079 return -EINVAL;
4080
4081 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4082 skb_frag_size_add(frag, offset);
4083 sinfo->xdp_frags_size += offset;
4084 if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4085 xsk_buff_get_tail(xdp)->data_end += offset;
4086
4087 return 0;
4088 }
4089
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,struct xdp_mem_info * mem_info,bool release)4090 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4091 struct xdp_mem_info *mem_info, bool release)
4092 {
4093 struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4094
4095 if (release) {
4096 xsk_buff_del_tail(zc_frag);
4097 __xdp_return(NULL, mem_info, false, zc_frag);
4098 } else {
4099 zc_frag->data_end -= shrink;
4100 }
4101 }
4102
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4103 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4104 int shrink)
4105 {
4106 struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4107 bool release = skb_frag_size(frag) == shrink;
4108
4109 if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4110 bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4111 goto out;
4112 }
4113
4114 if (release) {
4115 struct page *page = skb_frag_page(frag);
4116
4117 __xdp_return(page_address(page), mem_info, false, NULL);
4118 }
4119
4120 out:
4121 return release;
4122 }
4123
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4124 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4125 {
4126 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4127 int i, n_frags_free = 0, len_free = 0;
4128
4129 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4130 return -EINVAL;
4131
4132 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4133 skb_frag_t *frag = &sinfo->frags[i];
4134 int shrink = min_t(int, offset, skb_frag_size(frag));
4135
4136 len_free += shrink;
4137 offset -= shrink;
4138 if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4139 n_frags_free++;
4140 } else {
4141 skb_frag_size_sub(frag, shrink);
4142 break;
4143 }
4144 }
4145 sinfo->nr_frags -= n_frags_free;
4146 sinfo->xdp_frags_size -= len_free;
4147
4148 if (unlikely(!sinfo->nr_frags)) {
4149 xdp_buff_clear_frags_flag(xdp);
4150 xdp->data_end -= offset;
4151 }
4152
4153 return 0;
4154 }
4155
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4156 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4157 {
4158 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4159 void *data_end = xdp->data_end + offset;
4160
4161 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4162 if (offset < 0)
4163 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4164
4165 return bpf_xdp_frags_increase_tail(xdp, offset);
4166 }
4167
4168 /* Notice that xdp_data_hard_end have reserved some tailroom */
4169 if (unlikely(data_end > data_hard_end))
4170 return -EINVAL;
4171
4172 if (unlikely(data_end < xdp->data + ETH_HLEN))
4173 return -EINVAL;
4174
4175 /* Clear memory area on grow, can contain uninit kernel memory */
4176 if (offset > 0)
4177 memset(xdp->data_end, 0, offset);
4178
4179 xdp->data_end = data_end;
4180
4181 return 0;
4182 }
4183
4184 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4185 .func = bpf_xdp_adjust_tail,
4186 .gpl_only = false,
4187 .ret_type = RET_INTEGER,
4188 .arg1_type = ARG_PTR_TO_CTX,
4189 .arg2_type = ARG_ANYTHING,
4190 };
4191
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4192 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4193 {
4194 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4195 void *meta = xdp->data_meta + offset;
4196 unsigned long metalen = xdp->data - meta;
4197
4198 if (xdp_data_meta_unsupported(xdp))
4199 return -ENOTSUPP;
4200 if (unlikely(meta < xdp_frame_end ||
4201 meta > xdp->data))
4202 return -EINVAL;
4203 if (unlikely(xdp_metalen_invalid(metalen)))
4204 return -EACCES;
4205
4206 xdp->data_meta = meta;
4207
4208 return 0;
4209 }
4210
4211 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4212 .func = bpf_xdp_adjust_meta,
4213 .gpl_only = false,
4214 .ret_type = RET_INTEGER,
4215 .arg1_type = ARG_PTR_TO_CTX,
4216 .arg2_type = ARG_ANYTHING,
4217 };
4218
4219 /**
4220 * DOC: xdp redirect
4221 *
4222 * XDP_REDIRECT works by a three-step process, implemented in the functions
4223 * below:
4224 *
4225 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4226 * of the redirect and store it (along with some other metadata) in a per-CPU
4227 * struct bpf_redirect_info.
4228 *
4229 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4230 * call xdp_do_redirect() which will use the information in struct
4231 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4232 * bulk queue structure.
4233 *
4234 * 3. Before exiting its NAPI poll loop, the driver will call
4235 * xdp_do_flush(), which will flush all the different bulk queues,
4236 * thus completing the redirect. Note that xdp_do_flush() must be
4237 * called before napi_complete_done() in the driver, as the
4238 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4239 * through to the xdp_do_flush() call for RCU protection of all
4240 * in-kernel data structures.
4241 */
4242 /*
4243 * Pointers to the map entries will be kept around for this whole sequence of
4244 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4245 * the core code; instead, the RCU protection relies on everything happening
4246 * inside a single NAPI poll sequence, which means it's between a pair of calls
4247 * to local_bh_disable()/local_bh_enable().
4248 *
4249 * The map entries are marked as __rcu and the map code makes sure to
4250 * dereference those pointers with rcu_dereference_check() in a way that works
4251 * for both sections that to hold an rcu_read_lock() and sections that are
4252 * called from NAPI without a separate rcu_read_lock(). The code below does not
4253 * use RCU annotations, but relies on those in the map code.
4254 */
xdp_do_flush(void)4255 void xdp_do_flush(void)
4256 {
4257 __dev_flush();
4258 __cpu_map_flush();
4259 __xsk_map_flush();
4260 }
4261 EXPORT_SYMBOL_GPL(xdp_do_flush);
4262
bpf_clear_redirect_map(struct bpf_map * map)4263 void bpf_clear_redirect_map(struct bpf_map *map)
4264 {
4265 struct bpf_redirect_info *ri;
4266 int cpu;
4267
4268 for_each_possible_cpu(cpu) {
4269 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4270 /* Avoid polluting remote cacheline due to writes if
4271 * not needed. Once we pass this test, we need the
4272 * cmpxchg() to make sure it hasn't been changed in
4273 * the meantime by remote CPU.
4274 */
4275 if (unlikely(READ_ONCE(ri->map) == map))
4276 cmpxchg(&ri->map, map, NULL);
4277 }
4278 }
4279
4280 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4281 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4282
xdp_master_redirect(struct xdp_buff * xdp)4283 u32 xdp_master_redirect(struct xdp_buff *xdp)
4284 {
4285 struct net_device *master, *slave;
4286 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4287
4288 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4289 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4290 if (slave && slave != xdp->rxq->dev) {
4291 /* The target device is different from the receiving device, so
4292 * redirect it to the new device.
4293 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4294 * drivers to unmap the packet from their rx ring.
4295 */
4296 ri->tgt_index = slave->ifindex;
4297 ri->map_id = INT_MAX;
4298 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4299 return XDP_REDIRECT;
4300 }
4301 return XDP_TX;
4302 }
4303 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4304
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4305 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4306 struct net_device *dev,
4307 struct xdp_buff *xdp,
4308 struct bpf_prog *xdp_prog)
4309 {
4310 enum bpf_map_type map_type = ri->map_type;
4311 void *fwd = ri->tgt_value;
4312 u32 map_id = ri->map_id;
4313 int err;
4314
4315 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4316 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4317
4318 err = __xsk_map_redirect(fwd, xdp);
4319 if (unlikely(err))
4320 goto err;
4321
4322 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4323 return 0;
4324 err:
4325 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4326 return err;
4327 }
4328
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4329 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4330 struct net_device *dev,
4331 struct xdp_frame *xdpf,
4332 struct bpf_prog *xdp_prog)
4333 {
4334 enum bpf_map_type map_type = ri->map_type;
4335 void *fwd = ri->tgt_value;
4336 u32 map_id = ri->map_id;
4337 struct bpf_map *map;
4338 int err;
4339
4340 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4341 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4342
4343 if (unlikely(!xdpf)) {
4344 err = -EOVERFLOW;
4345 goto err;
4346 }
4347
4348 switch (map_type) {
4349 case BPF_MAP_TYPE_DEVMAP:
4350 fallthrough;
4351 case BPF_MAP_TYPE_DEVMAP_HASH:
4352 map = READ_ONCE(ri->map);
4353 if (unlikely(map)) {
4354 WRITE_ONCE(ri->map, NULL);
4355 err = dev_map_enqueue_multi(xdpf, dev, map,
4356 ri->flags & BPF_F_EXCLUDE_INGRESS);
4357 } else {
4358 err = dev_map_enqueue(fwd, xdpf, dev);
4359 }
4360 break;
4361 case BPF_MAP_TYPE_CPUMAP:
4362 err = cpu_map_enqueue(fwd, xdpf, dev);
4363 break;
4364 case BPF_MAP_TYPE_UNSPEC:
4365 if (map_id == INT_MAX) {
4366 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4367 if (unlikely(!fwd)) {
4368 err = -EINVAL;
4369 break;
4370 }
4371 err = dev_xdp_enqueue(fwd, xdpf, dev);
4372 break;
4373 }
4374 fallthrough;
4375 default:
4376 err = -EBADRQC;
4377 }
4378
4379 if (unlikely(err))
4380 goto err;
4381
4382 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4383 return 0;
4384 err:
4385 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4386 return err;
4387 }
4388
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4389 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4390 struct bpf_prog *xdp_prog)
4391 {
4392 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4393 enum bpf_map_type map_type = ri->map_type;
4394
4395 if (map_type == BPF_MAP_TYPE_XSKMAP)
4396 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4397
4398 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4399 xdp_prog);
4400 }
4401 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4402
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4403 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4404 struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4405 {
4406 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4407 enum bpf_map_type map_type = ri->map_type;
4408
4409 if (map_type == BPF_MAP_TYPE_XSKMAP)
4410 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4411
4412 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4413 }
4414 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4415
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id)4416 static int xdp_do_generic_redirect_map(struct net_device *dev,
4417 struct sk_buff *skb,
4418 struct xdp_buff *xdp,
4419 struct bpf_prog *xdp_prog,
4420 void *fwd,
4421 enum bpf_map_type map_type, u32 map_id)
4422 {
4423 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4424 struct bpf_map *map;
4425 int err;
4426
4427 switch (map_type) {
4428 case BPF_MAP_TYPE_DEVMAP:
4429 fallthrough;
4430 case BPF_MAP_TYPE_DEVMAP_HASH:
4431 map = READ_ONCE(ri->map);
4432 if (unlikely(map)) {
4433 WRITE_ONCE(ri->map, NULL);
4434 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4435 ri->flags & BPF_F_EXCLUDE_INGRESS);
4436 } else {
4437 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4438 }
4439 if (unlikely(err))
4440 goto err;
4441 break;
4442 case BPF_MAP_TYPE_XSKMAP:
4443 err = xsk_generic_rcv(fwd, xdp);
4444 if (err)
4445 goto err;
4446 consume_skb(skb);
4447 break;
4448 case BPF_MAP_TYPE_CPUMAP:
4449 err = cpu_map_generic_redirect(fwd, skb);
4450 if (unlikely(err))
4451 goto err;
4452 break;
4453 default:
4454 err = -EBADRQC;
4455 goto err;
4456 }
4457
4458 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4459 return 0;
4460 err:
4461 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4462 return err;
4463 }
4464
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4465 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4466 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4467 {
4468 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4469 enum bpf_map_type map_type = ri->map_type;
4470 void *fwd = ri->tgt_value;
4471 u32 map_id = ri->map_id;
4472 int err;
4473
4474 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4475 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4476
4477 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4478 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4479 if (unlikely(!fwd)) {
4480 err = -EINVAL;
4481 goto err;
4482 }
4483
4484 err = xdp_ok_fwd_dev(fwd, skb->len);
4485 if (unlikely(err))
4486 goto err;
4487
4488 skb->dev = fwd;
4489 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4490 generic_xdp_tx(skb, xdp_prog);
4491 return 0;
4492 }
4493
4494 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4495 err:
4496 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4497 return err;
4498 }
4499
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4500 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4501 {
4502 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4503
4504 if (unlikely(flags))
4505 return XDP_ABORTED;
4506
4507 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4508 * by map_idr) is used for ifindex based XDP redirect.
4509 */
4510 ri->tgt_index = ifindex;
4511 ri->map_id = INT_MAX;
4512 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4513
4514 return XDP_REDIRECT;
4515 }
4516
4517 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4518 .func = bpf_xdp_redirect,
4519 .gpl_only = false,
4520 .ret_type = RET_INTEGER,
4521 .arg1_type = ARG_ANYTHING,
4522 .arg2_type = ARG_ANYTHING,
4523 };
4524
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4525 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4526 u64, flags)
4527 {
4528 return map->ops->map_redirect(map, key, flags);
4529 }
4530
4531 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4532 .func = bpf_xdp_redirect_map,
4533 .gpl_only = false,
4534 .ret_type = RET_INTEGER,
4535 .arg1_type = ARG_CONST_MAP_PTR,
4536 .arg2_type = ARG_ANYTHING,
4537 .arg3_type = ARG_ANYTHING,
4538 };
4539
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4540 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4541 unsigned long off, unsigned long len)
4542 {
4543 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4544
4545 if (unlikely(!ptr))
4546 return len;
4547 if (ptr != dst_buff)
4548 memcpy(dst_buff, ptr, len);
4549
4550 return 0;
4551 }
4552
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4553 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4554 u64, flags, void *, meta, u64, meta_size)
4555 {
4556 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4557
4558 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4559 return -EINVAL;
4560 if (unlikely(!skb || skb_size > skb->len))
4561 return -EFAULT;
4562
4563 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4564 bpf_skb_copy);
4565 }
4566
4567 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4568 .func = bpf_skb_event_output,
4569 .gpl_only = true,
4570 .ret_type = RET_INTEGER,
4571 .arg1_type = ARG_PTR_TO_CTX,
4572 .arg2_type = ARG_CONST_MAP_PTR,
4573 .arg3_type = ARG_ANYTHING,
4574 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4575 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4576 };
4577
4578 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4579
4580 const struct bpf_func_proto bpf_skb_output_proto = {
4581 .func = bpf_skb_event_output,
4582 .gpl_only = true,
4583 .ret_type = RET_INTEGER,
4584 .arg1_type = ARG_PTR_TO_BTF_ID,
4585 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4586 .arg2_type = ARG_CONST_MAP_PTR,
4587 .arg3_type = ARG_ANYTHING,
4588 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4589 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4590 };
4591
bpf_tunnel_key_af(u64 flags)4592 static unsigned short bpf_tunnel_key_af(u64 flags)
4593 {
4594 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4595 }
4596
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4597 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4598 u32, size, u64, flags)
4599 {
4600 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4601 u8 compat[sizeof(struct bpf_tunnel_key)];
4602 void *to_orig = to;
4603 int err;
4604
4605 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4606 BPF_F_TUNINFO_FLAGS)))) {
4607 err = -EINVAL;
4608 goto err_clear;
4609 }
4610 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4611 err = -EPROTO;
4612 goto err_clear;
4613 }
4614 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4615 err = -EINVAL;
4616 switch (size) {
4617 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4618 case offsetof(struct bpf_tunnel_key, tunnel_label):
4619 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4620 goto set_compat;
4621 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4622 /* Fixup deprecated structure layouts here, so we have
4623 * a common path later on.
4624 */
4625 if (ip_tunnel_info_af(info) != AF_INET)
4626 goto err_clear;
4627 set_compat:
4628 to = (struct bpf_tunnel_key *)compat;
4629 break;
4630 default:
4631 goto err_clear;
4632 }
4633 }
4634
4635 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4636 to->tunnel_tos = info->key.tos;
4637 to->tunnel_ttl = info->key.ttl;
4638 if (flags & BPF_F_TUNINFO_FLAGS)
4639 to->tunnel_flags = info->key.tun_flags;
4640 else
4641 to->tunnel_ext = 0;
4642
4643 if (flags & BPF_F_TUNINFO_IPV6) {
4644 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4645 sizeof(to->remote_ipv6));
4646 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4647 sizeof(to->local_ipv6));
4648 to->tunnel_label = be32_to_cpu(info->key.label);
4649 } else {
4650 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4651 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4652 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4653 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4654 to->tunnel_label = 0;
4655 }
4656
4657 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4658 memcpy(to_orig, to, size);
4659
4660 return 0;
4661 err_clear:
4662 memset(to_orig, 0, size);
4663 return err;
4664 }
4665
4666 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4667 .func = bpf_skb_get_tunnel_key,
4668 .gpl_only = false,
4669 .ret_type = RET_INTEGER,
4670 .arg1_type = ARG_PTR_TO_CTX,
4671 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4672 .arg3_type = ARG_CONST_SIZE,
4673 .arg4_type = ARG_ANYTHING,
4674 };
4675
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4676 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4677 {
4678 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4679 int err;
4680
4681 if (unlikely(!info ||
4682 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4683 err = -ENOENT;
4684 goto err_clear;
4685 }
4686 if (unlikely(size < info->options_len)) {
4687 err = -ENOMEM;
4688 goto err_clear;
4689 }
4690
4691 ip_tunnel_info_opts_get(to, info);
4692 if (size > info->options_len)
4693 memset(to + info->options_len, 0, size - info->options_len);
4694
4695 return info->options_len;
4696 err_clear:
4697 memset(to, 0, size);
4698 return err;
4699 }
4700
4701 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4702 .func = bpf_skb_get_tunnel_opt,
4703 .gpl_only = false,
4704 .ret_type = RET_INTEGER,
4705 .arg1_type = ARG_PTR_TO_CTX,
4706 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4707 .arg3_type = ARG_CONST_SIZE,
4708 };
4709
4710 static struct metadata_dst __percpu *md_dst;
4711
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4712 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4713 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4714 {
4715 struct metadata_dst *md = this_cpu_ptr(md_dst);
4716 u8 compat[sizeof(struct bpf_tunnel_key)];
4717 struct ip_tunnel_info *info;
4718
4719 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4720 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4721 BPF_F_NO_TUNNEL_KEY)))
4722 return -EINVAL;
4723 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4724 switch (size) {
4725 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4726 case offsetof(struct bpf_tunnel_key, tunnel_label):
4727 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4728 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4729 /* Fixup deprecated structure layouts here, so we have
4730 * a common path later on.
4731 */
4732 memcpy(compat, from, size);
4733 memset(compat + size, 0, sizeof(compat) - size);
4734 from = (const struct bpf_tunnel_key *) compat;
4735 break;
4736 default:
4737 return -EINVAL;
4738 }
4739 }
4740 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4741 from->tunnel_ext))
4742 return -EINVAL;
4743
4744 skb_dst_drop(skb);
4745 dst_hold((struct dst_entry *) md);
4746 skb_dst_set(skb, (struct dst_entry *) md);
4747
4748 info = &md->u.tun_info;
4749 memset(info, 0, sizeof(*info));
4750 info->mode = IP_TUNNEL_INFO_TX;
4751
4752 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4753 if (flags & BPF_F_DONT_FRAGMENT)
4754 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4755 if (flags & BPF_F_ZERO_CSUM_TX)
4756 info->key.tun_flags &= ~TUNNEL_CSUM;
4757 if (flags & BPF_F_SEQ_NUMBER)
4758 info->key.tun_flags |= TUNNEL_SEQ;
4759 if (flags & BPF_F_NO_TUNNEL_KEY)
4760 info->key.tun_flags &= ~TUNNEL_KEY;
4761
4762 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4763 info->key.tos = from->tunnel_tos;
4764 info->key.ttl = from->tunnel_ttl;
4765
4766 if (flags & BPF_F_TUNINFO_IPV6) {
4767 info->mode |= IP_TUNNEL_INFO_IPV6;
4768 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4769 sizeof(from->remote_ipv6));
4770 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4771 sizeof(from->local_ipv6));
4772 info->key.label = cpu_to_be32(from->tunnel_label) &
4773 IPV6_FLOWLABEL_MASK;
4774 } else {
4775 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4776 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4777 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4778 }
4779
4780 return 0;
4781 }
4782
4783 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4784 .func = bpf_skb_set_tunnel_key,
4785 .gpl_only = false,
4786 .ret_type = RET_INTEGER,
4787 .arg1_type = ARG_PTR_TO_CTX,
4788 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4789 .arg3_type = ARG_CONST_SIZE,
4790 .arg4_type = ARG_ANYTHING,
4791 };
4792
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4793 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4794 const u8 *, from, u32, size)
4795 {
4796 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4797 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4798
4799 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4800 return -EINVAL;
4801 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4802 return -ENOMEM;
4803
4804 ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4805
4806 return 0;
4807 }
4808
4809 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4810 .func = bpf_skb_set_tunnel_opt,
4811 .gpl_only = false,
4812 .ret_type = RET_INTEGER,
4813 .arg1_type = ARG_PTR_TO_CTX,
4814 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4815 .arg3_type = ARG_CONST_SIZE,
4816 };
4817
4818 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4819 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4820 {
4821 if (!md_dst) {
4822 struct metadata_dst __percpu *tmp;
4823
4824 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4825 METADATA_IP_TUNNEL,
4826 GFP_KERNEL);
4827 if (!tmp)
4828 return NULL;
4829 if (cmpxchg(&md_dst, NULL, tmp))
4830 metadata_dst_free_percpu(tmp);
4831 }
4832
4833 switch (which) {
4834 case BPF_FUNC_skb_set_tunnel_key:
4835 return &bpf_skb_set_tunnel_key_proto;
4836 case BPF_FUNC_skb_set_tunnel_opt:
4837 return &bpf_skb_set_tunnel_opt_proto;
4838 default:
4839 return NULL;
4840 }
4841 }
4842
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4843 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4844 u32, idx)
4845 {
4846 struct bpf_array *array = container_of(map, struct bpf_array, map);
4847 struct cgroup *cgrp;
4848 struct sock *sk;
4849
4850 sk = skb_to_full_sk(skb);
4851 if (!sk || !sk_fullsock(sk))
4852 return -ENOENT;
4853 if (unlikely(idx >= array->map.max_entries))
4854 return -E2BIG;
4855
4856 cgrp = READ_ONCE(array->ptrs[idx]);
4857 if (unlikely(!cgrp))
4858 return -EAGAIN;
4859
4860 return sk_under_cgroup_hierarchy(sk, cgrp);
4861 }
4862
4863 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4864 .func = bpf_skb_under_cgroup,
4865 .gpl_only = false,
4866 .ret_type = RET_INTEGER,
4867 .arg1_type = ARG_PTR_TO_CTX,
4868 .arg2_type = ARG_CONST_MAP_PTR,
4869 .arg3_type = ARG_ANYTHING,
4870 };
4871
4872 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4873 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4874 {
4875 struct cgroup *cgrp;
4876
4877 sk = sk_to_full_sk(sk);
4878 if (!sk || !sk_fullsock(sk))
4879 return 0;
4880
4881 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4882 return cgroup_id(cgrp);
4883 }
4884
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4885 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4886 {
4887 return __bpf_sk_cgroup_id(skb->sk);
4888 }
4889
4890 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4891 .func = bpf_skb_cgroup_id,
4892 .gpl_only = false,
4893 .ret_type = RET_INTEGER,
4894 .arg1_type = ARG_PTR_TO_CTX,
4895 };
4896
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4897 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4898 int ancestor_level)
4899 {
4900 struct cgroup *ancestor;
4901 struct cgroup *cgrp;
4902
4903 sk = sk_to_full_sk(sk);
4904 if (!sk || !sk_fullsock(sk))
4905 return 0;
4906
4907 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4908 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4909 if (!ancestor)
4910 return 0;
4911
4912 return cgroup_id(ancestor);
4913 }
4914
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4915 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4916 ancestor_level)
4917 {
4918 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4919 }
4920
4921 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4922 .func = bpf_skb_ancestor_cgroup_id,
4923 .gpl_only = false,
4924 .ret_type = RET_INTEGER,
4925 .arg1_type = ARG_PTR_TO_CTX,
4926 .arg2_type = ARG_ANYTHING,
4927 };
4928
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4929 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4930 {
4931 return __bpf_sk_cgroup_id(sk);
4932 }
4933
4934 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4935 .func = bpf_sk_cgroup_id,
4936 .gpl_only = false,
4937 .ret_type = RET_INTEGER,
4938 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4939 };
4940
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4941 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4942 {
4943 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4944 }
4945
4946 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4947 .func = bpf_sk_ancestor_cgroup_id,
4948 .gpl_only = false,
4949 .ret_type = RET_INTEGER,
4950 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4951 .arg2_type = ARG_ANYTHING,
4952 };
4953 #endif
4954
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)4955 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4956 unsigned long off, unsigned long len)
4957 {
4958 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4959
4960 bpf_xdp_copy_buf(xdp, off, dst, len, false);
4961 return 0;
4962 }
4963
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4964 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4965 u64, flags, void *, meta, u64, meta_size)
4966 {
4967 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4968
4969 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4970 return -EINVAL;
4971
4972 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4973 return -EFAULT;
4974
4975 return bpf_event_output(map, flags, meta, meta_size, xdp,
4976 xdp_size, bpf_xdp_copy);
4977 }
4978
4979 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4980 .func = bpf_xdp_event_output,
4981 .gpl_only = true,
4982 .ret_type = RET_INTEGER,
4983 .arg1_type = ARG_PTR_TO_CTX,
4984 .arg2_type = ARG_CONST_MAP_PTR,
4985 .arg3_type = ARG_ANYTHING,
4986 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4987 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4988 };
4989
4990 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4991
4992 const struct bpf_func_proto bpf_xdp_output_proto = {
4993 .func = bpf_xdp_event_output,
4994 .gpl_only = true,
4995 .ret_type = RET_INTEGER,
4996 .arg1_type = ARG_PTR_TO_BTF_ID,
4997 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
4998 .arg2_type = ARG_CONST_MAP_PTR,
4999 .arg3_type = ARG_ANYTHING,
5000 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5001 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
5002 };
5003
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5004 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5005 {
5006 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5007 }
5008
5009 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5010 .func = bpf_get_socket_cookie,
5011 .gpl_only = false,
5012 .ret_type = RET_INTEGER,
5013 .arg1_type = ARG_PTR_TO_CTX,
5014 };
5015
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5016 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5017 {
5018 return __sock_gen_cookie(ctx->sk);
5019 }
5020
5021 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5022 .func = bpf_get_socket_cookie_sock_addr,
5023 .gpl_only = false,
5024 .ret_type = RET_INTEGER,
5025 .arg1_type = ARG_PTR_TO_CTX,
5026 };
5027
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5028 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5029 {
5030 return __sock_gen_cookie(ctx);
5031 }
5032
5033 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5034 .func = bpf_get_socket_cookie_sock,
5035 .gpl_only = false,
5036 .ret_type = RET_INTEGER,
5037 .arg1_type = ARG_PTR_TO_CTX,
5038 };
5039
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5040 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5041 {
5042 return sk ? sock_gen_cookie(sk) : 0;
5043 }
5044
5045 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5046 .func = bpf_get_socket_ptr_cookie,
5047 .gpl_only = false,
5048 .ret_type = RET_INTEGER,
5049 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5050 };
5051
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5052 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5053 {
5054 return __sock_gen_cookie(ctx->sk);
5055 }
5056
5057 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5058 .func = bpf_get_socket_cookie_sock_ops,
5059 .gpl_only = false,
5060 .ret_type = RET_INTEGER,
5061 .arg1_type = ARG_PTR_TO_CTX,
5062 };
5063
__bpf_get_netns_cookie(struct sock * sk)5064 static u64 __bpf_get_netns_cookie(struct sock *sk)
5065 {
5066 const struct net *net = sk ? sock_net(sk) : &init_net;
5067
5068 return net->net_cookie;
5069 }
5070
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5071 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5072 {
5073 return __bpf_get_netns_cookie(ctx);
5074 }
5075
5076 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5077 .func = bpf_get_netns_cookie_sock,
5078 .gpl_only = false,
5079 .ret_type = RET_INTEGER,
5080 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5081 };
5082
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5083 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5084 {
5085 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5086 }
5087
5088 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5089 .func = bpf_get_netns_cookie_sock_addr,
5090 .gpl_only = false,
5091 .ret_type = RET_INTEGER,
5092 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5093 };
5094
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5095 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5096 {
5097 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5098 }
5099
5100 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5101 .func = bpf_get_netns_cookie_sock_ops,
5102 .gpl_only = false,
5103 .ret_type = RET_INTEGER,
5104 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5105 };
5106
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5107 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5108 {
5109 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5110 }
5111
5112 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5113 .func = bpf_get_netns_cookie_sk_msg,
5114 .gpl_only = false,
5115 .ret_type = RET_INTEGER,
5116 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5117 };
5118
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5119 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5120 {
5121 struct sock *sk = sk_to_full_sk(skb->sk);
5122 kuid_t kuid;
5123
5124 if (!sk || !sk_fullsock(sk))
5125 return overflowuid;
5126 kuid = sock_net_uid(sock_net(sk), sk);
5127 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5128 }
5129
5130 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5131 .func = bpf_get_socket_uid,
5132 .gpl_only = false,
5133 .ret_type = RET_INTEGER,
5134 .arg1_type = ARG_PTR_TO_CTX,
5135 };
5136
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5137 static int sol_socket_sockopt(struct sock *sk, int optname,
5138 char *optval, int *optlen,
5139 bool getopt)
5140 {
5141 switch (optname) {
5142 case SO_REUSEADDR:
5143 case SO_SNDBUF:
5144 case SO_RCVBUF:
5145 case SO_KEEPALIVE:
5146 case SO_PRIORITY:
5147 case SO_REUSEPORT:
5148 case SO_RCVLOWAT:
5149 case SO_MARK:
5150 case SO_MAX_PACING_RATE:
5151 case SO_BINDTOIFINDEX:
5152 case SO_TXREHASH:
5153 if (*optlen != sizeof(int))
5154 return -EINVAL;
5155 break;
5156 case SO_BINDTODEVICE:
5157 break;
5158 default:
5159 return -EINVAL;
5160 }
5161
5162 if (getopt) {
5163 if (optname == SO_BINDTODEVICE)
5164 return -EINVAL;
5165 return sk_getsockopt(sk, SOL_SOCKET, optname,
5166 KERNEL_SOCKPTR(optval),
5167 KERNEL_SOCKPTR(optlen));
5168 }
5169
5170 return sk_setsockopt(sk, SOL_SOCKET, optname,
5171 KERNEL_SOCKPTR(optval), *optlen);
5172 }
5173
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5174 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5175 char *optval, int optlen)
5176 {
5177 struct tcp_sock *tp = tcp_sk(sk);
5178 unsigned long timeout;
5179 int val;
5180
5181 if (optlen != sizeof(int))
5182 return -EINVAL;
5183
5184 val = *(int *)optval;
5185
5186 /* Only some options are supported */
5187 switch (optname) {
5188 case TCP_BPF_IW:
5189 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5190 return -EINVAL;
5191 tcp_snd_cwnd_set(tp, val);
5192 break;
5193 case TCP_BPF_SNDCWND_CLAMP:
5194 if (val <= 0)
5195 return -EINVAL;
5196 tp->snd_cwnd_clamp = val;
5197 tp->snd_ssthresh = val;
5198 break;
5199 case TCP_BPF_DELACK_MAX:
5200 timeout = usecs_to_jiffies(val);
5201 if (timeout > TCP_DELACK_MAX ||
5202 timeout < TCP_TIMEOUT_MIN)
5203 return -EINVAL;
5204 inet_csk(sk)->icsk_delack_max = timeout;
5205 break;
5206 case TCP_BPF_RTO_MIN:
5207 timeout = usecs_to_jiffies(val);
5208 if (timeout > TCP_RTO_MIN ||
5209 timeout < TCP_TIMEOUT_MIN)
5210 return -EINVAL;
5211 inet_csk(sk)->icsk_rto_min = timeout;
5212 break;
5213 default:
5214 return -EINVAL;
5215 }
5216
5217 return 0;
5218 }
5219
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5220 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5221 int *optlen, bool getopt)
5222 {
5223 struct tcp_sock *tp;
5224 int ret;
5225
5226 if (*optlen < 2)
5227 return -EINVAL;
5228
5229 if (getopt) {
5230 if (!inet_csk(sk)->icsk_ca_ops)
5231 return -EINVAL;
5232 /* BPF expects NULL-terminated tcp-cc string */
5233 optval[--(*optlen)] = '\0';
5234 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5235 KERNEL_SOCKPTR(optval),
5236 KERNEL_SOCKPTR(optlen));
5237 }
5238
5239 /* "cdg" is the only cc that alloc a ptr
5240 * in inet_csk_ca area. The bpf-tcp-cc may
5241 * overwrite this ptr after switching to cdg.
5242 */
5243 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5244 return -ENOTSUPP;
5245
5246 /* It stops this looping
5247 *
5248 * .init => bpf_setsockopt(tcp_cc) => .init =>
5249 * bpf_setsockopt(tcp_cc)" => .init => ....
5250 *
5251 * The second bpf_setsockopt(tcp_cc) is not allowed
5252 * in order to break the loop when both .init
5253 * are the same bpf prog.
5254 *
5255 * This applies even the second bpf_setsockopt(tcp_cc)
5256 * does not cause a loop. This limits only the first
5257 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5258 * pick a fallback cc (eg. peer does not support ECN)
5259 * and the second '.init' cannot fallback to
5260 * another.
5261 */
5262 tp = tcp_sk(sk);
5263 if (tp->bpf_chg_cc_inprogress)
5264 return -EBUSY;
5265
5266 tp->bpf_chg_cc_inprogress = 1;
5267 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5268 KERNEL_SOCKPTR(optval), *optlen);
5269 tp->bpf_chg_cc_inprogress = 0;
5270 return ret;
5271 }
5272
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5273 static int sol_tcp_sockopt(struct sock *sk, int optname,
5274 char *optval, int *optlen,
5275 bool getopt)
5276 {
5277 if (sk->sk_protocol != IPPROTO_TCP)
5278 return -EINVAL;
5279
5280 switch (optname) {
5281 case TCP_NODELAY:
5282 case TCP_MAXSEG:
5283 case TCP_KEEPIDLE:
5284 case TCP_KEEPINTVL:
5285 case TCP_KEEPCNT:
5286 case TCP_SYNCNT:
5287 case TCP_WINDOW_CLAMP:
5288 case TCP_THIN_LINEAR_TIMEOUTS:
5289 case TCP_USER_TIMEOUT:
5290 case TCP_NOTSENT_LOWAT:
5291 case TCP_SAVE_SYN:
5292 if (*optlen != sizeof(int))
5293 return -EINVAL;
5294 break;
5295 case TCP_CONGESTION:
5296 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5297 case TCP_SAVED_SYN:
5298 if (*optlen < 1)
5299 return -EINVAL;
5300 break;
5301 default:
5302 if (getopt)
5303 return -EINVAL;
5304 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5305 }
5306
5307 if (getopt) {
5308 if (optname == TCP_SAVED_SYN) {
5309 struct tcp_sock *tp = tcp_sk(sk);
5310
5311 if (!tp->saved_syn ||
5312 *optlen > tcp_saved_syn_len(tp->saved_syn))
5313 return -EINVAL;
5314 memcpy(optval, tp->saved_syn->data, *optlen);
5315 /* It cannot free tp->saved_syn here because it
5316 * does not know if the user space still needs it.
5317 */
5318 return 0;
5319 }
5320
5321 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5322 KERNEL_SOCKPTR(optval),
5323 KERNEL_SOCKPTR(optlen));
5324 }
5325
5326 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5327 KERNEL_SOCKPTR(optval), *optlen);
5328 }
5329
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5330 static int sol_ip_sockopt(struct sock *sk, int optname,
5331 char *optval, int *optlen,
5332 bool getopt)
5333 {
5334 if (sk->sk_family != AF_INET)
5335 return -EINVAL;
5336
5337 switch (optname) {
5338 case IP_TOS:
5339 if (*optlen != sizeof(int))
5340 return -EINVAL;
5341 break;
5342 default:
5343 return -EINVAL;
5344 }
5345
5346 if (getopt)
5347 return do_ip_getsockopt(sk, SOL_IP, optname,
5348 KERNEL_SOCKPTR(optval),
5349 KERNEL_SOCKPTR(optlen));
5350
5351 return do_ip_setsockopt(sk, SOL_IP, optname,
5352 KERNEL_SOCKPTR(optval), *optlen);
5353 }
5354
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5355 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5356 char *optval, int *optlen,
5357 bool getopt)
5358 {
5359 if (sk->sk_family != AF_INET6)
5360 return -EINVAL;
5361
5362 switch (optname) {
5363 case IPV6_TCLASS:
5364 case IPV6_AUTOFLOWLABEL:
5365 if (*optlen != sizeof(int))
5366 return -EINVAL;
5367 break;
5368 default:
5369 return -EINVAL;
5370 }
5371
5372 if (getopt)
5373 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5374 KERNEL_SOCKPTR(optval),
5375 KERNEL_SOCKPTR(optlen));
5376
5377 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5378 KERNEL_SOCKPTR(optval), *optlen);
5379 }
5380
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5381 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5382 char *optval, int optlen)
5383 {
5384 if (!sk_fullsock(sk))
5385 return -EINVAL;
5386
5387 if (level == SOL_SOCKET)
5388 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5389 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5390 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5391 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5392 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5393 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5394 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5395
5396 return -EINVAL;
5397 }
5398
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5399 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5400 char *optval, int optlen)
5401 {
5402 if (sk_fullsock(sk))
5403 sock_owned_by_me(sk);
5404 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5405 }
5406
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5407 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5408 char *optval, int optlen)
5409 {
5410 int err, saved_optlen = optlen;
5411
5412 if (!sk_fullsock(sk)) {
5413 err = -EINVAL;
5414 goto done;
5415 }
5416
5417 if (level == SOL_SOCKET)
5418 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5419 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5420 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5421 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5422 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5423 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5424 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5425 else
5426 err = -EINVAL;
5427
5428 done:
5429 if (err)
5430 optlen = 0;
5431 if (optlen < saved_optlen)
5432 memset(optval + optlen, 0, saved_optlen - optlen);
5433 return err;
5434 }
5435
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5436 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5437 char *optval, int optlen)
5438 {
5439 if (sk_fullsock(sk))
5440 sock_owned_by_me(sk);
5441 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5442 }
5443
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5444 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5445 int, optname, char *, optval, int, optlen)
5446 {
5447 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5448 }
5449
5450 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5451 .func = bpf_sk_setsockopt,
5452 .gpl_only = false,
5453 .ret_type = RET_INTEGER,
5454 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5455 .arg2_type = ARG_ANYTHING,
5456 .arg3_type = ARG_ANYTHING,
5457 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5458 .arg5_type = ARG_CONST_SIZE,
5459 };
5460
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5461 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5462 int, optname, char *, optval, int, optlen)
5463 {
5464 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5465 }
5466
5467 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5468 .func = bpf_sk_getsockopt,
5469 .gpl_only = false,
5470 .ret_type = RET_INTEGER,
5471 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5472 .arg2_type = ARG_ANYTHING,
5473 .arg3_type = ARG_ANYTHING,
5474 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5475 .arg5_type = ARG_CONST_SIZE,
5476 };
5477
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5478 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5479 int, optname, char *, optval, int, optlen)
5480 {
5481 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5482 }
5483
5484 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5485 .func = bpf_unlocked_sk_setsockopt,
5486 .gpl_only = false,
5487 .ret_type = RET_INTEGER,
5488 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5489 .arg2_type = ARG_ANYTHING,
5490 .arg3_type = ARG_ANYTHING,
5491 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5492 .arg5_type = ARG_CONST_SIZE,
5493 };
5494
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5495 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5496 int, optname, char *, optval, int, optlen)
5497 {
5498 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5499 }
5500
5501 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5502 .func = bpf_unlocked_sk_getsockopt,
5503 .gpl_only = false,
5504 .ret_type = RET_INTEGER,
5505 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5506 .arg2_type = ARG_ANYTHING,
5507 .arg3_type = ARG_ANYTHING,
5508 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5509 .arg5_type = ARG_CONST_SIZE,
5510 };
5511
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5512 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5513 int, level, int, optname, char *, optval, int, optlen)
5514 {
5515 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5516 }
5517
5518 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5519 .func = bpf_sock_addr_setsockopt,
5520 .gpl_only = false,
5521 .ret_type = RET_INTEGER,
5522 .arg1_type = ARG_PTR_TO_CTX,
5523 .arg2_type = ARG_ANYTHING,
5524 .arg3_type = ARG_ANYTHING,
5525 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5526 .arg5_type = ARG_CONST_SIZE,
5527 };
5528
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5529 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5530 int, level, int, optname, char *, optval, int, optlen)
5531 {
5532 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5533 }
5534
5535 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5536 .func = bpf_sock_addr_getsockopt,
5537 .gpl_only = false,
5538 .ret_type = RET_INTEGER,
5539 .arg1_type = ARG_PTR_TO_CTX,
5540 .arg2_type = ARG_ANYTHING,
5541 .arg3_type = ARG_ANYTHING,
5542 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5543 .arg5_type = ARG_CONST_SIZE,
5544 };
5545
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5546 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5547 int, level, int, optname, char *, optval, int, optlen)
5548 {
5549 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5550 }
5551
5552 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5553 .func = bpf_sock_ops_setsockopt,
5554 .gpl_only = false,
5555 .ret_type = RET_INTEGER,
5556 .arg1_type = ARG_PTR_TO_CTX,
5557 .arg2_type = ARG_ANYTHING,
5558 .arg3_type = ARG_ANYTHING,
5559 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5560 .arg5_type = ARG_CONST_SIZE,
5561 };
5562
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5563 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5564 int optname, const u8 **start)
5565 {
5566 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5567 const u8 *hdr_start;
5568 int ret;
5569
5570 if (syn_skb) {
5571 /* sk is a request_sock here */
5572
5573 if (optname == TCP_BPF_SYN) {
5574 hdr_start = syn_skb->data;
5575 ret = tcp_hdrlen(syn_skb);
5576 } else if (optname == TCP_BPF_SYN_IP) {
5577 hdr_start = skb_network_header(syn_skb);
5578 ret = skb_network_header_len(syn_skb) +
5579 tcp_hdrlen(syn_skb);
5580 } else {
5581 /* optname == TCP_BPF_SYN_MAC */
5582 hdr_start = skb_mac_header(syn_skb);
5583 ret = skb_mac_header_len(syn_skb) +
5584 skb_network_header_len(syn_skb) +
5585 tcp_hdrlen(syn_skb);
5586 }
5587 } else {
5588 struct sock *sk = bpf_sock->sk;
5589 struct saved_syn *saved_syn;
5590
5591 if (sk->sk_state == TCP_NEW_SYN_RECV)
5592 /* synack retransmit. bpf_sock->syn_skb will
5593 * not be available. It has to resort to
5594 * saved_syn (if it is saved).
5595 */
5596 saved_syn = inet_reqsk(sk)->saved_syn;
5597 else
5598 saved_syn = tcp_sk(sk)->saved_syn;
5599
5600 if (!saved_syn)
5601 return -ENOENT;
5602
5603 if (optname == TCP_BPF_SYN) {
5604 hdr_start = saved_syn->data +
5605 saved_syn->mac_hdrlen +
5606 saved_syn->network_hdrlen;
5607 ret = saved_syn->tcp_hdrlen;
5608 } else if (optname == TCP_BPF_SYN_IP) {
5609 hdr_start = saved_syn->data +
5610 saved_syn->mac_hdrlen;
5611 ret = saved_syn->network_hdrlen +
5612 saved_syn->tcp_hdrlen;
5613 } else {
5614 /* optname == TCP_BPF_SYN_MAC */
5615
5616 /* TCP_SAVE_SYN may not have saved the mac hdr */
5617 if (!saved_syn->mac_hdrlen)
5618 return -ENOENT;
5619
5620 hdr_start = saved_syn->data;
5621 ret = saved_syn->mac_hdrlen +
5622 saved_syn->network_hdrlen +
5623 saved_syn->tcp_hdrlen;
5624 }
5625 }
5626
5627 *start = hdr_start;
5628 return ret;
5629 }
5630
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5631 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5632 int, level, int, optname, char *, optval, int, optlen)
5633 {
5634 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5635 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5636 int ret, copy_len = 0;
5637 const u8 *start;
5638
5639 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5640 if (ret > 0) {
5641 copy_len = ret;
5642 if (optlen < copy_len) {
5643 copy_len = optlen;
5644 ret = -ENOSPC;
5645 }
5646
5647 memcpy(optval, start, copy_len);
5648 }
5649
5650 /* Zero out unused buffer at the end */
5651 memset(optval + copy_len, 0, optlen - copy_len);
5652
5653 return ret;
5654 }
5655
5656 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5657 }
5658
5659 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5660 .func = bpf_sock_ops_getsockopt,
5661 .gpl_only = false,
5662 .ret_type = RET_INTEGER,
5663 .arg1_type = ARG_PTR_TO_CTX,
5664 .arg2_type = ARG_ANYTHING,
5665 .arg3_type = ARG_ANYTHING,
5666 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5667 .arg5_type = ARG_CONST_SIZE,
5668 };
5669
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5670 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5671 int, argval)
5672 {
5673 struct sock *sk = bpf_sock->sk;
5674 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5675
5676 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5677 return -EINVAL;
5678
5679 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5680
5681 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5682 }
5683
5684 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5685 .func = bpf_sock_ops_cb_flags_set,
5686 .gpl_only = false,
5687 .ret_type = RET_INTEGER,
5688 .arg1_type = ARG_PTR_TO_CTX,
5689 .arg2_type = ARG_ANYTHING,
5690 };
5691
5692 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5693 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5694
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5695 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5696 int, addr_len)
5697 {
5698 #ifdef CONFIG_INET
5699 struct sock *sk = ctx->sk;
5700 u32 flags = BIND_FROM_BPF;
5701 int err;
5702
5703 err = -EINVAL;
5704 if (addr_len < offsetofend(struct sockaddr, sa_family))
5705 return err;
5706 if (addr->sa_family == AF_INET) {
5707 if (addr_len < sizeof(struct sockaddr_in))
5708 return err;
5709 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5710 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5711 return __inet_bind(sk, addr, addr_len, flags);
5712 #if IS_ENABLED(CONFIG_IPV6)
5713 } else if (addr->sa_family == AF_INET6) {
5714 if (addr_len < SIN6_LEN_RFC2133)
5715 return err;
5716 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5717 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5718 /* ipv6_bpf_stub cannot be NULL, since it's called from
5719 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5720 */
5721 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5722 #endif /* CONFIG_IPV6 */
5723 }
5724 #endif /* CONFIG_INET */
5725
5726 return -EAFNOSUPPORT;
5727 }
5728
5729 static const struct bpf_func_proto bpf_bind_proto = {
5730 .func = bpf_bind,
5731 .gpl_only = false,
5732 .ret_type = RET_INTEGER,
5733 .arg1_type = ARG_PTR_TO_CTX,
5734 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5735 .arg3_type = ARG_CONST_SIZE,
5736 };
5737
5738 #ifdef CONFIG_XFRM
5739
5740 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5741 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5742
5743 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5744 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5745
5746 #endif
5747
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5748 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5749 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5750 {
5751 const struct sec_path *sp = skb_sec_path(skb);
5752 const struct xfrm_state *x;
5753
5754 if (!sp || unlikely(index >= sp->len || flags))
5755 goto err_clear;
5756
5757 x = sp->xvec[index];
5758
5759 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5760 goto err_clear;
5761
5762 to->reqid = x->props.reqid;
5763 to->spi = x->id.spi;
5764 to->family = x->props.family;
5765 to->ext = 0;
5766
5767 if (to->family == AF_INET6) {
5768 memcpy(to->remote_ipv6, x->props.saddr.a6,
5769 sizeof(to->remote_ipv6));
5770 } else {
5771 to->remote_ipv4 = x->props.saddr.a4;
5772 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5773 }
5774
5775 return 0;
5776 err_clear:
5777 memset(to, 0, size);
5778 return -EINVAL;
5779 }
5780
5781 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5782 .func = bpf_skb_get_xfrm_state,
5783 .gpl_only = false,
5784 .ret_type = RET_INTEGER,
5785 .arg1_type = ARG_PTR_TO_CTX,
5786 .arg2_type = ARG_ANYTHING,
5787 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5788 .arg4_type = ARG_CONST_SIZE,
5789 .arg5_type = ARG_ANYTHING,
5790 };
5791 #endif
5792
5793 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5794 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5795 {
5796 params->h_vlan_TCI = 0;
5797 params->h_vlan_proto = 0;
5798 if (mtu)
5799 params->mtu_result = mtu; /* union with tot_len */
5800
5801 return 0;
5802 }
5803 #endif
5804
5805 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5806 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5807 u32 flags, bool check_mtu)
5808 {
5809 struct fib_nh_common *nhc;
5810 struct in_device *in_dev;
5811 struct neighbour *neigh;
5812 struct net_device *dev;
5813 struct fib_result res;
5814 struct flowi4 fl4;
5815 u32 mtu = 0;
5816 int err;
5817
5818 dev = dev_get_by_index_rcu(net, params->ifindex);
5819 if (unlikely(!dev))
5820 return -ENODEV;
5821
5822 /* verify forwarding is enabled on this interface */
5823 in_dev = __in_dev_get_rcu(dev);
5824 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5825 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5826
5827 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5828 fl4.flowi4_iif = 1;
5829 fl4.flowi4_oif = params->ifindex;
5830 } else {
5831 fl4.flowi4_iif = params->ifindex;
5832 fl4.flowi4_oif = 0;
5833 }
5834 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5835 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5836 fl4.flowi4_flags = 0;
5837
5838 fl4.flowi4_proto = params->l4_protocol;
5839 fl4.daddr = params->ipv4_dst;
5840 fl4.saddr = params->ipv4_src;
5841 fl4.fl4_sport = params->sport;
5842 fl4.fl4_dport = params->dport;
5843 fl4.flowi4_multipath_hash = 0;
5844
5845 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5846 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5847 struct fib_table *tb;
5848
5849 if (flags & BPF_FIB_LOOKUP_TBID) {
5850 tbid = params->tbid;
5851 /* zero out for vlan output */
5852 params->tbid = 0;
5853 }
5854
5855 tb = fib_get_table(net, tbid);
5856 if (unlikely(!tb))
5857 return BPF_FIB_LKUP_RET_NOT_FWDED;
5858
5859 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5860 } else {
5861 fl4.flowi4_mark = 0;
5862 fl4.flowi4_secid = 0;
5863 fl4.flowi4_tun_key.tun_id = 0;
5864 fl4.flowi4_uid = sock_net_uid(net, NULL);
5865
5866 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5867 }
5868
5869 if (err) {
5870 /* map fib lookup errors to RTN_ type */
5871 if (err == -EINVAL)
5872 return BPF_FIB_LKUP_RET_BLACKHOLE;
5873 if (err == -EHOSTUNREACH)
5874 return BPF_FIB_LKUP_RET_UNREACHABLE;
5875 if (err == -EACCES)
5876 return BPF_FIB_LKUP_RET_PROHIBIT;
5877
5878 return BPF_FIB_LKUP_RET_NOT_FWDED;
5879 }
5880
5881 if (res.type != RTN_UNICAST)
5882 return BPF_FIB_LKUP_RET_NOT_FWDED;
5883
5884 if (fib_info_num_path(res.fi) > 1)
5885 fib_select_path(net, &res, &fl4, NULL);
5886
5887 if (check_mtu) {
5888 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5889 if (params->tot_len > mtu) {
5890 params->mtu_result = mtu; /* union with tot_len */
5891 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5892 }
5893 }
5894
5895 nhc = res.nhc;
5896
5897 /* do not handle lwt encaps right now */
5898 if (nhc->nhc_lwtstate)
5899 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5900
5901 dev = nhc->nhc_dev;
5902
5903 params->rt_metric = res.fi->fib_priority;
5904 params->ifindex = dev->ifindex;
5905
5906 if (flags & BPF_FIB_LOOKUP_SRC)
5907 params->ipv4_src = fib_result_prefsrc(net, &res);
5908
5909 /* xdp and cls_bpf programs are run in RCU-bh so
5910 * rcu_read_lock_bh is not needed here
5911 */
5912 if (likely(nhc->nhc_gw_family != AF_INET6)) {
5913 if (nhc->nhc_gw_family)
5914 params->ipv4_dst = nhc->nhc_gw.ipv4;
5915 } else {
5916 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5917
5918 params->family = AF_INET6;
5919 *dst = nhc->nhc_gw.ipv6;
5920 }
5921
5922 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5923 goto set_fwd_params;
5924
5925 if (likely(nhc->nhc_gw_family != AF_INET6))
5926 neigh = __ipv4_neigh_lookup_noref(dev,
5927 (__force u32)params->ipv4_dst);
5928 else
5929 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5930
5931 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5932 return BPF_FIB_LKUP_RET_NO_NEIGH;
5933 memcpy(params->dmac, neigh->ha, ETH_ALEN);
5934 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5935
5936 set_fwd_params:
5937 return bpf_fib_set_fwd_params(params, mtu);
5938 }
5939 #endif
5940
5941 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5942 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5943 u32 flags, bool check_mtu)
5944 {
5945 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5946 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5947 struct fib6_result res = {};
5948 struct neighbour *neigh;
5949 struct net_device *dev;
5950 struct inet6_dev *idev;
5951 struct flowi6 fl6;
5952 int strict = 0;
5953 int oif, err;
5954 u32 mtu = 0;
5955
5956 /* link local addresses are never forwarded */
5957 if (rt6_need_strict(dst) || rt6_need_strict(src))
5958 return BPF_FIB_LKUP_RET_NOT_FWDED;
5959
5960 dev = dev_get_by_index_rcu(net, params->ifindex);
5961 if (unlikely(!dev))
5962 return -ENODEV;
5963
5964 idev = __in6_dev_get_safely(dev);
5965 if (unlikely(!idev || !idev->cnf.forwarding))
5966 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5967
5968 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5969 fl6.flowi6_iif = 1;
5970 oif = fl6.flowi6_oif = params->ifindex;
5971 } else {
5972 oif = fl6.flowi6_iif = params->ifindex;
5973 fl6.flowi6_oif = 0;
5974 strict = RT6_LOOKUP_F_HAS_SADDR;
5975 }
5976 fl6.flowlabel = params->flowinfo;
5977 fl6.flowi6_scope = 0;
5978 fl6.flowi6_flags = 0;
5979 fl6.mp_hash = 0;
5980
5981 fl6.flowi6_proto = params->l4_protocol;
5982 fl6.daddr = *dst;
5983 fl6.saddr = *src;
5984 fl6.fl6_sport = params->sport;
5985 fl6.fl6_dport = params->dport;
5986
5987 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5988 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5989 struct fib6_table *tb;
5990
5991 if (flags & BPF_FIB_LOOKUP_TBID) {
5992 tbid = params->tbid;
5993 /* zero out for vlan output */
5994 params->tbid = 0;
5995 }
5996
5997 tb = ipv6_stub->fib6_get_table(net, tbid);
5998 if (unlikely(!tb))
5999 return BPF_FIB_LKUP_RET_NOT_FWDED;
6000
6001 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6002 strict);
6003 } else {
6004 fl6.flowi6_mark = 0;
6005 fl6.flowi6_secid = 0;
6006 fl6.flowi6_tun_key.tun_id = 0;
6007 fl6.flowi6_uid = sock_net_uid(net, NULL);
6008
6009 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6010 }
6011
6012 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6013 res.f6i == net->ipv6.fib6_null_entry))
6014 return BPF_FIB_LKUP_RET_NOT_FWDED;
6015
6016 switch (res.fib6_type) {
6017 /* only unicast is forwarded */
6018 case RTN_UNICAST:
6019 break;
6020 case RTN_BLACKHOLE:
6021 return BPF_FIB_LKUP_RET_BLACKHOLE;
6022 case RTN_UNREACHABLE:
6023 return BPF_FIB_LKUP_RET_UNREACHABLE;
6024 case RTN_PROHIBIT:
6025 return BPF_FIB_LKUP_RET_PROHIBIT;
6026 default:
6027 return BPF_FIB_LKUP_RET_NOT_FWDED;
6028 }
6029
6030 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6031 fl6.flowi6_oif != 0, NULL, strict);
6032
6033 if (check_mtu) {
6034 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6035 if (params->tot_len > mtu) {
6036 params->mtu_result = mtu; /* union with tot_len */
6037 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6038 }
6039 }
6040
6041 if (res.nh->fib_nh_lws)
6042 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6043
6044 if (res.nh->fib_nh_gw_family)
6045 *dst = res.nh->fib_nh_gw6;
6046
6047 dev = res.nh->fib_nh_dev;
6048 params->rt_metric = res.f6i->fib6_metric;
6049 params->ifindex = dev->ifindex;
6050
6051 if (flags & BPF_FIB_LOOKUP_SRC) {
6052 if (res.f6i->fib6_prefsrc.plen) {
6053 *src = res.f6i->fib6_prefsrc.addr;
6054 } else {
6055 err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6056 &fl6.daddr, 0,
6057 src);
6058 if (err)
6059 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6060 }
6061 }
6062
6063 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6064 goto set_fwd_params;
6065
6066 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6067 * not needed here.
6068 */
6069 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6070 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6071 return BPF_FIB_LKUP_RET_NO_NEIGH;
6072 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6073 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6074
6075 set_fwd_params:
6076 return bpf_fib_set_fwd_params(params, mtu);
6077 }
6078 #endif
6079
6080 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6081 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6082 BPF_FIB_LOOKUP_SRC)
6083
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6084 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6085 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6086 {
6087 if (plen < sizeof(*params))
6088 return -EINVAL;
6089
6090 if (flags & ~BPF_FIB_LOOKUP_MASK)
6091 return -EINVAL;
6092
6093 switch (params->family) {
6094 #if IS_ENABLED(CONFIG_INET)
6095 case AF_INET:
6096 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6097 flags, true);
6098 #endif
6099 #if IS_ENABLED(CONFIG_IPV6)
6100 case AF_INET6:
6101 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6102 flags, true);
6103 #endif
6104 }
6105 return -EAFNOSUPPORT;
6106 }
6107
6108 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6109 .func = bpf_xdp_fib_lookup,
6110 .gpl_only = true,
6111 .ret_type = RET_INTEGER,
6112 .arg1_type = ARG_PTR_TO_CTX,
6113 .arg2_type = ARG_PTR_TO_MEM,
6114 .arg3_type = ARG_CONST_SIZE,
6115 .arg4_type = ARG_ANYTHING,
6116 };
6117
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6118 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6119 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6120 {
6121 struct net *net = dev_net(skb->dev);
6122 int rc = -EAFNOSUPPORT;
6123 bool check_mtu = false;
6124
6125 if (plen < sizeof(*params))
6126 return -EINVAL;
6127
6128 if (flags & ~BPF_FIB_LOOKUP_MASK)
6129 return -EINVAL;
6130
6131 if (params->tot_len)
6132 check_mtu = true;
6133
6134 switch (params->family) {
6135 #if IS_ENABLED(CONFIG_INET)
6136 case AF_INET:
6137 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6138 break;
6139 #endif
6140 #if IS_ENABLED(CONFIG_IPV6)
6141 case AF_INET6:
6142 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6143 break;
6144 #endif
6145 }
6146
6147 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6148 struct net_device *dev;
6149
6150 /* When tot_len isn't provided by user, check skb
6151 * against MTU of FIB lookup resulting net_device
6152 */
6153 dev = dev_get_by_index_rcu(net, params->ifindex);
6154 if (!is_skb_forwardable(dev, skb))
6155 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6156
6157 params->mtu_result = dev->mtu; /* union with tot_len */
6158 }
6159
6160 return rc;
6161 }
6162
6163 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6164 .func = bpf_skb_fib_lookup,
6165 .gpl_only = true,
6166 .ret_type = RET_INTEGER,
6167 .arg1_type = ARG_PTR_TO_CTX,
6168 .arg2_type = ARG_PTR_TO_MEM,
6169 .arg3_type = ARG_CONST_SIZE,
6170 .arg4_type = ARG_ANYTHING,
6171 };
6172
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6173 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6174 u32 ifindex)
6175 {
6176 struct net *netns = dev_net(dev_curr);
6177
6178 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6179 if (ifindex == 0)
6180 return dev_curr;
6181
6182 return dev_get_by_index_rcu(netns, ifindex);
6183 }
6184
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6185 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6186 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6187 {
6188 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6189 struct net_device *dev = skb->dev;
6190 int skb_len, dev_len;
6191 int mtu;
6192
6193 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6194 return -EINVAL;
6195
6196 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6197 return -EINVAL;
6198
6199 dev = __dev_via_ifindex(dev, ifindex);
6200 if (unlikely(!dev))
6201 return -ENODEV;
6202
6203 mtu = READ_ONCE(dev->mtu);
6204
6205 dev_len = mtu + dev->hard_header_len;
6206
6207 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6208 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6209
6210 skb_len += len_diff; /* minus result pass check */
6211 if (skb_len <= dev_len) {
6212 ret = BPF_MTU_CHK_RET_SUCCESS;
6213 goto out;
6214 }
6215 /* At this point, skb->len exceed MTU, but as it include length of all
6216 * segments, it can still be below MTU. The SKB can possibly get
6217 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6218 * must choose if segs are to be MTU checked.
6219 */
6220 if (skb_is_gso(skb)) {
6221 ret = BPF_MTU_CHK_RET_SUCCESS;
6222
6223 if (flags & BPF_MTU_CHK_SEGS &&
6224 !skb_gso_validate_network_len(skb, mtu))
6225 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6226 }
6227 out:
6228 /* BPF verifier guarantees valid pointer */
6229 *mtu_len = mtu;
6230
6231 return ret;
6232 }
6233
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6234 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6235 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6236 {
6237 struct net_device *dev = xdp->rxq->dev;
6238 int xdp_len = xdp->data_end - xdp->data;
6239 int ret = BPF_MTU_CHK_RET_SUCCESS;
6240 int mtu, dev_len;
6241
6242 /* XDP variant doesn't support multi-buffer segment check (yet) */
6243 if (unlikely(flags))
6244 return -EINVAL;
6245
6246 dev = __dev_via_ifindex(dev, ifindex);
6247 if (unlikely(!dev))
6248 return -ENODEV;
6249
6250 mtu = READ_ONCE(dev->mtu);
6251
6252 /* Add L2-header as dev MTU is L3 size */
6253 dev_len = mtu + dev->hard_header_len;
6254
6255 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6256 if (*mtu_len)
6257 xdp_len = *mtu_len + dev->hard_header_len;
6258
6259 xdp_len += len_diff; /* minus result pass check */
6260 if (xdp_len > dev_len)
6261 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6262
6263 /* BPF verifier guarantees valid pointer */
6264 *mtu_len = mtu;
6265
6266 return ret;
6267 }
6268
6269 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6270 .func = bpf_skb_check_mtu,
6271 .gpl_only = true,
6272 .ret_type = RET_INTEGER,
6273 .arg1_type = ARG_PTR_TO_CTX,
6274 .arg2_type = ARG_ANYTHING,
6275 .arg3_type = ARG_PTR_TO_INT,
6276 .arg4_type = ARG_ANYTHING,
6277 .arg5_type = ARG_ANYTHING,
6278 };
6279
6280 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6281 .func = bpf_xdp_check_mtu,
6282 .gpl_only = true,
6283 .ret_type = RET_INTEGER,
6284 .arg1_type = ARG_PTR_TO_CTX,
6285 .arg2_type = ARG_ANYTHING,
6286 .arg3_type = ARG_PTR_TO_INT,
6287 .arg4_type = ARG_ANYTHING,
6288 .arg5_type = ARG_ANYTHING,
6289 };
6290
6291 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6292 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6293 {
6294 int err;
6295 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6296
6297 if (!seg6_validate_srh(srh, len, false))
6298 return -EINVAL;
6299
6300 switch (type) {
6301 case BPF_LWT_ENCAP_SEG6_INLINE:
6302 if (skb->protocol != htons(ETH_P_IPV6))
6303 return -EBADMSG;
6304
6305 err = seg6_do_srh_inline(skb, srh);
6306 break;
6307 case BPF_LWT_ENCAP_SEG6:
6308 skb_reset_inner_headers(skb);
6309 skb->encapsulation = 1;
6310 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6311 break;
6312 default:
6313 return -EINVAL;
6314 }
6315
6316 bpf_compute_data_pointers(skb);
6317 if (err)
6318 return err;
6319
6320 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6321
6322 return seg6_lookup_nexthop(skb, NULL, 0);
6323 }
6324 #endif /* CONFIG_IPV6_SEG6_BPF */
6325
6326 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6327 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6328 bool ingress)
6329 {
6330 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6331 }
6332 #endif
6333
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6334 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6335 u32, len)
6336 {
6337 switch (type) {
6338 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6339 case BPF_LWT_ENCAP_SEG6:
6340 case BPF_LWT_ENCAP_SEG6_INLINE:
6341 return bpf_push_seg6_encap(skb, type, hdr, len);
6342 #endif
6343 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6344 case BPF_LWT_ENCAP_IP:
6345 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6346 #endif
6347 default:
6348 return -EINVAL;
6349 }
6350 }
6351
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6352 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6353 void *, hdr, u32, len)
6354 {
6355 switch (type) {
6356 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6357 case BPF_LWT_ENCAP_IP:
6358 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6359 #endif
6360 default:
6361 return -EINVAL;
6362 }
6363 }
6364
6365 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6366 .func = bpf_lwt_in_push_encap,
6367 .gpl_only = false,
6368 .ret_type = RET_INTEGER,
6369 .arg1_type = ARG_PTR_TO_CTX,
6370 .arg2_type = ARG_ANYTHING,
6371 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6372 .arg4_type = ARG_CONST_SIZE
6373 };
6374
6375 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6376 .func = bpf_lwt_xmit_push_encap,
6377 .gpl_only = false,
6378 .ret_type = RET_INTEGER,
6379 .arg1_type = ARG_PTR_TO_CTX,
6380 .arg2_type = ARG_ANYTHING,
6381 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6382 .arg4_type = ARG_CONST_SIZE
6383 };
6384
6385 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6386 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6387 const void *, from, u32, len)
6388 {
6389 struct seg6_bpf_srh_state *srh_state =
6390 this_cpu_ptr(&seg6_bpf_srh_states);
6391 struct ipv6_sr_hdr *srh = srh_state->srh;
6392 void *srh_tlvs, *srh_end, *ptr;
6393 int srhoff = 0;
6394
6395 if (srh == NULL)
6396 return -EINVAL;
6397
6398 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6399 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6400
6401 ptr = skb->data + offset;
6402 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6403 srh_state->valid = false;
6404 else if (ptr < (void *)&srh->flags ||
6405 ptr + len > (void *)&srh->segments)
6406 return -EFAULT;
6407
6408 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6409 return -EFAULT;
6410 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6411 return -EINVAL;
6412 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6413
6414 memcpy(skb->data + offset, from, len);
6415 return 0;
6416 }
6417
6418 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6419 .func = bpf_lwt_seg6_store_bytes,
6420 .gpl_only = false,
6421 .ret_type = RET_INTEGER,
6422 .arg1_type = ARG_PTR_TO_CTX,
6423 .arg2_type = ARG_ANYTHING,
6424 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6425 .arg4_type = ARG_CONST_SIZE
6426 };
6427
bpf_update_srh_state(struct sk_buff * skb)6428 static void bpf_update_srh_state(struct sk_buff *skb)
6429 {
6430 struct seg6_bpf_srh_state *srh_state =
6431 this_cpu_ptr(&seg6_bpf_srh_states);
6432 int srhoff = 0;
6433
6434 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6435 srh_state->srh = NULL;
6436 } else {
6437 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6438 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6439 srh_state->valid = true;
6440 }
6441 }
6442
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6443 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6444 u32, action, void *, param, u32, param_len)
6445 {
6446 struct seg6_bpf_srh_state *srh_state =
6447 this_cpu_ptr(&seg6_bpf_srh_states);
6448 int hdroff = 0;
6449 int err;
6450
6451 switch (action) {
6452 case SEG6_LOCAL_ACTION_END_X:
6453 if (!seg6_bpf_has_valid_srh(skb))
6454 return -EBADMSG;
6455 if (param_len != sizeof(struct in6_addr))
6456 return -EINVAL;
6457 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6458 case SEG6_LOCAL_ACTION_END_T:
6459 if (!seg6_bpf_has_valid_srh(skb))
6460 return -EBADMSG;
6461 if (param_len != sizeof(int))
6462 return -EINVAL;
6463 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6464 case SEG6_LOCAL_ACTION_END_DT6:
6465 if (!seg6_bpf_has_valid_srh(skb))
6466 return -EBADMSG;
6467 if (param_len != sizeof(int))
6468 return -EINVAL;
6469
6470 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6471 return -EBADMSG;
6472 if (!pskb_pull(skb, hdroff))
6473 return -EBADMSG;
6474
6475 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6476 skb_reset_network_header(skb);
6477 skb_reset_transport_header(skb);
6478 skb->encapsulation = 0;
6479
6480 bpf_compute_data_pointers(skb);
6481 bpf_update_srh_state(skb);
6482 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6483 case SEG6_LOCAL_ACTION_END_B6:
6484 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6485 return -EBADMSG;
6486 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6487 param, param_len);
6488 if (!err)
6489 bpf_update_srh_state(skb);
6490
6491 return err;
6492 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6493 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6494 return -EBADMSG;
6495 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6496 param, param_len);
6497 if (!err)
6498 bpf_update_srh_state(skb);
6499
6500 return err;
6501 default:
6502 return -EINVAL;
6503 }
6504 }
6505
6506 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6507 .func = bpf_lwt_seg6_action,
6508 .gpl_only = false,
6509 .ret_type = RET_INTEGER,
6510 .arg1_type = ARG_PTR_TO_CTX,
6511 .arg2_type = ARG_ANYTHING,
6512 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6513 .arg4_type = ARG_CONST_SIZE
6514 };
6515
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6516 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6517 s32, len)
6518 {
6519 struct seg6_bpf_srh_state *srh_state =
6520 this_cpu_ptr(&seg6_bpf_srh_states);
6521 struct ipv6_sr_hdr *srh = srh_state->srh;
6522 void *srh_end, *srh_tlvs, *ptr;
6523 struct ipv6hdr *hdr;
6524 int srhoff = 0;
6525 int ret;
6526
6527 if (unlikely(srh == NULL))
6528 return -EINVAL;
6529
6530 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6531 ((srh->first_segment + 1) << 4));
6532 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6533 srh_state->hdrlen);
6534 ptr = skb->data + offset;
6535
6536 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6537 return -EFAULT;
6538 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6539 return -EFAULT;
6540
6541 if (len > 0) {
6542 ret = skb_cow_head(skb, len);
6543 if (unlikely(ret < 0))
6544 return ret;
6545
6546 ret = bpf_skb_net_hdr_push(skb, offset, len);
6547 } else {
6548 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6549 }
6550
6551 bpf_compute_data_pointers(skb);
6552 if (unlikely(ret < 0))
6553 return ret;
6554
6555 hdr = (struct ipv6hdr *)skb->data;
6556 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6557
6558 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6559 return -EINVAL;
6560 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6561 srh_state->hdrlen += len;
6562 srh_state->valid = false;
6563 return 0;
6564 }
6565
6566 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6567 .func = bpf_lwt_seg6_adjust_srh,
6568 .gpl_only = false,
6569 .ret_type = RET_INTEGER,
6570 .arg1_type = ARG_PTR_TO_CTX,
6571 .arg2_type = ARG_ANYTHING,
6572 .arg3_type = ARG_ANYTHING,
6573 };
6574 #endif /* CONFIG_IPV6_SEG6_BPF */
6575
6576 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6577 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6578 int dif, int sdif, u8 family, u8 proto)
6579 {
6580 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6581 bool refcounted = false;
6582 struct sock *sk = NULL;
6583
6584 if (family == AF_INET) {
6585 __be32 src4 = tuple->ipv4.saddr;
6586 __be32 dst4 = tuple->ipv4.daddr;
6587
6588 if (proto == IPPROTO_TCP)
6589 sk = __inet_lookup(net, hinfo, NULL, 0,
6590 src4, tuple->ipv4.sport,
6591 dst4, tuple->ipv4.dport,
6592 dif, sdif, &refcounted);
6593 else
6594 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6595 dst4, tuple->ipv4.dport,
6596 dif, sdif, net->ipv4.udp_table, NULL);
6597 #if IS_ENABLED(CONFIG_IPV6)
6598 } else {
6599 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6600 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6601
6602 if (proto == IPPROTO_TCP)
6603 sk = __inet6_lookup(net, hinfo, NULL, 0,
6604 src6, tuple->ipv6.sport,
6605 dst6, ntohs(tuple->ipv6.dport),
6606 dif, sdif, &refcounted);
6607 else if (likely(ipv6_bpf_stub))
6608 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6609 src6, tuple->ipv6.sport,
6610 dst6, tuple->ipv6.dport,
6611 dif, sdif,
6612 net->ipv4.udp_table, NULL);
6613 #endif
6614 }
6615
6616 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6617 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6618 sk = NULL;
6619 }
6620 return sk;
6621 }
6622
6623 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6624 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6625 */
6626 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6627 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6628 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6629 u64 flags, int sdif)
6630 {
6631 struct sock *sk = NULL;
6632 struct net *net;
6633 u8 family;
6634
6635 if (len == sizeof(tuple->ipv4))
6636 family = AF_INET;
6637 else if (len == sizeof(tuple->ipv6))
6638 family = AF_INET6;
6639 else
6640 return NULL;
6641
6642 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6643 goto out;
6644
6645 if (sdif < 0) {
6646 if (family == AF_INET)
6647 sdif = inet_sdif(skb);
6648 else
6649 sdif = inet6_sdif(skb);
6650 }
6651
6652 if ((s32)netns_id < 0) {
6653 net = caller_net;
6654 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6655 } else {
6656 net = get_net_ns_by_id(caller_net, netns_id);
6657 if (unlikely(!net))
6658 goto out;
6659 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6660 put_net(net);
6661 }
6662
6663 out:
6664 return sk;
6665 }
6666
6667 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6668 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6669 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6670 u64 flags, int sdif)
6671 {
6672 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6673 ifindex, proto, netns_id, flags,
6674 sdif);
6675
6676 if (sk) {
6677 struct sock *sk2 = sk_to_full_sk(sk);
6678
6679 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6680 * sock refcnt is decremented to prevent a request_sock leak.
6681 */
6682 if (!sk_fullsock(sk2))
6683 sk2 = NULL;
6684 if (sk2 != sk) {
6685 sock_gen_put(sk);
6686 /* Ensure there is no need to bump sk2 refcnt */
6687 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6688 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6689 return NULL;
6690 }
6691 sk = sk2;
6692 }
6693 }
6694
6695 return sk;
6696 }
6697
6698 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6699 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6700 u8 proto, u64 netns_id, u64 flags)
6701 {
6702 struct net *caller_net;
6703 int ifindex;
6704
6705 if (skb->dev) {
6706 caller_net = dev_net(skb->dev);
6707 ifindex = skb->dev->ifindex;
6708 } else {
6709 caller_net = sock_net(skb->sk);
6710 ifindex = 0;
6711 }
6712
6713 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6714 netns_id, flags, -1);
6715 }
6716
6717 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6718 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6719 u8 proto, u64 netns_id, u64 flags)
6720 {
6721 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6722 flags);
6723
6724 if (sk) {
6725 struct sock *sk2 = sk_to_full_sk(sk);
6726
6727 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6728 * sock refcnt is decremented to prevent a request_sock leak.
6729 */
6730 if (!sk_fullsock(sk2))
6731 sk2 = NULL;
6732 if (sk2 != sk) {
6733 sock_gen_put(sk);
6734 /* Ensure there is no need to bump sk2 refcnt */
6735 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6736 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6737 return NULL;
6738 }
6739 sk = sk2;
6740 }
6741 }
6742
6743 return sk;
6744 }
6745
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6746 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6747 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6748 {
6749 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6750 netns_id, flags);
6751 }
6752
6753 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6754 .func = bpf_skc_lookup_tcp,
6755 .gpl_only = false,
6756 .pkt_access = true,
6757 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6758 .arg1_type = ARG_PTR_TO_CTX,
6759 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6760 .arg3_type = ARG_CONST_SIZE,
6761 .arg4_type = ARG_ANYTHING,
6762 .arg5_type = ARG_ANYTHING,
6763 };
6764
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6765 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6766 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6767 {
6768 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6769 netns_id, flags);
6770 }
6771
6772 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6773 .func = bpf_sk_lookup_tcp,
6774 .gpl_only = false,
6775 .pkt_access = true,
6776 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6777 .arg1_type = ARG_PTR_TO_CTX,
6778 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6779 .arg3_type = ARG_CONST_SIZE,
6780 .arg4_type = ARG_ANYTHING,
6781 .arg5_type = ARG_ANYTHING,
6782 };
6783
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6784 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6785 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6786 {
6787 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6788 netns_id, flags);
6789 }
6790
6791 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6792 .func = bpf_sk_lookup_udp,
6793 .gpl_only = false,
6794 .pkt_access = true,
6795 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6796 .arg1_type = ARG_PTR_TO_CTX,
6797 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6798 .arg3_type = ARG_CONST_SIZE,
6799 .arg4_type = ARG_ANYTHING,
6800 .arg5_type = ARG_ANYTHING,
6801 };
6802
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6803 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6804 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6805 {
6806 struct net_device *dev = skb->dev;
6807 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6808 struct net *caller_net = dev_net(dev);
6809
6810 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6811 ifindex, IPPROTO_TCP, netns_id,
6812 flags, sdif);
6813 }
6814
6815 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6816 .func = bpf_tc_skc_lookup_tcp,
6817 .gpl_only = false,
6818 .pkt_access = true,
6819 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6820 .arg1_type = ARG_PTR_TO_CTX,
6821 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6822 .arg3_type = ARG_CONST_SIZE,
6823 .arg4_type = ARG_ANYTHING,
6824 .arg5_type = ARG_ANYTHING,
6825 };
6826
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6827 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6828 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6829 {
6830 struct net_device *dev = skb->dev;
6831 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6832 struct net *caller_net = dev_net(dev);
6833
6834 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6835 ifindex, IPPROTO_TCP, netns_id,
6836 flags, sdif);
6837 }
6838
6839 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6840 .func = bpf_tc_sk_lookup_tcp,
6841 .gpl_only = false,
6842 .pkt_access = true,
6843 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6844 .arg1_type = ARG_PTR_TO_CTX,
6845 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6846 .arg3_type = ARG_CONST_SIZE,
6847 .arg4_type = ARG_ANYTHING,
6848 .arg5_type = ARG_ANYTHING,
6849 };
6850
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6851 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6852 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6853 {
6854 struct net_device *dev = skb->dev;
6855 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6856 struct net *caller_net = dev_net(dev);
6857
6858 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6859 ifindex, IPPROTO_UDP, netns_id,
6860 flags, sdif);
6861 }
6862
6863 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6864 .func = bpf_tc_sk_lookup_udp,
6865 .gpl_only = false,
6866 .pkt_access = true,
6867 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6868 .arg1_type = ARG_PTR_TO_CTX,
6869 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6870 .arg3_type = ARG_CONST_SIZE,
6871 .arg4_type = ARG_ANYTHING,
6872 .arg5_type = ARG_ANYTHING,
6873 };
6874
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6875 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6876 {
6877 if (sk && sk_is_refcounted(sk))
6878 sock_gen_put(sk);
6879 return 0;
6880 }
6881
6882 static const struct bpf_func_proto bpf_sk_release_proto = {
6883 .func = bpf_sk_release,
6884 .gpl_only = false,
6885 .ret_type = RET_INTEGER,
6886 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6887 };
6888
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6889 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6890 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6891 {
6892 struct net_device *dev = ctx->rxq->dev;
6893 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6894 struct net *caller_net = dev_net(dev);
6895
6896 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6897 ifindex, IPPROTO_UDP, netns_id,
6898 flags, sdif);
6899 }
6900
6901 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6902 .func = bpf_xdp_sk_lookup_udp,
6903 .gpl_only = false,
6904 .pkt_access = true,
6905 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6906 .arg1_type = ARG_PTR_TO_CTX,
6907 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6908 .arg3_type = ARG_CONST_SIZE,
6909 .arg4_type = ARG_ANYTHING,
6910 .arg5_type = ARG_ANYTHING,
6911 };
6912
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6913 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6914 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6915 {
6916 struct net_device *dev = ctx->rxq->dev;
6917 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6918 struct net *caller_net = dev_net(dev);
6919
6920 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6921 ifindex, IPPROTO_TCP, netns_id,
6922 flags, sdif);
6923 }
6924
6925 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6926 .func = bpf_xdp_skc_lookup_tcp,
6927 .gpl_only = false,
6928 .pkt_access = true,
6929 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6930 .arg1_type = ARG_PTR_TO_CTX,
6931 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6932 .arg3_type = ARG_CONST_SIZE,
6933 .arg4_type = ARG_ANYTHING,
6934 .arg5_type = ARG_ANYTHING,
6935 };
6936
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6937 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6938 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6939 {
6940 struct net_device *dev = ctx->rxq->dev;
6941 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6942 struct net *caller_net = dev_net(dev);
6943
6944 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6945 ifindex, IPPROTO_TCP, netns_id,
6946 flags, sdif);
6947 }
6948
6949 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6950 .func = bpf_xdp_sk_lookup_tcp,
6951 .gpl_only = false,
6952 .pkt_access = true,
6953 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6954 .arg1_type = ARG_PTR_TO_CTX,
6955 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6956 .arg3_type = ARG_CONST_SIZE,
6957 .arg4_type = ARG_ANYTHING,
6958 .arg5_type = ARG_ANYTHING,
6959 };
6960
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6961 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6962 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6963 {
6964 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6965 sock_net(ctx->sk), 0,
6966 IPPROTO_TCP, netns_id, flags,
6967 -1);
6968 }
6969
6970 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6971 .func = bpf_sock_addr_skc_lookup_tcp,
6972 .gpl_only = false,
6973 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6974 .arg1_type = ARG_PTR_TO_CTX,
6975 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6976 .arg3_type = ARG_CONST_SIZE,
6977 .arg4_type = ARG_ANYTHING,
6978 .arg5_type = ARG_ANYTHING,
6979 };
6980
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6981 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6982 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6983 {
6984 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6985 sock_net(ctx->sk), 0, IPPROTO_TCP,
6986 netns_id, flags, -1);
6987 }
6988
6989 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6990 .func = bpf_sock_addr_sk_lookup_tcp,
6991 .gpl_only = false,
6992 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6993 .arg1_type = ARG_PTR_TO_CTX,
6994 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6995 .arg3_type = ARG_CONST_SIZE,
6996 .arg4_type = ARG_ANYTHING,
6997 .arg5_type = ARG_ANYTHING,
6998 };
6999
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7000 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7001 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7002 {
7003 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7004 sock_net(ctx->sk), 0, IPPROTO_UDP,
7005 netns_id, flags, -1);
7006 }
7007
7008 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7009 .func = bpf_sock_addr_sk_lookup_udp,
7010 .gpl_only = false,
7011 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7012 .arg1_type = ARG_PTR_TO_CTX,
7013 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7014 .arg3_type = ARG_CONST_SIZE,
7015 .arg4_type = ARG_ANYTHING,
7016 .arg5_type = ARG_ANYTHING,
7017 };
7018
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7019 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7020 struct bpf_insn_access_aux *info)
7021 {
7022 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7023 icsk_retransmits))
7024 return false;
7025
7026 if (off % size != 0)
7027 return false;
7028
7029 switch (off) {
7030 case offsetof(struct bpf_tcp_sock, bytes_received):
7031 case offsetof(struct bpf_tcp_sock, bytes_acked):
7032 return size == sizeof(__u64);
7033 default:
7034 return size == sizeof(__u32);
7035 }
7036 }
7037
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7038 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7039 const struct bpf_insn *si,
7040 struct bpf_insn *insn_buf,
7041 struct bpf_prog *prog, u32 *target_size)
7042 {
7043 struct bpf_insn *insn = insn_buf;
7044
7045 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
7046 do { \
7047 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
7048 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7049 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7050 si->dst_reg, si->src_reg, \
7051 offsetof(struct tcp_sock, FIELD)); \
7052 } while (0)
7053
7054 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
7055 do { \
7056 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
7057 FIELD) > \
7058 sizeof_field(struct bpf_tcp_sock, FIELD)); \
7059 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
7060 struct inet_connection_sock, \
7061 FIELD), \
7062 si->dst_reg, si->src_reg, \
7063 offsetof( \
7064 struct inet_connection_sock, \
7065 FIELD)); \
7066 } while (0)
7067
7068 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7069
7070 switch (si->off) {
7071 case offsetof(struct bpf_tcp_sock, rtt_min):
7072 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7073 sizeof(struct minmax));
7074 BUILD_BUG_ON(sizeof(struct minmax) <
7075 sizeof(struct minmax_sample));
7076
7077 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7078 offsetof(struct tcp_sock, rtt_min) +
7079 offsetof(struct minmax_sample, v));
7080 break;
7081 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7082 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7083 break;
7084 case offsetof(struct bpf_tcp_sock, srtt_us):
7085 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7086 break;
7087 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7088 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7089 break;
7090 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7091 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7092 break;
7093 case offsetof(struct bpf_tcp_sock, snd_nxt):
7094 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7095 break;
7096 case offsetof(struct bpf_tcp_sock, snd_una):
7097 BPF_TCP_SOCK_GET_COMMON(snd_una);
7098 break;
7099 case offsetof(struct bpf_tcp_sock, mss_cache):
7100 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7101 break;
7102 case offsetof(struct bpf_tcp_sock, ecn_flags):
7103 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7104 break;
7105 case offsetof(struct bpf_tcp_sock, rate_delivered):
7106 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7107 break;
7108 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7109 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7110 break;
7111 case offsetof(struct bpf_tcp_sock, packets_out):
7112 BPF_TCP_SOCK_GET_COMMON(packets_out);
7113 break;
7114 case offsetof(struct bpf_tcp_sock, retrans_out):
7115 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7116 break;
7117 case offsetof(struct bpf_tcp_sock, total_retrans):
7118 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7119 break;
7120 case offsetof(struct bpf_tcp_sock, segs_in):
7121 BPF_TCP_SOCK_GET_COMMON(segs_in);
7122 break;
7123 case offsetof(struct bpf_tcp_sock, data_segs_in):
7124 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7125 break;
7126 case offsetof(struct bpf_tcp_sock, segs_out):
7127 BPF_TCP_SOCK_GET_COMMON(segs_out);
7128 break;
7129 case offsetof(struct bpf_tcp_sock, data_segs_out):
7130 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7131 break;
7132 case offsetof(struct bpf_tcp_sock, lost_out):
7133 BPF_TCP_SOCK_GET_COMMON(lost_out);
7134 break;
7135 case offsetof(struct bpf_tcp_sock, sacked_out):
7136 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7137 break;
7138 case offsetof(struct bpf_tcp_sock, bytes_received):
7139 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7140 break;
7141 case offsetof(struct bpf_tcp_sock, bytes_acked):
7142 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7143 break;
7144 case offsetof(struct bpf_tcp_sock, dsack_dups):
7145 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7146 break;
7147 case offsetof(struct bpf_tcp_sock, delivered):
7148 BPF_TCP_SOCK_GET_COMMON(delivered);
7149 break;
7150 case offsetof(struct bpf_tcp_sock, delivered_ce):
7151 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7152 break;
7153 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7154 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7155 break;
7156 }
7157
7158 return insn - insn_buf;
7159 }
7160
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7161 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7162 {
7163 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7164 return (unsigned long)sk;
7165
7166 return (unsigned long)NULL;
7167 }
7168
7169 const struct bpf_func_proto bpf_tcp_sock_proto = {
7170 .func = bpf_tcp_sock,
7171 .gpl_only = false,
7172 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7173 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7174 };
7175
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7176 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7177 {
7178 sk = sk_to_full_sk(sk);
7179
7180 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7181 return (unsigned long)sk;
7182
7183 return (unsigned long)NULL;
7184 }
7185
7186 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7187 .func = bpf_get_listener_sock,
7188 .gpl_only = false,
7189 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7190 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7191 };
7192
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7193 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7194 {
7195 unsigned int iphdr_len;
7196
7197 switch (skb_protocol(skb, true)) {
7198 case cpu_to_be16(ETH_P_IP):
7199 iphdr_len = sizeof(struct iphdr);
7200 break;
7201 case cpu_to_be16(ETH_P_IPV6):
7202 iphdr_len = sizeof(struct ipv6hdr);
7203 break;
7204 default:
7205 return 0;
7206 }
7207
7208 if (skb_headlen(skb) < iphdr_len)
7209 return 0;
7210
7211 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7212 return 0;
7213
7214 return INET_ECN_set_ce(skb);
7215 }
7216
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7217 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7218 struct bpf_insn_access_aux *info)
7219 {
7220 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7221 return false;
7222
7223 if (off % size != 0)
7224 return false;
7225
7226 switch (off) {
7227 default:
7228 return size == sizeof(__u32);
7229 }
7230 }
7231
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7232 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7233 const struct bpf_insn *si,
7234 struct bpf_insn *insn_buf,
7235 struct bpf_prog *prog, u32 *target_size)
7236 {
7237 struct bpf_insn *insn = insn_buf;
7238
7239 #define BPF_XDP_SOCK_GET(FIELD) \
7240 do { \
7241 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7242 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7243 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7244 si->dst_reg, si->src_reg, \
7245 offsetof(struct xdp_sock, FIELD)); \
7246 } while (0)
7247
7248 switch (si->off) {
7249 case offsetof(struct bpf_xdp_sock, queue_id):
7250 BPF_XDP_SOCK_GET(queue_id);
7251 break;
7252 }
7253
7254 return insn - insn_buf;
7255 }
7256
7257 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7258 .func = bpf_skb_ecn_set_ce,
7259 .gpl_only = false,
7260 .ret_type = RET_INTEGER,
7261 .arg1_type = ARG_PTR_TO_CTX,
7262 };
7263
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7264 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7265 struct tcphdr *, th, u32, th_len)
7266 {
7267 #ifdef CONFIG_SYN_COOKIES
7268 u32 cookie;
7269 int ret;
7270
7271 if (unlikely(!sk || th_len < sizeof(*th)))
7272 return -EINVAL;
7273
7274 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7275 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7276 return -EINVAL;
7277
7278 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7279 return -EINVAL;
7280
7281 if (!th->ack || th->rst || th->syn)
7282 return -ENOENT;
7283
7284 if (unlikely(iph_len < sizeof(struct iphdr)))
7285 return -EINVAL;
7286
7287 if (tcp_synq_no_recent_overflow(sk))
7288 return -ENOENT;
7289
7290 cookie = ntohl(th->ack_seq) - 1;
7291
7292 /* Both struct iphdr and struct ipv6hdr have the version field at the
7293 * same offset so we can cast to the shorter header (struct iphdr).
7294 */
7295 switch (((struct iphdr *)iph)->version) {
7296 case 4:
7297 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7298 return -EINVAL;
7299
7300 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7301 break;
7302
7303 #if IS_BUILTIN(CONFIG_IPV6)
7304 case 6:
7305 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7306 return -EINVAL;
7307
7308 if (sk->sk_family != AF_INET6)
7309 return -EINVAL;
7310
7311 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7312 break;
7313 #endif /* CONFIG_IPV6 */
7314
7315 default:
7316 return -EPROTONOSUPPORT;
7317 }
7318
7319 if (ret > 0)
7320 return 0;
7321
7322 return -ENOENT;
7323 #else
7324 return -ENOTSUPP;
7325 #endif
7326 }
7327
7328 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7329 .func = bpf_tcp_check_syncookie,
7330 .gpl_only = true,
7331 .pkt_access = true,
7332 .ret_type = RET_INTEGER,
7333 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7334 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7335 .arg3_type = ARG_CONST_SIZE,
7336 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7337 .arg5_type = ARG_CONST_SIZE,
7338 };
7339
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7340 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7341 struct tcphdr *, th, u32, th_len)
7342 {
7343 #ifdef CONFIG_SYN_COOKIES
7344 u32 cookie;
7345 u16 mss;
7346
7347 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7348 return -EINVAL;
7349
7350 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7351 return -EINVAL;
7352
7353 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7354 return -ENOENT;
7355
7356 if (!th->syn || th->ack || th->fin || th->rst)
7357 return -EINVAL;
7358
7359 if (unlikely(iph_len < sizeof(struct iphdr)))
7360 return -EINVAL;
7361
7362 /* Both struct iphdr and struct ipv6hdr have the version field at the
7363 * same offset so we can cast to the shorter header (struct iphdr).
7364 */
7365 switch (((struct iphdr *)iph)->version) {
7366 case 4:
7367 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7368 return -EINVAL;
7369
7370 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7371 break;
7372
7373 #if IS_BUILTIN(CONFIG_IPV6)
7374 case 6:
7375 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7376 return -EINVAL;
7377
7378 if (sk->sk_family != AF_INET6)
7379 return -EINVAL;
7380
7381 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7382 break;
7383 #endif /* CONFIG_IPV6 */
7384
7385 default:
7386 return -EPROTONOSUPPORT;
7387 }
7388 if (mss == 0)
7389 return -ENOENT;
7390
7391 return cookie | ((u64)mss << 32);
7392 #else
7393 return -EOPNOTSUPP;
7394 #endif /* CONFIG_SYN_COOKIES */
7395 }
7396
7397 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7398 .func = bpf_tcp_gen_syncookie,
7399 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7400 .pkt_access = true,
7401 .ret_type = RET_INTEGER,
7402 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7403 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7404 .arg3_type = ARG_CONST_SIZE,
7405 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7406 .arg5_type = ARG_CONST_SIZE,
7407 };
7408
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7409 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7410 {
7411 if (!sk || flags != 0)
7412 return -EINVAL;
7413 if (!skb_at_tc_ingress(skb))
7414 return -EOPNOTSUPP;
7415 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7416 return -ENETUNREACH;
7417 if (sk_unhashed(sk))
7418 return -EOPNOTSUPP;
7419 if (sk_is_refcounted(sk) &&
7420 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7421 return -ENOENT;
7422
7423 skb_orphan(skb);
7424 skb->sk = sk;
7425 skb->destructor = sock_pfree;
7426
7427 return 0;
7428 }
7429
7430 static const struct bpf_func_proto bpf_sk_assign_proto = {
7431 .func = bpf_sk_assign,
7432 .gpl_only = false,
7433 .ret_type = RET_INTEGER,
7434 .arg1_type = ARG_PTR_TO_CTX,
7435 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7436 .arg3_type = ARG_ANYTHING,
7437 };
7438
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7439 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7440 u8 search_kind, const u8 *magic,
7441 u8 magic_len, bool *eol)
7442 {
7443 u8 kind, kind_len;
7444
7445 *eol = false;
7446
7447 while (op < opend) {
7448 kind = op[0];
7449
7450 if (kind == TCPOPT_EOL) {
7451 *eol = true;
7452 return ERR_PTR(-ENOMSG);
7453 } else if (kind == TCPOPT_NOP) {
7454 op++;
7455 continue;
7456 }
7457
7458 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7459 /* Something is wrong in the received header.
7460 * Follow the TCP stack's tcp_parse_options()
7461 * and just bail here.
7462 */
7463 return ERR_PTR(-EFAULT);
7464
7465 kind_len = op[1];
7466 if (search_kind == kind) {
7467 if (!magic_len)
7468 return op;
7469
7470 if (magic_len > kind_len - 2)
7471 return ERR_PTR(-ENOMSG);
7472
7473 if (!memcmp(&op[2], magic, magic_len))
7474 return op;
7475 }
7476
7477 op += kind_len;
7478 }
7479
7480 return ERR_PTR(-ENOMSG);
7481 }
7482
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7483 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7484 void *, search_res, u32, len, u64, flags)
7485 {
7486 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7487 const u8 *op, *opend, *magic, *search = search_res;
7488 u8 search_kind, search_len, copy_len, magic_len;
7489 int ret;
7490
7491 /* 2 byte is the minimal option len except TCPOPT_NOP and
7492 * TCPOPT_EOL which are useless for the bpf prog to learn
7493 * and this helper disallow loading them also.
7494 */
7495 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7496 return -EINVAL;
7497
7498 search_kind = search[0];
7499 search_len = search[1];
7500
7501 if (search_len > len || search_kind == TCPOPT_NOP ||
7502 search_kind == TCPOPT_EOL)
7503 return -EINVAL;
7504
7505 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7506 /* 16 or 32 bit magic. +2 for kind and kind length */
7507 if (search_len != 4 && search_len != 6)
7508 return -EINVAL;
7509 magic = &search[2];
7510 magic_len = search_len - 2;
7511 } else {
7512 if (search_len)
7513 return -EINVAL;
7514 magic = NULL;
7515 magic_len = 0;
7516 }
7517
7518 if (load_syn) {
7519 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7520 if (ret < 0)
7521 return ret;
7522
7523 opend = op + ret;
7524 op += sizeof(struct tcphdr);
7525 } else {
7526 if (!bpf_sock->skb ||
7527 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7528 /* This bpf_sock->op cannot call this helper */
7529 return -EPERM;
7530
7531 opend = bpf_sock->skb_data_end;
7532 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7533 }
7534
7535 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7536 &eol);
7537 if (IS_ERR(op))
7538 return PTR_ERR(op);
7539
7540 copy_len = op[1];
7541 ret = copy_len;
7542 if (copy_len > len) {
7543 ret = -ENOSPC;
7544 copy_len = len;
7545 }
7546
7547 memcpy(search_res, op, copy_len);
7548 return ret;
7549 }
7550
7551 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7552 .func = bpf_sock_ops_load_hdr_opt,
7553 .gpl_only = false,
7554 .ret_type = RET_INTEGER,
7555 .arg1_type = ARG_PTR_TO_CTX,
7556 .arg2_type = ARG_PTR_TO_MEM,
7557 .arg3_type = ARG_CONST_SIZE,
7558 .arg4_type = ARG_ANYTHING,
7559 };
7560
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7561 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7562 const void *, from, u32, len, u64, flags)
7563 {
7564 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7565 const u8 *op, *new_op, *magic = NULL;
7566 struct sk_buff *skb;
7567 bool eol;
7568
7569 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7570 return -EPERM;
7571
7572 if (len < 2 || flags)
7573 return -EINVAL;
7574
7575 new_op = from;
7576 new_kind = new_op[0];
7577 new_kind_len = new_op[1];
7578
7579 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7580 new_kind == TCPOPT_EOL)
7581 return -EINVAL;
7582
7583 if (new_kind_len > bpf_sock->remaining_opt_len)
7584 return -ENOSPC;
7585
7586 /* 253 is another experimental kind */
7587 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7588 if (new_kind_len < 4)
7589 return -EINVAL;
7590 /* Match for the 2 byte magic also.
7591 * RFC 6994: the magic could be 2 or 4 bytes.
7592 * Hence, matching by 2 byte only is on the
7593 * conservative side but it is the right
7594 * thing to do for the 'search-for-duplication'
7595 * purpose.
7596 */
7597 magic = &new_op[2];
7598 magic_len = 2;
7599 }
7600
7601 /* Check for duplication */
7602 skb = bpf_sock->skb;
7603 op = skb->data + sizeof(struct tcphdr);
7604 opend = bpf_sock->skb_data_end;
7605
7606 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7607 &eol);
7608 if (!IS_ERR(op))
7609 return -EEXIST;
7610
7611 if (PTR_ERR(op) != -ENOMSG)
7612 return PTR_ERR(op);
7613
7614 if (eol)
7615 /* The option has been ended. Treat it as no more
7616 * header option can be written.
7617 */
7618 return -ENOSPC;
7619
7620 /* No duplication found. Store the header option. */
7621 memcpy(opend, from, new_kind_len);
7622
7623 bpf_sock->remaining_opt_len -= new_kind_len;
7624 bpf_sock->skb_data_end += new_kind_len;
7625
7626 return 0;
7627 }
7628
7629 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7630 .func = bpf_sock_ops_store_hdr_opt,
7631 .gpl_only = false,
7632 .ret_type = RET_INTEGER,
7633 .arg1_type = ARG_PTR_TO_CTX,
7634 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7635 .arg3_type = ARG_CONST_SIZE,
7636 .arg4_type = ARG_ANYTHING,
7637 };
7638
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7639 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7640 u32, len, u64, flags)
7641 {
7642 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7643 return -EPERM;
7644
7645 if (flags || len < 2)
7646 return -EINVAL;
7647
7648 if (len > bpf_sock->remaining_opt_len)
7649 return -ENOSPC;
7650
7651 bpf_sock->remaining_opt_len -= len;
7652
7653 return 0;
7654 }
7655
7656 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7657 .func = bpf_sock_ops_reserve_hdr_opt,
7658 .gpl_only = false,
7659 .ret_type = RET_INTEGER,
7660 .arg1_type = ARG_PTR_TO_CTX,
7661 .arg2_type = ARG_ANYTHING,
7662 .arg3_type = ARG_ANYTHING,
7663 };
7664
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7665 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7666 u64, tstamp, u32, tstamp_type)
7667 {
7668 /* skb_clear_delivery_time() is done for inet protocol */
7669 if (skb->protocol != htons(ETH_P_IP) &&
7670 skb->protocol != htons(ETH_P_IPV6))
7671 return -EOPNOTSUPP;
7672
7673 switch (tstamp_type) {
7674 case BPF_SKB_TSTAMP_DELIVERY_MONO:
7675 if (!tstamp)
7676 return -EINVAL;
7677 skb->tstamp = tstamp;
7678 skb->mono_delivery_time = 1;
7679 break;
7680 case BPF_SKB_TSTAMP_UNSPEC:
7681 if (tstamp)
7682 return -EINVAL;
7683 skb->tstamp = 0;
7684 skb->mono_delivery_time = 0;
7685 break;
7686 default:
7687 return -EINVAL;
7688 }
7689
7690 return 0;
7691 }
7692
7693 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7694 .func = bpf_skb_set_tstamp,
7695 .gpl_only = false,
7696 .ret_type = RET_INTEGER,
7697 .arg1_type = ARG_PTR_TO_CTX,
7698 .arg2_type = ARG_ANYTHING,
7699 .arg3_type = ARG_ANYTHING,
7700 };
7701
7702 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7703 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7704 struct tcphdr *, th, u32, th_len)
7705 {
7706 u32 cookie;
7707 u16 mss;
7708
7709 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7710 return -EINVAL;
7711
7712 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7713 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7714
7715 return cookie | ((u64)mss << 32);
7716 }
7717
7718 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7719 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7720 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7721 .pkt_access = true,
7722 .ret_type = RET_INTEGER,
7723 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7724 .arg1_size = sizeof(struct iphdr),
7725 .arg2_type = ARG_PTR_TO_MEM,
7726 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7727 };
7728
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7729 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7730 struct tcphdr *, th, u32, th_len)
7731 {
7732 #if IS_BUILTIN(CONFIG_IPV6)
7733 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7734 sizeof(struct ipv6hdr);
7735 u32 cookie;
7736 u16 mss;
7737
7738 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7739 return -EINVAL;
7740
7741 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7742 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7743
7744 return cookie | ((u64)mss << 32);
7745 #else
7746 return -EPROTONOSUPPORT;
7747 #endif
7748 }
7749
7750 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7751 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7752 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7753 .pkt_access = true,
7754 .ret_type = RET_INTEGER,
7755 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7756 .arg1_size = sizeof(struct ipv6hdr),
7757 .arg2_type = ARG_PTR_TO_MEM,
7758 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7759 };
7760
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7761 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7762 struct tcphdr *, th)
7763 {
7764 u32 cookie = ntohl(th->ack_seq) - 1;
7765
7766 if (__cookie_v4_check(iph, th, cookie) > 0)
7767 return 0;
7768
7769 return -EACCES;
7770 }
7771
7772 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7773 .func = bpf_tcp_raw_check_syncookie_ipv4,
7774 .gpl_only = true, /* __cookie_v4_check is GPL */
7775 .pkt_access = true,
7776 .ret_type = RET_INTEGER,
7777 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7778 .arg1_size = sizeof(struct iphdr),
7779 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7780 .arg2_size = sizeof(struct tcphdr),
7781 };
7782
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7783 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7784 struct tcphdr *, th)
7785 {
7786 #if IS_BUILTIN(CONFIG_IPV6)
7787 u32 cookie = ntohl(th->ack_seq) - 1;
7788
7789 if (__cookie_v6_check(iph, th, cookie) > 0)
7790 return 0;
7791
7792 return -EACCES;
7793 #else
7794 return -EPROTONOSUPPORT;
7795 #endif
7796 }
7797
7798 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7799 .func = bpf_tcp_raw_check_syncookie_ipv6,
7800 .gpl_only = true, /* __cookie_v6_check is GPL */
7801 .pkt_access = true,
7802 .ret_type = RET_INTEGER,
7803 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7804 .arg1_size = sizeof(struct ipv6hdr),
7805 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7806 .arg2_size = sizeof(struct tcphdr),
7807 };
7808 #endif /* CONFIG_SYN_COOKIES */
7809
7810 #endif /* CONFIG_INET */
7811
bpf_helper_changes_pkt_data(void * func)7812 bool bpf_helper_changes_pkt_data(void *func)
7813 {
7814 if (func == bpf_skb_vlan_push ||
7815 func == bpf_skb_vlan_pop ||
7816 func == bpf_skb_store_bytes ||
7817 func == bpf_skb_change_proto ||
7818 func == bpf_skb_change_head ||
7819 func == sk_skb_change_head ||
7820 func == bpf_skb_change_tail ||
7821 func == sk_skb_change_tail ||
7822 func == bpf_skb_adjust_room ||
7823 func == sk_skb_adjust_room ||
7824 func == bpf_skb_pull_data ||
7825 func == sk_skb_pull_data ||
7826 func == bpf_clone_redirect ||
7827 func == bpf_l3_csum_replace ||
7828 func == bpf_l4_csum_replace ||
7829 func == bpf_xdp_adjust_head ||
7830 func == bpf_xdp_adjust_meta ||
7831 func == bpf_msg_pull_data ||
7832 func == bpf_msg_push_data ||
7833 func == bpf_msg_pop_data ||
7834 func == bpf_xdp_adjust_tail ||
7835 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7836 func == bpf_lwt_seg6_store_bytes ||
7837 func == bpf_lwt_seg6_adjust_srh ||
7838 func == bpf_lwt_seg6_action ||
7839 #endif
7840 #ifdef CONFIG_INET
7841 func == bpf_sock_ops_store_hdr_opt ||
7842 #endif
7843 func == bpf_lwt_in_push_encap ||
7844 func == bpf_lwt_xmit_push_encap)
7845 return true;
7846
7847 return false;
7848 }
7849
7850 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7851 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7852
7853 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7854 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7855 {
7856 const struct bpf_func_proto *func_proto;
7857
7858 func_proto = cgroup_common_func_proto(func_id, prog);
7859 if (func_proto)
7860 return func_proto;
7861
7862 func_proto = cgroup_current_func_proto(func_id, prog);
7863 if (func_proto)
7864 return func_proto;
7865
7866 switch (func_id) {
7867 case BPF_FUNC_get_socket_cookie:
7868 return &bpf_get_socket_cookie_sock_proto;
7869 case BPF_FUNC_get_netns_cookie:
7870 return &bpf_get_netns_cookie_sock_proto;
7871 case BPF_FUNC_perf_event_output:
7872 return &bpf_event_output_data_proto;
7873 case BPF_FUNC_sk_storage_get:
7874 return &bpf_sk_storage_get_cg_sock_proto;
7875 case BPF_FUNC_ktime_get_coarse_ns:
7876 return &bpf_ktime_get_coarse_ns_proto;
7877 default:
7878 return bpf_base_func_proto(func_id);
7879 }
7880 }
7881
7882 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7883 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7884 {
7885 const struct bpf_func_proto *func_proto;
7886
7887 func_proto = cgroup_common_func_proto(func_id, prog);
7888 if (func_proto)
7889 return func_proto;
7890
7891 func_proto = cgroup_current_func_proto(func_id, prog);
7892 if (func_proto)
7893 return func_proto;
7894
7895 switch (func_id) {
7896 case BPF_FUNC_bind:
7897 switch (prog->expected_attach_type) {
7898 case BPF_CGROUP_INET4_CONNECT:
7899 case BPF_CGROUP_INET6_CONNECT:
7900 return &bpf_bind_proto;
7901 default:
7902 return NULL;
7903 }
7904 case BPF_FUNC_get_socket_cookie:
7905 return &bpf_get_socket_cookie_sock_addr_proto;
7906 case BPF_FUNC_get_netns_cookie:
7907 return &bpf_get_netns_cookie_sock_addr_proto;
7908 case BPF_FUNC_perf_event_output:
7909 return &bpf_event_output_data_proto;
7910 #ifdef CONFIG_INET
7911 case BPF_FUNC_sk_lookup_tcp:
7912 return &bpf_sock_addr_sk_lookup_tcp_proto;
7913 case BPF_FUNC_sk_lookup_udp:
7914 return &bpf_sock_addr_sk_lookup_udp_proto;
7915 case BPF_FUNC_sk_release:
7916 return &bpf_sk_release_proto;
7917 case BPF_FUNC_skc_lookup_tcp:
7918 return &bpf_sock_addr_skc_lookup_tcp_proto;
7919 #endif /* CONFIG_INET */
7920 case BPF_FUNC_sk_storage_get:
7921 return &bpf_sk_storage_get_proto;
7922 case BPF_FUNC_sk_storage_delete:
7923 return &bpf_sk_storage_delete_proto;
7924 case BPF_FUNC_setsockopt:
7925 switch (prog->expected_attach_type) {
7926 case BPF_CGROUP_INET4_BIND:
7927 case BPF_CGROUP_INET6_BIND:
7928 case BPF_CGROUP_INET4_CONNECT:
7929 case BPF_CGROUP_INET6_CONNECT:
7930 case BPF_CGROUP_UDP4_RECVMSG:
7931 case BPF_CGROUP_UDP6_RECVMSG:
7932 case BPF_CGROUP_UDP4_SENDMSG:
7933 case BPF_CGROUP_UDP6_SENDMSG:
7934 case BPF_CGROUP_INET4_GETPEERNAME:
7935 case BPF_CGROUP_INET6_GETPEERNAME:
7936 case BPF_CGROUP_INET4_GETSOCKNAME:
7937 case BPF_CGROUP_INET6_GETSOCKNAME:
7938 return &bpf_sock_addr_setsockopt_proto;
7939 default:
7940 return NULL;
7941 }
7942 case BPF_FUNC_getsockopt:
7943 switch (prog->expected_attach_type) {
7944 case BPF_CGROUP_INET4_BIND:
7945 case BPF_CGROUP_INET6_BIND:
7946 case BPF_CGROUP_INET4_CONNECT:
7947 case BPF_CGROUP_INET6_CONNECT:
7948 case BPF_CGROUP_UDP4_RECVMSG:
7949 case BPF_CGROUP_UDP6_RECVMSG:
7950 case BPF_CGROUP_UDP4_SENDMSG:
7951 case BPF_CGROUP_UDP6_SENDMSG:
7952 case BPF_CGROUP_INET4_GETPEERNAME:
7953 case BPF_CGROUP_INET6_GETPEERNAME:
7954 case BPF_CGROUP_INET4_GETSOCKNAME:
7955 case BPF_CGROUP_INET6_GETSOCKNAME:
7956 return &bpf_sock_addr_getsockopt_proto;
7957 default:
7958 return NULL;
7959 }
7960 default:
7961 return bpf_sk_base_func_proto(func_id);
7962 }
7963 }
7964
7965 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7966 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7967 {
7968 switch (func_id) {
7969 case BPF_FUNC_skb_load_bytes:
7970 return &bpf_skb_load_bytes_proto;
7971 case BPF_FUNC_skb_load_bytes_relative:
7972 return &bpf_skb_load_bytes_relative_proto;
7973 case BPF_FUNC_get_socket_cookie:
7974 return &bpf_get_socket_cookie_proto;
7975 case BPF_FUNC_get_socket_uid:
7976 return &bpf_get_socket_uid_proto;
7977 case BPF_FUNC_perf_event_output:
7978 return &bpf_skb_event_output_proto;
7979 default:
7980 return bpf_sk_base_func_proto(func_id);
7981 }
7982 }
7983
7984 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7985 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7986
7987 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7988 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7989 {
7990 const struct bpf_func_proto *func_proto;
7991
7992 func_proto = cgroup_common_func_proto(func_id, prog);
7993 if (func_proto)
7994 return func_proto;
7995
7996 switch (func_id) {
7997 case BPF_FUNC_sk_fullsock:
7998 return &bpf_sk_fullsock_proto;
7999 case BPF_FUNC_sk_storage_get:
8000 return &bpf_sk_storage_get_proto;
8001 case BPF_FUNC_sk_storage_delete:
8002 return &bpf_sk_storage_delete_proto;
8003 case BPF_FUNC_perf_event_output:
8004 return &bpf_skb_event_output_proto;
8005 #ifdef CONFIG_SOCK_CGROUP_DATA
8006 case BPF_FUNC_skb_cgroup_id:
8007 return &bpf_skb_cgroup_id_proto;
8008 case BPF_FUNC_skb_ancestor_cgroup_id:
8009 return &bpf_skb_ancestor_cgroup_id_proto;
8010 case BPF_FUNC_sk_cgroup_id:
8011 return &bpf_sk_cgroup_id_proto;
8012 case BPF_FUNC_sk_ancestor_cgroup_id:
8013 return &bpf_sk_ancestor_cgroup_id_proto;
8014 #endif
8015 #ifdef CONFIG_INET
8016 case BPF_FUNC_sk_lookup_tcp:
8017 return &bpf_sk_lookup_tcp_proto;
8018 case BPF_FUNC_sk_lookup_udp:
8019 return &bpf_sk_lookup_udp_proto;
8020 case BPF_FUNC_sk_release:
8021 return &bpf_sk_release_proto;
8022 case BPF_FUNC_skc_lookup_tcp:
8023 return &bpf_skc_lookup_tcp_proto;
8024 case BPF_FUNC_tcp_sock:
8025 return &bpf_tcp_sock_proto;
8026 case BPF_FUNC_get_listener_sock:
8027 return &bpf_get_listener_sock_proto;
8028 case BPF_FUNC_skb_ecn_set_ce:
8029 return &bpf_skb_ecn_set_ce_proto;
8030 #endif
8031 default:
8032 return sk_filter_func_proto(func_id, prog);
8033 }
8034 }
8035
8036 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8037 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8038 {
8039 switch (func_id) {
8040 case BPF_FUNC_skb_store_bytes:
8041 return &bpf_skb_store_bytes_proto;
8042 case BPF_FUNC_skb_load_bytes:
8043 return &bpf_skb_load_bytes_proto;
8044 case BPF_FUNC_skb_load_bytes_relative:
8045 return &bpf_skb_load_bytes_relative_proto;
8046 case BPF_FUNC_skb_pull_data:
8047 return &bpf_skb_pull_data_proto;
8048 case BPF_FUNC_csum_diff:
8049 return &bpf_csum_diff_proto;
8050 case BPF_FUNC_csum_update:
8051 return &bpf_csum_update_proto;
8052 case BPF_FUNC_csum_level:
8053 return &bpf_csum_level_proto;
8054 case BPF_FUNC_l3_csum_replace:
8055 return &bpf_l3_csum_replace_proto;
8056 case BPF_FUNC_l4_csum_replace:
8057 return &bpf_l4_csum_replace_proto;
8058 case BPF_FUNC_clone_redirect:
8059 return &bpf_clone_redirect_proto;
8060 case BPF_FUNC_get_cgroup_classid:
8061 return &bpf_get_cgroup_classid_proto;
8062 case BPF_FUNC_skb_vlan_push:
8063 return &bpf_skb_vlan_push_proto;
8064 case BPF_FUNC_skb_vlan_pop:
8065 return &bpf_skb_vlan_pop_proto;
8066 case BPF_FUNC_skb_change_proto:
8067 return &bpf_skb_change_proto_proto;
8068 case BPF_FUNC_skb_change_type:
8069 return &bpf_skb_change_type_proto;
8070 case BPF_FUNC_skb_adjust_room:
8071 return &bpf_skb_adjust_room_proto;
8072 case BPF_FUNC_skb_change_tail:
8073 return &bpf_skb_change_tail_proto;
8074 case BPF_FUNC_skb_change_head:
8075 return &bpf_skb_change_head_proto;
8076 case BPF_FUNC_skb_get_tunnel_key:
8077 return &bpf_skb_get_tunnel_key_proto;
8078 case BPF_FUNC_skb_set_tunnel_key:
8079 return bpf_get_skb_set_tunnel_proto(func_id);
8080 case BPF_FUNC_skb_get_tunnel_opt:
8081 return &bpf_skb_get_tunnel_opt_proto;
8082 case BPF_FUNC_skb_set_tunnel_opt:
8083 return bpf_get_skb_set_tunnel_proto(func_id);
8084 case BPF_FUNC_redirect:
8085 return &bpf_redirect_proto;
8086 case BPF_FUNC_redirect_neigh:
8087 return &bpf_redirect_neigh_proto;
8088 case BPF_FUNC_redirect_peer:
8089 return &bpf_redirect_peer_proto;
8090 case BPF_FUNC_get_route_realm:
8091 return &bpf_get_route_realm_proto;
8092 case BPF_FUNC_get_hash_recalc:
8093 return &bpf_get_hash_recalc_proto;
8094 case BPF_FUNC_set_hash_invalid:
8095 return &bpf_set_hash_invalid_proto;
8096 case BPF_FUNC_set_hash:
8097 return &bpf_set_hash_proto;
8098 case BPF_FUNC_perf_event_output:
8099 return &bpf_skb_event_output_proto;
8100 case BPF_FUNC_get_smp_processor_id:
8101 return &bpf_get_smp_processor_id_proto;
8102 case BPF_FUNC_skb_under_cgroup:
8103 return &bpf_skb_under_cgroup_proto;
8104 case BPF_FUNC_get_socket_cookie:
8105 return &bpf_get_socket_cookie_proto;
8106 case BPF_FUNC_get_socket_uid:
8107 return &bpf_get_socket_uid_proto;
8108 case BPF_FUNC_fib_lookup:
8109 return &bpf_skb_fib_lookup_proto;
8110 case BPF_FUNC_check_mtu:
8111 return &bpf_skb_check_mtu_proto;
8112 case BPF_FUNC_sk_fullsock:
8113 return &bpf_sk_fullsock_proto;
8114 case BPF_FUNC_sk_storage_get:
8115 return &bpf_sk_storage_get_proto;
8116 case BPF_FUNC_sk_storage_delete:
8117 return &bpf_sk_storage_delete_proto;
8118 #ifdef CONFIG_XFRM
8119 case BPF_FUNC_skb_get_xfrm_state:
8120 return &bpf_skb_get_xfrm_state_proto;
8121 #endif
8122 #ifdef CONFIG_CGROUP_NET_CLASSID
8123 case BPF_FUNC_skb_cgroup_classid:
8124 return &bpf_skb_cgroup_classid_proto;
8125 #endif
8126 #ifdef CONFIG_SOCK_CGROUP_DATA
8127 case BPF_FUNC_skb_cgroup_id:
8128 return &bpf_skb_cgroup_id_proto;
8129 case BPF_FUNC_skb_ancestor_cgroup_id:
8130 return &bpf_skb_ancestor_cgroup_id_proto;
8131 #endif
8132 #ifdef CONFIG_INET
8133 case BPF_FUNC_sk_lookup_tcp:
8134 return &bpf_tc_sk_lookup_tcp_proto;
8135 case BPF_FUNC_sk_lookup_udp:
8136 return &bpf_tc_sk_lookup_udp_proto;
8137 case BPF_FUNC_sk_release:
8138 return &bpf_sk_release_proto;
8139 case BPF_FUNC_tcp_sock:
8140 return &bpf_tcp_sock_proto;
8141 case BPF_FUNC_get_listener_sock:
8142 return &bpf_get_listener_sock_proto;
8143 case BPF_FUNC_skc_lookup_tcp:
8144 return &bpf_tc_skc_lookup_tcp_proto;
8145 case BPF_FUNC_tcp_check_syncookie:
8146 return &bpf_tcp_check_syncookie_proto;
8147 case BPF_FUNC_skb_ecn_set_ce:
8148 return &bpf_skb_ecn_set_ce_proto;
8149 case BPF_FUNC_tcp_gen_syncookie:
8150 return &bpf_tcp_gen_syncookie_proto;
8151 case BPF_FUNC_sk_assign:
8152 return &bpf_sk_assign_proto;
8153 case BPF_FUNC_skb_set_tstamp:
8154 return &bpf_skb_set_tstamp_proto;
8155 #ifdef CONFIG_SYN_COOKIES
8156 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8157 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8158 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8159 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8160 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8161 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8162 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8163 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8164 #endif
8165 #endif
8166 default:
8167 return bpf_sk_base_func_proto(func_id);
8168 }
8169 }
8170
8171 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8172 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8173 {
8174 switch (func_id) {
8175 case BPF_FUNC_perf_event_output:
8176 return &bpf_xdp_event_output_proto;
8177 case BPF_FUNC_get_smp_processor_id:
8178 return &bpf_get_smp_processor_id_proto;
8179 case BPF_FUNC_csum_diff:
8180 return &bpf_csum_diff_proto;
8181 case BPF_FUNC_xdp_adjust_head:
8182 return &bpf_xdp_adjust_head_proto;
8183 case BPF_FUNC_xdp_adjust_meta:
8184 return &bpf_xdp_adjust_meta_proto;
8185 case BPF_FUNC_redirect:
8186 return &bpf_xdp_redirect_proto;
8187 case BPF_FUNC_redirect_map:
8188 return &bpf_xdp_redirect_map_proto;
8189 case BPF_FUNC_xdp_adjust_tail:
8190 return &bpf_xdp_adjust_tail_proto;
8191 case BPF_FUNC_xdp_get_buff_len:
8192 return &bpf_xdp_get_buff_len_proto;
8193 case BPF_FUNC_xdp_load_bytes:
8194 return &bpf_xdp_load_bytes_proto;
8195 case BPF_FUNC_xdp_store_bytes:
8196 return &bpf_xdp_store_bytes_proto;
8197 case BPF_FUNC_fib_lookup:
8198 return &bpf_xdp_fib_lookup_proto;
8199 case BPF_FUNC_check_mtu:
8200 return &bpf_xdp_check_mtu_proto;
8201 #ifdef CONFIG_INET
8202 case BPF_FUNC_sk_lookup_udp:
8203 return &bpf_xdp_sk_lookup_udp_proto;
8204 case BPF_FUNC_sk_lookup_tcp:
8205 return &bpf_xdp_sk_lookup_tcp_proto;
8206 case BPF_FUNC_sk_release:
8207 return &bpf_sk_release_proto;
8208 case BPF_FUNC_skc_lookup_tcp:
8209 return &bpf_xdp_skc_lookup_tcp_proto;
8210 case BPF_FUNC_tcp_check_syncookie:
8211 return &bpf_tcp_check_syncookie_proto;
8212 case BPF_FUNC_tcp_gen_syncookie:
8213 return &bpf_tcp_gen_syncookie_proto;
8214 #ifdef CONFIG_SYN_COOKIES
8215 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8216 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8217 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8218 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8219 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8220 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8221 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8222 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8223 #endif
8224 #endif
8225 default:
8226 return bpf_sk_base_func_proto(func_id);
8227 }
8228
8229 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8230 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8231 * kfuncs are defined in two different modules, and we want to be able
8232 * to use them interchangably with the same BTF type ID. Because modules
8233 * can't de-duplicate BTF IDs between each other, we need the type to be
8234 * referenced in the vmlinux BTF or the verifier will get confused about
8235 * the different types. So we add this dummy type reference which will
8236 * be included in vmlinux BTF, allowing both modules to refer to the
8237 * same type ID.
8238 */
8239 BTF_TYPE_EMIT(struct nf_conn___init);
8240 #endif
8241 }
8242
8243 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8244 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8245
8246 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8247 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8248 {
8249 const struct bpf_func_proto *func_proto;
8250
8251 func_proto = cgroup_common_func_proto(func_id, prog);
8252 if (func_proto)
8253 return func_proto;
8254
8255 switch (func_id) {
8256 case BPF_FUNC_setsockopt:
8257 return &bpf_sock_ops_setsockopt_proto;
8258 case BPF_FUNC_getsockopt:
8259 return &bpf_sock_ops_getsockopt_proto;
8260 case BPF_FUNC_sock_ops_cb_flags_set:
8261 return &bpf_sock_ops_cb_flags_set_proto;
8262 case BPF_FUNC_sock_map_update:
8263 return &bpf_sock_map_update_proto;
8264 case BPF_FUNC_sock_hash_update:
8265 return &bpf_sock_hash_update_proto;
8266 case BPF_FUNC_get_socket_cookie:
8267 return &bpf_get_socket_cookie_sock_ops_proto;
8268 case BPF_FUNC_perf_event_output:
8269 return &bpf_event_output_data_proto;
8270 case BPF_FUNC_sk_storage_get:
8271 return &bpf_sk_storage_get_proto;
8272 case BPF_FUNC_sk_storage_delete:
8273 return &bpf_sk_storage_delete_proto;
8274 case BPF_FUNC_get_netns_cookie:
8275 return &bpf_get_netns_cookie_sock_ops_proto;
8276 #ifdef CONFIG_INET
8277 case BPF_FUNC_load_hdr_opt:
8278 return &bpf_sock_ops_load_hdr_opt_proto;
8279 case BPF_FUNC_store_hdr_opt:
8280 return &bpf_sock_ops_store_hdr_opt_proto;
8281 case BPF_FUNC_reserve_hdr_opt:
8282 return &bpf_sock_ops_reserve_hdr_opt_proto;
8283 case BPF_FUNC_tcp_sock:
8284 return &bpf_tcp_sock_proto;
8285 #endif /* CONFIG_INET */
8286 default:
8287 return bpf_sk_base_func_proto(func_id);
8288 }
8289 }
8290
8291 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8292 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8293
8294 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8295 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8296 {
8297 switch (func_id) {
8298 case BPF_FUNC_msg_redirect_map:
8299 return &bpf_msg_redirect_map_proto;
8300 case BPF_FUNC_msg_redirect_hash:
8301 return &bpf_msg_redirect_hash_proto;
8302 case BPF_FUNC_msg_apply_bytes:
8303 return &bpf_msg_apply_bytes_proto;
8304 case BPF_FUNC_msg_cork_bytes:
8305 return &bpf_msg_cork_bytes_proto;
8306 case BPF_FUNC_msg_pull_data:
8307 return &bpf_msg_pull_data_proto;
8308 case BPF_FUNC_msg_push_data:
8309 return &bpf_msg_push_data_proto;
8310 case BPF_FUNC_msg_pop_data:
8311 return &bpf_msg_pop_data_proto;
8312 case BPF_FUNC_perf_event_output:
8313 return &bpf_event_output_data_proto;
8314 case BPF_FUNC_get_current_uid_gid:
8315 return &bpf_get_current_uid_gid_proto;
8316 case BPF_FUNC_get_current_pid_tgid:
8317 return &bpf_get_current_pid_tgid_proto;
8318 case BPF_FUNC_sk_storage_get:
8319 return &bpf_sk_storage_get_proto;
8320 case BPF_FUNC_sk_storage_delete:
8321 return &bpf_sk_storage_delete_proto;
8322 case BPF_FUNC_get_netns_cookie:
8323 return &bpf_get_netns_cookie_sk_msg_proto;
8324 #ifdef CONFIG_CGROUP_NET_CLASSID
8325 case BPF_FUNC_get_cgroup_classid:
8326 return &bpf_get_cgroup_classid_curr_proto;
8327 #endif
8328 default:
8329 return bpf_sk_base_func_proto(func_id);
8330 }
8331 }
8332
8333 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8334 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8335
8336 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8337 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8338 {
8339 switch (func_id) {
8340 case BPF_FUNC_skb_store_bytes:
8341 return &bpf_skb_store_bytes_proto;
8342 case BPF_FUNC_skb_load_bytes:
8343 return &bpf_skb_load_bytes_proto;
8344 case BPF_FUNC_skb_pull_data:
8345 return &sk_skb_pull_data_proto;
8346 case BPF_FUNC_skb_change_tail:
8347 return &sk_skb_change_tail_proto;
8348 case BPF_FUNC_skb_change_head:
8349 return &sk_skb_change_head_proto;
8350 case BPF_FUNC_skb_adjust_room:
8351 return &sk_skb_adjust_room_proto;
8352 case BPF_FUNC_get_socket_cookie:
8353 return &bpf_get_socket_cookie_proto;
8354 case BPF_FUNC_get_socket_uid:
8355 return &bpf_get_socket_uid_proto;
8356 case BPF_FUNC_sk_redirect_map:
8357 return &bpf_sk_redirect_map_proto;
8358 case BPF_FUNC_sk_redirect_hash:
8359 return &bpf_sk_redirect_hash_proto;
8360 case BPF_FUNC_perf_event_output:
8361 return &bpf_skb_event_output_proto;
8362 #ifdef CONFIG_INET
8363 case BPF_FUNC_sk_lookup_tcp:
8364 return &bpf_sk_lookup_tcp_proto;
8365 case BPF_FUNC_sk_lookup_udp:
8366 return &bpf_sk_lookup_udp_proto;
8367 case BPF_FUNC_sk_release:
8368 return &bpf_sk_release_proto;
8369 case BPF_FUNC_skc_lookup_tcp:
8370 return &bpf_skc_lookup_tcp_proto;
8371 #endif
8372 default:
8373 return bpf_sk_base_func_proto(func_id);
8374 }
8375 }
8376
8377 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8378 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8379 {
8380 switch (func_id) {
8381 case BPF_FUNC_skb_load_bytes:
8382 return &bpf_flow_dissector_load_bytes_proto;
8383 default:
8384 return bpf_sk_base_func_proto(func_id);
8385 }
8386 }
8387
8388 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8389 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8390 {
8391 switch (func_id) {
8392 case BPF_FUNC_skb_load_bytes:
8393 return &bpf_skb_load_bytes_proto;
8394 case BPF_FUNC_skb_pull_data:
8395 return &bpf_skb_pull_data_proto;
8396 case BPF_FUNC_csum_diff:
8397 return &bpf_csum_diff_proto;
8398 case BPF_FUNC_get_cgroup_classid:
8399 return &bpf_get_cgroup_classid_proto;
8400 case BPF_FUNC_get_route_realm:
8401 return &bpf_get_route_realm_proto;
8402 case BPF_FUNC_get_hash_recalc:
8403 return &bpf_get_hash_recalc_proto;
8404 case BPF_FUNC_perf_event_output:
8405 return &bpf_skb_event_output_proto;
8406 case BPF_FUNC_get_smp_processor_id:
8407 return &bpf_get_smp_processor_id_proto;
8408 case BPF_FUNC_skb_under_cgroup:
8409 return &bpf_skb_under_cgroup_proto;
8410 default:
8411 return bpf_sk_base_func_proto(func_id);
8412 }
8413 }
8414
8415 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8416 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8417 {
8418 switch (func_id) {
8419 case BPF_FUNC_lwt_push_encap:
8420 return &bpf_lwt_in_push_encap_proto;
8421 default:
8422 return lwt_out_func_proto(func_id, prog);
8423 }
8424 }
8425
8426 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8427 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8428 {
8429 switch (func_id) {
8430 case BPF_FUNC_skb_get_tunnel_key:
8431 return &bpf_skb_get_tunnel_key_proto;
8432 case BPF_FUNC_skb_set_tunnel_key:
8433 return bpf_get_skb_set_tunnel_proto(func_id);
8434 case BPF_FUNC_skb_get_tunnel_opt:
8435 return &bpf_skb_get_tunnel_opt_proto;
8436 case BPF_FUNC_skb_set_tunnel_opt:
8437 return bpf_get_skb_set_tunnel_proto(func_id);
8438 case BPF_FUNC_redirect:
8439 return &bpf_redirect_proto;
8440 case BPF_FUNC_clone_redirect:
8441 return &bpf_clone_redirect_proto;
8442 case BPF_FUNC_skb_change_tail:
8443 return &bpf_skb_change_tail_proto;
8444 case BPF_FUNC_skb_change_head:
8445 return &bpf_skb_change_head_proto;
8446 case BPF_FUNC_skb_store_bytes:
8447 return &bpf_skb_store_bytes_proto;
8448 case BPF_FUNC_csum_update:
8449 return &bpf_csum_update_proto;
8450 case BPF_FUNC_csum_level:
8451 return &bpf_csum_level_proto;
8452 case BPF_FUNC_l3_csum_replace:
8453 return &bpf_l3_csum_replace_proto;
8454 case BPF_FUNC_l4_csum_replace:
8455 return &bpf_l4_csum_replace_proto;
8456 case BPF_FUNC_set_hash_invalid:
8457 return &bpf_set_hash_invalid_proto;
8458 case BPF_FUNC_lwt_push_encap:
8459 return &bpf_lwt_xmit_push_encap_proto;
8460 default:
8461 return lwt_out_func_proto(func_id, prog);
8462 }
8463 }
8464
8465 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8466 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8467 {
8468 switch (func_id) {
8469 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8470 case BPF_FUNC_lwt_seg6_store_bytes:
8471 return &bpf_lwt_seg6_store_bytes_proto;
8472 case BPF_FUNC_lwt_seg6_action:
8473 return &bpf_lwt_seg6_action_proto;
8474 case BPF_FUNC_lwt_seg6_adjust_srh:
8475 return &bpf_lwt_seg6_adjust_srh_proto;
8476 #endif
8477 default:
8478 return lwt_out_func_proto(func_id, prog);
8479 }
8480 }
8481
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8482 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8483 const struct bpf_prog *prog,
8484 struct bpf_insn_access_aux *info)
8485 {
8486 const int size_default = sizeof(__u32);
8487
8488 if (off < 0 || off >= sizeof(struct __sk_buff))
8489 return false;
8490
8491 /* The verifier guarantees that size > 0. */
8492 if (off % size != 0)
8493 return false;
8494
8495 switch (off) {
8496 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8497 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8498 return false;
8499 break;
8500 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8501 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8502 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8503 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8504 case bpf_ctx_range(struct __sk_buff, data):
8505 case bpf_ctx_range(struct __sk_buff, data_meta):
8506 case bpf_ctx_range(struct __sk_buff, data_end):
8507 if (size != size_default)
8508 return false;
8509 break;
8510 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8511 return false;
8512 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8513 if (type == BPF_WRITE || size != sizeof(__u64))
8514 return false;
8515 break;
8516 case bpf_ctx_range(struct __sk_buff, tstamp):
8517 if (size != sizeof(__u64))
8518 return false;
8519 break;
8520 case offsetof(struct __sk_buff, sk):
8521 if (type == BPF_WRITE || size != sizeof(__u64))
8522 return false;
8523 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8524 break;
8525 case offsetof(struct __sk_buff, tstamp_type):
8526 return false;
8527 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8528 /* Explicitly prohibit access to padding in __sk_buff. */
8529 return false;
8530 default:
8531 /* Only narrow read access allowed for now. */
8532 if (type == BPF_WRITE) {
8533 if (size != size_default)
8534 return false;
8535 } else {
8536 bpf_ctx_record_field_size(info, size_default);
8537 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8538 return false;
8539 }
8540 }
8541
8542 return true;
8543 }
8544
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8545 static bool sk_filter_is_valid_access(int off, int size,
8546 enum bpf_access_type type,
8547 const struct bpf_prog *prog,
8548 struct bpf_insn_access_aux *info)
8549 {
8550 switch (off) {
8551 case bpf_ctx_range(struct __sk_buff, tc_classid):
8552 case bpf_ctx_range(struct __sk_buff, data):
8553 case bpf_ctx_range(struct __sk_buff, data_meta):
8554 case bpf_ctx_range(struct __sk_buff, data_end):
8555 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8556 case bpf_ctx_range(struct __sk_buff, tstamp):
8557 case bpf_ctx_range(struct __sk_buff, wire_len):
8558 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8559 return false;
8560 }
8561
8562 if (type == BPF_WRITE) {
8563 switch (off) {
8564 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8565 break;
8566 default:
8567 return false;
8568 }
8569 }
8570
8571 return bpf_skb_is_valid_access(off, size, type, prog, info);
8572 }
8573
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8574 static bool cg_skb_is_valid_access(int off, int size,
8575 enum bpf_access_type type,
8576 const struct bpf_prog *prog,
8577 struct bpf_insn_access_aux *info)
8578 {
8579 switch (off) {
8580 case bpf_ctx_range(struct __sk_buff, tc_classid):
8581 case bpf_ctx_range(struct __sk_buff, data_meta):
8582 case bpf_ctx_range(struct __sk_buff, wire_len):
8583 return false;
8584 case bpf_ctx_range(struct __sk_buff, data):
8585 case bpf_ctx_range(struct __sk_buff, data_end):
8586 if (!bpf_capable())
8587 return false;
8588 break;
8589 }
8590
8591 if (type == BPF_WRITE) {
8592 switch (off) {
8593 case bpf_ctx_range(struct __sk_buff, mark):
8594 case bpf_ctx_range(struct __sk_buff, priority):
8595 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8596 break;
8597 case bpf_ctx_range(struct __sk_buff, tstamp):
8598 if (!bpf_capable())
8599 return false;
8600 break;
8601 default:
8602 return false;
8603 }
8604 }
8605
8606 switch (off) {
8607 case bpf_ctx_range(struct __sk_buff, data):
8608 info->reg_type = PTR_TO_PACKET;
8609 break;
8610 case bpf_ctx_range(struct __sk_buff, data_end):
8611 info->reg_type = PTR_TO_PACKET_END;
8612 break;
8613 }
8614
8615 return bpf_skb_is_valid_access(off, size, type, prog, info);
8616 }
8617
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8618 static bool lwt_is_valid_access(int off, int size,
8619 enum bpf_access_type type,
8620 const struct bpf_prog *prog,
8621 struct bpf_insn_access_aux *info)
8622 {
8623 switch (off) {
8624 case bpf_ctx_range(struct __sk_buff, tc_classid):
8625 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8626 case bpf_ctx_range(struct __sk_buff, data_meta):
8627 case bpf_ctx_range(struct __sk_buff, tstamp):
8628 case bpf_ctx_range(struct __sk_buff, wire_len):
8629 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8630 return false;
8631 }
8632
8633 if (type == BPF_WRITE) {
8634 switch (off) {
8635 case bpf_ctx_range(struct __sk_buff, mark):
8636 case bpf_ctx_range(struct __sk_buff, priority):
8637 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8638 break;
8639 default:
8640 return false;
8641 }
8642 }
8643
8644 switch (off) {
8645 case bpf_ctx_range(struct __sk_buff, data):
8646 info->reg_type = PTR_TO_PACKET;
8647 break;
8648 case bpf_ctx_range(struct __sk_buff, data_end):
8649 info->reg_type = PTR_TO_PACKET_END;
8650 break;
8651 }
8652
8653 return bpf_skb_is_valid_access(off, size, type, prog, info);
8654 }
8655
8656 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8657 static bool __sock_filter_check_attach_type(int off,
8658 enum bpf_access_type access_type,
8659 enum bpf_attach_type attach_type)
8660 {
8661 switch (off) {
8662 case offsetof(struct bpf_sock, bound_dev_if):
8663 case offsetof(struct bpf_sock, mark):
8664 case offsetof(struct bpf_sock, priority):
8665 switch (attach_type) {
8666 case BPF_CGROUP_INET_SOCK_CREATE:
8667 case BPF_CGROUP_INET_SOCK_RELEASE:
8668 goto full_access;
8669 default:
8670 return false;
8671 }
8672 case bpf_ctx_range(struct bpf_sock, src_ip4):
8673 switch (attach_type) {
8674 case BPF_CGROUP_INET4_POST_BIND:
8675 goto read_only;
8676 default:
8677 return false;
8678 }
8679 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8680 switch (attach_type) {
8681 case BPF_CGROUP_INET6_POST_BIND:
8682 goto read_only;
8683 default:
8684 return false;
8685 }
8686 case bpf_ctx_range(struct bpf_sock, src_port):
8687 switch (attach_type) {
8688 case BPF_CGROUP_INET4_POST_BIND:
8689 case BPF_CGROUP_INET6_POST_BIND:
8690 goto read_only;
8691 default:
8692 return false;
8693 }
8694 }
8695 read_only:
8696 return access_type == BPF_READ;
8697 full_access:
8698 return true;
8699 }
8700
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8701 bool bpf_sock_common_is_valid_access(int off, int size,
8702 enum bpf_access_type type,
8703 struct bpf_insn_access_aux *info)
8704 {
8705 switch (off) {
8706 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8707 return false;
8708 default:
8709 return bpf_sock_is_valid_access(off, size, type, info);
8710 }
8711 }
8712
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8713 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8714 struct bpf_insn_access_aux *info)
8715 {
8716 const int size_default = sizeof(__u32);
8717 int field_size;
8718
8719 if (off < 0 || off >= sizeof(struct bpf_sock))
8720 return false;
8721 if (off % size != 0)
8722 return false;
8723
8724 switch (off) {
8725 case offsetof(struct bpf_sock, state):
8726 case offsetof(struct bpf_sock, family):
8727 case offsetof(struct bpf_sock, type):
8728 case offsetof(struct bpf_sock, protocol):
8729 case offsetof(struct bpf_sock, src_port):
8730 case offsetof(struct bpf_sock, rx_queue_mapping):
8731 case bpf_ctx_range(struct bpf_sock, src_ip4):
8732 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8733 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8734 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8735 bpf_ctx_record_field_size(info, size_default);
8736 return bpf_ctx_narrow_access_ok(off, size, size_default);
8737 case bpf_ctx_range(struct bpf_sock, dst_port):
8738 field_size = size == size_default ?
8739 size_default : sizeof_field(struct bpf_sock, dst_port);
8740 bpf_ctx_record_field_size(info, field_size);
8741 return bpf_ctx_narrow_access_ok(off, size, field_size);
8742 case offsetofend(struct bpf_sock, dst_port) ...
8743 offsetof(struct bpf_sock, dst_ip4) - 1:
8744 return false;
8745 }
8746
8747 return size == size_default;
8748 }
8749
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8750 static bool sock_filter_is_valid_access(int off, int size,
8751 enum bpf_access_type type,
8752 const struct bpf_prog *prog,
8753 struct bpf_insn_access_aux *info)
8754 {
8755 if (!bpf_sock_is_valid_access(off, size, type, info))
8756 return false;
8757 return __sock_filter_check_attach_type(off, type,
8758 prog->expected_attach_type);
8759 }
8760
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8761 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8762 const struct bpf_prog *prog)
8763 {
8764 /* Neither direct read nor direct write requires any preliminary
8765 * action.
8766 */
8767 return 0;
8768 }
8769
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8770 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8771 const struct bpf_prog *prog, int drop_verdict)
8772 {
8773 struct bpf_insn *insn = insn_buf;
8774
8775 if (!direct_write)
8776 return 0;
8777
8778 /* if (!skb->cloned)
8779 * goto start;
8780 *
8781 * (Fast-path, otherwise approximation that we might be
8782 * a clone, do the rest in helper.)
8783 */
8784 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8785 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8786 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8787
8788 /* ret = bpf_skb_pull_data(skb, 0); */
8789 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8790 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8791 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8792 BPF_FUNC_skb_pull_data);
8793 /* if (!ret)
8794 * goto restore;
8795 * return TC_ACT_SHOT;
8796 */
8797 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8798 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8799 *insn++ = BPF_EXIT_INSN();
8800
8801 /* restore: */
8802 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8803 /* start: */
8804 *insn++ = prog->insnsi[0];
8805
8806 return insn - insn_buf;
8807 }
8808
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8809 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8810 struct bpf_insn *insn_buf)
8811 {
8812 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8813 struct bpf_insn *insn = insn_buf;
8814
8815 if (!indirect) {
8816 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8817 } else {
8818 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8819 if (orig->imm)
8820 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8821 }
8822 /* We're guaranteed here that CTX is in R6. */
8823 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8824
8825 switch (BPF_SIZE(orig->code)) {
8826 case BPF_B:
8827 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8828 break;
8829 case BPF_H:
8830 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8831 break;
8832 case BPF_W:
8833 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8834 break;
8835 }
8836
8837 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8838 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8839 *insn++ = BPF_EXIT_INSN();
8840
8841 return insn - insn_buf;
8842 }
8843
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8844 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8845 const struct bpf_prog *prog)
8846 {
8847 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8848 }
8849
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8850 static bool tc_cls_act_is_valid_access(int off, int size,
8851 enum bpf_access_type type,
8852 const struct bpf_prog *prog,
8853 struct bpf_insn_access_aux *info)
8854 {
8855 if (type == BPF_WRITE) {
8856 switch (off) {
8857 case bpf_ctx_range(struct __sk_buff, mark):
8858 case bpf_ctx_range(struct __sk_buff, tc_index):
8859 case bpf_ctx_range(struct __sk_buff, priority):
8860 case bpf_ctx_range(struct __sk_buff, tc_classid):
8861 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8862 case bpf_ctx_range(struct __sk_buff, tstamp):
8863 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8864 break;
8865 default:
8866 return false;
8867 }
8868 }
8869
8870 switch (off) {
8871 case bpf_ctx_range(struct __sk_buff, data):
8872 info->reg_type = PTR_TO_PACKET;
8873 break;
8874 case bpf_ctx_range(struct __sk_buff, data_meta):
8875 info->reg_type = PTR_TO_PACKET_META;
8876 break;
8877 case bpf_ctx_range(struct __sk_buff, data_end):
8878 info->reg_type = PTR_TO_PACKET_END;
8879 break;
8880 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8881 return false;
8882 case offsetof(struct __sk_buff, tstamp_type):
8883 /* The convert_ctx_access() on reading and writing
8884 * __sk_buff->tstamp depends on whether the bpf prog
8885 * has used __sk_buff->tstamp_type or not.
8886 * Thus, we need to set prog->tstamp_type_access
8887 * earlier during is_valid_access() here.
8888 */
8889 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8890 return size == sizeof(__u8);
8891 }
8892
8893 return bpf_skb_is_valid_access(off, size, type, prog, info);
8894 }
8895
8896 DEFINE_MUTEX(nf_conn_btf_access_lock);
8897 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8898
8899 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8900 const struct bpf_reg_state *reg,
8901 int off, int size);
8902 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8903
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)8904 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8905 const struct bpf_reg_state *reg,
8906 int off, int size)
8907 {
8908 int ret = -EACCES;
8909
8910 mutex_lock(&nf_conn_btf_access_lock);
8911 if (nfct_btf_struct_access)
8912 ret = nfct_btf_struct_access(log, reg, off, size);
8913 mutex_unlock(&nf_conn_btf_access_lock);
8914
8915 return ret;
8916 }
8917
__is_valid_xdp_access(int off,int size)8918 static bool __is_valid_xdp_access(int off, int size)
8919 {
8920 if (off < 0 || off >= sizeof(struct xdp_md))
8921 return false;
8922 if (off % size != 0)
8923 return false;
8924 if (size != sizeof(__u32))
8925 return false;
8926
8927 return true;
8928 }
8929
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8930 static bool xdp_is_valid_access(int off, int size,
8931 enum bpf_access_type type,
8932 const struct bpf_prog *prog,
8933 struct bpf_insn_access_aux *info)
8934 {
8935 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8936 switch (off) {
8937 case offsetof(struct xdp_md, egress_ifindex):
8938 return false;
8939 }
8940 }
8941
8942 if (type == BPF_WRITE) {
8943 if (bpf_prog_is_offloaded(prog->aux)) {
8944 switch (off) {
8945 case offsetof(struct xdp_md, rx_queue_index):
8946 return __is_valid_xdp_access(off, size);
8947 }
8948 }
8949 return false;
8950 }
8951
8952 switch (off) {
8953 case offsetof(struct xdp_md, data):
8954 info->reg_type = PTR_TO_PACKET;
8955 break;
8956 case offsetof(struct xdp_md, data_meta):
8957 info->reg_type = PTR_TO_PACKET_META;
8958 break;
8959 case offsetof(struct xdp_md, data_end):
8960 info->reg_type = PTR_TO_PACKET_END;
8961 break;
8962 }
8963
8964 return __is_valid_xdp_access(off, size);
8965 }
8966
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)8967 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8968 {
8969 const u32 act_max = XDP_REDIRECT;
8970
8971 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8972 act > act_max ? "Illegal" : "Driver unsupported",
8973 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8974 }
8975 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8976
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)8977 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8978 const struct bpf_reg_state *reg,
8979 int off, int size)
8980 {
8981 int ret = -EACCES;
8982
8983 mutex_lock(&nf_conn_btf_access_lock);
8984 if (nfct_btf_struct_access)
8985 ret = nfct_btf_struct_access(log, reg, off, size);
8986 mutex_unlock(&nf_conn_btf_access_lock);
8987
8988 return ret;
8989 }
8990
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8991 static bool sock_addr_is_valid_access(int off, int size,
8992 enum bpf_access_type type,
8993 const struct bpf_prog *prog,
8994 struct bpf_insn_access_aux *info)
8995 {
8996 const int size_default = sizeof(__u32);
8997
8998 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8999 return false;
9000 if (off % size != 0)
9001 return false;
9002
9003 /* Disallow access to IPv6 fields from IPv4 contex and vise
9004 * versa.
9005 */
9006 switch (off) {
9007 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9008 switch (prog->expected_attach_type) {
9009 case BPF_CGROUP_INET4_BIND:
9010 case BPF_CGROUP_INET4_CONNECT:
9011 case BPF_CGROUP_INET4_GETPEERNAME:
9012 case BPF_CGROUP_INET4_GETSOCKNAME:
9013 case BPF_CGROUP_UDP4_SENDMSG:
9014 case BPF_CGROUP_UDP4_RECVMSG:
9015 break;
9016 default:
9017 return false;
9018 }
9019 break;
9020 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9021 switch (prog->expected_attach_type) {
9022 case BPF_CGROUP_INET6_BIND:
9023 case BPF_CGROUP_INET6_CONNECT:
9024 case BPF_CGROUP_INET6_GETPEERNAME:
9025 case BPF_CGROUP_INET6_GETSOCKNAME:
9026 case BPF_CGROUP_UDP6_SENDMSG:
9027 case BPF_CGROUP_UDP6_RECVMSG:
9028 break;
9029 default:
9030 return false;
9031 }
9032 break;
9033 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9034 switch (prog->expected_attach_type) {
9035 case BPF_CGROUP_UDP4_SENDMSG:
9036 break;
9037 default:
9038 return false;
9039 }
9040 break;
9041 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9042 msg_src_ip6[3]):
9043 switch (prog->expected_attach_type) {
9044 case BPF_CGROUP_UDP6_SENDMSG:
9045 break;
9046 default:
9047 return false;
9048 }
9049 break;
9050 }
9051
9052 switch (off) {
9053 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9054 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9055 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9056 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9057 msg_src_ip6[3]):
9058 case bpf_ctx_range(struct bpf_sock_addr, user_port):
9059 if (type == BPF_READ) {
9060 bpf_ctx_record_field_size(info, size_default);
9061
9062 if (bpf_ctx_wide_access_ok(off, size,
9063 struct bpf_sock_addr,
9064 user_ip6))
9065 return true;
9066
9067 if (bpf_ctx_wide_access_ok(off, size,
9068 struct bpf_sock_addr,
9069 msg_src_ip6))
9070 return true;
9071
9072 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9073 return false;
9074 } else {
9075 if (bpf_ctx_wide_access_ok(off, size,
9076 struct bpf_sock_addr,
9077 user_ip6))
9078 return true;
9079
9080 if (bpf_ctx_wide_access_ok(off, size,
9081 struct bpf_sock_addr,
9082 msg_src_ip6))
9083 return true;
9084
9085 if (size != size_default)
9086 return false;
9087 }
9088 break;
9089 case offsetof(struct bpf_sock_addr, sk):
9090 if (type != BPF_READ)
9091 return false;
9092 if (size != sizeof(__u64))
9093 return false;
9094 info->reg_type = PTR_TO_SOCKET;
9095 break;
9096 default:
9097 if (type == BPF_READ) {
9098 if (size != size_default)
9099 return false;
9100 } else {
9101 return false;
9102 }
9103 }
9104
9105 return true;
9106 }
9107
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9108 static bool sock_ops_is_valid_access(int off, int size,
9109 enum bpf_access_type type,
9110 const struct bpf_prog *prog,
9111 struct bpf_insn_access_aux *info)
9112 {
9113 const int size_default = sizeof(__u32);
9114
9115 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9116 return false;
9117
9118 /* The verifier guarantees that size > 0. */
9119 if (off % size != 0)
9120 return false;
9121
9122 if (type == BPF_WRITE) {
9123 switch (off) {
9124 case offsetof(struct bpf_sock_ops, reply):
9125 case offsetof(struct bpf_sock_ops, sk_txhash):
9126 if (size != size_default)
9127 return false;
9128 break;
9129 default:
9130 return false;
9131 }
9132 } else {
9133 switch (off) {
9134 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9135 bytes_acked):
9136 if (size != sizeof(__u64))
9137 return false;
9138 break;
9139 case offsetof(struct bpf_sock_ops, sk):
9140 if (size != sizeof(__u64))
9141 return false;
9142 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9143 break;
9144 case offsetof(struct bpf_sock_ops, skb_data):
9145 if (size != sizeof(__u64))
9146 return false;
9147 info->reg_type = PTR_TO_PACKET;
9148 break;
9149 case offsetof(struct bpf_sock_ops, skb_data_end):
9150 if (size != sizeof(__u64))
9151 return false;
9152 info->reg_type = PTR_TO_PACKET_END;
9153 break;
9154 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9155 bpf_ctx_record_field_size(info, size_default);
9156 return bpf_ctx_narrow_access_ok(off, size,
9157 size_default);
9158 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9159 if (size != sizeof(__u64))
9160 return false;
9161 break;
9162 default:
9163 if (size != size_default)
9164 return false;
9165 break;
9166 }
9167 }
9168
9169 return true;
9170 }
9171
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9172 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9173 const struct bpf_prog *prog)
9174 {
9175 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9176 }
9177
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9178 static bool sk_skb_is_valid_access(int off, int size,
9179 enum bpf_access_type type,
9180 const struct bpf_prog *prog,
9181 struct bpf_insn_access_aux *info)
9182 {
9183 switch (off) {
9184 case bpf_ctx_range(struct __sk_buff, tc_classid):
9185 case bpf_ctx_range(struct __sk_buff, data_meta):
9186 case bpf_ctx_range(struct __sk_buff, tstamp):
9187 case bpf_ctx_range(struct __sk_buff, wire_len):
9188 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9189 return false;
9190 }
9191
9192 if (type == BPF_WRITE) {
9193 switch (off) {
9194 case bpf_ctx_range(struct __sk_buff, tc_index):
9195 case bpf_ctx_range(struct __sk_buff, priority):
9196 break;
9197 default:
9198 return false;
9199 }
9200 }
9201
9202 switch (off) {
9203 case bpf_ctx_range(struct __sk_buff, mark):
9204 return false;
9205 case bpf_ctx_range(struct __sk_buff, data):
9206 info->reg_type = PTR_TO_PACKET;
9207 break;
9208 case bpf_ctx_range(struct __sk_buff, data_end):
9209 info->reg_type = PTR_TO_PACKET_END;
9210 break;
9211 }
9212
9213 return bpf_skb_is_valid_access(off, size, type, prog, info);
9214 }
9215
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9216 static bool sk_msg_is_valid_access(int off, int size,
9217 enum bpf_access_type type,
9218 const struct bpf_prog *prog,
9219 struct bpf_insn_access_aux *info)
9220 {
9221 if (type == BPF_WRITE)
9222 return false;
9223
9224 if (off % size != 0)
9225 return false;
9226
9227 switch (off) {
9228 case offsetof(struct sk_msg_md, data):
9229 info->reg_type = PTR_TO_PACKET;
9230 if (size != sizeof(__u64))
9231 return false;
9232 break;
9233 case offsetof(struct sk_msg_md, data_end):
9234 info->reg_type = PTR_TO_PACKET_END;
9235 if (size != sizeof(__u64))
9236 return false;
9237 break;
9238 case offsetof(struct sk_msg_md, sk):
9239 if (size != sizeof(__u64))
9240 return false;
9241 info->reg_type = PTR_TO_SOCKET;
9242 break;
9243 case bpf_ctx_range(struct sk_msg_md, family):
9244 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9245 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9246 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9247 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9248 case bpf_ctx_range(struct sk_msg_md, remote_port):
9249 case bpf_ctx_range(struct sk_msg_md, local_port):
9250 case bpf_ctx_range(struct sk_msg_md, size):
9251 if (size != sizeof(__u32))
9252 return false;
9253 break;
9254 default:
9255 return false;
9256 }
9257 return true;
9258 }
9259
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9260 static bool flow_dissector_is_valid_access(int off, int size,
9261 enum bpf_access_type type,
9262 const struct bpf_prog *prog,
9263 struct bpf_insn_access_aux *info)
9264 {
9265 const int size_default = sizeof(__u32);
9266
9267 if (off < 0 || off >= sizeof(struct __sk_buff))
9268 return false;
9269
9270 if (type == BPF_WRITE)
9271 return false;
9272
9273 switch (off) {
9274 case bpf_ctx_range(struct __sk_buff, data):
9275 if (size != size_default)
9276 return false;
9277 info->reg_type = PTR_TO_PACKET;
9278 return true;
9279 case bpf_ctx_range(struct __sk_buff, data_end):
9280 if (size != size_default)
9281 return false;
9282 info->reg_type = PTR_TO_PACKET_END;
9283 return true;
9284 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9285 if (size != sizeof(__u64))
9286 return false;
9287 info->reg_type = PTR_TO_FLOW_KEYS;
9288 return true;
9289 default:
9290 return false;
9291 }
9292 }
9293
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9294 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9295 const struct bpf_insn *si,
9296 struct bpf_insn *insn_buf,
9297 struct bpf_prog *prog,
9298 u32 *target_size)
9299
9300 {
9301 struct bpf_insn *insn = insn_buf;
9302
9303 switch (si->off) {
9304 case offsetof(struct __sk_buff, data):
9305 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9306 si->dst_reg, si->src_reg,
9307 offsetof(struct bpf_flow_dissector, data));
9308 break;
9309
9310 case offsetof(struct __sk_buff, data_end):
9311 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9312 si->dst_reg, si->src_reg,
9313 offsetof(struct bpf_flow_dissector, data_end));
9314 break;
9315
9316 case offsetof(struct __sk_buff, flow_keys):
9317 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9318 si->dst_reg, si->src_reg,
9319 offsetof(struct bpf_flow_dissector, flow_keys));
9320 break;
9321 }
9322
9323 return insn - insn_buf;
9324 }
9325
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9326 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9327 struct bpf_insn *insn)
9328 {
9329 __u8 value_reg = si->dst_reg;
9330 __u8 skb_reg = si->src_reg;
9331 /* AX is needed because src_reg and dst_reg could be the same */
9332 __u8 tmp_reg = BPF_REG_AX;
9333
9334 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9335 SKB_BF_MONO_TC_OFFSET);
9336 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9337 SKB_MONO_DELIVERY_TIME_MASK, 2);
9338 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9339 *insn++ = BPF_JMP_A(1);
9340 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9341
9342 return insn;
9343 }
9344
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9345 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9346 struct bpf_insn *insn)
9347 {
9348 /* si->dst_reg = skb_shinfo(SKB); */
9349 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9350 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9351 BPF_REG_AX, skb_reg,
9352 offsetof(struct sk_buff, end));
9353 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9354 dst_reg, skb_reg,
9355 offsetof(struct sk_buff, head));
9356 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9357 #else
9358 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9359 dst_reg, skb_reg,
9360 offsetof(struct sk_buff, end));
9361 #endif
9362
9363 return insn;
9364 }
9365
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9366 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9367 const struct bpf_insn *si,
9368 struct bpf_insn *insn)
9369 {
9370 __u8 value_reg = si->dst_reg;
9371 __u8 skb_reg = si->src_reg;
9372
9373 #ifdef CONFIG_NET_XGRESS
9374 /* If the tstamp_type is read,
9375 * the bpf prog is aware the tstamp could have delivery time.
9376 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9377 */
9378 if (!prog->tstamp_type_access) {
9379 /* AX is needed because src_reg and dst_reg could be the same */
9380 __u8 tmp_reg = BPF_REG_AX;
9381
9382 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9383 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9384 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9385 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9386 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9387 /* skb->tc_at_ingress && skb->mono_delivery_time,
9388 * read 0 as the (rcv) timestamp.
9389 */
9390 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9391 *insn++ = BPF_JMP_A(1);
9392 }
9393 #endif
9394
9395 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9396 offsetof(struct sk_buff, tstamp));
9397 return insn;
9398 }
9399
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9400 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9401 const struct bpf_insn *si,
9402 struct bpf_insn *insn)
9403 {
9404 __u8 value_reg = si->src_reg;
9405 __u8 skb_reg = si->dst_reg;
9406
9407 #ifdef CONFIG_NET_XGRESS
9408 /* If the tstamp_type is read,
9409 * the bpf prog is aware the tstamp could have delivery time.
9410 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9411 * Otherwise, writing at ingress will have to clear the
9412 * mono_delivery_time bit also.
9413 */
9414 if (!prog->tstamp_type_access) {
9415 __u8 tmp_reg = BPF_REG_AX;
9416
9417 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9418 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9419 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9420 /* goto <store> */
9421 *insn++ = BPF_JMP_A(2);
9422 /* <clear>: mono_delivery_time */
9423 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9424 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9425 }
9426 #endif
9427
9428 /* <store>: skb->tstamp = tstamp */
9429 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9430 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9431 return insn;
9432 }
9433
9434 #define BPF_EMIT_STORE(size, si, off) \
9435 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9436 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9437
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9438 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9439 const struct bpf_insn *si,
9440 struct bpf_insn *insn_buf,
9441 struct bpf_prog *prog, u32 *target_size)
9442 {
9443 struct bpf_insn *insn = insn_buf;
9444 int off;
9445
9446 switch (si->off) {
9447 case offsetof(struct __sk_buff, len):
9448 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9449 bpf_target_off(struct sk_buff, len, 4,
9450 target_size));
9451 break;
9452
9453 case offsetof(struct __sk_buff, protocol):
9454 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9455 bpf_target_off(struct sk_buff, protocol, 2,
9456 target_size));
9457 break;
9458
9459 case offsetof(struct __sk_buff, vlan_proto):
9460 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9461 bpf_target_off(struct sk_buff, vlan_proto, 2,
9462 target_size));
9463 break;
9464
9465 case offsetof(struct __sk_buff, priority):
9466 if (type == BPF_WRITE)
9467 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9468 bpf_target_off(struct sk_buff, priority, 4,
9469 target_size));
9470 else
9471 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9472 bpf_target_off(struct sk_buff, priority, 4,
9473 target_size));
9474 break;
9475
9476 case offsetof(struct __sk_buff, ingress_ifindex):
9477 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9478 bpf_target_off(struct sk_buff, skb_iif, 4,
9479 target_size));
9480 break;
9481
9482 case offsetof(struct __sk_buff, ifindex):
9483 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9484 si->dst_reg, si->src_reg,
9485 offsetof(struct sk_buff, dev));
9486 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9487 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9488 bpf_target_off(struct net_device, ifindex, 4,
9489 target_size));
9490 break;
9491
9492 case offsetof(struct __sk_buff, hash):
9493 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9494 bpf_target_off(struct sk_buff, hash, 4,
9495 target_size));
9496 break;
9497
9498 case offsetof(struct __sk_buff, mark):
9499 if (type == BPF_WRITE)
9500 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9501 bpf_target_off(struct sk_buff, mark, 4,
9502 target_size));
9503 else
9504 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9505 bpf_target_off(struct sk_buff, mark, 4,
9506 target_size));
9507 break;
9508
9509 case offsetof(struct __sk_buff, pkt_type):
9510 *target_size = 1;
9511 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9512 PKT_TYPE_OFFSET);
9513 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9514 #ifdef __BIG_ENDIAN_BITFIELD
9515 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9516 #endif
9517 break;
9518
9519 case offsetof(struct __sk_buff, queue_mapping):
9520 if (type == BPF_WRITE) {
9521 u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9522
9523 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9524 *insn++ = BPF_JMP_A(0); /* noop */
9525 break;
9526 }
9527
9528 if (BPF_CLASS(si->code) == BPF_STX)
9529 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9530 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9531 } else {
9532 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9533 bpf_target_off(struct sk_buff,
9534 queue_mapping,
9535 2, target_size));
9536 }
9537 break;
9538
9539 case offsetof(struct __sk_buff, vlan_present):
9540 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9541 bpf_target_off(struct sk_buff,
9542 vlan_all, 4, target_size));
9543 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9544 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9545 break;
9546
9547 case offsetof(struct __sk_buff, vlan_tci):
9548 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9549 bpf_target_off(struct sk_buff, vlan_tci, 2,
9550 target_size));
9551 break;
9552
9553 case offsetof(struct __sk_buff, cb[0]) ...
9554 offsetofend(struct __sk_buff, cb[4]) - 1:
9555 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9556 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9557 offsetof(struct qdisc_skb_cb, data)) %
9558 sizeof(__u64));
9559
9560 prog->cb_access = 1;
9561 off = si->off;
9562 off -= offsetof(struct __sk_buff, cb[0]);
9563 off += offsetof(struct sk_buff, cb);
9564 off += offsetof(struct qdisc_skb_cb, data);
9565 if (type == BPF_WRITE)
9566 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9567 else
9568 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9569 si->src_reg, off);
9570 break;
9571
9572 case offsetof(struct __sk_buff, tc_classid):
9573 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9574
9575 off = si->off;
9576 off -= offsetof(struct __sk_buff, tc_classid);
9577 off += offsetof(struct sk_buff, cb);
9578 off += offsetof(struct qdisc_skb_cb, tc_classid);
9579 *target_size = 2;
9580 if (type == BPF_WRITE)
9581 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9582 else
9583 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9584 si->src_reg, off);
9585 break;
9586
9587 case offsetof(struct __sk_buff, data):
9588 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9589 si->dst_reg, si->src_reg,
9590 offsetof(struct sk_buff, data));
9591 break;
9592
9593 case offsetof(struct __sk_buff, data_meta):
9594 off = si->off;
9595 off -= offsetof(struct __sk_buff, data_meta);
9596 off += offsetof(struct sk_buff, cb);
9597 off += offsetof(struct bpf_skb_data_end, data_meta);
9598 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9599 si->src_reg, off);
9600 break;
9601
9602 case offsetof(struct __sk_buff, data_end):
9603 off = si->off;
9604 off -= offsetof(struct __sk_buff, data_end);
9605 off += offsetof(struct sk_buff, cb);
9606 off += offsetof(struct bpf_skb_data_end, data_end);
9607 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9608 si->src_reg, off);
9609 break;
9610
9611 case offsetof(struct __sk_buff, tc_index):
9612 #ifdef CONFIG_NET_SCHED
9613 if (type == BPF_WRITE)
9614 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9615 bpf_target_off(struct sk_buff, tc_index, 2,
9616 target_size));
9617 else
9618 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9619 bpf_target_off(struct sk_buff, tc_index, 2,
9620 target_size));
9621 #else
9622 *target_size = 2;
9623 if (type == BPF_WRITE)
9624 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9625 else
9626 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9627 #endif
9628 break;
9629
9630 case offsetof(struct __sk_buff, napi_id):
9631 #if defined(CONFIG_NET_RX_BUSY_POLL)
9632 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9633 bpf_target_off(struct sk_buff, napi_id, 4,
9634 target_size));
9635 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9636 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9637 #else
9638 *target_size = 4;
9639 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9640 #endif
9641 break;
9642 case offsetof(struct __sk_buff, family):
9643 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9644
9645 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9646 si->dst_reg, si->src_reg,
9647 offsetof(struct sk_buff, sk));
9648 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9649 bpf_target_off(struct sock_common,
9650 skc_family,
9651 2, target_size));
9652 break;
9653 case offsetof(struct __sk_buff, remote_ip4):
9654 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9655
9656 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9657 si->dst_reg, si->src_reg,
9658 offsetof(struct sk_buff, sk));
9659 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9660 bpf_target_off(struct sock_common,
9661 skc_daddr,
9662 4, target_size));
9663 break;
9664 case offsetof(struct __sk_buff, local_ip4):
9665 BUILD_BUG_ON(sizeof_field(struct sock_common,
9666 skc_rcv_saddr) != 4);
9667
9668 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9669 si->dst_reg, si->src_reg,
9670 offsetof(struct sk_buff, sk));
9671 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9672 bpf_target_off(struct sock_common,
9673 skc_rcv_saddr,
9674 4, target_size));
9675 break;
9676 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9677 offsetof(struct __sk_buff, remote_ip6[3]):
9678 #if IS_ENABLED(CONFIG_IPV6)
9679 BUILD_BUG_ON(sizeof_field(struct sock_common,
9680 skc_v6_daddr.s6_addr32[0]) != 4);
9681
9682 off = si->off;
9683 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9684
9685 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9686 si->dst_reg, si->src_reg,
9687 offsetof(struct sk_buff, sk));
9688 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9689 offsetof(struct sock_common,
9690 skc_v6_daddr.s6_addr32[0]) +
9691 off);
9692 #else
9693 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9694 #endif
9695 break;
9696 case offsetof(struct __sk_buff, local_ip6[0]) ...
9697 offsetof(struct __sk_buff, local_ip6[3]):
9698 #if IS_ENABLED(CONFIG_IPV6)
9699 BUILD_BUG_ON(sizeof_field(struct sock_common,
9700 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9701
9702 off = si->off;
9703 off -= offsetof(struct __sk_buff, local_ip6[0]);
9704
9705 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9706 si->dst_reg, si->src_reg,
9707 offsetof(struct sk_buff, sk));
9708 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9709 offsetof(struct sock_common,
9710 skc_v6_rcv_saddr.s6_addr32[0]) +
9711 off);
9712 #else
9713 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9714 #endif
9715 break;
9716
9717 case offsetof(struct __sk_buff, remote_port):
9718 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9719
9720 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9721 si->dst_reg, si->src_reg,
9722 offsetof(struct sk_buff, sk));
9723 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9724 bpf_target_off(struct sock_common,
9725 skc_dport,
9726 2, target_size));
9727 #ifndef __BIG_ENDIAN_BITFIELD
9728 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9729 #endif
9730 break;
9731
9732 case offsetof(struct __sk_buff, local_port):
9733 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9734
9735 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9736 si->dst_reg, si->src_reg,
9737 offsetof(struct sk_buff, sk));
9738 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9739 bpf_target_off(struct sock_common,
9740 skc_num, 2, target_size));
9741 break;
9742
9743 case offsetof(struct __sk_buff, tstamp):
9744 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9745
9746 if (type == BPF_WRITE)
9747 insn = bpf_convert_tstamp_write(prog, si, insn);
9748 else
9749 insn = bpf_convert_tstamp_read(prog, si, insn);
9750 break;
9751
9752 case offsetof(struct __sk_buff, tstamp_type):
9753 insn = bpf_convert_tstamp_type_read(si, insn);
9754 break;
9755
9756 case offsetof(struct __sk_buff, gso_segs):
9757 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9758 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9759 si->dst_reg, si->dst_reg,
9760 bpf_target_off(struct skb_shared_info,
9761 gso_segs, 2,
9762 target_size));
9763 break;
9764 case offsetof(struct __sk_buff, gso_size):
9765 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9766 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9767 si->dst_reg, si->dst_reg,
9768 bpf_target_off(struct skb_shared_info,
9769 gso_size, 2,
9770 target_size));
9771 break;
9772 case offsetof(struct __sk_buff, wire_len):
9773 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9774
9775 off = si->off;
9776 off -= offsetof(struct __sk_buff, wire_len);
9777 off += offsetof(struct sk_buff, cb);
9778 off += offsetof(struct qdisc_skb_cb, pkt_len);
9779 *target_size = 4;
9780 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9781 break;
9782
9783 case offsetof(struct __sk_buff, sk):
9784 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9785 si->dst_reg, si->src_reg,
9786 offsetof(struct sk_buff, sk));
9787 break;
9788 case offsetof(struct __sk_buff, hwtstamp):
9789 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9790 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9791
9792 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9793 *insn++ = BPF_LDX_MEM(BPF_DW,
9794 si->dst_reg, si->dst_reg,
9795 bpf_target_off(struct skb_shared_info,
9796 hwtstamps, 8,
9797 target_size));
9798 break;
9799 }
9800
9801 return insn - insn_buf;
9802 }
9803
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9804 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9805 const struct bpf_insn *si,
9806 struct bpf_insn *insn_buf,
9807 struct bpf_prog *prog, u32 *target_size)
9808 {
9809 struct bpf_insn *insn = insn_buf;
9810 int off;
9811
9812 switch (si->off) {
9813 case offsetof(struct bpf_sock, bound_dev_if):
9814 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9815
9816 if (type == BPF_WRITE)
9817 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9818 offsetof(struct sock, sk_bound_dev_if));
9819 else
9820 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9821 offsetof(struct sock, sk_bound_dev_if));
9822 break;
9823
9824 case offsetof(struct bpf_sock, mark):
9825 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9826
9827 if (type == BPF_WRITE)
9828 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9829 offsetof(struct sock, sk_mark));
9830 else
9831 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9832 offsetof(struct sock, sk_mark));
9833 break;
9834
9835 case offsetof(struct bpf_sock, priority):
9836 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9837
9838 if (type == BPF_WRITE)
9839 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9840 offsetof(struct sock, sk_priority));
9841 else
9842 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9843 offsetof(struct sock, sk_priority));
9844 break;
9845
9846 case offsetof(struct bpf_sock, family):
9847 *insn++ = BPF_LDX_MEM(
9848 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9849 si->dst_reg, si->src_reg,
9850 bpf_target_off(struct sock_common,
9851 skc_family,
9852 sizeof_field(struct sock_common,
9853 skc_family),
9854 target_size));
9855 break;
9856
9857 case offsetof(struct bpf_sock, type):
9858 *insn++ = BPF_LDX_MEM(
9859 BPF_FIELD_SIZEOF(struct sock, sk_type),
9860 si->dst_reg, si->src_reg,
9861 bpf_target_off(struct sock, sk_type,
9862 sizeof_field(struct sock, sk_type),
9863 target_size));
9864 break;
9865
9866 case offsetof(struct bpf_sock, protocol):
9867 *insn++ = BPF_LDX_MEM(
9868 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9869 si->dst_reg, si->src_reg,
9870 bpf_target_off(struct sock, sk_protocol,
9871 sizeof_field(struct sock, sk_protocol),
9872 target_size));
9873 break;
9874
9875 case offsetof(struct bpf_sock, src_ip4):
9876 *insn++ = BPF_LDX_MEM(
9877 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9878 bpf_target_off(struct sock_common, skc_rcv_saddr,
9879 sizeof_field(struct sock_common,
9880 skc_rcv_saddr),
9881 target_size));
9882 break;
9883
9884 case offsetof(struct bpf_sock, dst_ip4):
9885 *insn++ = BPF_LDX_MEM(
9886 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9887 bpf_target_off(struct sock_common, skc_daddr,
9888 sizeof_field(struct sock_common,
9889 skc_daddr),
9890 target_size));
9891 break;
9892
9893 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9894 #if IS_ENABLED(CONFIG_IPV6)
9895 off = si->off;
9896 off -= offsetof(struct bpf_sock, src_ip6[0]);
9897 *insn++ = BPF_LDX_MEM(
9898 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9899 bpf_target_off(
9900 struct sock_common,
9901 skc_v6_rcv_saddr.s6_addr32[0],
9902 sizeof_field(struct sock_common,
9903 skc_v6_rcv_saddr.s6_addr32[0]),
9904 target_size) + off);
9905 #else
9906 (void)off;
9907 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9908 #endif
9909 break;
9910
9911 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9912 #if IS_ENABLED(CONFIG_IPV6)
9913 off = si->off;
9914 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9915 *insn++ = BPF_LDX_MEM(
9916 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9917 bpf_target_off(struct sock_common,
9918 skc_v6_daddr.s6_addr32[0],
9919 sizeof_field(struct sock_common,
9920 skc_v6_daddr.s6_addr32[0]),
9921 target_size) + off);
9922 #else
9923 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9924 *target_size = 4;
9925 #endif
9926 break;
9927
9928 case offsetof(struct bpf_sock, src_port):
9929 *insn++ = BPF_LDX_MEM(
9930 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9931 si->dst_reg, si->src_reg,
9932 bpf_target_off(struct sock_common, skc_num,
9933 sizeof_field(struct sock_common,
9934 skc_num),
9935 target_size));
9936 break;
9937
9938 case offsetof(struct bpf_sock, dst_port):
9939 *insn++ = BPF_LDX_MEM(
9940 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9941 si->dst_reg, si->src_reg,
9942 bpf_target_off(struct sock_common, skc_dport,
9943 sizeof_field(struct sock_common,
9944 skc_dport),
9945 target_size));
9946 break;
9947
9948 case offsetof(struct bpf_sock, state):
9949 *insn++ = BPF_LDX_MEM(
9950 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9951 si->dst_reg, si->src_reg,
9952 bpf_target_off(struct sock_common, skc_state,
9953 sizeof_field(struct sock_common,
9954 skc_state),
9955 target_size));
9956 break;
9957 case offsetof(struct bpf_sock, rx_queue_mapping):
9958 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9959 *insn++ = BPF_LDX_MEM(
9960 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9961 si->dst_reg, si->src_reg,
9962 bpf_target_off(struct sock, sk_rx_queue_mapping,
9963 sizeof_field(struct sock,
9964 sk_rx_queue_mapping),
9965 target_size));
9966 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9967 1);
9968 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9969 #else
9970 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9971 *target_size = 2;
9972 #endif
9973 break;
9974 }
9975
9976 return insn - insn_buf;
9977 }
9978
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9979 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9980 const struct bpf_insn *si,
9981 struct bpf_insn *insn_buf,
9982 struct bpf_prog *prog, u32 *target_size)
9983 {
9984 struct bpf_insn *insn = insn_buf;
9985
9986 switch (si->off) {
9987 case offsetof(struct __sk_buff, ifindex):
9988 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9989 si->dst_reg, si->src_reg,
9990 offsetof(struct sk_buff, dev));
9991 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9992 bpf_target_off(struct net_device, ifindex, 4,
9993 target_size));
9994 break;
9995 default:
9996 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9997 target_size);
9998 }
9999
10000 return insn - insn_buf;
10001 }
10002
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10003 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10004 const struct bpf_insn *si,
10005 struct bpf_insn *insn_buf,
10006 struct bpf_prog *prog, u32 *target_size)
10007 {
10008 struct bpf_insn *insn = insn_buf;
10009
10010 switch (si->off) {
10011 case offsetof(struct xdp_md, data):
10012 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10013 si->dst_reg, si->src_reg,
10014 offsetof(struct xdp_buff, data));
10015 break;
10016 case offsetof(struct xdp_md, data_meta):
10017 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10018 si->dst_reg, si->src_reg,
10019 offsetof(struct xdp_buff, data_meta));
10020 break;
10021 case offsetof(struct xdp_md, data_end):
10022 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10023 si->dst_reg, si->src_reg,
10024 offsetof(struct xdp_buff, data_end));
10025 break;
10026 case offsetof(struct xdp_md, ingress_ifindex):
10027 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10028 si->dst_reg, si->src_reg,
10029 offsetof(struct xdp_buff, rxq));
10030 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10031 si->dst_reg, si->dst_reg,
10032 offsetof(struct xdp_rxq_info, dev));
10033 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10034 offsetof(struct net_device, ifindex));
10035 break;
10036 case offsetof(struct xdp_md, rx_queue_index):
10037 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10038 si->dst_reg, si->src_reg,
10039 offsetof(struct xdp_buff, rxq));
10040 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10041 offsetof(struct xdp_rxq_info,
10042 queue_index));
10043 break;
10044 case offsetof(struct xdp_md, egress_ifindex):
10045 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10046 si->dst_reg, si->src_reg,
10047 offsetof(struct xdp_buff, txq));
10048 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10049 si->dst_reg, si->dst_reg,
10050 offsetof(struct xdp_txq_info, dev));
10051 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10052 offsetof(struct net_device, ifindex));
10053 break;
10054 }
10055
10056 return insn - insn_buf;
10057 }
10058
10059 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10060 * context Structure, F is Field in context structure that contains a pointer
10061 * to Nested Structure of type NS that has the field NF.
10062 *
10063 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10064 * sure that SIZE is not greater than actual size of S.F.NF.
10065 *
10066 * If offset OFF is provided, the load happens from that offset relative to
10067 * offset of NF.
10068 */
10069 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10070 do { \
10071 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10072 si->src_reg, offsetof(S, F)); \
10073 *insn++ = BPF_LDX_MEM( \
10074 SIZE, si->dst_reg, si->dst_reg, \
10075 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10076 target_size) \
10077 + OFF); \
10078 } while (0)
10079
10080 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10081 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10082 BPF_FIELD_SIZEOF(NS, NF), 0)
10083
10084 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10085 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10086 *
10087 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10088 * "register" since two registers available in convert_ctx_access are not
10089 * enough: we can't override neither SRC, since it contains value to store, nor
10090 * DST since it contains pointer to context that may be used by later
10091 * instructions. But we need a temporary place to save pointer to nested
10092 * structure whose field we want to store to.
10093 */
10094 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10095 do { \
10096 int tmp_reg = BPF_REG_9; \
10097 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10098 --tmp_reg; \
10099 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10100 --tmp_reg; \
10101 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10102 offsetof(S, TF)); \
10103 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10104 si->dst_reg, offsetof(S, F)); \
10105 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10106 tmp_reg, si->src_reg, \
10107 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10108 target_size) \
10109 + OFF, \
10110 si->imm); \
10111 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10112 offsetof(S, TF)); \
10113 } while (0)
10114
10115 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10116 TF) \
10117 do { \
10118 if (type == BPF_WRITE) { \
10119 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10120 OFF, TF); \
10121 } else { \
10122 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10123 S, NS, F, NF, SIZE, OFF); \
10124 } \
10125 } while (0)
10126
10127 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
10128 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
10129 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10130
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10131 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10132 const struct bpf_insn *si,
10133 struct bpf_insn *insn_buf,
10134 struct bpf_prog *prog, u32 *target_size)
10135 {
10136 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10137 struct bpf_insn *insn = insn_buf;
10138
10139 switch (si->off) {
10140 case offsetof(struct bpf_sock_addr, user_family):
10141 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10142 struct sockaddr, uaddr, sa_family);
10143 break;
10144
10145 case offsetof(struct bpf_sock_addr, user_ip4):
10146 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10147 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10148 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10149 break;
10150
10151 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10152 off = si->off;
10153 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10154 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10155 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10156 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10157 tmp_reg);
10158 break;
10159
10160 case offsetof(struct bpf_sock_addr, user_port):
10161 /* To get port we need to know sa_family first and then treat
10162 * sockaddr as either sockaddr_in or sockaddr_in6.
10163 * Though we can simplify since port field has same offset and
10164 * size in both structures.
10165 * Here we check this invariant and use just one of the
10166 * structures if it's true.
10167 */
10168 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10169 offsetof(struct sockaddr_in6, sin6_port));
10170 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10171 sizeof_field(struct sockaddr_in6, sin6_port));
10172 /* Account for sin6_port being smaller than user_port. */
10173 port_size = min(port_size, BPF_LDST_BYTES(si));
10174 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10175 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10176 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10177 break;
10178
10179 case offsetof(struct bpf_sock_addr, family):
10180 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10181 struct sock, sk, sk_family);
10182 break;
10183
10184 case offsetof(struct bpf_sock_addr, type):
10185 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10186 struct sock, sk, sk_type);
10187 break;
10188
10189 case offsetof(struct bpf_sock_addr, protocol):
10190 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10191 struct sock, sk, sk_protocol);
10192 break;
10193
10194 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10195 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10196 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10197 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10198 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10199 break;
10200
10201 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10202 msg_src_ip6[3]):
10203 off = si->off;
10204 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10205 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10206 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10207 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10208 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10209 break;
10210 case offsetof(struct bpf_sock_addr, sk):
10211 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10212 si->dst_reg, si->src_reg,
10213 offsetof(struct bpf_sock_addr_kern, sk));
10214 break;
10215 }
10216
10217 return insn - insn_buf;
10218 }
10219
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10220 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10221 const struct bpf_insn *si,
10222 struct bpf_insn *insn_buf,
10223 struct bpf_prog *prog,
10224 u32 *target_size)
10225 {
10226 struct bpf_insn *insn = insn_buf;
10227 int off;
10228
10229 /* Helper macro for adding read access to tcp_sock or sock fields. */
10230 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10231 do { \
10232 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10233 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10234 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10235 if (si->dst_reg == reg || si->src_reg == reg) \
10236 reg--; \
10237 if (si->dst_reg == reg || si->src_reg == reg) \
10238 reg--; \
10239 if (si->dst_reg == si->src_reg) { \
10240 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10241 offsetof(struct bpf_sock_ops_kern, \
10242 temp)); \
10243 fullsock_reg = reg; \
10244 jmp += 2; \
10245 } \
10246 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10247 struct bpf_sock_ops_kern, \
10248 is_fullsock), \
10249 fullsock_reg, si->src_reg, \
10250 offsetof(struct bpf_sock_ops_kern, \
10251 is_fullsock)); \
10252 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10253 if (si->dst_reg == si->src_reg) \
10254 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10255 offsetof(struct bpf_sock_ops_kern, \
10256 temp)); \
10257 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10258 struct bpf_sock_ops_kern, sk),\
10259 si->dst_reg, si->src_reg, \
10260 offsetof(struct bpf_sock_ops_kern, sk));\
10261 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10262 OBJ_FIELD), \
10263 si->dst_reg, si->dst_reg, \
10264 offsetof(OBJ, OBJ_FIELD)); \
10265 if (si->dst_reg == si->src_reg) { \
10266 *insn++ = BPF_JMP_A(1); \
10267 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10268 offsetof(struct bpf_sock_ops_kern, \
10269 temp)); \
10270 } \
10271 } while (0)
10272
10273 #define SOCK_OPS_GET_SK() \
10274 do { \
10275 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10276 if (si->dst_reg == reg || si->src_reg == reg) \
10277 reg--; \
10278 if (si->dst_reg == reg || si->src_reg == reg) \
10279 reg--; \
10280 if (si->dst_reg == si->src_reg) { \
10281 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10282 offsetof(struct bpf_sock_ops_kern, \
10283 temp)); \
10284 fullsock_reg = reg; \
10285 jmp += 2; \
10286 } \
10287 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10288 struct bpf_sock_ops_kern, \
10289 is_fullsock), \
10290 fullsock_reg, si->src_reg, \
10291 offsetof(struct bpf_sock_ops_kern, \
10292 is_fullsock)); \
10293 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10294 if (si->dst_reg == si->src_reg) \
10295 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10296 offsetof(struct bpf_sock_ops_kern, \
10297 temp)); \
10298 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10299 struct bpf_sock_ops_kern, sk),\
10300 si->dst_reg, si->src_reg, \
10301 offsetof(struct bpf_sock_ops_kern, sk));\
10302 if (si->dst_reg == si->src_reg) { \
10303 *insn++ = BPF_JMP_A(1); \
10304 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10305 offsetof(struct bpf_sock_ops_kern, \
10306 temp)); \
10307 } \
10308 } while (0)
10309
10310 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10311 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10312
10313 /* Helper macro for adding write access to tcp_sock or sock fields.
10314 * The macro is called with two registers, dst_reg which contains a pointer
10315 * to ctx (context) and src_reg which contains the value that should be
10316 * stored. However, we need an additional register since we cannot overwrite
10317 * dst_reg because it may be used later in the program.
10318 * Instead we "borrow" one of the other register. We first save its value
10319 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10320 * it at the end of the macro.
10321 */
10322 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10323 do { \
10324 int reg = BPF_REG_9; \
10325 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10326 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10327 if (si->dst_reg == reg || si->src_reg == reg) \
10328 reg--; \
10329 if (si->dst_reg == reg || si->src_reg == reg) \
10330 reg--; \
10331 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10332 offsetof(struct bpf_sock_ops_kern, \
10333 temp)); \
10334 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10335 struct bpf_sock_ops_kern, \
10336 is_fullsock), \
10337 reg, si->dst_reg, \
10338 offsetof(struct bpf_sock_ops_kern, \
10339 is_fullsock)); \
10340 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10341 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10342 struct bpf_sock_ops_kern, sk),\
10343 reg, si->dst_reg, \
10344 offsetof(struct bpf_sock_ops_kern, sk));\
10345 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10346 BPF_MEM | BPF_CLASS(si->code), \
10347 reg, si->src_reg, \
10348 offsetof(OBJ, OBJ_FIELD), \
10349 si->imm); \
10350 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10351 offsetof(struct bpf_sock_ops_kern, \
10352 temp)); \
10353 } while (0)
10354
10355 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10356 do { \
10357 if (TYPE == BPF_WRITE) \
10358 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10359 else \
10360 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10361 } while (0)
10362
10363 switch (si->off) {
10364 case offsetof(struct bpf_sock_ops, op):
10365 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10366 op),
10367 si->dst_reg, si->src_reg,
10368 offsetof(struct bpf_sock_ops_kern, op));
10369 break;
10370
10371 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10372 offsetof(struct bpf_sock_ops, replylong[3]):
10373 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10374 sizeof_field(struct bpf_sock_ops_kern, reply));
10375 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10376 sizeof_field(struct bpf_sock_ops_kern, replylong));
10377 off = si->off;
10378 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10379 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10380 if (type == BPF_WRITE)
10381 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10382 else
10383 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10384 off);
10385 break;
10386
10387 case offsetof(struct bpf_sock_ops, family):
10388 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10389
10390 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10391 struct bpf_sock_ops_kern, sk),
10392 si->dst_reg, si->src_reg,
10393 offsetof(struct bpf_sock_ops_kern, sk));
10394 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10395 offsetof(struct sock_common, skc_family));
10396 break;
10397
10398 case offsetof(struct bpf_sock_ops, remote_ip4):
10399 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10400
10401 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10402 struct bpf_sock_ops_kern, sk),
10403 si->dst_reg, si->src_reg,
10404 offsetof(struct bpf_sock_ops_kern, sk));
10405 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10406 offsetof(struct sock_common, skc_daddr));
10407 break;
10408
10409 case offsetof(struct bpf_sock_ops, local_ip4):
10410 BUILD_BUG_ON(sizeof_field(struct sock_common,
10411 skc_rcv_saddr) != 4);
10412
10413 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10414 struct bpf_sock_ops_kern, sk),
10415 si->dst_reg, si->src_reg,
10416 offsetof(struct bpf_sock_ops_kern, sk));
10417 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10418 offsetof(struct sock_common,
10419 skc_rcv_saddr));
10420 break;
10421
10422 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10423 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10424 #if IS_ENABLED(CONFIG_IPV6)
10425 BUILD_BUG_ON(sizeof_field(struct sock_common,
10426 skc_v6_daddr.s6_addr32[0]) != 4);
10427
10428 off = si->off;
10429 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10430 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10431 struct bpf_sock_ops_kern, sk),
10432 si->dst_reg, si->src_reg,
10433 offsetof(struct bpf_sock_ops_kern, sk));
10434 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10435 offsetof(struct sock_common,
10436 skc_v6_daddr.s6_addr32[0]) +
10437 off);
10438 #else
10439 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10440 #endif
10441 break;
10442
10443 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10444 offsetof(struct bpf_sock_ops, local_ip6[3]):
10445 #if IS_ENABLED(CONFIG_IPV6)
10446 BUILD_BUG_ON(sizeof_field(struct sock_common,
10447 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10448
10449 off = si->off;
10450 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10451 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10452 struct bpf_sock_ops_kern, sk),
10453 si->dst_reg, si->src_reg,
10454 offsetof(struct bpf_sock_ops_kern, sk));
10455 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10456 offsetof(struct sock_common,
10457 skc_v6_rcv_saddr.s6_addr32[0]) +
10458 off);
10459 #else
10460 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10461 #endif
10462 break;
10463
10464 case offsetof(struct bpf_sock_ops, remote_port):
10465 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10466
10467 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10468 struct bpf_sock_ops_kern, sk),
10469 si->dst_reg, si->src_reg,
10470 offsetof(struct bpf_sock_ops_kern, sk));
10471 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10472 offsetof(struct sock_common, skc_dport));
10473 #ifndef __BIG_ENDIAN_BITFIELD
10474 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10475 #endif
10476 break;
10477
10478 case offsetof(struct bpf_sock_ops, local_port):
10479 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10480
10481 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10482 struct bpf_sock_ops_kern, sk),
10483 si->dst_reg, si->src_reg,
10484 offsetof(struct bpf_sock_ops_kern, sk));
10485 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10486 offsetof(struct sock_common, skc_num));
10487 break;
10488
10489 case offsetof(struct bpf_sock_ops, is_fullsock):
10490 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10491 struct bpf_sock_ops_kern,
10492 is_fullsock),
10493 si->dst_reg, si->src_reg,
10494 offsetof(struct bpf_sock_ops_kern,
10495 is_fullsock));
10496 break;
10497
10498 case offsetof(struct bpf_sock_ops, state):
10499 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10500
10501 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10502 struct bpf_sock_ops_kern, sk),
10503 si->dst_reg, si->src_reg,
10504 offsetof(struct bpf_sock_ops_kern, sk));
10505 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10506 offsetof(struct sock_common, skc_state));
10507 break;
10508
10509 case offsetof(struct bpf_sock_ops, rtt_min):
10510 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10511 sizeof(struct minmax));
10512 BUILD_BUG_ON(sizeof(struct minmax) <
10513 sizeof(struct minmax_sample));
10514
10515 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10516 struct bpf_sock_ops_kern, sk),
10517 si->dst_reg, si->src_reg,
10518 offsetof(struct bpf_sock_ops_kern, sk));
10519 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10520 offsetof(struct tcp_sock, rtt_min) +
10521 sizeof_field(struct minmax_sample, t));
10522 break;
10523
10524 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10525 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10526 struct tcp_sock);
10527 break;
10528
10529 case offsetof(struct bpf_sock_ops, sk_txhash):
10530 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10531 struct sock, type);
10532 break;
10533 case offsetof(struct bpf_sock_ops, snd_cwnd):
10534 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10535 break;
10536 case offsetof(struct bpf_sock_ops, srtt_us):
10537 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10538 break;
10539 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10540 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10541 break;
10542 case offsetof(struct bpf_sock_ops, rcv_nxt):
10543 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10544 break;
10545 case offsetof(struct bpf_sock_ops, snd_nxt):
10546 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10547 break;
10548 case offsetof(struct bpf_sock_ops, snd_una):
10549 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10550 break;
10551 case offsetof(struct bpf_sock_ops, mss_cache):
10552 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10553 break;
10554 case offsetof(struct bpf_sock_ops, ecn_flags):
10555 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10556 break;
10557 case offsetof(struct bpf_sock_ops, rate_delivered):
10558 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10559 break;
10560 case offsetof(struct bpf_sock_ops, rate_interval_us):
10561 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10562 break;
10563 case offsetof(struct bpf_sock_ops, packets_out):
10564 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10565 break;
10566 case offsetof(struct bpf_sock_ops, retrans_out):
10567 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10568 break;
10569 case offsetof(struct bpf_sock_ops, total_retrans):
10570 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10571 break;
10572 case offsetof(struct bpf_sock_ops, segs_in):
10573 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10574 break;
10575 case offsetof(struct bpf_sock_ops, data_segs_in):
10576 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10577 break;
10578 case offsetof(struct bpf_sock_ops, segs_out):
10579 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10580 break;
10581 case offsetof(struct bpf_sock_ops, data_segs_out):
10582 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10583 break;
10584 case offsetof(struct bpf_sock_ops, lost_out):
10585 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10586 break;
10587 case offsetof(struct bpf_sock_ops, sacked_out):
10588 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10589 break;
10590 case offsetof(struct bpf_sock_ops, bytes_received):
10591 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10592 break;
10593 case offsetof(struct bpf_sock_ops, bytes_acked):
10594 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10595 break;
10596 case offsetof(struct bpf_sock_ops, sk):
10597 SOCK_OPS_GET_SK();
10598 break;
10599 case offsetof(struct bpf_sock_ops, skb_data_end):
10600 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10601 skb_data_end),
10602 si->dst_reg, si->src_reg,
10603 offsetof(struct bpf_sock_ops_kern,
10604 skb_data_end));
10605 break;
10606 case offsetof(struct bpf_sock_ops, skb_data):
10607 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10608 skb),
10609 si->dst_reg, si->src_reg,
10610 offsetof(struct bpf_sock_ops_kern,
10611 skb));
10612 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10613 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10614 si->dst_reg, si->dst_reg,
10615 offsetof(struct sk_buff, data));
10616 break;
10617 case offsetof(struct bpf_sock_ops, skb_len):
10618 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10619 skb),
10620 si->dst_reg, si->src_reg,
10621 offsetof(struct bpf_sock_ops_kern,
10622 skb));
10623 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10624 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10625 si->dst_reg, si->dst_reg,
10626 offsetof(struct sk_buff, len));
10627 break;
10628 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10629 off = offsetof(struct sk_buff, cb);
10630 off += offsetof(struct tcp_skb_cb, tcp_flags);
10631 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10632 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10633 skb),
10634 si->dst_reg, si->src_reg,
10635 offsetof(struct bpf_sock_ops_kern,
10636 skb));
10637 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10638 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10639 tcp_flags),
10640 si->dst_reg, si->dst_reg, off);
10641 break;
10642 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10643 struct bpf_insn *jmp_on_null_skb;
10644
10645 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10646 skb),
10647 si->dst_reg, si->src_reg,
10648 offsetof(struct bpf_sock_ops_kern,
10649 skb));
10650 /* Reserve one insn to test skb == NULL */
10651 jmp_on_null_skb = insn++;
10652 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10653 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10654 bpf_target_off(struct skb_shared_info,
10655 hwtstamps, 8,
10656 target_size));
10657 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10658 insn - jmp_on_null_skb - 1);
10659 break;
10660 }
10661 }
10662 return insn - insn_buf;
10663 }
10664
10665 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10666 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10667 struct bpf_insn *insn)
10668 {
10669 int reg;
10670 int temp_reg_off = offsetof(struct sk_buff, cb) +
10671 offsetof(struct sk_skb_cb, temp_reg);
10672
10673 if (si->src_reg == si->dst_reg) {
10674 /* We need an extra register, choose and save a register. */
10675 reg = BPF_REG_9;
10676 if (si->src_reg == reg || si->dst_reg == reg)
10677 reg--;
10678 if (si->src_reg == reg || si->dst_reg == reg)
10679 reg--;
10680 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10681 } else {
10682 reg = si->dst_reg;
10683 }
10684
10685 /* reg = skb->data */
10686 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10687 reg, si->src_reg,
10688 offsetof(struct sk_buff, data));
10689 /* AX = skb->len */
10690 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10691 BPF_REG_AX, si->src_reg,
10692 offsetof(struct sk_buff, len));
10693 /* reg = skb->data + skb->len */
10694 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10695 /* AX = skb->data_len */
10696 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10697 BPF_REG_AX, si->src_reg,
10698 offsetof(struct sk_buff, data_len));
10699
10700 /* reg = skb->data + skb->len - skb->data_len */
10701 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10702
10703 if (si->src_reg == si->dst_reg) {
10704 /* Restore the saved register */
10705 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10706 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10707 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10708 }
10709
10710 return insn;
10711 }
10712
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10713 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10714 const struct bpf_insn *si,
10715 struct bpf_insn *insn_buf,
10716 struct bpf_prog *prog, u32 *target_size)
10717 {
10718 struct bpf_insn *insn = insn_buf;
10719 int off;
10720
10721 switch (si->off) {
10722 case offsetof(struct __sk_buff, data_end):
10723 insn = bpf_convert_data_end_access(si, insn);
10724 break;
10725 case offsetof(struct __sk_buff, cb[0]) ...
10726 offsetofend(struct __sk_buff, cb[4]) - 1:
10727 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10728 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10729 offsetof(struct sk_skb_cb, data)) %
10730 sizeof(__u64));
10731
10732 prog->cb_access = 1;
10733 off = si->off;
10734 off -= offsetof(struct __sk_buff, cb[0]);
10735 off += offsetof(struct sk_buff, cb);
10736 off += offsetof(struct sk_skb_cb, data);
10737 if (type == BPF_WRITE)
10738 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10739 else
10740 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10741 si->src_reg, off);
10742 break;
10743
10744
10745 default:
10746 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10747 target_size);
10748 }
10749
10750 return insn - insn_buf;
10751 }
10752
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10753 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10754 const struct bpf_insn *si,
10755 struct bpf_insn *insn_buf,
10756 struct bpf_prog *prog, u32 *target_size)
10757 {
10758 struct bpf_insn *insn = insn_buf;
10759 #if IS_ENABLED(CONFIG_IPV6)
10760 int off;
10761 #endif
10762
10763 /* convert ctx uses the fact sg element is first in struct */
10764 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10765
10766 switch (si->off) {
10767 case offsetof(struct sk_msg_md, data):
10768 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10769 si->dst_reg, si->src_reg,
10770 offsetof(struct sk_msg, data));
10771 break;
10772 case offsetof(struct sk_msg_md, data_end):
10773 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10774 si->dst_reg, si->src_reg,
10775 offsetof(struct sk_msg, data_end));
10776 break;
10777 case offsetof(struct sk_msg_md, family):
10778 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10779
10780 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10781 struct sk_msg, sk),
10782 si->dst_reg, si->src_reg,
10783 offsetof(struct sk_msg, sk));
10784 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10785 offsetof(struct sock_common, skc_family));
10786 break;
10787
10788 case offsetof(struct sk_msg_md, remote_ip4):
10789 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10790
10791 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10792 struct sk_msg, sk),
10793 si->dst_reg, si->src_reg,
10794 offsetof(struct sk_msg, sk));
10795 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10796 offsetof(struct sock_common, skc_daddr));
10797 break;
10798
10799 case offsetof(struct sk_msg_md, local_ip4):
10800 BUILD_BUG_ON(sizeof_field(struct sock_common,
10801 skc_rcv_saddr) != 4);
10802
10803 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10804 struct sk_msg, sk),
10805 si->dst_reg, si->src_reg,
10806 offsetof(struct sk_msg, sk));
10807 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10808 offsetof(struct sock_common,
10809 skc_rcv_saddr));
10810 break;
10811
10812 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10813 offsetof(struct sk_msg_md, remote_ip6[3]):
10814 #if IS_ENABLED(CONFIG_IPV6)
10815 BUILD_BUG_ON(sizeof_field(struct sock_common,
10816 skc_v6_daddr.s6_addr32[0]) != 4);
10817
10818 off = si->off;
10819 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10820 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10821 struct sk_msg, sk),
10822 si->dst_reg, si->src_reg,
10823 offsetof(struct sk_msg, sk));
10824 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10825 offsetof(struct sock_common,
10826 skc_v6_daddr.s6_addr32[0]) +
10827 off);
10828 #else
10829 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10830 #endif
10831 break;
10832
10833 case offsetof(struct sk_msg_md, local_ip6[0]) ...
10834 offsetof(struct sk_msg_md, local_ip6[3]):
10835 #if IS_ENABLED(CONFIG_IPV6)
10836 BUILD_BUG_ON(sizeof_field(struct sock_common,
10837 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10838
10839 off = si->off;
10840 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10841 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10842 struct sk_msg, sk),
10843 si->dst_reg, si->src_reg,
10844 offsetof(struct sk_msg, sk));
10845 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10846 offsetof(struct sock_common,
10847 skc_v6_rcv_saddr.s6_addr32[0]) +
10848 off);
10849 #else
10850 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10851 #endif
10852 break;
10853
10854 case offsetof(struct sk_msg_md, remote_port):
10855 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10856
10857 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10858 struct sk_msg, sk),
10859 si->dst_reg, si->src_reg,
10860 offsetof(struct sk_msg, sk));
10861 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10862 offsetof(struct sock_common, skc_dport));
10863 #ifndef __BIG_ENDIAN_BITFIELD
10864 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10865 #endif
10866 break;
10867
10868 case offsetof(struct sk_msg_md, local_port):
10869 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10870
10871 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10872 struct sk_msg, sk),
10873 si->dst_reg, si->src_reg,
10874 offsetof(struct sk_msg, sk));
10875 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10876 offsetof(struct sock_common, skc_num));
10877 break;
10878
10879 case offsetof(struct sk_msg_md, size):
10880 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10881 si->dst_reg, si->src_reg,
10882 offsetof(struct sk_msg_sg, size));
10883 break;
10884
10885 case offsetof(struct sk_msg_md, sk):
10886 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10887 si->dst_reg, si->src_reg,
10888 offsetof(struct sk_msg, sk));
10889 break;
10890 }
10891
10892 return insn - insn_buf;
10893 }
10894
10895 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10896 .get_func_proto = sk_filter_func_proto,
10897 .is_valid_access = sk_filter_is_valid_access,
10898 .convert_ctx_access = bpf_convert_ctx_access,
10899 .gen_ld_abs = bpf_gen_ld_abs,
10900 };
10901
10902 const struct bpf_prog_ops sk_filter_prog_ops = {
10903 .test_run = bpf_prog_test_run_skb,
10904 };
10905
10906 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10907 .get_func_proto = tc_cls_act_func_proto,
10908 .is_valid_access = tc_cls_act_is_valid_access,
10909 .convert_ctx_access = tc_cls_act_convert_ctx_access,
10910 .gen_prologue = tc_cls_act_prologue,
10911 .gen_ld_abs = bpf_gen_ld_abs,
10912 .btf_struct_access = tc_cls_act_btf_struct_access,
10913 };
10914
10915 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10916 .test_run = bpf_prog_test_run_skb,
10917 };
10918
10919 const struct bpf_verifier_ops xdp_verifier_ops = {
10920 .get_func_proto = xdp_func_proto,
10921 .is_valid_access = xdp_is_valid_access,
10922 .convert_ctx_access = xdp_convert_ctx_access,
10923 .gen_prologue = bpf_noop_prologue,
10924 .btf_struct_access = xdp_btf_struct_access,
10925 };
10926
10927 const struct bpf_prog_ops xdp_prog_ops = {
10928 .test_run = bpf_prog_test_run_xdp,
10929 };
10930
10931 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10932 .get_func_proto = cg_skb_func_proto,
10933 .is_valid_access = cg_skb_is_valid_access,
10934 .convert_ctx_access = bpf_convert_ctx_access,
10935 };
10936
10937 const struct bpf_prog_ops cg_skb_prog_ops = {
10938 .test_run = bpf_prog_test_run_skb,
10939 };
10940
10941 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10942 .get_func_proto = lwt_in_func_proto,
10943 .is_valid_access = lwt_is_valid_access,
10944 .convert_ctx_access = bpf_convert_ctx_access,
10945 };
10946
10947 const struct bpf_prog_ops lwt_in_prog_ops = {
10948 .test_run = bpf_prog_test_run_skb,
10949 };
10950
10951 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10952 .get_func_proto = lwt_out_func_proto,
10953 .is_valid_access = lwt_is_valid_access,
10954 .convert_ctx_access = bpf_convert_ctx_access,
10955 };
10956
10957 const struct bpf_prog_ops lwt_out_prog_ops = {
10958 .test_run = bpf_prog_test_run_skb,
10959 };
10960
10961 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10962 .get_func_proto = lwt_xmit_func_proto,
10963 .is_valid_access = lwt_is_valid_access,
10964 .convert_ctx_access = bpf_convert_ctx_access,
10965 .gen_prologue = tc_cls_act_prologue,
10966 };
10967
10968 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10969 .test_run = bpf_prog_test_run_skb,
10970 };
10971
10972 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10973 .get_func_proto = lwt_seg6local_func_proto,
10974 .is_valid_access = lwt_is_valid_access,
10975 .convert_ctx_access = bpf_convert_ctx_access,
10976 };
10977
10978 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10979 .test_run = bpf_prog_test_run_skb,
10980 };
10981
10982 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10983 .get_func_proto = sock_filter_func_proto,
10984 .is_valid_access = sock_filter_is_valid_access,
10985 .convert_ctx_access = bpf_sock_convert_ctx_access,
10986 };
10987
10988 const struct bpf_prog_ops cg_sock_prog_ops = {
10989 };
10990
10991 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10992 .get_func_proto = sock_addr_func_proto,
10993 .is_valid_access = sock_addr_is_valid_access,
10994 .convert_ctx_access = sock_addr_convert_ctx_access,
10995 };
10996
10997 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10998 };
10999
11000 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11001 .get_func_proto = sock_ops_func_proto,
11002 .is_valid_access = sock_ops_is_valid_access,
11003 .convert_ctx_access = sock_ops_convert_ctx_access,
11004 };
11005
11006 const struct bpf_prog_ops sock_ops_prog_ops = {
11007 };
11008
11009 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11010 .get_func_proto = sk_skb_func_proto,
11011 .is_valid_access = sk_skb_is_valid_access,
11012 .convert_ctx_access = sk_skb_convert_ctx_access,
11013 .gen_prologue = sk_skb_prologue,
11014 };
11015
11016 const struct bpf_prog_ops sk_skb_prog_ops = {
11017 };
11018
11019 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11020 .get_func_proto = sk_msg_func_proto,
11021 .is_valid_access = sk_msg_is_valid_access,
11022 .convert_ctx_access = sk_msg_convert_ctx_access,
11023 .gen_prologue = bpf_noop_prologue,
11024 };
11025
11026 const struct bpf_prog_ops sk_msg_prog_ops = {
11027 };
11028
11029 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11030 .get_func_proto = flow_dissector_func_proto,
11031 .is_valid_access = flow_dissector_is_valid_access,
11032 .convert_ctx_access = flow_dissector_convert_ctx_access,
11033 };
11034
11035 const struct bpf_prog_ops flow_dissector_prog_ops = {
11036 .test_run = bpf_prog_test_run_flow_dissector,
11037 };
11038
sk_detach_filter(struct sock * sk)11039 int sk_detach_filter(struct sock *sk)
11040 {
11041 int ret = -ENOENT;
11042 struct sk_filter *filter;
11043
11044 if (sock_flag(sk, SOCK_FILTER_LOCKED))
11045 return -EPERM;
11046
11047 filter = rcu_dereference_protected(sk->sk_filter,
11048 lockdep_sock_is_held(sk));
11049 if (filter) {
11050 RCU_INIT_POINTER(sk->sk_filter, NULL);
11051 sk_filter_uncharge(sk, filter);
11052 ret = 0;
11053 }
11054
11055 return ret;
11056 }
11057 EXPORT_SYMBOL_GPL(sk_detach_filter);
11058
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11059 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11060 {
11061 struct sock_fprog_kern *fprog;
11062 struct sk_filter *filter;
11063 int ret = 0;
11064
11065 sockopt_lock_sock(sk);
11066 filter = rcu_dereference_protected(sk->sk_filter,
11067 lockdep_sock_is_held(sk));
11068 if (!filter)
11069 goto out;
11070
11071 /* We're copying the filter that has been originally attached,
11072 * so no conversion/decode needed anymore. eBPF programs that
11073 * have no original program cannot be dumped through this.
11074 */
11075 ret = -EACCES;
11076 fprog = filter->prog->orig_prog;
11077 if (!fprog)
11078 goto out;
11079
11080 ret = fprog->len;
11081 if (!len)
11082 /* User space only enquires number of filter blocks. */
11083 goto out;
11084
11085 ret = -EINVAL;
11086 if (len < fprog->len)
11087 goto out;
11088
11089 ret = -EFAULT;
11090 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11091 goto out;
11092
11093 /* Instead of bytes, the API requests to return the number
11094 * of filter blocks.
11095 */
11096 ret = fprog->len;
11097 out:
11098 sockopt_release_sock(sk);
11099 return ret;
11100 }
11101
11102 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11103 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11104 struct sock_reuseport *reuse,
11105 struct sock *sk, struct sk_buff *skb,
11106 struct sock *migrating_sk,
11107 u32 hash)
11108 {
11109 reuse_kern->skb = skb;
11110 reuse_kern->sk = sk;
11111 reuse_kern->selected_sk = NULL;
11112 reuse_kern->migrating_sk = migrating_sk;
11113 reuse_kern->data_end = skb->data + skb_headlen(skb);
11114 reuse_kern->hash = hash;
11115 reuse_kern->reuseport_id = reuse->reuseport_id;
11116 reuse_kern->bind_inany = reuse->bind_inany;
11117 }
11118
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11119 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11120 struct bpf_prog *prog, struct sk_buff *skb,
11121 struct sock *migrating_sk,
11122 u32 hash)
11123 {
11124 struct sk_reuseport_kern reuse_kern;
11125 enum sk_action action;
11126
11127 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11128 action = bpf_prog_run(prog, &reuse_kern);
11129
11130 if (action == SK_PASS)
11131 return reuse_kern.selected_sk;
11132 else
11133 return ERR_PTR(-ECONNREFUSED);
11134 }
11135
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11136 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11137 struct bpf_map *, map, void *, key, u32, flags)
11138 {
11139 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11140 struct sock_reuseport *reuse;
11141 struct sock *selected_sk;
11142
11143 selected_sk = map->ops->map_lookup_elem(map, key);
11144 if (!selected_sk)
11145 return -ENOENT;
11146
11147 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11148 if (!reuse) {
11149 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11150 if (sk_is_refcounted(selected_sk))
11151 sock_put(selected_sk);
11152
11153 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11154 * The only (!reuse) case here is - the sk has already been
11155 * unhashed (e.g. by close()), so treat it as -ENOENT.
11156 *
11157 * Other maps (e.g. sock_map) do not provide this guarantee and
11158 * the sk may never be in the reuseport group to begin with.
11159 */
11160 return is_sockarray ? -ENOENT : -EINVAL;
11161 }
11162
11163 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11164 struct sock *sk = reuse_kern->sk;
11165
11166 if (sk->sk_protocol != selected_sk->sk_protocol)
11167 return -EPROTOTYPE;
11168 else if (sk->sk_family != selected_sk->sk_family)
11169 return -EAFNOSUPPORT;
11170
11171 /* Catch all. Likely bound to a different sockaddr. */
11172 return -EBADFD;
11173 }
11174
11175 reuse_kern->selected_sk = selected_sk;
11176
11177 return 0;
11178 }
11179
11180 static const struct bpf_func_proto sk_select_reuseport_proto = {
11181 .func = sk_select_reuseport,
11182 .gpl_only = false,
11183 .ret_type = RET_INTEGER,
11184 .arg1_type = ARG_PTR_TO_CTX,
11185 .arg2_type = ARG_CONST_MAP_PTR,
11186 .arg3_type = ARG_PTR_TO_MAP_KEY,
11187 .arg4_type = ARG_ANYTHING,
11188 };
11189
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11190 BPF_CALL_4(sk_reuseport_load_bytes,
11191 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11192 void *, to, u32, len)
11193 {
11194 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11195 }
11196
11197 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11198 .func = sk_reuseport_load_bytes,
11199 .gpl_only = false,
11200 .ret_type = RET_INTEGER,
11201 .arg1_type = ARG_PTR_TO_CTX,
11202 .arg2_type = ARG_ANYTHING,
11203 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11204 .arg4_type = ARG_CONST_SIZE,
11205 };
11206
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11207 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11208 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11209 void *, to, u32, len, u32, start_header)
11210 {
11211 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11212 len, start_header);
11213 }
11214
11215 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11216 .func = sk_reuseport_load_bytes_relative,
11217 .gpl_only = false,
11218 .ret_type = RET_INTEGER,
11219 .arg1_type = ARG_PTR_TO_CTX,
11220 .arg2_type = ARG_ANYTHING,
11221 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11222 .arg4_type = ARG_CONST_SIZE,
11223 .arg5_type = ARG_ANYTHING,
11224 };
11225
11226 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11227 sk_reuseport_func_proto(enum bpf_func_id func_id,
11228 const struct bpf_prog *prog)
11229 {
11230 switch (func_id) {
11231 case BPF_FUNC_sk_select_reuseport:
11232 return &sk_select_reuseport_proto;
11233 case BPF_FUNC_skb_load_bytes:
11234 return &sk_reuseport_load_bytes_proto;
11235 case BPF_FUNC_skb_load_bytes_relative:
11236 return &sk_reuseport_load_bytes_relative_proto;
11237 case BPF_FUNC_get_socket_cookie:
11238 return &bpf_get_socket_ptr_cookie_proto;
11239 case BPF_FUNC_ktime_get_coarse_ns:
11240 return &bpf_ktime_get_coarse_ns_proto;
11241 default:
11242 return bpf_base_func_proto(func_id);
11243 }
11244 }
11245
11246 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11247 sk_reuseport_is_valid_access(int off, int size,
11248 enum bpf_access_type type,
11249 const struct bpf_prog *prog,
11250 struct bpf_insn_access_aux *info)
11251 {
11252 const u32 size_default = sizeof(__u32);
11253
11254 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11255 off % size || type != BPF_READ)
11256 return false;
11257
11258 switch (off) {
11259 case offsetof(struct sk_reuseport_md, data):
11260 info->reg_type = PTR_TO_PACKET;
11261 return size == sizeof(__u64);
11262
11263 case offsetof(struct sk_reuseport_md, data_end):
11264 info->reg_type = PTR_TO_PACKET_END;
11265 return size == sizeof(__u64);
11266
11267 case offsetof(struct sk_reuseport_md, hash):
11268 return size == size_default;
11269
11270 case offsetof(struct sk_reuseport_md, sk):
11271 info->reg_type = PTR_TO_SOCKET;
11272 return size == sizeof(__u64);
11273
11274 case offsetof(struct sk_reuseport_md, migrating_sk):
11275 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11276 return size == sizeof(__u64);
11277
11278 /* Fields that allow narrowing */
11279 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11280 if (size < sizeof_field(struct sk_buff, protocol))
11281 return false;
11282 fallthrough;
11283 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11284 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11285 case bpf_ctx_range(struct sk_reuseport_md, len):
11286 bpf_ctx_record_field_size(info, size_default);
11287 return bpf_ctx_narrow_access_ok(off, size, size_default);
11288
11289 default:
11290 return false;
11291 }
11292 }
11293
11294 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11295 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11296 si->dst_reg, si->src_reg, \
11297 bpf_target_off(struct sk_reuseport_kern, F, \
11298 sizeof_field(struct sk_reuseport_kern, F), \
11299 target_size)); \
11300 })
11301
11302 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11303 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11304 struct sk_buff, \
11305 skb, \
11306 SKB_FIELD)
11307
11308 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11309 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11310 struct sock, \
11311 sk, \
11312 SK_FIELD)
11313
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11314 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11315 const struct bpf_insn *si,
11316 struct bpf_insn *insn_buf,
11317 struct bpf_prog *prog,
11318 u32 *target_size)
11319 {
11320 struct bpf_insn *insn = insn_buf;
11321
11322 switch (si->off) {
11323 case offsetof(struct sk_reuseport_md, data):
11324 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11325 break;
11326
11327 case offsetof(struct sk_reuseport_md, len):
11328 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11329 break;
11330
11331 case offsetof(struct sk_reuseport_md, eth_protocol):
11332 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11333 break;
11334
11335 case offsetof(struct sk_reuseport_md, ip_protocol):
11336 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11337 break;
11338
11339 case offsetof(struct sk_reuseport_md, data_end):
11340 SK_REUSEPORT_LOAD_FIELD(data_end);
11341 break;
11342
11343 case offsetof(struct sk_reuseport_md, hash):
11344 SK_REUSEPORT_LOAD_FIELD(hash);
11345 break;
11346
11347 case offsetof(struct sk_reuseport_md, bind_inany):
11348 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11349 break;
11350
11351 case offsetof(struct sk_reuseport_md, sk):
11352 SK_REUSEPORT_LOAD_FIELD(sk);
11353 break;
11354
11355 case offsetof(struct sk_reuseport_md, migrating_sk):
11356 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11357 break;
11358 }
11359
11360 return insn - insn_buf;
11361 }
11362
11363 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11364 .get_func_proto = sk_reuseport_func_proto,
11365 .is_valid_access = sk_reuseport_is_valid_access,
11366 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11367 };
11368
11369 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11370 };
11371
11372 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11373 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11374
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11375 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11376 struct sock *, sk, u64, flags)
11377 {
11378 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11379 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11380 return -EINVAL;
11381 if (unlikely(sk && sk_is_refcounted(sk)))
11382 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11383 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11384 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11385 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11386 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11387
11388 /* Check if socket is suitable for packet L3/L4 protocol */
11389 if (sk && sk->sk_protocol != ctx->protocol)
11390 return -EPROTOTYPE;
11391 if (sk && sk->sk_family != ctx->family &&
11392 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11393 return -EAFNOSUPPORT;
11394
11395 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11396 return -EEXIST;
11397
11398 /* Select socket as lookup result */
11399 ctx->selected_sk = sk;
11400 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11401 return 0;
11402 }
11403
11404 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11405 .func = bpf_sk_lookup_assign,
11406 .gpl_only = false,
11407 .ret_type = RET_INTEGER,
11408 .arg1_type = ARG_PTR_TO_CTX,
11409 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11410 .arg3_type = ARG_ANYTHING,
11411 };
11412
11413 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11414 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11415 {
11416 switch (func_id) {
11417 case BPF_FUNC_perf_event_output:
11418 return &bpf_event_output_data_proto;
11419 case BPF_FUNC_sk_assign:
11420 return &bpf_sk_lookup_assign_proto;
11421 case BPF_FUNC_sk_release:
11422 return &bpf_sk_release_proto;
11423 default:
11424 return bpf_sk_base_func_proto(func_id);
11425 }
11426 }
11427
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11428 static bool sk_lookup_is_valid_access(int off, int size,
11429 enum bpf_access_type type,
11430 const struct bpf_prog *prog,
11431 struct bpf_insn_access_aux *info)
11432 {
11433 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11434 return false;
11435 if (off % size != 0)
11436 return false;
11437 if (type != BPF_READ)
11438 return false;
11439
11440 switch (off) {
11441 case offsetof(struct bpf_sk_lookup, sk):
11442 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11443 return size == sizeof(__u64);
11444
11445 case bpf_ctx_range(struct bpf_sk_lookup, family):
11446 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11447 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11448 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11449 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11450 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11451 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11452 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11453 bpf_ctx_record_field_size(info, sizeof(__u32));
11454 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11455
11456 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11457 /* Allow 4-byte access to 2-byte field for backward compatibility */
11458 if (size == sizeof(__u32))
11459 return true;
11460 bpf_ctx_record_field_size(info, sizeof(__be16));
11461 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11462
11463 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11464 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11465 /* Allow access to zero padding for backward compatibility */
11466 bpf_ctx_record_field_size(info, sizeof(__u16));
11467 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11468
11469 default:
11470 return false;
11471 }
11472 }
11473
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11474 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11475 const struct bpf_insn *si,
11476 struct bpf_insn *insn_buf,
11477 struct bpf_prog *prog,
11478 u32 *target_size)
11479 {
11480 struct bpf_insn *insn = insn_buf;
11481
11482 switch (si->off) {
11483 case offsetof(struct bpf_sk_lookup, sk):
11484 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11485 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11486 break;
11487
11488 case offsetof(struct bpf_sk_lookup, family):
11489 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11490 bpf_target_off(struct bpf_sk_lookup_kern,
11491 family, 2, target_size));
11492 break;
11493
11494 case offsetof(struct bpf_sk_lookup, protocol):
11495 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11496 bpf_target_off(struct bpf_sk_lookup_kern,
11497 protocol, 2, target_size));
11498 break;
11499
11500 case offsetof(struct bpf_sk_lookup, remote_ip4):
11501 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11502 bpf_target_off(struct bpf_sk_lookup_kern,
11503 v4.saddr, 4, target_size));
11504 break;
11505
11506 case offsetof(struct bpf_sk_lookup, local_ip4):
11507 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11508 bpf_target_off(struct bpf_sk_lookup_kern,
11509 v4.daddr, 4, target_size));
11510 break;
11511
11512 case bpf_ctx_range_till(struct bpf_sk_lookup,
11513 remote_ip6[0], remote_ip6[3]): {
11514 #if IS_ENABLED(CONFIG_IPV6)
11515 int off = si->off;
11516
11517 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11518 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11519 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11520 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11521 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11522 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11523 #else
11524 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11525 #endif
11526 break;
11527 }
11528 case bpf_ctx_range_till(struct bpf_sk_lookup,
11529 local_ip6[0], local_ip6[3]): {
11530 #if IS_ENABLED(CONFIG_IPV6)
11531 int off = si->off;
11532
11533 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11534 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11535 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11536 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11537 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11538 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11539 #else
11540 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11541 #endif
11542 break;
11543 }
11544 case offsetof(struct bpf_sk_lookup, remote_port):
11545 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11546 bpf_target_off(struct bpf_sk_lookup_kern,
11547 sport, 2, target_size));
11548 break;
11549
11550 case offsetofend(struct bpf_sk_lookup, remote_port):
11551 *target_size = 2;
11552 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11553 break;
11554
11555 case offsetof(struct bpf_sk_lookup, local_port):
11556 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11557 bpf_target_off(struct bpf_sk_lookup_kern,
11558 dport, 2, target_size));
11559 break;
11560
11561 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11562 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11563 bpf_target_off(struct bpf_sk_lookup_kern,
11564 ingress_ifindex, 4, target_size));
11565 break;
11566 }
11567
11568 return insn - insn_buf;
11569 }
11570
11571 const struct bpf_prog_ops sk_lookup_prog_ops = {
11572 .test_run = bpf_prog_test_run_sk_lookup,
11573 };
11574
11575 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11576 .get_func_proto = sk_lookup_func_proto,
11577 .is_valid_access = sk_lookup_is_valid_access,
11578 .convert_ctx_access = sk_lookup_convert_ctx_access,
11579 };
11580
11581 #endif /* CONFIG_INET */
11582
DEFINE_BPF_DISPATCHER(xdp)11583 DEFINE_BPF_DISPATCHER(xdp)
11584
11585 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11586 {
11587 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11588 }
11589
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11590 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11591 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11592 BTF_SOCK_TYPE_xxx
11593 #undef BTF_SOCK_TYPE
11594
11595 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11596 {
11597 /* tcp6_sock type is not generated in dwarf and hence btf,
11598 * trigger an explicit type generation here.
11599 */
11600 BTF_TYPE_EMIT(struct tcp6_sock);
11601 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11602 sk->sk_family == AF_INET6)
11603 return (unsigned long)sk;
11604
11605 return (unsigned long)NULL;
11606 }
11607
11608 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11609 .func = bpf_skc_to_tcp6_sock,
11610 .gpl_only = false,
11611 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11612 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11613 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11614 };
11615
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11616 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11617 {
11618 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11619 return (unsigned long)sk;
11620
11621 return (unsigned long)NULL;
11622 }
11623
11624 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11625 .func = bpf_skc_to_tcp_sock,
11626 .gpl_only = false,
11627 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11628 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11629 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11630 };
11631
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11632 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11633 {
11634 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11635 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11636 */
11637 BTF_TYPE_EMIT(struct inet_timewait_sock);
11638 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11639
11640 #ifdef CONFIG_INET
11641 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11642 return (unsigned long)sk;
11643 #endif
11644
11645 #if IS_BUILTIN(CONFIG_IPV6)
11646 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11647 return (unsigned long)sk;
11648 #endif
11649
11650 return (unsigned long)NULL;
11651 }
11652
11653 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11654 .func = bpf_skc_to_tcp_timewait_sock,
11655 .gpl_only = false,
11656 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11657 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11658 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11659 };
11660
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11661 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11662 {
11663 #ifdef CONFIG_INET
11664 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11665 return (unsigned long)sk;
11666 #endif
11667
11668 #if IS_BUILTIN(CONFIG_IPV6)
11669 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11670 return (unsigned long)sk;
11671 #endif
11672
11673 return (unsigned long)NULL;
11674 }
11675
11676 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11677 .func = bpf_skc_to_tcp_request_sock,
11678 .gpl_only = false,
11679 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11680 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11681 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11682 };
11683
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11684 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11685 {
11686 /* udp6_sock type is not generated in dwarf and hence btf,
11687 * trigger an explicit type generation here.
11688 */
11689 BTF_TYPE_EMIT(struct udp6_sock);
11690 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11691 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11692 return (unsigned long)sk;
11693
11694 return (unsigned long)NULL;
11695 }
11696
11697 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11698 .func = bpf_skc_to_udp6_sock,
11699 .gpl_only = false,
11700 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11701 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11702 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11703 };
11704
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11705 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11706 {
11707 /* unix_sock type is not generated in dwarf and hence btf,
11708 * trigger an explicit type generation here.
11709 */
11710 BTF_TYPE_EMIT(struct unix_sock);
11711 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11712 return (unsigned long)sk;
11713
11714 return (unsigned long)NULL;
11715 }
11716
11717 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11718 .func = bpf_skc_to_unix_sock,
11719 .gpl_only = false,
11720 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11721 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11722 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11723 };
11724
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11725 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11726 {
11727 BTF_TYPE_EMIT(struct mptcp_sock);
11728 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11729 }
11730
11731 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11732 .func = bpf_skc_to_mptcp_sock,
11733 .gpl_only = false,
11734 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11735 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11736 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11737 };
11738
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11739 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11740 {
11741 return (unsigned long)sock_from_file(file);
11742 }
11743
11744 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11745 BTF_ID(struct, socket)
11746 BTF_ID(struct, file)
11747
11748 const struct bpf_func_proto bpf_sock_from_file_proto = {
11749 .func = bpf_sock_from_file,
11750 .gpl_only = false,
11751 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11752 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11753 .arg1_type = ARG_PTR_TO_BTF_ID,
11754 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11755 };
11756
11757 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11758 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11759 {
11760 const struct bpf_func_proto *func;
11761
11762 switch (func_id) {
11763 case BPF_FUNC_skc_to_tcp6_sock:
11764 func = &bpf_skc_to_tcp6_sock_proto;
11765 break;
11766 case BPF_FUNC_skc_to_tcp_sock:
11767 func = &bpf_skc_to_tcp_sock_proto;
11768 break;
11769 case BPF_FUNC_skc_to_tcp_timewait_sock:
11770 func = &bpf_skc_to_tcp_timewait_sock_proto;
11771 break;
11772 case BPF_FUNC_skc_to_tcp_request_sock:
11773 func = &bpf_skc_to_tcp_request_sock_proto;
11774 break;
11775 case BPF_FUNC_skc_to_udp6_sock:
11776 func = &bpf_skc_to_udp6_sock_proto;
11777 break;
11778 case BPF_FUNC_skc_to_unix_sock:
11779 func = &bpf_skc_to_unix_sock_proto;
11780 break;
11781 case BPF_FUNC_skc_to_mptcp_sock:
11782 func = &bpf_skc_to_mptcp_sock_proto;
11783 break;
11784 case BPF_FUNC_ktime_get_coarse_ns:
11785 return &bpf_ktime_get_coarse_ns_proto;
11786 default:
11787 return bpf_base_func_proto(func_id);
11788 }
11789
11790 if (!perfmon_capable())
11791 return NULL;
11792
11793 return func;
11794 }
11795
11796 __diag_push();
11797 __diag_ignore_all("-Wmissing-prototypes",
11798 "Global functions as their definitions will be in vmlinux BTF");
bpf_dynptr_from_skb(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11799 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11800 struct bpf_dynptr_kern *ptr__uninit)
11801 {
11802 if (flags) {
11803 bpf_dynptr_set_null(ptr__uninit);
11804 return -EINVAL;
11805 }
11806
11807 bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11808
11809 return 0;
11810 }
11811
bpf_dynptr_from_xdp(struct xdp_buff * xdp,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11812 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11813 struct bpf_dynptr_kern *ptr__uninit)
11814 {
11815 if (flags) {
11816 bpf_dynptr_set_null(ptr__uninit);
11817 return -EINVAL;
11818 }
11819
11820 bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11821
11822 return 0;
11823 }
11824
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)11825 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11826 const u8 *sun_path, u32 sun_path__sz)
11827 {
11828 struct sockaddr_un *un;
11829
11830 if (sa_kern->sk->sk_family != AF_UNIX)
11831 return -EINVAL;
11832
11833 /* We do not allow changing the address to unnamed or larger than the
11834 * maximum allowed address size for a unix sockaddr.
11835 */
11836 if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11837 return -EINVAL;
11838
11839 un = (struct sockaddr_un *)sa_kern->uaddr;
11840 memcpy(un->sun_path, sun_path, sun_path__sz);
11841 sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11842
11843 return 0;
11844 }
11845 __diag_pop();
11846
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11847 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11848 struct bpf_dynptr_kern *ptr__uninit)
11849 {
11850 int err;
11851
11852 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11853 if (err)
11854 return err;
11855
11856 bpf_dynptr_set_rdonly(ptr__uninit);
11857
11858 return 0;
11859 }
11860
11861 BTF_SET8_START(bpf_kfunc_check_set_skb)
11862 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11863 BTF_SET8_END(bpf_kfunc_check_set_skb)
11864
11865 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11866 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11867 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11868
11869 BTF_SET8_START(bpf_kfunc_check_set_sock_addr)
11870 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11871 BTF_SET8_END(bpf_kfunc_check_set_sock_addr)
11872
11873 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11874 .owner = THIS_MODULE,
11875 .set = &bpf_kfunc_check_set_skb,
11876 };
11877
11878 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11879 .owner = THIS_MODULE,
11880 .set = &bpf_kfunc_check_set_xdp,
11881 };
11882
11883 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
11884 .owner = THIS_MODULE,
11885 .set = &bpf_kfunc_check_set_sock_addr,
11886 };
11887
bpf_kfunc_init(void)11888 static int __init bpf_kfunc_init(void)
11889 {
11890 int ret;
11891
11892 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11893 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11894 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11895 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11896 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11897 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11898 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11899 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11900 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11901 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11902 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11903 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
11904 &bpf_kfunc_set_sock_addr);
11905 }
11906 late_initcall(bpf_kfunc_init);
11907
11908 /* Disables missing prototype warnings */
11909 __diag_push();
11910 __diag_ignore_all("-Wmissing-prototypes",
11911 "Global functions as their definitions will be in vmlinux BTF");
11912
11913 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11914 *
11915 * The function expects a non-NULL pointer to a socket, and invokes the
11916 * protocol specific socket destroy handlers.
11917 *
11918 * The helper can only be called from BPF contexts that have acquired the socket
11919 * locks.
11920 *
11921 * Parameters:
11922 * @sock: Pointer to socket to be destroyed
11923 *
11924 * Return:
11925 * On error, may return EPROTONOSUPPORT, EINVAL.
11926 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11927 * 0 otherwise
11928 */
bpf_sock_destroy(struct sock_common * sock)11929 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11930 {
11931 struct sock *sk = (struct sock *)sock;
11932
11933 /* The locking semantics that allow for synchronous execution of the
11934 * destroy handlers are only supported for TCP and UDP.
11935 * Supporting protocols will need to acquire sock lock in the BPF context
11936 * prior to invoking this kfunc.
11937 */
11938 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11939 sk->sk_protocol != IPPROTO_UDP))
11940 return -EOPNOTSUPP;
11941
11942 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11943 }
11944
11945 __diag_pop()
11946
BTF_SET8_START(bpf_sk_iter_kfunc_ids)11947 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11948 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
11949 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
11950
11951 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
11952 {
11953 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
11954 prog->expected_attach_type != BPF_TRACE_ITER)
11955 return -EACCES;
11956 return 0;
11957 }
11958
11959 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
11960 .owner = THIS_MODULE,
11961 .set = &bpf_sk_iter_kfunc_ids,
11962 .filter = tracing_iter_filter,
11963 };
11964
init_subsystem(void)11965 static int init_subsystem(void)
11966 {
11967 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
11968 }
11969 late_initcall(init_subsystem);
11970