1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44
45 static struct vfsmount *shm_mnt;
46
47 #ifdef CONFIG_SHMEM
48 /*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98
99 /*
100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101 * inode->i_private (with i_rwsem making sure that it has only one user at
102 * a time): we would prefer not to enlarge the shmem inode just for that.
103 */
104 struct shmem_falloc {
105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 pgoff_t start; /* start of range currently being fallocated */
107 pgoff_t next; /* the next page offset to be fallocated */
108 pgoff_t nr_falloced; /* how many new pages have been fallocated */
109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
110 };
111
112 struct shmem_options {
113 unsigned long long blocks;
114 unsigned long long inodes;
115 struct mempolicy *mpol;
116 kuid_t uid;
117 kgid_t gid;
118 umode_t mode;
119 bool full_inums;
120 int huge;
121 int seen;
122 bool noswap;
123 unsigned short quota_types;
124 struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132
133 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)134 static unsigned long shmem_default_max_blocks(void)
135 {
136 return totalram_pages() / 2;
137 }
138
shmem_default_max_inodes(void)139 static unsigned long shmem_default_max_inodes(void)
140 {
141 unsigned long nr_pages = totalram_pages();
142
143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 struct folio **foliop, enum sgp_type sgp,
150 gfp_t gfp, struct vm_area_struct *vma,
151 vm_fault_t *fault_type);
152
SHMEM_SB(struct super_block * sb)153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
shmem_acct_size(unsigned long flags,loff_t size)164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
shmem_unacct_size(unsigned long flags,loff_t size)170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178 {
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187 }
188
189 /*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
shmem_acct_block(unsigned long flags,long pages)195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
202 }
203
shmem_unacct_blocks(unsigned long flags,long pages)204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
shmem_inode_acct_block(struct inode * inode,long pages)210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 int err = -ENOSPC;
215
216 if (shmem_acct_block(info->flags, pages))
217 return err;
218
219 might_sleep(); /* when quotas */
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224
225 err = dquot_alloc_block_nodirty(inode, pages);
226 if (err)
227 goto unacct;
228
229 percpu_counter_add(&sbinfo->used_blocks, pages);
230 } else {
231 err = dquot_alloc_block_nodirty(inode, pages);
232 if (err)
233 goto unacct;
234 }
235
236 return 0;
237
238 unacct:
239 shmem_unacct_blocks(info->flags, pages);
240 return err;
241 }
242
shmem_inode_unacct_blocks(struct inode * inode,long pages)243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 struct shmem_inode_info *info = SHMEM_I(inode);
246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247
248 might_sleep(); /* when quotas */
249 dquot_free_block_nodirty(inode, pages);
250
251 if (sbinfo->max_blocks)
252 percpu_counter_sub(&sbinfo->used_blocks, pages);
253 shmem_unacct_blocks(info->flags, pages);
254 }
255
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265
vma_is_anon_shmem(struct vm_area_struct * vma)266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270
vma_is_shmem(struct vm_area_struct * vma)271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278
279 #ifdef CONFIG_TMPFS_QUOTA
280
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)281 static int shmem_enable_quotas(struct super_block *sb,
282 unsigned short quota_types)
283 {
284 int type, err = 0;
285
286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 if (!(quota_types & (1 << type)))
289 continue;
290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 DQUOT_USAGE_ENABLED |
292 DQUOT_LIMITS_ENABLED);
293 if (err)
294 goto out_err;
295 }
296 return 0;
297
298 out_err:
299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 type, err);
301 for (type--; type >= 0; type--)
302 dquot_quota_off(sb, type);
303 return err;
304 }
305
shmem_disable_quotas(struct super_block * sb)306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 int type;
309
310 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 dquot_quota_off(sb, type);
312 }
313
shmem_get_dquots(struct inode * inode)314 static struct dquot **shmem_get_dquots(struct inode *inode)
315 {
316 return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319
320 /*
321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322 * produces a novel ino for the newly allocated inode.
323 *
324 * It may also be called when making a hard link to permit the space needed by
325 * each dentry. However, in that case, no new inode number is needed since that
326 * internally draws from another pool of inode numbers (currently global
327 * get_next_ino()). This case is indicated by passing NULL as inop.
328 */
329 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 ino_t ino;
334
335 if (!(sb->s_flags & SB_KERNMOUNT)) {
336 raw_spin_lock(&sbinfo->stat_lock);
337 if (sbinfo->max_inodes) {
338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 raw_spin_unlock(&sbinfo->stat_lock);
340 return -ENOSPC;
341 }
342 sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 }
344 if (inop) {
345 ino = sbinfo->next_ino++;
346 if (unlikely(is_zero_ino(ino)))
347 ino = sbinfo->next_ino++;
348 if (unlikely(!sbinfo->full_inums &&
349 ino > UINT_MAX)) {
350 /*
351 * Emulate get_next_ino uint wraparound for
352 * compatibility
353 */
354 if (IS_ENABLED(CONFIG_64BIT))
355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 __func__, MINOR(sb->s_dev));
357 sbinfo->next_ino = 1;
358 ino = sbinfo->next_ino++;
359 }
360 *inop = ino;
361 }
362 raw_spin_unlock(&sbinfo->stat_lock);
363 } else if (inop) {
364 /*
365 * __shmem_file_setup, one of our callers, is lock-free: it
366 * doesn't hold stat_lock in shmem_reserve_inode since
367 * max_inodes is always 0, and is called from potentially
368 * unknown contexts. As such, use a per-cpu batched allocator
369 * which doesn't require the per-sb stat_lock unless we are at
370 * the batch boundary.
371 *
372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 * shmem mounts are not exposed to userspace, so we don't need
374 * to worry about things like glibc compatibility.
375 */
376 ino_t *next_ino;
377
378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 ino = *next_ino;
380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 raw_spin_lock(&sbinfo->stat_lock);
382 ino = sbinfo->next_ino;
383 sbinfo->next_ino += SHMEM_INO_BATCH;
384 raw_spin_unlock(&sbinfo->stat_lock);
385 if (unlikely(is_zero_ino(ino)))
386 ino++;
387 }
388 *inop = ino;
389 *next_ino = ++ino;
390 put_cpu();
391 }
392
393 return 0;
394 }
395
shmem_free_inode(struct super_block * sb,size_t freed_ispace)396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 if (sbinfo->max_inodes) {
400 raw_spin_lock(&sbinfo->stat_lock);
401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 raw_spin_unlock(&sbinfo->stat_lock);
403 }
404 }
405
406 /**
407 * shmem_recalc_inode - recalculate the block usage of an inode
408 * @inode: inode to recalc
409 * @alloced: the change in number of pages allocated to inode
410 * @swapped: the change in number of pages swapped from inode
411 *
412 * We have to calculate the free blocks since the mm can drop
413 * undirtied hole pages behind our back.
414 *
415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 struct shmem_inode_info *info = SHMEM_I(inode);
421 long freed;
422
423 spin_lock(&info->lock);
424 info->alloced += alloced;
425 info->swapped += swapped;
426 freed = info->alloced - info->swapped -
427 READ_ONCE(inode->i_mapping->nrpages);
428 /*
429 * Special case: whereas normally shmem_recalc_inode() is called
430 * after i_mapping->nrpages has already been adjusted (up or down),
431 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 * been freed. Compensate here, to avoid the need for a followup call.
434 */
435 if (swapped > 0)
436 freed += swapped;
437 if (freed > 0)
438 info->alloced -= freed;
439 spin_unlock(&info->lock);
440
441 /* The quota case may block */
442 if (freed > 0)
443 shmem_inode_unacct_blocks(inode, freed);
444 }
445
shmem_charge(struct inode * inode,long pages)446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 struct address_space *mapping = inode->i_mapping;
449
450 if (shmem_inode_acct_block(inode, pages))
451 return false;
452
453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 xa_lock_irq(&mapping->i_pages);
455 mapping->nrpages += pages;
456 xa_unlock_irq(&mapping->i_pages);
457
458 shmem_recalc_inode(inode, pages, 0);
459 return true;
460 }
461
shmem_uncharge(struct inode * inode,long pages)462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 /* pages argument is currently unused: keep it to help debugging */
465 /* nrpages adjustment done by __filemap_remove_folio() or caller */
466
467 shmem_recalc_inode(inode, 0, 0);
468 }
469
470 /*
471 * Replace item expected in xarray by a new item, while holding xa_lock.
472 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)473 static int shmem_replace_entry(struct address_space *mapping,
474 pgoff_t index, void *expected, void *replacement)
475 {
476 XA_STATE(xas, &mapping->i_pages, index);
477 void *item;
478
479 VM_BUG_ON(!expected);
480 VM_BUG_ON(!replacement);
481 item = xas_load(&xas);
482 if (item != expected)
483 return -ENOENT;
484 xas_store(&xas, replacement);
485 return 0;
486 }
487
488 /*
489 * Sometimes, before we decide whether to proceed or to fail, we must check
490 * that an entry was not already brought back from swap by a racing thread.
491 *
492 * Checking page is not enough: by the time a SwapCache page is locked, it
493 * might be reused, and again be SwapCache, using the same swap as before.
494 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)495 static bool shmem_confirm_swap(struct address_space *mapping,
496 pgoff_t index, swp_entry_t swap)
497 {
498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500
501 /*
502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503 *
504 * SHMEM_HUGE_NEVER:
505 * disables huge pages for the mount;
506 * SHMEM_HUGE_ALWAYS:
507 * enables huge pages for the mount;
508 * SHMEM_HUGE_WITHIN_SIZE:
509 * only allocate huge pages if the page will be fully within i_size,
510 * also respect fadvise()/madvise() hints;
511 * SHMEM_HUGE_ADVISE:
512 * only allocate huge pages if requested with fadvise()/madvise();
513 */
514
515 #define SHMEM_HUGE_NEVER 0
516 #define SHMEM_HUGE_ALWAYS 1
517 #define SHMEM_HUGE_WITHIN_SIZE 2
518 #define SHMEM_HUGE_ADVISE 3
519
520 /*
521 * Special values.
522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523 *
524 * SHMEM_HUGE_DENY:
525 * disables huge on shm_mnt and all mounts, for emergency use;
526 * SHMEM_HUGE_FORCE:
527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528 *
529 */
530 #define SHMEM_HUGE_DENY (-1)
531 #define SHMEM_HUGE_FORCE (-2)
532
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537
shmem_is_huge(struct inode * inode,pgoff_t index,bool shmem_huge_force,struct mm_struct * mm,unsigned long vm_flags)538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
539 struct mm_struct *mm, unsigned long vm_flags)
540 {
541 loff_t i_size;
542
543 if (!S_ISREG(inode->i_mode))
544 return false;
545 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
546 return false;
547 if (shmem_huge == SHMEM_HUGE_DENY)
548 return false;
549 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
550 return true;
551
552 switch (SHMEM_SB(inode->i_sb)->huge) {
553 case SHMEM_HUGE_ALWAYS:
554 return true;
555 case SHMEM_HUGE_WITHIN_SIZE:
556 index = round_up(index + 1, HPAGE_PMD_NR);
557 i_size = round_up(i_size_read(inode), PAGE_SIZE);
558 if (i_size >> PAGE_SHIFT >= index)
559 return true;
560 fallthrough;
561 case SHMEM_HUGE_ADVISE:
562 if (mm && (vm_flags & VM_HUGEPAGE))
563 return true;
564 fallthrough;
565 default:
566 return false;
567 }
568 }
569
570 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)571 static int shmem_parse_huge(const char *str)
572 {
573 if (!strcmp(str, "never"))
574 return SHMEM_HUGE_NEVER;
575 if (!strcmp(str, "always"))
576 return SHMEM_HUGE_ALWAYS;
577 if (!strcmp(str, "within_size"))
578 return SHMEM_HUGE_WITHIN_SIZE;
579 if (!strcmp(str, "advise"))
580 return SHMEM_HUGE_ADVISE;
581 if (!strcmp(str, "deny"))
582 return SHMEM_HUGE_DENY;
583 if (!strcmp(str, "force"))
584 return SHMEM_HUGE_FORCE;
585 return -EINVAL;
586 }
587 #endif
588
589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)590 static const char *shmem_format_huge(int huge)
591 {
592 switch (huge) {
593 case SHMEM_HUGE_NEVER:
594 return "never";
595 case SHMEM_HUGE_ALWAYS:
596 return "always";
597 case SHMEM_HUGE_WITHIN_SIZE:
598 return "within_size";
599 case SHMEM_HUGE_ADVISE:
600 return "advise";
601 case SHMEM_HUGE_DENY:
602 return "deny";
603 case SHMEM_HUGE_FORCE:
604 return "force";
605 default:
606 VM_BUG_ON(1);
607 return "bad_val";
608 }
609 }
610 #endif
611
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
613 struct shrink_control *sc, unsigned long nr_to_split)
614 {
615 LIST_HEAD(list), *pos, *next;
616 LIST_HEAD(to_remove);
617 struct inode *inode;
618 struct shmem_inode_info *info;
619 struct folio *folio;
620 unsigned long batch = sc ? sc->nr_to_scan : 128;
621 int split = 0;
622
623 if (list_empty(&sbinfo->shrinklist))
624 return SHRINK_STOP;
625
626 spin_lock(&sbinfo->shrinklist_lock);
627 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
628 info = list_entry(pos, struct shmem_inode_info, shrinklist);
629
630 /* pin the inode */
631 inode = igrab(&info->vfs_inode);
632
633 /* inode is about to be evicted */
634 if (!inode) {
635 list_del_init(&info->shrinklist);
636 goto next;
637 }
638
639 /* Check if there's anything to gain */
640 if (round_up(inode->i_size, PAGE_SIZE) ==
641 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
642 list_move(&info->shrinklist, &to_remove);
643 goto next;
644 }
645
646 list_move(&info->shrinklist, &list);
647 next:
648 sbinfo->shrinklist_len--;
649 if (!--batch)
650 break;
651 }
652 spin_unlock(&sbinfo->shrinklist_lock);
653
654 list_for_each_safe(pos, next, &to_remove) {
655 info = list_entry(pos, struct shmem_inode_info, shrinklist);
656 inode = &info->vfs_inode;
657 list_del_init(&info->shrinklist);
658 iput(inode);
659 }
660
661 list_for_each_safe(pos, next, &list) {
662 int ret;
663 pgoff_t index;
664
665 info = list_entry(pos, struct shmem_inode_info, shrinklist);
666 inode = &info->vfs_inode;
667
668 if (nr_to_split && split >= nr_to_split)
669 goto move_back;
670
671 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
672 folio = filemap_get_folio(inode->i_mapping, index);
673 if (IS_ERR(folio))
674 goto drop;
675
676 /* No huge page at the end of the file: nothing to split */
677 if (!folio_test_large(folio)) {
678 folio_put(folio);
679 goto drop;
680 }
681
682 /*
683 * Move the inode on the list back to shrinklist if we failed
684 * to lock the page at this time.
685 *
686 * Waiting for the lock may lead to deadlock in the
687 * reclaim path.
688 */
689 if (!folio_trylock(folio)) {
690 folio_put(folio);
691 goto move_back;
692 }
693
694 ret = split_folio(folio);
695 folio_unlock(folio);
696 folio_put(folio);
697
698 /* If split failed move the inode on the list back to shrinklist */
699 if (ret)
700 goto move_back;
701
702 split++;
703 drop:
704 list_del_init(&info->shrinklist);
705 goto put;
706 move_back:
707 /*
708 * Make sure the inode is either on the global list or deleted
709 * from any local list before iput() since it could be deleted
710 * in another thread once we put the inode (then the local list
711 * is corrupted).
712 */
713 spin_lock(&sbinfo->shrinklist_lock);
714 list_move(&info->shrinklist, &sbinfo->shrinklist);
715 sbinfo->shrinklist_len++;
716 spin_unlock(&sbinfo->shrinklist_lock);
717 put:
718 iput(inode);
719 }
720
721 return split;
722 }
723
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)724 static long shmem_unused_huge_scan(struct super_block *sb,
725 struct shrink_control *sc)
726 {
727 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
728
729 if (!READ_ONCE(sbinfo->shrinklist_len))
730 return SHRINK_STOP;
731
732 return shmem_unused_huge_shrink(sbinfo, sc, 0);
733 }
734
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)735 static long shmem_unused_huge_count(struct super_block *sb,
736 struct shrink_control *sc)
737 {
738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739 return READ_ONCE(sbinfo->shrinklist_len);
740 }
741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
742
743 #define shmem_huge SHMEM_HUGE_DENY
744
shmem_is_huge(struct inode * inode,pgoff_t index,bool shmem_huge_force,struct mm_struct * mm,unsigned long vm_flags)745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
746 struct mm_struct *mm, unsigned long vm_flags)
747 {
748 return false;
749 }
750
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
752 struct shrink_control *sc, unsigned long nr_to_split)
753 {
754 return 0;
755 }
756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757
758 /*
759 * Like filemap_add_folio, but error if expected item has gone.
760 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)761 static int shmem_add_to_page_cache(struct folio *folio,
762 struct address_space *mapping,
763 pgoff_t index, void *expected, gfp_t gfp,
764 struct mm_struct *charge_mm)
765 {
766 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
767 long nr = folio_nr_pages(folio);
768 int error;
769
770 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
772 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
773 VM_BUG_ON(expected && folio_test_large(folio));
774
775 folio_ref_add(folio, nr);
776 folio->mapping = mapping;
777 folio->index = index;
778
779 if (!folio_test_swapcache(folio)) {
780 error = mem_cgroup_charge(folio, charge_mm, gfp);
781 if (error) {
782 if (folio_test_pmd_mappable(folio)) {
783 count_vm_event(THP_FILE_FALLBACK);
784 count_vm_event(THP_FILE_FALLBACK_CHARGE);
785 }
786 goto error;
787 }
788 }
789 folio_throttle_swaprate(folio, gfp);
790
791 do {
792 xas_lock_irq(&xas);
793 if (expected != xas_find_conflict(&xas)) {
794 xas_set_err(&xas, -EEXIST);
795 goto unlock;
796 }
797 if (expected && xas_find_conflict(&xas)) {
798 xas_set_err(&xas, -EEXIST);
799 goto unlock;
800 }
801 xas_store(&xas, folio);
802 if (xas_error(&xas))
803 goto unlock;
804 if (folio_test_pmd_mappable(folio)) {
805 count_vm_event(THP_FILE_ALLOC);
806 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
807 }
808 mapping->nrpages += nr;
809 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
810 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
811 unlock:
812 xas_unlock_irq(&xas);
813 } while (xas_nomem(&xas, gfp));
814
815 if (xas_error(&xas)) {
816 error = xas_error(&xas);
817 goto error;
818 }
819
820 return 0;
821 error:
822 folio->mapping = NULL;
823 folio_ref_sub(folio, nr);
824 return error;
825 }
826
827 /*
828 * Like delete_from_page_cache, but substitutes swap for @folio.
829 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)830 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
831 {
832 struct address_space *mapping = folio->mapping;
833 long nr = folio_nr_pages(folio);
834 int error;
835
836 xa_lock_irq(&mapping->i_pages);
837 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
838 folio->mapping = NULL;
839 mapping->nrpages -= nr;
840 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
841 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
842 xa_unlock_irq(&mapping->i_pages);
843 folio_put(folio);
844 BUG_ON(error);
845 }
846
847 /*
848 * Remove swap entry from page cache, free the swap and its page cache.
849 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)850 static int shmem_free_swap(struct address_space *mapping,
851 pgoff_t index, void *radswap)
852 {
853 void *old;
854
855 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
856 if (old != radswap)
857 return -ENOENT;
858 free_swap_and_cache(radix_to_swp_entry(radswap));
859 return 0;
860 }
861
862 /*
863 * Determine (in bytes) how many of the shmem object's pages mapped by the
864 * given offsets are swapped out.
865 *
866 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
867 * as long as the inode doesn't go away and racy results are not a problem.
868 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)869 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
870 pgoff_t start, pgoff_t end)
871 {
872 XA_STATE(xas, &mapping->i_pages, start);
873 struct page *page;
874 unsigned long swapped = 0;
875 unsigned long max = end - 1;
876
877 rcu_read_lock();
878 xas_for_each(&xas, page, max) {
879 if (xas_retry(&xas, page))
880 continue;
881 if (xa_is_value(page))
882 swapped++;
883 if (xas.xa_index == max)
884 break;
885 if (need_resched()) {
886 xas_pause(&xas);
887 cond_resched_rcu();
888 }
889 }
890
891 rcu_read_unlock();
892
893 return swapped << PAGE_SHIFT;
894 }
895
896 /*
897 * Determine (in bytes) how many of the shmem object's pages mapped by the
898 * given vma is swapped out.
899 *
900 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
901 * as long as the inode doesn't go away and racy results are not a problem.
902 */
shmem_swap_usage(struct vm_area_struct * vma)903 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
904 {
905 struct inode *inode = file_inode(vma->vm_file);
906 struct shmem_inode_info *info = SHMEM_I(inode);
907 struct address_space *mapping = inode->i_mapping;
908 unsigned long swapped;
909
910 /* Be careful as we don't hold info->lock */
911 swapped = READ_ONCE(info->swapped);
912
913 /*
914 * The easier cases are when the shmem object has nothing in swap, or
915 * the vma maps it whole. Then we can simply use the stats that we
916 * already track.
917 */
918 if (!swapped)
919 return 0;
920
921 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
922 return swapped << PAGE_SHIFT;
923
924 /* Here comes the more involved part */
925 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
926 vma->vm_pgoff + vma_pages(vma));
927 }
928
929 /*
930 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
931 */
shmem_unlock_mapping(struct address_space * mapping)932 void shmem_unlock_mapping(struct address_space *mapping)
933 {
934 struct folio_batch fbatch;
935 pgoff_t index = 0;
936
937 folio_batch_init(&fbatch);
938 /*
939 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
940 */
941 while (!mapping_unevictable(mapping) &&
942 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
943 check_move_unevictable_folios(&fbatch);
944 folio_batch_release(&fbatch);
945 cond_resched();
946 }
947 }
948
shmem_get_partial_folio(struct inode * inode,pgoff_t index)949 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
950 {
951 struct folio *folio;
952
953 /*
954 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
955 * beyond i_size, and reports fallocated folios as holes.
956 */
957 folio = filemap_get_entry(inode->i_mapping, index);
958 if (!folio)
959 return folio;
960 if (!xa_is_value(folio)) {
961 folio_lock(folio);
962 if (folio->mapping == inode->i_mapping)
963 return folio;
964 /* The folio has been swapped out */
965 folio_unlock(folio);
966 folio_put(folio);
967 }
968 /*
969 * But read a folio back from swap if any of it is within i_size
970 * (although in some cases this is just a waste of time).
971 */
972 folio = NULL;
973 shmem_get_folio(inode, index, &folio, SGP_READ);
974 return folio;
975 }
976
977 /*
978 * Remove range of pages and swap entries from page cache, and free them.
979 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
980 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)981 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
982 bool unfalloc)
983 {
984 struct address_space *mapping = inode->i_mapping;
985 struct shmem_inode_info *info = SHMEM_I(inode);
986 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
987 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
988 struct folio_batch fbatch;
989 pgoff_t indices[PAGEVEC_SIZE];
990 struct folio *folio;
991 bool same_folio;
992 long nr_swaps_freed = 0;
993 pgoff_t index;
994 int i;
995
996 if (lend == -1)
997 end = -1; /* unsigned, so actually very big */
998
999 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1000 info->fallocend = start;
1001
1002 folio_batch_init(&fbatch);
1003 index = start;
1004 while (index < end && find_lock_entries(mapping, &index, end - 1,
1005 &fbatch, indices)) {
1006 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1007 folio = fbatch.folios[i];
1008
1009 if (xa_is_value(folio)) {
1010 if (unfalloc)
1011 continue;
1012 nr_swaps_freed += !shmem_free_swap(mapping,
1013 indices[i], folio);
1014 continue;
1015 }
1016
1017 if (!unfalloc || !folio_test_uptodate(folio))
1018 truncate_inode_folio(mapping, folio);
1019 folio_unlock(folio);
1020 }
1021 folio_batch_remove_exceptionals(&fbatch);
1022 folio_batch_release(&fbatch);
1023 cond_resched();
1024 }
1025
1026 /*
1027 * When undoing a failed fallocate, we want none of the partial folio
1028 * zeroing and splitting below, but shall want to truncate the whole
1029 * folio when !uptodate indicates that it was added by this fallocate,
1030 * even when [lstart, lend] covers only a part of the folio.
1031 */
1032 if (unfalloc)
1033 goto whole_folios;
1034
1035 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1036 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1037 if (folio) {
1038 same_folio = lend < folio_pos(folio) + folio_size(folio);
1039 folio_mark_dirty(folio);
1040 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1041 start = folio_next_index(folio);
1042 if (same_folio)
1043 end = folio->index;
1044 }
1045 folio_unlock(folio);
1046 folio_put(folio);
1047 folio = NULL;
1048 }
1049
1050 if (!same_folio)
1051 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1052 if (folio) {
1053 folio_mark_dirty(folio);
1054 if (!truncate_inode_partial_folio(folio, lstart, lend))
1055 end = folio->index;
1056 folio_unlock(folio);
1057 folio_put(folio);
1058 }
1059
1060 whole_folios:
1061
1062 index = start;
1063 while (index < end) {
1064 cond_resched();
1065
1066 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1067 indices)) {
1068 /* If all gone or hole-punch or unfalloc, we're done */
1069 if (index == start || end != -1)
1070 break;
1071 /* But if truncating, restart to make sure all gone */
1072 index = start;
1073 continue;
1074 }
1075 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1076 folio = fbatch.folios[i];
1077
1078 if (xa_is_value(folio)) {
1079 if (unfalloc)
1080 continue;
1081 if (shmem_free_swap(mapping, indices[i], folio)) {
1082 /* Swap was replaced by page: retry */
1083 index = indices[i];
1084 break;
1085 }
1086 nr_swaps_freed++;
1087 continue;
1088 }
1089
1090 folio_lock(folio);
1091
1092 if (!unfalloc || !folio_test_uptodate(folio)) {
1093 if (folio_mapping(folio) != mapping) {
1094 /* Page was replaced by swap: retry */
1095 folio_unlock(folio);
1096 index = indices[i];
1097 break;
1098 }
1099 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1100 folio);
1101
1102 if (!folio_test_large(folio)) {
1103 truncate_inode_folio(mapping, folio);
1104 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1105 /*
1106 * If we split a page, reset the loop so
1107 * that we pick up the new sub pages.
1108 * Otherwise the THP was entirely
1109 * dropped or the target range was
1110 * zeroed, so just continue the loop as
1111 * is.
1112 */
1113 if (!folio_test_large(folio)) {
1114 folio_unlock(folio);
1115 index = start;
1116 break;
1117 }
1118 }
1119 }
1120 folio_unlock(folio);
1121 }
1122 folio_batch_remove_exceptionals(&fbatch);
1123 folio_batch_release(&fbatch);
1124 }
1125
1126 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1127 }
1128
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1129 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1130 {
1131 shmem_undo_range(inode, lstart, lend, false);
1132 inode->i_mtime = inode_set_ctime_current(inode);
1133 inode_inc_iversion(inode);
1134 }
1135 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1136
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1137 static int shmem_getattr(struct mnt_idmap *idmap,
1138 const struct path *path, struct kstat *stat,
1139 u32 request_mask, unsigned int query_flags)
1140 {
1141 struct inode *inode = path->dentry->d_inode;
1142 struct shmem_inode_info *info = SHMEM_I(inode);
1143
1144 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1145 shmem_recalc_inode(inode, 0, 0);
1146
1147 if (info->fsflags & FS_APPEND_FL)
1148 stat->attributes |= STATX_ATTR_APPEND;
1149 if (info->fsflags & FS_IMMUTABLE_FL)
1150 stat->attributes |= STATX_ATTR_IMMUTABLE;
1151 if (info->fsflags & FS_NODUMP_FL)
1152 stat->attributes |= STATX_ATTR_NODUMP;
1153 stat->attributes_mask |= (STATX_ATTR_APPEND |
1154 STATX_ATTR_IMMUTABLE |
1155 STATX_ATTR_NODUMP);
1156 generic_fillattr(idmap, request_mask, inode, stat);
1157
1158 if (shmem_is_huge(inode, 0, false, NULL, 0))
1159 stat->blksize = HPAGE_PMD_SIZE;
1160
1161 if (request_mask & STATX_BTIME) {
1162 stat->result_mask |= STATX_BTIME;
1163 stat->btime.tv_sec = info->i_crtime.tv_sec;
1164 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1165 }
1166
1167 return 0;
1168 }
1169
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1170 static int shmem_setattr(struct mnt_idmap *idmap,
1171 struct dentry *dentry, struct iattr *attr)
1172 {
1173 struct inode *inode = d_inode(dentry);
1174 struct shmem_inode_info *info = SHMEM_I(inode);
1175 int error;
1176 bool update_mtime = false;
1177 bool update_ctime = true;
1178
1179 error = setattr_prepare(idmap, dentry, attr);
1180 if (error)
1181 return error;
1182
1183 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1184 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1185 return -EPERM;
1186 }
1187 }
1188
1189 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1190 loff_t oldsize = inode->i_size;
1191 loff_t newsize = attr->ia_size;
1192
1193 /* protected by i_rwsem */
1194 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1195 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1196 return -EPERM;
1197
1198 if (newsize != oldsize) {
1199 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1200 oldsize, newsize);
1201 if (error)
1202 return error;
1203 i_size_write(inode, newsize);
1204 update_mtime = true;
1205 } else {
1206 update_ctime = false;
1207 }
1208 if (newsize <= oldsize) {
1209 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1210 if (oldsize > holebegin)
1211 unmap_mapping_range(inode->i_mapping,
1212 holebegin, 0, 1);
1213 if (info->alloced)
1214 shmem_truncate_range(inode,
1215 newsize, (loff_t)-1);
1216 /* unmap again to remove racily COWed private pages */
1217 if (oldsize > holebegin)
1218 unmap_mapping_range(inode->i_mapping,
1219 holebegin, 0, 1);
1220 }
1221 }
1222
1223 if (is_quota_modification(idmap, inode, attr)) {
1224 error = dquot_initialize(inode);
1225 if (error)
1226 return error;
1227 }
1228
1229 /* Transfer quota accounting */
1230 if (i_uid_needs_update(idmap, attr, inode) ||
1231 i_gid_needs_update(idmap, attr, inode)) {
1232 error = dquot_transfer(idmap, inode, attr);
1233
1234 if (error)
1235 return error;
1236 }
1237
1238 setattr_copy(idmap, inode, attr);
1239 if (attr->ia_valid & ATTR_MODE)
1240 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1241 if (!error && update_ctime) {
1242 inode_set_ctime_current(inode);
1243 if (update_mtime)
1244 inode->i_mtime = inode_get_ctime(inode);
1245 inode_inc_iversion(inode);
1246 }
1247 return error;
1248 }
1249
shmem_evict_inode(struct inode * inode)1250 static void shmem_evict_inode(struct inode *inode)
1251 {
1252 struct shmem_inode_info *info = SHMEM_I(inode);
1253 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1254 size_t freed = 0;
1255
1256 if (shmem_mapping(inode->i_mapping)) {
1257 shmem_unacct_size(info->flags, inode->i_size);
1258 inode->i_size = 0;
1259 mapping_set_exiting(inode->i_mapping);
1260 shmem_truncate_range(inode, 0, (loff_t)-1);
1261 if (!list_empty(&info->shrinklist)) {
1262 spin_lock(&sbinfo->shrinklist_lock);
1263 if (!list_empty(&info->shrinklist)) {
1264 list_del_init(&info->shrinklist);
1265 sbinfo->shrinklist_len--;
1266 }
1267 spin_unlock(&sbinfo->shrinklist_lock);
1268 }
1269 while (!list_empty(&info->swaplist)) {
1270 /* Wait while shmem_unuse() is scanning this inode... */
1271 wait_var_event(&info->stop_eviction,
1272 !atomic_read(&info->stop_eviction));
1273 mutex_lock(&shmem_swaplist_mutex);
1274 /* ...but beware of the race if we peeked too early */
1275 if (!atomic_read(&info->stop_eviction))
1276 list_del_init(&info->swaplist);
1277 mutex_unlock(&shmem_swaplist_mutex);
1278 }
1279 }
1280
1281 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1282 shmem_free_inode(inode->i_sb, freed);
1283 WARN_ON(inode->i_blocks);
1284 clear_inode(inode);
1285 #ifdef CONFIG_TMPFS_QUOTA
1286 dquot_free_inode(inode);
1287 dquot_drop(inode);
1288 #endif
1289 }
1290
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1291 static int shmem_find_swap_entries(struct address_space *mapping,
1292 pgoff_t start, struct folio_batch *fbatch,
1293 pgoff_t *indices, unsigned int type)
1294 {
1295 XA_STATE(xas, &mapping->i_pages, start);
1296 struct folio *folio;
1297 swp_entry_t entry;
1298
1299 rcu_read_lock();
1300 xas_for_each(&xas, folio, ULONG_MAX) {
1301 if (xas_retry(&xas, folio))
1302 continue;
1303
1304 if (!xa_is_value(folio))
1305 continue;
1306
1307 entry = radix_to_swp_entry(folio);
1308 /*
1309 * swapin error entries can be found in the mapping. But they're
1310 * deliberately ignored here as we've done everything we can do.
1311 */
1312 if (swp_type(entry) != type)
1313 continue;
1314
1315 indices[folio_batch_count(fbatch)] = xas.xa_index;
1316 if (!folio_batch_add(fbatch, folio))
1317 break;
1318
1319 if (need_resched()) {
1320 xas_pause(&xas);
1321 cond_resched_rcu();
1322 }
1323 }
1324 rcu_read_unlock();
1325
1326 return xas.xa_index;
1327 }
1328
1329 /*
1330 * Move the swapped pages for an inode to page cache. Returns the count
1331 * of pages swapped in, or the error in case of failure.
1332 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1333 static int shmem_unuse_swap_entries(struct inode *inode,
1334 struct folio_batch *fbatch, pgoff_t *indices)
1335 {
1336 int i = 0;
1337 int ret = 0;
1338 int error = 0;
1339 struct address_space *mapping = inode->i_mapping;
1340
1341 for (i = 0; i < folio_batch_count(fbatch); i++) {
1342 struct folio *folio = fbatch->folios[i];
1343
1344 if (!xa_is_value(folio))
1345 continue;
1346 error = shmem_swapin_folio(inode, indices[i],
1347 &folio, SGP_CACHE,
1348 mapping_gfp_mask(mapping),
1349 NULL, NULL);
1350 if (error == 0) {
1351 folio_unlock(folio);
1352 folio_put(folio);
1353 ret++;
1354 }
1355 if (error == -ENOMEM)
1356 break;
1357 error = 0;
1358 }
1359 return error ? error : ret;
1360 }
1361
1362 /*
1363 * If swap found in inode, free it and move page from swapcache to filecache.
1364 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1365 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1366 {
1367 struct address_space *mapping = inode->i_mapping;
1368 pgoff_t start = 0;
1369 struct folio_batch fbatch;
1370 pgoff_t indices[PAGEVEC_SIZE];
1371 int ret = 0;
1372
1373 do {
1374 folio_batch_init(&fbatch);
1375 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1376 if (folio_batch_count(&fbatch) == 0) {
1377 ret = 0;
1378 break;
1379 }
1380
1381 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1382 if (ret < 0)
1383 break;
1384
1385 start = indices[folio_batch_count(&fbatch) - 1];
1386 } while (true);
1387
1388 return ret;
1389 }
1390
1391 /*
1392 * Read all the shared memory data that resides in the swap
1393 * device 'type' back into memory, so the swap device can be
1394 * unused.
1395 */
shmem_unuse(unsigned int type)1396 int shmem_unuse(unsigned int type)
1397 {
1398 struct shmem_inode_info *info, *next;
1399 int error = 0;
1400
1401 if (list_empty(&shmem_swaplist))
1402 return 0;
1403
1404 mutex_lock(&shmem_swaplist_mutex);
1405 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1406 if (!info->swapped) {
1407 list_del_init(&info->swaplist);
1408 continue;
1409 }
1410 /*
1411 * Drop the swaplist mutex while searching the inode for swap;
1412 * but before doing so, make sure shmem_evict_inode() will not
1413 * remove placeholder inode from swaplist, nor let it be freed
1414 * (igrab() would protect from unlink, but not from unmount).
1415 */
1416 atomic_inc(&info->stop_eviction);
1417 mutex_unlock(&shmem_swaplist_mutex);
1418
1419 error = shmem_unuse_inode(&info->vfs_inode, type);
1420 cond_resched();
1421
1422 mutex_lock(&shmem_swaplist_mutex);
1423 next = list_next_entry(info, swaplist);
1424 if (!info->swapped)
1425 list_del_init(&info->swaplist);
1426 if (atomic_dec_and_test(&info->stop_eviction))
1427 wake_up_var(&info->stop_eviction);
1428 if (error)
1429 break;
1430 }
1431 mutex_unlock(&shmem_swaplist_mutex);
1432
1433 return error;
1434 }
1435
1436 /*
1437 * Move the page from the page cache to the swap cache.
1438 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1439 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1440 {
1441 struct folio *folio = page_folio(page);
1442 struct address_space *mapping = folio->mapping;
1443 struct inode *inode = mapping->host;
1444 struct shmem_inode_info *info = SHMEM_I(inode);
1445 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1446 swp_entry_t swap;
1447 pgoff_t index;
1448
1449 /*
1450 * Our capabilities prevent regular writeback or sync from ever calling
1451 * shmem_writepage; but a stacking filesystem might use ->writepage of
1452 * its underlying filesystem, in which case tmpfs should write out to
1453 * swap only in response to memory pressure, and not for the writeback
1454 * threads or sync.
1455 */
1456 if (WARN_ON_ONCE(!wbc->for_reclaim))
1457 goto redirty;
1458
1459 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1460 goto redirty;
1461
1462 if (!total_swap_pages)
1463 goto redirty;
1464
1465 /*
1466 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1467 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1468 * and its shmem_writeback() needs them to be split when swapping.
1469 */
1470 if (folio_test_large(folio)) {
1471 /* Ensure the subpages are still dirty */
1472 folio_test_set_dirty(folio);
1473 if (split_huge_page(page) < 0)
1474 goto redirty;
1475 folio = page_folio(page);
1476 folio_clear_dirty(folio);
1477 }
1478
1479 index = folio->index;
1480
1481 /*
1482 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1483 * value into swapfile.c, the only way we can correctly account for a
1484 * fallocated folio arriving here is now to initialize it and write it.
1485 *
1486 * That's okay for a folio already fallocated earlier, but if we have
1487 * not yet completed the fallocation, then (a) we want to keep track
1488 * of this folio in case we have to undo it, and (b) it may not be a
1489 * good idea to continue anyway, once we're pushing into swap. So
1490 * reactivate the folio, and let shmem_fallocate() quit when too many.
1491 */
1492 if (!folio_test_uptodate(folio)) {
1493 if (inode->i_private) {
1494 struct shmem_falloc *shmem_falloc;
1495 spin_lock(&inode->i_lock);
1496 shmem_falloc = inode->i_private;
1497 if (shmem_falloc &&
1498 !shmem_falloc->waitq &&
1499 index >= shmem_falloc->start &&
1500 index < shmem_falloc->next)
1501 shmem_falloc->nr_unswapped++;
1502 else
1503 shmem_falloc = NULL;
1504 spin_unlock(&inode->i_lock);
1505 if (shmem_falloc)
1506 goto redirty;
1507 }
1508 folio_zero_range(folio, 0, folio_size(folio));
1509 flush_dcache_folio(folio);
1510 folio_mark_uptodate(folio);
1511 }
1512
1513 swap = folio_alloc_swap(folio);
1514 if (!swap.val)
1515 goto redirty;
1516
1517 /*
1518 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1519 * if it's not already there. Do it now before the folio is
1520 * moved to swap cache, when its pagelock no longer protects
1521 * the inode from eviction. But don't unlock the mutex until
1522 * we've incremented swapped, because shmem_unuse_inode() will
1523 * prune a !swapped inode from the swaplist under this mutex.
1524 */
1525 mutex_lock(&shmem_swaplist_mutex);
1526 if (list_empty(&info->swaplist))
1527 list_add(&info->swaplist, &shmem_swaplist);
1528
1529 if (add_to_swap_cache(folio, swap,
1530 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1531 NULL) == 0) {
1532 shmem_recalc_inode(inode, 0, 1);
1533 swap_shmem_alloc(swap);
1534 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1535
1536 mutex_unlock(&shmem_swaplist_mutex);
1537 BUG_ON(folio_mapped(folio));
1538 swap_writepage(&folio->page, wbc);
1539 return 0;
1540 }
1541
1542 mutex_unlock(&shmem_swaplist_mutex);
1543 put_swap_folio(folio, swap);
1544 redirty:
1545 folio_mark_dirty(folio);
1546 if (wbc->for_reclaim)
1547 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1548 folio_unlock(folio);
1549 return 0;
1550 }
1551
1552 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1553 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1554 {
1555 char buffer[64];
1556
1557 if (!mpol || mpol->mode == MPOL_DEFAULT)
1558 return; /* show nothing */
1559
1560 mpol_to_str(buffer, sizeof(buffer), mpol);
1561
1562 seq_printf(seq, ",mpol=%s", buffer);
1563 }
1564
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1565 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1566 {
1567 struct mempolicy *mpol = NULL;
1568 if (sbinfo->mpol) {
1569 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1570 mpol = sbinfo->mpol;
1571 mpol_get(mpol);
1572 raw_spin_unlock(&sbinfo->stat_lock);
1573 }
1574 return mpol;
1575 }
1576 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1577 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1578 {
1579 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1580 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1581 {
1582 return NULL;
1583 }
1584 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1585 #ifndef CONFIG_NUMA
1586 #define vm_policy vm_private_data
1587 #endif
1588
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1589 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1590 struct shmem_inode_info *info, pgoff_t index)
1591 {
1592 /* Create a pseudo vma that just contains the policy */
1593 vma_init(vma, NULL);
1594 /* Bias interleave by inode number to distribute better across nodes */
1595 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1596 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1597 }
1598
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1599 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1600 {
1601 /* Drop reference taken by mpol_shared_policy_lookup() */
1602 mpol_cond_put(vma->vm_policy);
1603 }
1604
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1605 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1606 struct shmem_inode_info *info, pgoff_t index)
1607 {
1608 struct vm_area_struct pvma;
1609 struct page *page;
1610 struct vm_fault vmf = {
1611 .vma = &pvma,
1612 };
1613
1614 shmem_pseudo_vma_init(&pvma, info, index);
1615 page = swap_cluster_readahead(swap, gfp, &vmf);
1616 shmem_pseudo_vma_destroy(&pvma);
1617
1618 if (!page)
1619 return NULL;
1620 return page_folio(page);
1621 }
1622
1623 /*
1624 * Make sure huge_gfp is always more limited than limit_gfp.
1625 * Some of the flags set permissions, while others set limitations.
1626 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1627 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1628 {
1629 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1630 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1631 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1632 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1633
1634 /* Allow allocations only from the originally specified zones. */
1635 result |= zoneflags;
1636
1637 /*
1638 * Minimize the result gfp by taking the union with the deny flags,
1639 * and the intersection of the allow flags.
1640 */
1641 result |= (limit_gfp & denyflags);
1642 result |= (huge_gfp & limit_gfp) & allowflags;
1643
1644 return result;
1645 }
1646
shmem_alloc_hugefolio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1647 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1648 struct shmem_inode_info *info, pgoff_t index)
1649 {
1650 struct vm_area_struct pvma;
1651 struct address_space *mapping = info->vfs_inode.i_mapping;
1652 pgoff_t hindex;
1653 struct folio *folio;
1654
1655 hindex = round_down(index, HPAGE_PMD_NR);
1656 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1657 XA_PRESENT))
1658 return NULL;
1659
1660 shmem_pseudo_vma_init(&pvma, info, hindex);
1661 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1662 shmem_pseudo_vma_destroy(&pvma);
1663 if (!folio)
1664 count_vm_event(THP_FILE_FALLBACK);
1665 return folio;
1666 }
1667
shmem_alloc_folio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1668 static struct folio *shmem_alloc_folio(gfp_t gfp,
1669 struct shmem_inode_info *info, pgoff_t index)
1670 {
1671 struct vm_area_struct pvma;
1672 struct folio *folio;
1673
1674 shmem_pseudo_vma_init(&pvma, info, index);
1675 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1676 shmem_pseudo_vma_destroy(&pvma);
1677
1678 return folio;
1679 }
1680
shmem_alloc_and_acct_folio(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1681 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1682 pgoff_t index, bool huge)
1683 {
1684 struct shmem_inode_info *info = SHMEM_I(inode);
1685 struct folio *folio;
1686 int nr;
1687 int err;
1688
1689 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1690 huge = false;
1691 nr = huge ? HPAGE_PMD_NR : 1;
1692
1693 err = shmem_inode_acct_block(inode, nr);
1694 if (err)
1695 goto failed;
1696
1697 if (huge)
1698 folio = shmem_alloc_hugefolio(gfp, info, index);
1699 else
1700 folio = shmem_alloc_folio(gfp, info, index);
1701 if (folio) {
1702 __folio_set_locked(folio);
1703 __folio_set_swapbacked(folio);
1704 return folio;
1705 }
1706
1707 err = -ENOMEM;
1708 shmem_inode_unacct_blocks(inode, nr);
1709 failed:
1710 return ERR_PTR(err);
1711 }
1712
1713 /*
1714 * When a page is moved from swapcache to shmem filecache (either by the
1715 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1716 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1717 * ignorance of the mapping it belongs to. If that mapping has special
1718 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1719 * we may need to copy to a suitable page before moving to filecache.
1720 *
1721 * In a future release, this may well be extended to respect cpuset and
1722 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1723 * but for now it is a simple matter of zone.
1724 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1725 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1726 {
1727 return folio_zonenum(folio) > gfp_zone(gfp);
1728 }
1729
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1730 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1731 struct shmem_inode_info *info, pgoff_t index)
1732 {
1733 struct folio *old, *new;
1734 struct address_space *swap_mapping;
1735 swp_entry_t entry;
1736 pgoff_t swap_index;
1737 int error;
1738
1739 old = *foliop;
1740 entry = old->swap;
1741 swap_index = swp_offset(entry);
1742 swap_mapping = swap_address_space(entry);
1743
1744 /*
1745 * We have arrived here because our zones are constrained, so don't
1746 * limit chance of success by further cpuset and node constraints.
1747 */
1748 gfp &= ~GFP_CONSTRAINT_MASK;
1749 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1750 new = shmem_alloc_folio(gfp, info, index);
1751 if (!new)
1752 return -ENOMEM;
1753
1754 folio_get(new);
1755 folio_copy(new, old);
1756 flush_dcache_folio(new);
1757
1758 __folio_set_locked(new);
1759 __folio_set_swapbacked(new);
1760 folio_mark_uptodate(new);
1761 new->swap = entry;
1762 folio_set_swapcache(new);
1763
1764 /*
1765 * Our caller will very soon move newpage out of swapcache, but it's
1766 * a nice clean interface for us to replace oldpage by newpage there.
1767 */
1768 xa_lock_irq(&swap_mapping->i_pages);
1769 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1770 if (!error) {
1771 mem_cgroup_migrate(old, new);
1772 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1773 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1774 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1775 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1776 }
1777 xa_unlock_irq(&swap_mapping->i_pages);
1778
1779 if (unlikely(error)) {
1780 /*
1781 * Is this possible? I think not, now that our callers check
1782 * both PageSwapCache and page_private after getting page lock;
1783 * but be defensive. Reverse old to newpage for clear and free.
1784 */
1785 old = new;
1786 } else {
1787 folio_add_lru(new);
1788 *foliop = new;
1789 }
1790
1791 folio_clear_swapcache(old);
1792 old->private = NULL;
1793
1794 folio_unlock(old);
1795 folio_put_refs(old, 2);
1796 return error;
1797 }
1798
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1799 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1800 struct folio *folio, swp_entry_t swap)
1801 {
1802 struct address_space *mapping = inode->i_mapping;
1803 swp_entry_t swapin_error;
1804 void *old;
1805
1806 swapin_error = make_poisoned_swp_entry();
1807 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1808 swp_to_radix_entry(swap),
1809 swp_to_radix_entry(swapin_error), 0);
1810 if (old != swp_to_radix_entry(swap))
1811 return;
1812
1813 folio_wait_writeback(folio);
1814 delete_from_swap_cache(folio);
1815 /*
1816 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1817 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1818 * in shmem_evict_inode().
1819 */
1820 shmem_recalc_inode(inode, -1, -1);
1821 swap_free(swap);
1822 }
1823
1824 /*
1825 * Swap in the folio pointed to by *foliop.
1826 * Caller has to make sure that *foliop contains a valid swapped folio.
1827 * Returns 0 and the folio in foliop if success. On failure, returns the
1828 * error code and NULL in *foliop.
1829 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1830 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1831 struct folio **foliop, enum sgp_type sgp,
1832 gfp_t gfp, struct vm_area_struct *vma,
1833 vm_fault_t *fault_type)
1834 {
1835 struct address_space *mapping = inode->i_mapping;
1836 struct shmem_inode_info *info = SHMEM_I(inode);
1837 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1838 struct swap_info_struct *si;
1839 struct folio *folio = NULL;
1840 swp_entry_t swap;
1841 int error;
1842
1843 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1844 swap = radix_to_swp_entry(*foliop);
1845 *foliop = NULL;
1846
1847 if (is_poisoned_swp_entry(swap))
1848 return -EIO;
1849
1850 si = get_swap_device(swap);
1851 if (!si) {
1852 if (!shmem_confirm_swap(mapping, index, swap))
1853 return -EEXIST;
1854 else
1855 return -EINVAL;
1856 }
1857
1858 /* Look it up and read it in.. */
1859 folio = swap_cache_get_folio(swap, NULL, 0);
1860 if (!folio) {
1861 /* Or update major stats only when swapin succeeds?? */
1862 if (fault_type) {
1863 *fault_type |= VM_FAULT_MAJOR;
1864 count_vm_event(PGMAJFAULT);
1865 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1866 }
1867 /* Here we actually start the io */
1868 folio = shmem_swapin(swap, gfp, info, index);
1869 if (!folio) {
1870 error = -ENOMEM;
1871 goto failed;
1872 }
1873 }
1874
1875 /* We have to do this with folio locked to prevent races */
1876 folio_lock(folio);
1877 if (!folio_test_swapcache(folio) ||
1878 folio->swap.val != swap.val ||
1879 !shmem_confirm_swap(mapping, index, swap)) {
1880 error = -EEXIST;
1881 goto unlock;
1882 }
1883 if (!folio_test_uptodate(folio)) {
1884 error = -EIO;
1885 goto failed;
1886 }
1887 folio_wait_writeback(folio);
1888
1889 /*
1890 * Some architectures may have to restore extra metadata to the
1891 * folio after reading from swap.
1892 */
1893 arch_swap_restore(swap, folio);
1894
1895 if (shmem_should_replace_folio(folio, gfp)) {
1896 error = shmem_replace_folio(&folio, gfp, info, index);
1897 if (error)
1898 goto failed;
1899 }
1900
1901 error = shmem_add_to_page_cache(folio, mapping, index,
1902 swp_to_radix_entry(swap), gfp,
1903 charge_mm);
1904 if (error)
1905 goto failed;
1906
1907 shmem_recalc_inode(inode, 0, -1);
1908
1909 if (sgp == SGP_WRITE)
1910 folio_mark_accessed(folio);
1911
1912 delete_from_swap_cache(folio);
1913 folio_mark_dirty(folio);
1914 swap_free(swap);
1915 put_swap_device(si);
1916
1917 *foliop = folio;
1918 return 0;
1919 failed:
1920 if (!shmem_confirm_swap(mapping, index, swap))
1921 error = -EEXIST;
1922 if (error == -EIO)
1923 shmem_set_folio_swapin_error(inode, index, folio, swap);
1924 unlock:
1925 if (folio) {
1926 folio_unlock(folio);
1927 folio_put(folio);
1928 }
1929 put_swap_device(si);
1930
1931 return error;
1932 }
1933
1934 /*
1935 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1936 *
1937 * If we allocate a new one we do not mark it dirty. That's up to the
1938 * vm. If we swap it in we mark it dirty since we also free the swap
1939 * entry since a page cannot live in both the swap and page cache.
1940 *
1941 * vma, vmf, and fault_type are only supplied by shmem_fault:
1942 * otherwise they are NULL.
1943 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1944 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1945 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1946 struct vm_area_struct *vma, struct vm_fault *vmf,
1947 vm_fault_t *fault_type)
1948 {
1949 struct address_space *mapping = inode->i_mapping;
1950 struct shmem_inode_info *info = SHMEM_I(inode);
1951 struct shmem_sb_info *sbinfo;
1952 struct mm_struct *charge_mm;
1953 struct folio *folio;
1954 pgoff_t hindex;
1955 gfp_t huge_gfp;
1956 int error;
1957 int once = 0;
1958 int alloced = 0;
1959
1960 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1961 return -EFBIG;
1962 repeat:
1963 if (sgp <= SGP_CACHE &&
1964 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1965 return -EINVAL;
1966 }
1967
1968 sbinfo = SHMEM_SB(inode->i_sb);
1969 charge_mm = vma ? vma->vm_mm : NULL;
1970
1971 folio = filemap_get_entry(mapping, index);
1972 if (folio && vma && userfaultfd_minor(vma)) {
1973 if (!xa_is_value(folio))
1974 folio_put(folio);
1975 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1976 return 0;
1977 }
1978
1979 if (xa_is_value(folio)) {
1980 error = shmem_swapin_folio(inode, index, &folio,
1981 sgp, gfp, vma, fault_type);
1982 if (error == -EEXIST)
1983 goto repeat;
1984
1985 *foliop = folio;
1986 return error;
1987 }
1988
1989 if (folio) {
1990 folio_lock(folio);
1991
1992 /* Has the folio been truncated or swapped out? */
1993 if (unlikely(folio->mapping != mapping)) {
1994 folio_unlock(folio);
1995 folio_put(folio);
1996 goto repeat;
1997 }
1998 if (sgp == SGP_WRITE)
1999 folio_mark_accessed(folio);
2000 if (folio_test_uptodate(folio))
2001 goto out;
2002 /* fallocated folio */
2003 if (sgp != SGP_READ)
2004 goto clear;
2005 folio_unlock(folio);
2006 folio_put(folio);
2007 }
2008
2009 /*
2010 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2011 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2012 */
2013 *foliop = NULL;
2014 if (sgp == SGP_READ)
2015 return 0;
2016 if (sgp == SGP_NOALLOC)
2017 return -ENOENT;
2018
2019 /*
2020 * Fast cache lookup and swap lookup did not find it: allocate.
2021 */
2022
2023 if (vma && userfaultfd_missing(vma)) {
2024 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2025 return 0;
2026 }
2027
2028 if (!shmem_is_huge(inode, index, false,
2029 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2030 goto alloc_nohuge;
2031
2032 huge_gfp = vma_thp_gfp_mask(vma);
2033 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2034 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2035 if (IS_ERR(folio)) {
2036 alloc_nohuge:
2037 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2038 }
2039 if (IS_ERR(folio)) {
2040 int retry = 5;
2041
2042 error = PTR_ERR(folio);
2043 folio = NULL;
2044 if (error != -ENOSPC)
2045 goto unlock;
2046 /*
2047 * Try to reclaim some space by splitting a large folio
2048 * beyond i_size on the filesystem.
2049 */
2050 while (retry--) {
2051 int ret;
2052
2053 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2054 if (ret == SHRINK_STOP)
2055 break;
2056 if (ret)
2057 goto alloc_nohuge;
2058 }
2059 goto unlock;
2060 }
2061
2062 hindex = round_down(index, folio_nr_pages(folio));
2063
2064 if (sgp == SGP_WRITE)
2065 __folio_set_referenced(folio);
2066
2067 error = shmem_add_to_page_cache(folio, mapping, hindex,
2068 NULL, gfp & GFP_RECLAIM_MASK,
2069 charge_mm);
2070 if (error)
2071 goto unacct;
2072
2073 folio_add_lru(folio);
2074 shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2075 alloced = true;
2076
2077 if (folio_test_pmd_mappable(folio) &&
2078 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2079 folio_next_index(folio) - 1) {
2080 /*
2081 * Part of the large folio is beyond i_size: subject
2082 * to shrink under memory pressure.
2083 */
2084 spin_lock(&sbinfo->shrinklist_lock);
2085 /*
2086 * _careful to defend against unlocked access to
2087 * ->shrink_list in shmem_unused_huge_shrink()
2088 */
2089 if (list_empty_careful(&info->shrinklist)) {
2090 list_add_tail(&info->shrinklist,
2091 &sbinfo->shrinklist);
2092 sbinfo->shrinklist_len++;
2093 }
2094 spin_unlock(&sbinfo->shrinklist_lock);
2095 }
2096
2097 /*
2098 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2099 */
2100 if (sgp == SGP_FALLOC)
2101 sgp = SGP_WRITE;
2102 clear:
2103 /*
2104 * Let SGP_WRITE caller clear ends if write does not fill folio;
2105 * but SGP_FALLOC on a folio fallocated earlier must initialize
2106 * it now, lest undo on failure cancel our earlier guarantee.
2107 */
2108 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2109 long i, n = folio_nr_pages(folio);
2110
2111 for (i = 0; i < n; i++)
2112 clear_highpage(folio_page(folio, i));
2113 flush_dcache_folio(folio);
2114 folio_mark_uptodate(folio);
2115 }
2116
2117 /* Perhaps the file has been truncated since we checked */
2118 if (sgp <= SGP_CACHE &&
2119 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2120 if (alloced) {
2121 folio_clear_dirty(folio);
2122 filemap_remove_folio(folio);
2123 shmem_recalc_inode(inode, 0, 0);
2124 }
2125 error = -EINVAL;
2126 goto unlock;
2127 }
2128 out:
2129 *foliop = folio;
2130 return 0;
2131
2132 /*
2133 * Error recovery.
2134 */
2135 unacct:
2136 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2137
2138 if (folio_test_large(folio)) {
2139 folio_unlock(folio);
2140 folio_put(folio);
2141 goto alloc_nohuge;
2142 }
2143 unlock:
2144 if (folio) {
2145 folio_unlock(folio);
2146 folio_put(folio);
2147 }
2148 if (error == -ENOSPC && !once++) {
2149 shmem_recalc_inode(inode, 0, 0);
2150 goto repeat;
2151 }
2152 if (error == -EEXIST)
2153 goto repeat;
2154 return error;
2155 }
2156
shmem_get_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp)2157 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2158 enum sgp_type sgp)
2159 {
2160 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2161 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2162 }
2163
2164 /*
2165 * This is like autoremove_wake_function, but it removes the wait queue
2166 * entry unconditionally - even if something else had already woken the
2167 * target.
2168 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2169 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2170 {
2171 int ret = default_wake_function(wait, mode, sync, key);
2172 list_del_init(&wait->entry);
2173 return ret;
2174 }
2175
shmem_fault(struct vm_fault * vmf)2176 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2177 {
2178 struct vm_area_struct *vma = vmf->vma;
2179 struct inode *inode = file_inode(vma->vm_file);
2180 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2181 struct folio *folio = NULL;
2182 int err;
2183 vm_fault_t ret = VM_FAULT_LOCKED;
2184
2185 /*
2186 * Trinity finds that probing a hole which tmpfs is punching can
2187 * prevent the hole-punch from ever completing: which in turn
2188 * locks writers out with its hold on i_rwsem. So refrain from
2189 * faulting pages into the hole while it's being punched. Although
2190 * shmem_undo_range() does remove the additions, it may be unable to
2191 * keep up, as each new page needs its own unmap_mapping_range() call,
2192 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2193 *
2194 * It does not matter if we sometimes reach this check just before the
2195 * hole-punch begins, so that one fault then races with the punch:
2196 * we just need to make racing faults a rare case.
2197 *
2198 * The implementation below would be much simpler if we just used a
2199 * standard mutex or completion: but we cannot take i_rwsem in fault,
2200 * and bloating every shmem inode for this unlikely case would be sad.
2201 */
2202 if (unlikely(inode->i_private)) {
2203 struct shmem_falloc *shmem_falloc;
2204
2205 spin_lock(&inode->i_lock);
2206 shmem_falloc = inode->i_private;
2207 if (shmem_falloc &&
2208 shmem_falloc->waitq &&
2209 vmf->pgoff >= shmem_falloc->start &&
2210 vmf->pgoff < shmem_falloc->next) {
2211 struct file *fpin;
2212 wait_queue_head_t *shmem_falloc_waitq;
2213 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2214
2215 ret = VM_FAULT_NOPAGE;
2216 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2217 if (fpin)
2218 ret = VM_FAULT_RETRY;
2219
2220 shmem_falloc_waitq = shmem_falloc->waitq;
2221 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2222 TASK_UNINTERRUPTIBLE);
2223 spin_unlock(&inode->i_lock);
2224 schedule();
2225
2226 /*
2227 * shmem_falloc_waitq points into the shmem_fallocate()
2228 * stack of the hole-punching task: shmem_falloc_waitq
2229 * is usually invalid by the time we reach here, but
2230 * finish_wait() does not dereference it in that case;
2231 * though i_lock needed lest racing with wake_up_all().
2232 */
2233 spin_lock(&inode->i_lock);
2234 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2235 spin_unlock(&inode->i_lock);
2236
2237 if (fpin)
2238 fput(fpin);
2239 return ret;
2240 }
2241 spin_unlock(&inode->i_lock);
2242 }
2243
2244 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2245 gfp, vma, vmf, &ret);
2246 if (err)
2247 return vmf_error(err);
2248 if (folio)
2249 vmf->page = folio_file_page(folio, vmf->pgoff);
2250 return ret;
2251 }
2252
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2253 unsigned long shmem_get_unmapped_area(struct file *file,
2254 unsigned long uaddr, unsigned long len,
2255 unsigned long pgoff, unsigned long flags)
2256 {
2257 unsigned long (*get_area)(struct file *,
2258 unsigned long, unsigned long, unsigned long, unsigned long);
2259 unsigned long addr;
2260 unsigned long offset;
2261 unsigned long inflated_len;
2262 unsigned long inflated_addr;
2263 unsigned long inflated_offset;
2264
2265 if (len > TASK_SIZE)
2266 return -ENOMEM;
2267
2268 get_area = current->mm->get_unmapped_area;
2269 addr = get_area(file, uaddr, len, pgoff, flags);
2270
2271 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2272 return addr;
2273 if (IS_ERR_VALUE(addr))
2274 return addr;
2275 if (addr & ~PAGE_MASK)
2276 return addr;
2277 if (addr > TASK_SIZE - len)
2278 return addr;
2279
2280 if (shmem_huge == SHMEM_HUGE_DENY)
2281 return addr;
2282 if (len < HPAGE_PMD_SIZE)
2283 return addr;
2284 if (flags & MAP_FIXED)
2285 return addr;
2286 /*
2287 * Our priority is to support MAP_SHARED mapped hugely;
2288 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2289 * But if caller specified an address hint and we allocated area there
2290 * successfully, respect that as before.
2291 */
2292 if (uaddr == addr)
2293 return addr;
2294
2295 if (shmem_huge != SHMEM_HUGE_FORCE) {
2296 struct super_block *sb;
2297
2298 if (file) {
2299 VM_BUG_ON(file->f_op != &shmem_file_operations);
2300 sb = file_inode(file)->i_sb;
2301 } else {
2302 /*
2303 * Called directly from mm/mmap.c, or drivers/char/mem.c
2304 * for "/dev/zero", to create a shared anonymous object.
2305 */
2306 if (IS_ERR(shm_mnt))
2307 return addr;
2308 sb = shm_mnt->mnt_sb;
2309 }
2310 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2311 return addr;
2312 }
2313
2314 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2315 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2316 return addr;
2317 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2318 return addr;
2319
2320 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2321 if (inflated_len > TASK_SIZE)
2322 return addr;
2323 if (inflated_len < len)
2324 return addr;
2325
2326 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2327 if (IS_ERR_VALUE(inflated_addr))
2328 return addr;
2329 if (inflated_addr & ~PAGE_MASK)
2330 return addr;
2331
2332 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2333 inflated_addr += offset - inflated_offset;
2334 if (inflated_offset > offset)
2335 inflated_addr += HPAGE_PMD_SIZE;
2336
2337 if (inflated_addr > TASK_SIZE - len)
2338 return addr;
2339 return inflated_addr;
2340 }
2341
2342 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2343 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2344 {
2345 struct inode *inode = file_inode(vma->vm_file);
2346 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2347 }
2348
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2349 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2350 unsigned long addr)
2351 {
2352 struct inode *inode = file_inode(vma->vm_file);
2353 pgoff_t index;
2354
2355 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2356 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2357 }
2358 #endif
2359
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2360 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2361 {
2362 struct inode *inode = file_inode(file);
2363 struct shmem_inode_info *info = SHMEM_I(inode);
2364 int retval = -ENOMEM;
2365
2366 /*
2367 * What serializes the accesses to info->flags?
2368 * ipc_lock_object() when called from shmctl_do_lock(),
2369 * no serialization needed when called from shm_destroy().
2370 */
2371 if (lock && !(info->flags & VM_LOCKED)) {
2372 if (!user_shm_lock(inode->i_size, ucounts))
2373 goto out_nomem;
2374 info->flags |= VM_LOCKED;
2375 mapping_set_unevictable(file->f_mapping);
2376 }
2377 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2378 user_shm_unlock(inode->i_size, ucounts);
2379 info->flags &= ~VM_LOCKED;
2380 mapping_clear_unevictable(file->f_mapping);
2381 }
2382 retval = 0;
2383
2384 out_nomem:
2385 return retval;
2386 }
2387
shmem_mmap(struct file * file,struct vm_area_struct * vma)2388 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2389 {
2390 struct inode *inode = file_inode(file);
2391 struct shmem_inode_info *info = SHMEM_I(inode);
2392 int ret;
2393
2394 ret = seal_check_future_write(info->seals, vma);
2395 if (ret)
2396 return ret;
2397
2398 /* arm64 - allow memory tagging on RAM-based files */
2399 vm_flags_set(vma, VM_MTE_ALLOWED);
2400
2401 file_accessed(file);
2402 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2403 if (inode->i_nlink)
2404 vma->vm_ops = &shmem_vm_ops;
2405 else
2406 vma->vm_ops = &shmem_anon_vm_ops;
2407 return 0;
2408 }
2409
shmem_file_open(struct inode * inode,struct file * file)2410 static int shmem_file_open(struct inode *inode, struct file *file)
2411 {
2412 file->f_mode |= FMODE_CAN_ODIRECT;
2413 return generic_file_open(inode, file);
2414 }
2415
2416 #ifdef CONFIG_TMPFS_XATTR
2417 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2418
2419 /*
2420 * chattr's fsflags are unrelated to extended attributes,
2421 * but tmpfs has chosen to enable them under the same config option.
2422 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2423 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2424 {
2425 unsigned int i_flags = 0;
2426
2427 if (fsflags & FS_NOATIME_FL)
2428 i_flags |= S_NOATIME;
2429 if (fsflags & FS_APPEND_FL)
2430 i_flags |= S_APPEND;
2431 if (fsflags & FS_IMMUTABLE_FL)
2432 i_flags |= S_IMMUTABLE;
2433 /*
2434 * But FS_NODUMP_FL does not require any action in i_flags.
2435 */
2436 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2437 }
2438 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2439 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2440 {
2441 }
2442 #define shmem_initxattrs NULL
2443 #endif
2444
shmem_get_offset_ctx(struct inode * inode)2445 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2446 {
2447 return &SHMEM_I(inode)->dir_offsets;
2448 }
2449
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2450 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2451 struct super_block *sb,
2452 struct inode *dir, umode_t mode,
2453 dev_t dev, unsigned long flags)
2454 {
2455 struct inode *inode;
2456 struct shmem_inode_info *info;
2457 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2458 ino_t ino;
2459 int err;
2460
2461 err = shmem_reserve_inode(sb, &ino);
2462 if (err)
2463 return ERR_PTR(err);
2464
2465
2466 inode = new_inode(sb);
2467 if (!inode) {
2468 shmem_free_inode(sb, 0);
2469 return ERR_PTR(-ENOSPC);
2470 }
2471
2472 inode->i_ino = ino;
2473 inode_init_owner(idmap, inode, dir, mode);
2474 inode->i_blocks = 0;
2475 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2476 inode->i_generation = get_random_u32();
2477 info = SHMEM_I(inode);
2478 memset(info, 0, (char *)inode - (char *)info);
2479 spin_lock_init(&info->lock);
2480 atomic_set(&info->stop_eviction, 0);
2481 info->seals = F_SEAL_SEAL;
2482 info->flags = flags & VM_NORESERVE;
2483 info->i_crtime = inode->i_mtime;
2484 info->fsflags = (dir == NULL) ? 0 :
2485 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2486 if (info->fsflags)
2487 shmem_set_inode_flags(inode, info->fsflags);
2488 INIT_LIST_HEAD(&info->shrinklist);
2489 INIT_LIST_HEAD(&info->swaplist);
2490 INIT_LIST_HEAD(&info->swaplist);
2491 if (sbinfo->noswap)
2492 mapping_set_unevictable(inode->i_mapping);
2493 simple_xattrs_init(&info->xattrs);
2494 cache_no_acl(inode);
2495 mapping_set_large_folios(inode->i_mapping);
2496
2497 switch (mode & S_IFMT) {
2498 default:
2499 inode->i_op = &shmem_special_inode_operations;
2500 init_special_inode(inode, mode, dev);
2501 break;
2502 case S_IFREG:
2503 inode->i_mapping->a_ops = &shmem_aops;
2504 inode->i_op = &shmem_inode_operations;
2505 inode->i_fop = &shmem_file_operations;
2506 mpol_shared_policy_init(&info->policy,
2507 shmem_get_sbmpol(sbinfo));
2508 break;
2509 case S_IFDIR:
2510 inc_nlink(inode);
2511 /* Some things misbehave if size == 0 on a directory */
2512 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2513 inode->i_op = &shmem_dir_inode_operations;
2514 inode->i_fop = &simple_offset_dir_operations;
2515 simple_offset_init(shmem_get_offset_ctx(inode));
2516 break;
2517 case S_IFLNK:
2518 /*
2519 * Must not load anything in the rbtree,
2520 * mpol_free_shared_policy will not be called.
2521 */
2522 mpol_shared_policy_init(&info->policy, NULL);
2523 break;
2524 }
2525
2526 lockdep_annotate_inode_mutex_key(inode);
2527 return inode;
2528 }
2529
2530 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2531 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2532 struct super_block *sb, struct inode *dir,
2533 umode_t mode, dev_t dev, unsigned long flags)
2534 {
2535 int err;
2536 struct inode *inode;
2537
2538 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2539 if (IS_ERR(inode))
2540 return inode;
2541
2542 err = dquot_initialize(inode);
2543 if (err)
2544 goto errout;
2545
2546 err = dquot_alloc_inode(inode);
2547 if (err) {
2548 dquot_drop(inode);
2549 goto errout;
2550 }
2551 return inode;
2552
2553 errout:
2554 inode->i_flags |= S_NOQUOTA;
2555 iput(inode);
2556 return ERR_PTR(err);
2557 }
2558 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2559 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2560 struct super_block *sb, struct inode *dir,
2561 umode_t mode, dev_t dev, unsigned long flags)
2562 {
2563 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2564 }
2565 #endif /* CONFIG_TMPFS_QUOTA */
2566
2567 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2568 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2569 struct vm_area_struct *dst_vma,
2570 unsigned long dst_addr,
2571 unsigned long src_addr,
2572 uffd_flags_t flags,
2573 struct folio **foliop)
2574 {
2575 struct inode *inode = file_inode(dst_vma->vm_file);
2576 struct shmem_inode_info *info = SHMEM_I(inode);
2577 struct address_space *mapping = inode->i_mapping;
2578 gfp_t gfp = mapping_gfp_mask(mapping);
2579 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2580 void *page_kaddr;
2581 struct folio *folio;
2582 int ret;
2583 pgoff_t max_off;
2584
2585 if (shmem_inode_acct_block(inode, 1)) {
2586 /*
2587 * We may have got a page, returned -ENOENT triggering a retry,
2588 * and now we find ourselves with -ENOMEM. Release the page, to
2589 * avoid a BUG_ON in our caller.
2590 */
2591 if (unlikely(*foliop)) {
2592 folio_put(*foliop);
2593 *foliop = NULL;
2594 }
2595 return -ENOMEM;
2596 }
2597
2598 if (!*foliop) {
2599 ret = -ENOMEM;
2600 folio = shmem_alloc_folio(gfp, info, pgoff);
2601 if (!folio)
2602 goto out_unacct_blocks;
2603
2604 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2605 page_kaddr = kmap_local_folio(folio, 0);
2606 /*
2607 * The read mmap_lock is held here. Despite the
2608 * mmap_lock being read recursive a deadlock is still
2609 * possible if a writer has taken a lock. For example:
2610 *
2611 * process A thread 1 takes read lock on own mmap_lock
2612 * process A thread 2 calls mmap, blocks taking write lock
2613 * process B thread 1 takes page fault, read lock on own mmap lock
2614 * process B thread 2 calls mmap, blocks taking write lock
2615 * process A thread 1 blocks taking read lock on process B
2616 * process B thread 1 blocks taking read lock on process A
2617 *
2618 * Disable page faults to prevent potential deadlock
2619 * and retry the copy outside the mmap_lock.
2620 */
2621 pagefault_disable();
2622 ret = copy_from_user(page_kaddr,
2623 (const void __user *)src_addr,
2624 PAGE_SIZE);
2625 pagefault_enable();
2626 kunmap_local(page_kaddr);
2627
2628 /* fallback to copy_from_user outside mmap_lock */
2629 if (unlikely(ret)) {
2630 *foliop = folio;
2631 ret = -ENOENT;
2632 /* don't free the page */
2633 goto out_unacct_blocks;
2634 }
2635
2636 flush_dcache_folio(folio);
2637 } else { /* ZEROPAGE */
2638 clear_user_highpage(&folio->page, dst_addr);
2639 }
2640 } else {
2641 folio = *foliop;
2642 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2643 *foliop = NULL;
2644 }
2645
2646 VM_BUG_ON(folio_test_locked(folio));
2647 VM_BUG_ON(folio_test_swapbacked(folio));
2648 __folio_set_locked(folio);
2649 __folio_set_swapbacked(folio);
2650 __folio_mark_uptodate(folio);
2651
2652 ret = -EFAULT;
2653 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2654 if (unlikely(pgoff >= max_off))
2655 goto out_release;
2656
2657 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2658 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2659 if (ret)
2660 goto out_release;
2661
2662 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2663 &folio->page, true, flags);
2664 if (ret)
2665 goto out_delete_from_cache;
2666
2667 shmem_recalc_inode(inode, 1, 0);
2668 folio_unlock(folio);
2669 return 0;
2670 out_delete_from_cache:
2671 filemap_remove_folio(folio);
2672 out_release:
2673 folio_unlock(folio);
2674 folio_put(folio);
2675 out_unacct_blocks:
2676 shmem_inode_unacct_blocks(inode, 1);
2677 return ret;
2678 }
2679 #endif /* CONFIG_USERFAULTFD */
2680
2681 #ifdef CONFIG_TMPFS
2682 static const struct inode_operations shmem_symlink_inode_operations;
2683 static const struct inode_operations shmem_short_symlink_operations;
2684
2685 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2686 shmem_write_begin(struct file *file, struct address_space *mapping,
2687 loff_t pos, unsigned len,
2688 struct page **pagep, void **fsdata)
2689 {
2690 struct inode *inode = mapping->host;
2691 struct shmem_inode_info *info = SHMEM_I(inode);
2692 pgoff_t index = pos >> PAGE_SHIFT;
2693 struct folio *folio;
2694 int ret = 0;
2695
2696 /* i_rwsem is held by caller */
2697 if (unlikely(info->seals & (F_SEAL_GROW |
2698 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2699 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2700 return -EPERM;
2701 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2702 return -EPERM;
2703 }
2704
2705 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2706
2707 if (ret)
2708 return ret;
2709
2710 *pagep = folio_file_page(folio, index);
2711 if (PageHWPoison(*pagep)) {
2712 folio_unlock(folio);
2713 folio_put(folio);
2714 *pagep = NULL;
2715 return -EIO;
2716 }
2717
2718 return 0;
2719 }
2720
2721 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2722 shmem_write_end(struct file *file, struct address_space *mapping,
2723 loff_t pos, unsigned len, unsigned copied,
2724 struct page *page, void *fsdata)
2725 {
2726 struct folio *folio = page_folio(page);
2727 struct inode *inode = mapping->host;
2728
2729 if (pos + copied > inode->i_size)
2730 i_size_write(inode, pos + copied);
2731
2732 if (!folio_test_uptodate(folio)) {
2733 if (copied < folio_size(folio)) {
2734 size_t from = offset_in_folio(folio, pos);
2735 folio_zero_segments(folio, 0, from,
2736 from + copied, folio_size(folio));
2737 }
2738 folio_mark_uptodate(folio);
2739 }
2740 folio_mark_dirty(folio);
2741 folio_unlock(folio);
2742 folio_put(folio);
2743
2744 return copied;
2745 }
2746
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2747 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2748 {
2749 struct file *file = iocb->ki_filp;
2750 struct inode *inode = file_inode(file);
2751 struct address_space *mapping = inode->i_mapping;
2752 pgoff_t index;
2753 unsigned long offset;
2754 int error = 0;
2755 ssize_t retval = 0;
2756 loff_t *ppos = &iocb->ki_pos;
2757
2758 index = *ppos >> PAGE_SHIFT;
2759 offset = *ppos & ~PAGE_MASK;
2760
2761 for (;;) {
2762 struct folio *folio = NULL;
2763 struct page *page = NULL;
2764 pgoff_t end_index;
2765 unsigned long nr, ret;
2766 loff_t i_size = i_size_read(inode);
2767
2768 end_index = i_size >> PAGE_SHIFT;
2769 if (index > end_index)
2770 break;
2771 if (index == end_index) {
2772 nr = i_size & ~PAGE_MASK;
2773 if (nr <= offset)
2774 break;
2775 }
2776
2777 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2778 if (error) {
2779 if (error == -EINVAL)
2780 error = 0;
2781 break;
2782 }
2783 if (folio) {
2784 folio_unlock(folio);
2785
2786 page = folio_file_page(folio, index);
2787 if (PageHWPoison(page)) {
2788 folio_put(folio);
2789 error = -EIO;
2790 break;
2791 }
2792 }
2793
2794 /*
2795 * We must evaluate after, since reads (unlike writes)
2796 * are called without i_rwsem protection against truncate
2797 */
2798 nr = PAGE_SIZE;
2799 i_size = i_size_read(inode);
2800 end_index = i_size >> PAGE_SHIFT;
2801 if (index == end_index) {
2802 nr = i_size & ~PAGE_MASK;
2803 if (nr <= offset) {
2804 if (folio)
2805 folio_put(folio);
2806 break;
2807 }
2808 }
2809 nr -= offset;
2810
2811 if (folio) {
2812 /*
2813 * If users can be writing to this page using arbitrary
2814 * virtual addresses, take care about potential aliasing
2815 * before reading the page on the kernel side.
2816 */
2817 if (mapping_writably_mapped(mapping))
2818 flush_dcache_page(page);
2819 /*
2820 * Mark the page accessed if we read the beginning.
2821 */
2822 if (!offset)
2823 folio_mark_accessed(folio);
2824 /*
2825 * Ok, we have the page, and it's up-to-date, so
2826 * now we can copy it to user space...
2827 */
2828 ret = copy_page_to_iter(page, offset, nr, to);
2829 folio_put(folio);
2830
2831 } else if (user_backed_iter(to)) {
2832 /*
2833 * Copy to user tends to be so well optimized, but
2834 * clear_user() not so much, that it is noticeably
2835 * faster to copy the zero page instead of clearing.
2836 */
2837 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2838 } else {
2839 /*
2840 * But submitting the same page twice in a row to
2841 * splice() - or others? - can result in confusion:
2842 * so don't attempt that optimization on pipes etc.
2843 */
2844 ret = iov_iter_zero(nr, to);
2845 }
2846
2847 retval += ret;
2848 offset += ret;
2849 index += offset >> PAGE_SHIFT;
2850 offset &= ~PAGE_MASK;
2851
2852 if (!iov_iter_count(to))
2853 break;
2854 if (ret < nr) {
2855 error = -EFAULT;
2856 break;
2857 }
2858 cond_resched();
2859 }
2860
2861 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2862 file_accessed(file);
2863 return retval ? retval : error;
2864 }
2865
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2866 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2867 {
2868 struct file *file = iocb->ki_filp;
2869 struct inode *inode = file->f_mapping->host;
2870 ssize_t ret;
2871
2872 inode_lock(inode);
2873 ret = generic_write_checks(iocb, from);
2874 if (ret <= 0)
2875 goto unlock;
2876 ret = file_remove_privs(file);
2877 if (ret)
2878 goto unlock;
2879 ret = file_update_time(file);
2880 if (ret)
2881 goto unlock;
2882 ret = generic_perform_write(iocb, from);
2883 unlock:
2884 inode_unlock(inode);
2885 return ret;
2886 }
2887
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2888 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2889 struct pipe_buffer *buf)
2890 {
2891 return true;
2892 }
2893
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2894 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2895 struct pipe_buffer *buf)
2896 {
2897 }
2898
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2899 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2900 struct pipe_buffer *buf)
2901 {
2902 return false;
2903 }
2904
2905 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2906 .release = zero_pipe_buf_release,
2907 .try_steal = zero_pipe_buf_try_steal,
2908 .get = zero_pipe_buf_get,
2909 };
2910
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)2911 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2912 loff_t fpos, size_t size)
2913 {
2914 size_t offset = fpos & ~PAGE_MASK;
2915
2916 size = min_t(size_t, size, PAGE_SIZE - offset);
2917
2918 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2919 struct pipe_buffer *buf = pipe_head_buf(pipe);
2920
2921 *buf = (struct pipe_buffer) {
2922 .ops = &zero_pipe_buf_ops,
2923 .page = ZERO_PAGE(0),
2924 .offset = offset,
2925 .len = size,
2926 };
2927 pipe->head++;
2928 }
2929
2930 return size;
2931 }
2932
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2933 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2934 struct pipe_inode_info *pipe,
2935 size_t len, unsigned int flags)
2936 {
2937 struct inode *inode = file_inode(in);
2938 struct address_space *mapping = inode->i_mapping;
2939 struct folio *folio = NULL;
2940 size_t total_spliced = 0, used, npages, n, part;
2941 loff_t isize;
2942 int error = 0;
2943
2944 /* Work out how much data we can actually add into the pipe */
2945 used = pipe_occupancy(pipe->head, pipe->tail);
2946 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2947 len = min_t(size_t, len, npages * PAGE_SIZE);
2948
2949 do {
2950 if (*ppos >= i_size_read(inode))
2951 break;
2952
2953 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2954 SGP_READ);
2955 if (error) {
2956 if (error == -EINVAL)
2957 error = 0;
2958 break;
2959 }
2960 if (folio) {
2961 folio_unlock(folio);
2962
2963 if (folio_test_hwpoison(folio) ||
2964 (folio_test_large(folio) &&
2965 folio_test_has_hwpoisoned(folio))) {
2966 error = -EIO;
2967 break;
2968 }
2969 }
2970
2971 /*
2972 * i_size must be checked after we know the pages are Uptodate.
2973 *
2974 * Checking i_size after the check allows us to calculate
2975 * the correct value for "nr", which means the zero-filled
2976 * part of the page is not copied back to userspace (unless
2977 * another truncate extends the file - this is desired though).
2978 */
2979 isize = i_size_read(inode);
2980 if (unlikely(*ppos >= isize))
2981 break;
2982 part = min_t(loff_t, isize - *ppos, len);
2983
2984 if (folio) {
2985 /*
2986 * If users can be writing to this page using arbitrary
2987 * virtual addresses, take care about potential aliasing
2988 * before reading the page on the kernel side.
2989 */
2990 if (mapping_writably_mapped(mapping))
2991 flush_dcache_folio(folio);
2992 folio_mark_accessed(folio);
2993 /*
2994 * Ok, we have the page, and it's up-to-date, so we can
2995 * now splice it into the pipe.
2996 */
2997 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
2998 folio_put(folio);
2999 folio = NULL;
3000 } else {
3001 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3002 }
3003
3004 if (!n)
3005 break;
3006 len -= n;
3007 total_spliced += n;
3008 *ppos += n;
3009 in->f_ra.prev_pos = *ppos;
3010 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3011 break;
3012
3013 cond_resched();
3014 } while (len);
3015
3016 if (folio)
3017 folio_put(folio);
3018
3019 file_accessed(in);
3020 return total_spliced ? total_spliced : error;
3021 }
3022
shmem_file_llseek(struct file * file,loff_t offset,int whence)3023 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3024 {
3025 struct address_space *mapping = file->f_mapping;
3026 struct inode *inode = mapping->host;
3027
3028 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3029 return generic_file_llseek_size(file, offset, whence,
3030 MAX_LFS_FILESIZE, i_size_read(inode));
3031 if (offset < 0)
3032 return -ENXIO;
3033
3034 inode_lock(inode);
3035 /* We're holding i_rwsem so we can access i_size directly */
3036 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3037 if (offset >= 0)
3038 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3039 inode_unlock(inode);
3040 return offset;
3041 }
3042
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3043 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3044 loff_t len)
3045 {
3046 struct inode *inode = file_inode(file);
3047 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3048 struct shmem_inode_info *info = SHMEM_I(inode);
3049 struct shmem_falloc shmem_falloc;
3050 pgoff_t start, index, end, undo_fallocend;
3051 int error;
3052
3053 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3054 return -EOPNOTSUPP;
3055
3056 inode_lock(inode);
3057
3058 if (mode & FALLOC_FL_PUNCH_HOLE) {
3059 struct address_space *mapping = file->f_mapping;
3060 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3061 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3062 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3063
3064 /* protected by i_rwsem */
3065 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3066 error = -EPERM;
3067 goto out;
3068 }
3069
3070 shmem_falloc.waitq = &shmem_falloc_waitq;
3071 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3072 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3073 spin_lock(&inode->i_lock);
3074 inode->i_private = &shmem_falloc;
3075 spin_unlock(&inode->i_lock);
3076
3077 if ((u64)unmap_end > (u64)unmap_start)
3078 unmap_mapping_range(mapping, unmap_start,
3079 1 + unmap_end - unmap_start, 0);
3080 shmem_truncate_range(inode, offset, offset + len - 1);
3081 /* No need to unmap again: hole-punching leaves COWed pages */
3082
3083 spin_lock(&inode->i_lock);
3084 inode->i_private = NULL;
3085 wake_up_all(&shmem_falloc_waitq);
3086 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3087 spin_unlock(&inode->i_lock);
3088 error = 0;
3089 goto out;
3090 }
3091
3092 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3093 error = inode_newsize_ok(inode, offset + len);
3094 if (error)
3095 goto out;
3096
3097 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3098 error = -EPERM;
3099 goto out;
3100 }
3101
3102 start = offset >> PAGE_SHIFT;
3103 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3104 /* Try to avoid a swapstorm if len is impossible to satisfy */
3105 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3106 error = -ENOSPC;
3107 goto out;
3108 }
3109
3110 shmem_falloc.waitq = NULL;
3111 shmem_falloc.start = start;
3112 shmem_falloc.next = start;
3113 shmem_falloc.nr_falloced = 0;
3114 shmem_falloc.nr_unswapped = 0;
3115 spin_lock(&inode->i_lock);
3116 inode->i_private = &shmem_falloc;
3117 spin_unlock(&inode->i_lock);
3118
3119 /*
3120 * info->fallocend is only relevant when huge pages might be
3121 * involved: to prevent split_huge_page() freeing fallocated
3122 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3123 */
3124 undo_fallocend = info->fallocend;
3125 if (info->fallocend < end)
3126 info->fallocend = end;
3127
3128 for (index = start; index < end; ) {
3129 struct folio *folio;
3130
3131 /*
3132 * Good, the fallocate(2) manpage permits EINTR: we may have
3133 * been interrupted because we are using up too much memory.
3134 */
3135 if (signal_pending(current))
3136 error = -EINTR;
3137 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3138 error = -ENOMEM;
3139 else
3140 error = shmem_get_folio(inode, index, &folio,
3141 SGP_FALLOC);
3142 if (error) {
3143 info->fallocend = undo_fallocend;
3144 /* Remove the !uptodate folios we added */
3145 if (index > start) {
3146 shmem_undo_range(inode,
3147 (loff_t)start << PAGE_SHIFT,
3148 ((loff_t)index << PAGE_SHIFT) - 1, true);
3149 }
3150 goto undone;
3151 }
3152
3153 /*
3154 * Here is a more important optimization than it appears:
3155 * a second SGP_FALLOC on the same large folio will clear it,
3156 * making it uptodate and un-undoable if we fail later.
3157 */
3158 index = folio_next_index(folio);
3159 /* Beware 32-bit wraparound */
3160 if (!index)
3161 index--;
3162
3163 /*
3164 * Inform shmem_writepage() how far we have reached.
3165 * No need for lock or barrier: we have the page lock.
3166 */
3167 if (!folio_test_uptodate(folio))
3168 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3169 shmem_falloc.next = index;
3170
3171 /*
3172 * If !uptodate, leave it that way so that freeable folios
3173 * can be recognized if we need to rollback on error later.
3174 * But mark it dirty so that memory pressure will swap rather
3175 * than free the folios we are allocating (and SGP_CACHE folios
3176 * might still be clean: we now need to mark those dirty too).
3177 */
3178 folio_mark_dirty(folio);
3179 folio_unlock(folio);
3180 folio_put(folio);
3181 cond_resched();
3182 }
3183
3184 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3185 i_size_write(inode, offset + len);
3186 undone:
3187 spin_lock(&inode->i_lock);
3188 inode->i_private = NULL;
3189 spin_unlock(&inode->i_lock);
3190 out:
3191 if (!error)
3192 file_modified(file);
3193 inode_unlock(inode);
3194 return error;
3195 }
3196
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3197 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3198 {
3199 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3200
3201 buf->f_type = TMPFS_MAGIC;
3202 buf->f_bsize = PAGE_SIZE;
3203 buf->f_namelen = NAME_MAX;
3204 if (sbinfo->max_blocks) {
3205 buf->f_blocks = sbinfo->max_blocks;
3206 buf->f_bavail =
3207 buf->f_bfree = sbinfo->max_blocks -
3208 percpu_counter_sum(&sbinfo->used_blocks);
3209 }
3210 if (sbinfo->max_inodes) {
3211 buf->f_files = sbinfo->max_inodes;
3212 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3213 }
3214 /* else leave those fields 0 like simple_statfs */
3215
3216 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3217
3218 return 0;
3219 }
3220
3221 /*
3222 * File creation. Allocate an inode, and we're done..
3223 */
3224 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3225 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3226 struct dentry *dentry, umode_t mode, dev_t dev)
3227 {
3228 struct inode *inode;
3229 int error;
3230
3231 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3232 if (IS_ERR(inode))
3233 return PTR_ERR(inode);
3234
3235 error = simple_acl_create(dir, inode);
3236 if (error)
3237 goto out_iput;
3238 error = security_inode_init_security(inode, dir,
3239 &dentry->d_name,
3240 shmem_initxattrs, NULL);
3241 if (error && error != -EOPNOTSUPP)
3242 goto out_iput;
3243
3244 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3245 if (error)
3246 goto out_iput;
3247
3248 dir->i_size += BOGO_DIRENT_SIZE;
3249 dir->i_mtime = inode_set_ctime_current(dir);
3250 inode_inc_iversion(dir);
3251 d_instantiate(dentry, inode);
3252 dget(dentry); /* Extra count - pin the dentry in core */
3253 return error;
3254
3255 out_iput:
3256 iput(inode);
3257 return error;
3258 }
3259
3260 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3261 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3262 struct file *file, umode_t mode)
3263 {
3264 struct inode *inode;
3265 int error;
3266
3267 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3268
3269 if (IS_ERR(inode)) {
3270 error = PTR_ERR(inode);
3271 goto err_out;
3272 }
3273
3274 error = security_inode_init_security(inode, dir,
3275 NULL,
3276 shmem_initxattrs, NULL);
3277 if (error && error != -EOPNOTSUPP)
3278 goto out_iput;
3279 error = simple_acl_create(dir, inode);
3280 if (error)
3281 goto out_iput;
3282 d_tmpfile(file, inode);
3283
3284 err_out:
3285 return finish_open_simple(file, error);
3286 out_iput:
3287 iput(inode);
3288 return error;
3289 }
3290
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3291 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3292 struct dentry *dentry, umode_t mode)
3293 {
3294 int error;
3295
3296 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3297 if (error)
3298 return error;
3299 inc_nlink(dir);
3300 return 0;
3301 }
3302
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3303 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3304 struct dentry *dentry, umode_t mode, bool excl)
3305 {
3306 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3307 }
3308
3309 /*
3310 * Link a file..
3311 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3312 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3313 {
3314 struct inode *inode = d_inode(old_dentry);
3315 int ret = 0;
3316
3317 /*
3318 * No ordinary (disk based) filesystem counts links as inodes;
3319 * but each new link needs a new dentry, pinning lowmem, and
3320 * tmpfs dentries cannot be pruned until they are unlinked.
3321 * But if an O_TMPFILE file is linked into the tmpfs, the
3322 * first link must skip that, to get the accounting right.
3323 */
3324 if (inode->i_nlink) {
3325 ret = shmem_reserve_inode(inode->i_sb, NULL);
3326 if (ret)
3327 goto out;
3328 }
3329
3330 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3331 if (ret) {
3332 if (inode->i_nlink)
3333 shmem_free_inode(inode->i_sb, 0);
3334 goto out;
3335 }
3336
3337 dir->i_size += BOGO_DIRENT_SIZE;
3338 dir->i_mtime = inode_set_ctime_to_ts(dir,
3339 inode_set_ctime_current(inode));
3340 inode_inc_iversion(dir);
3341 inc_nlink(inode);
3342 ihold(inode); /* New dentry reference */
3343 dget(dentry); /* Extra pinning count for the created dentry */
3344 d_instantiate(dentry, inode);
3345 out:
3346 return ret;
3347 }
3348
shmem_unlink(struct inode * dir,struct dentry * dentry)3349 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3350 {
3351 struct inode *inode = d_inode(dentry);
3352
3353 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3354 shmem_free_inode(inode->i_sb, 0);
3355
3356 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3357
3358 dir->i_size -= BOGO_DIRENT_SIZE;
3359 dir->i_mtime = inode_set_ctime_to_ts(dir,
3360 inode_set_ctime_current(inode));
3361 inode_inc_iversion(dir);
3362 drop_nlink(inode);
3363 dput(dentry); /* Undo the count from "create" - this does all the work */
3364 return 0;
3365 }
3366
shmem_rmdir(struct inode * dir,struct dentry * dentry)3367 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3368 {
3369 if (!simple_empty(dentry))
3370 return -ENOTEMPTY;
3371
3372 drop_nlink(d_inode(dentry));
3373 drop_nlink(dir);
3374 return shmem_unlink(dir, dentry);
3375 }
3376
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3377 static int shmem_whiteout(struct mnt_idmap *idmap,
3378 struct inode *old_dir, struct dentry *old_dentry)
3379 {
3380 struct dentry *whiteout;
3381 int error;
3382
3383 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3384 if (!whiteout)
3385 return -ENOMEM;
3386
3387 error = shmem_mknod(idmap, old_dir, whiteout,
3388 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3389 dput(whiteout);
3390 if (error)
3391 return error;
3392
3393 /*
3394 * Cheat and hash the whiteout while the old dentry is still in
3395 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3396 *
3397 * d_lookup() will consistently find one of them at this point,
3398 * not sure which one, but that isn't even important.
3399 */
3400 d_rehash(whiteout);
3401 return 0;
3402 }
3403
3404 /*
3405 * The VFS layer already does all the dentry stuff for rename,
3406 * we just have to decrement the usage count for the target if
3407 * it exists so that the VFS layer correctly free's it when it
3408 * gets overwritten.
3409 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3410 static int shmem_rename2(struct mnt_idmap *idmap,
3411 struct inode *old_dir, struct dentry *old_dentry,
3412 struct inode *new_dir, struct dentry *new_dentry,
3413 unsigned int flags)
3414 {
3415 struct inode *inode = d_inode(old_dentry);
3416 int they_are_dirs = S_ISDIR(inode->i_mode);
3417 int error;
3418
3419 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3420 return -EINVAL;
3421
3422 if (flags & RENAME_EXCHANGE)
3423 return simple_offset_rename_exchange(old_dir, old_dentry,
3424 new_dir, new_dentry);
3425
3426 if (!simple_empty(new_dentry))
3427 return -ENOTEMPTY;
3428
3429 if (flags & RENAME_WHITEOUT) {
3430 error = shmem_whiteout(idmap, old_dir, old_dentry);
3431 if (error)
3432 return error;
3433 }
3434
3435 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3436 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3437 if (error)
3438 return error;
3439
3440 if (d_really_is_positive(new_dentry)) {
3441 (void) shmem_unlink(new_dir, new_dentry);
3442 if (they_are_dirs) {
3443 drop_nlink(d_inode(new_dentry));
3444 drop_nlink(old_dir);
3445 }
3446 } else if (they_are_dirs) {
3447 drop_nlink(old_dir);
3448 inc_nlink(new_dir);
3449 }
3450
3451 old_dir->i_size -= BOGO_DIRENT_SIZE;
3452 new_dir->i_size += BOGO_DIRENT_SIZE;
3453 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3454 inode_inc_iversion(old_dir);
3455 inode_inc_iversion(new_dir);
3456 return 0;
3457 }
3458
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3459 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3460 struct dentry *dentry, const char *symname)
3461 {
3462 int error;
3463 int len;
3464 struct inode *inode;
3465 struct folio *folio;
3466
3467 len = strlen(symname) + 1;
3468 if (len > PAGE_SIZE)
3469 return -ENAMETOOLONG;
3470
3471 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3472 VM_NORESERVE);
3473
3474 if (IS_ERR(inode))
3475 return PTR_ERR(inode);
3476
3477 error = security_inode_init_security(inode, dir, &dentry->d_name,
3478 shmem_initxattrs, NULL);
3479 if (error && error != -EOPNOTSUPP)
3480 goto out_iput;
3481
3482 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3483 if (error)
3484 goto out_iput;
3485
3486 inode->i_size = len-1;
3487 if (len <= SHORT_SYMLINK_LEN) {
3488 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3489 if (!inode->i_link) {
3490 error = -ENOMEM;
3491 goto out_remove_offset;
3492 }
3493 inode->i_op = &shmem_short_symlink_operations;
3494 } else {
3495 inode_nohighmem(inode);
3496 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3497 if (error)
3498 goto out_remove_offset;
3499 inode->i_mapping->a_ops = &shmem_aops;
3500 inode->i_op = &shmem_symlink_inode_operations;
3501 memcpy(folio_address(folio), symname, len);
3502 folio_mark_uptodate(folio);
3503 folio_mark_dirty(folio);
3504 folio_unlock(folio);
3505 folio_put(folio);
3506 }
3507 dir->i_size += BOGO_DIRENT_SIZE;
3508 dir->i_mtime = inode_set_ctime_current(dir);
3509 inode_inc_iversion(dir);
3510 d_instantiate(dentry, inode);
3511 dget(dentry);
3512 return 0;
3513
3514 out_remove_offset:
3515 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3516 out_iput:
3517 iput(inode);
3518 return error;
3519 }
3520
shmem_put_link(void * arg)3521 static void shmem_put_link(void *arg)
3522 {
3523 folio_mark_accessed(arg);
3524 folio_put(arg);
3525 }
3526
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3527 static const char *shmem_get_link(struct dentry *dentry,
3528 struct inode *inode,
3529 struct delayed_call *done)
3530 {
3531 struct folio *folio = NULL;
3532 int error;
3533
3534 if (!dentry) {
3535 folio = filemap_get_folio(inode->i_mapping, 0);
3536 if (IS_ERR(folio))
3537 return ERR_PTR(-ECHILD);
3538 if (PageHWPoison(folio_page(folio, 0)) ||
3539 !folio_test_uptodate(folio)) {
3540 folio_put(folio);
3541 return ERR_PTR(-ECHILD);
3542 }
3543 } else {
3544 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3545 if (error)
3546 return ERR_PTR(error);
3547 if (!folio)
3548 return ERR_PTR(-ECHILD);
3549 if (PageHWPoison(folio_page(folio, 0))) {
3550 folio_unlock(folio);
3551 folio_put(folio);
3552 return ERR_PTR(-ECHILD);
3553 }
3554 folio_unlock(folio);
3555 }
3556 set_delayed_call(done, shmem_put_link, folio);
3557 return folio_address(folio);
3558 }
3559
3560 #ifdef CONFIG_TMPFS_XATTR
3561
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)3562 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3563 {
3564 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3565
3566 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3567
3568 return 0;
3569 }
3570
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3571 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3572 struct dentry *dentry, struct fileattr *fa)
3573 {
3574 struct inode *inode = d_inode(dentry);
3575 struct shmem_inode_info *info = SHMEM_I(inode);
3576
3577 if (fileattr_has_fsx(fa))
3578 return -EOPNOTSUPP;
3579 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3580 return -EOPNOTSUPP;
3581
3582 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3583 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3584
3585 shmem_set_inode_flags(inode, info->fsflags);
3586 inode_set_ctime_current(inode);
3587 inode_inc_iversion(inode);
3588 return 0;
3589 }
3590
3591 /*
3592 * Superblocks without xattr inode operations may get some security.* xattr
3593 * support from the LSM "for free". As soon as we have any other xattrs
3594 * like ACLs, we also need to implement the security.* handlers at
3595 * filesystem level, though.
3596 */
3597
3598 /*
3599 * Callback for security_inode_init_security() for acquiring xattrs.
3600 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3601 static int shmem_initxattrs(struct inode *inode,
3602 const struct xattr *xattr_array,
3603 void *fs_info)
3604 {
3605 struct shmem_inode_info *info = SHMEM_I(inode);
3606 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3607 const struct xattr *xattr;
3608 struct simple_xattr *new_xattr;
3609 size_t ispace = 0;
3610 size_t len;
3611
3612 if (sbinfo->max_inodes) {
3613 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3614 ispace += simple_xattr_space(xattr->name,
3615 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3616 }
3617 if (ispace) {
3618 raw_spin_lock(&sbinfo->stat_lock);
3619 if (sbinfo->free_ispace < ispace)
3620 ispace = 0;
3621 else
3622 sbinfo->free_ispace -= ispace;
3623 raw_spin_unlock(&sbinfo->stat_lock);
3624 if (!ispace)
3625 return -ENOSPC;
3626 }
3627 }
3628
3629 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3630 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3631 if (!new_xattr)
3632 break;
3633
3634 len = strlen(xattr->name) + 1;
3635 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3636 GFP_KERNEL_ACCOUNT);
3637 if (!new_xattr->name) {
3638 kvfree(new_xattr);
3639 break;
3640 }
3641
3642 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3643 XATTR_SECURITY_PREFIX_LEN);
3644 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3645 xattr->name, len);
3646
3647 simple_xattr_add(&info->xattrs, new_xattr);
3648 }
3649
3650 if (xattr->name != NULL) {
3651 if (ispace) {
3652 raw_spin_lock(&sbinfo->stat_lock);
3653 sbinfo->free_ispace += ispace;
3654 raw_spin_unlock(&sbinfo->stat_lock);
3655 }
3656 simple_xattrs_free(&info->xattrs, NULL);
3657 return -ENOMEM;
3658 }
3659
3660 return 0;
3661 }
3662
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3663 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3664 struct dentry *unused, struct inode *inode,
3665 const char *name, void *buffer, size_t size)
3666 {
3667 struct shmem_inode_info *info = SHMEM_I(inode);
3668
3669 name = xattr_full_name(handler, name);
3670 return simple_xattr_get(&info->xattrs, name, buffer, size);
3671 }
3672
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3673 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3674 struct mnt_idmap *idmap,
3675 struct dentry *unused, struct inode *inode,
3676 const char *name, const void *value,
3677 size_t size, int flags)
3678 {
3679 struct shmem_inode_info *info = SHMEM_I(inode);
3680 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3681 struct simple_xattr *old_xattr;
3682 size_t ispace = 0;
3683
3684 name = xattr_full_name(handler, name);
3685 if (value && sbinfo->max_inodes) {
3686 ispace = simple_xattr_space(name, size);
3687 raw_spin_lock(&sbinfo->stat_lock);
3688 if (sbinfo->free_ispace < ispace)
3689 ispace = 0;
3690 else
3691 sbinfo->free_ispace -= ispace;
3692 raw_spin_unlock(&sbinfo->stat_lock);
3693 if (!ispace)
3694 return -ENOSPC;
3695 }
3696
3697 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3698 if (!IS_ERR(old_xattr)) {
3699 ispace = 0;
3700 if (old_xattr && sbinfo->max_inodes)
3701 ispace = simple_xattr_space(old_xattr->name,
3702 old_xattr->size);
3703 simple_xattr_free(old_xattr);
3704 old_xattr = NULL;
3705 inode_set_ctime_current(inode);
3706 inode_inc_iversion(inode);
3707 }
3708 if (ispace) {
3709 raw_spin_lock(&sbinfo->stat_lock);
3710 sbinfo->free_ispace += ispace;
3711 raw_spin_unlock(&sbinfo->stat_lock);
3712 }
3713 return PTR_ERR(old_xattr);
3714 }
3715
3716 static const struct xattr_handler shmem_security_xattr_handler = {
3717 .prefix = XATTR_SECURITY_PREFIX,
3718 .get = shmem_xattr_handler_get,
3719 .set = shmem_xattr_handler_set,
3720 };
3721
3722 static const struct xattr_handler shmem_trusted_xattr_handler = {
3723 .prefix = XATTR_TRUSTED_PREFIX,
3724 .get = shmem_xattr_handler_get,
3725 .set = shmem_xattr_handler_set,
3726 };
3727
3728 static const struct xattr_handler shmem_user_xattr_handler = {
3729 .prefix = XATTR_USER_PREFIX,
3730 .get = shmem_xattr_handler_get,
3731 .set = shmem_xattr_handler_set,
3732 };
3733
3734 static const struct xattr_handler *shmem_xattr_handlers[] = {
3735 &shmem_security_xattr_handler,
3736 &shmem_trusted_xattr_handler,
3737 &shmem_user_xattr_handler,
3738 NULL
3739 };
3740
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3741 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3742 {
3743 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3744 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3745 }
3746 #endif /* CONFIG_TMPFS_XATTR */
3747
3748 static const struct inode_operations shmem_short_symlink_operations = {
3749 .getattr = shmem_getattr,
3750 .setattr = shmem_setattr,
3751 .get_link = simple_get_link,
3752 #ifdef CONFIG_TMPFS_XATTR
3753 .listxattr = shmem_listxattr,
3754 #endif
3755 };
3756
3757 static const struct inode_operations shmem_symlink_inode_operations = {
3758 .getattr = shmem_getattr,
3759 .setattr = shmem_setattr,
3760 .get_link = shmem_get_link,
3761 #ifdef CONFIG_TMPFS_XATTR
3762 .listxattr = shmem_listxattr,
3763 #endif
3764 };
3765
shmem_get_parent(struct dentry * child)3766 static struct dentry *shmem_get_parent(struct dentry *child)
3767 {
3768 return ERR_PTR(-ESTALE);
3769 }
3770
shmem_match(struct inode * ino,void * vfh)3771 static int shmem_match(struct inode *ino, void *vfh)
3772 {
3773 __u32 *fh = vfh;
3774 __u64 inum = fh[2];
3775 inum = (inum << 32) | fh[1];
3776 return ino->i_ino == inum && fh[0] == ino->i_generation;
3777 }
3778
3779 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3780 static struct dentry *shmem_find_alias(struct inode *inode)
3781 {
3782 struct dentry *alias = d_find_alias(inode);
3783
3784 return alias ?: d_find_any_alias(inode);
3785 }
3786
3787
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3788 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3789 struct fid *fid, int fh_len, int fh_type)
3790 {
3791 struct inode *inode;
3792 struct dentry *dentry = NULL;
3793 u64 inum;
3794
3795 if (fh_len < 3)
3796 return NULL;
3797
3798 inum = fid->raw[2];
3799 inum = (inum << 32) | fid->raw[1];
3800
3801 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3802 shmem_match, fid->raw);
3803 if (inode) {
3804 dentry = shmem_find_alias(inode);
3805 iput(inode);
3806 }
3807
3808 return dentry;
3809 }
3810
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3811 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3812 struct inode *parent)
3813 {
3814 if (*len < 3) {
3815 *len = 3;
3816 return FILEID_INVALID;
3817 }
3818
3819 if (inode_unhashed(inode)) {
3820 /* Unfortunately insert_inode_hash is not idempotent,
3821 * so as we hash inodes here rather than at creation
3822 * time, we need a lock to ensure we only try
3823 * to do it once
3824 */
3825 static DEFINE_SPINLOCK(lock);
3826 spin_lock(&lock);
3827 if (inode_unhashed(inode))
3828 __insert_inode_hash(inode,
3829 inode->i_ino + inode->i_generation);
3830 spin_unlock(&lock);
3831 }
3832
3833 fh[0] = inode->i_generation;
3834 fh[1] = inode->i_ino;
3835 fh[2] = ((__u64)inode->i_ino) >> 32;
3836
3837 *len = 3;
3838 return 1;
3839 }
3840
3841 static const struct export_operations shmem_export_ops = {
3842 .get_parent = shmem_get_parent,
3843 .encode_fh = shmem_encode_fh,
3844 .fh_to_dentry = shmem_fh_to_dentry,
3845 };
3846
3847 enum shmem_param {
3848 Opt_gid,
3849 Opt_huge,
3850 Opt_mode,
3851 Opt_mpol,
3852 Opt_nr_blocks,
3853 Opt_nr_inodes,
3854 Opt_size,
3855 Opt_uid,
3856 Opt_inode32,
3857 Opt_inode64,
3858 Opt_noswap,
3859 Opt_quota,
3860 Opt_usrquota,
3861 Opt_grpquota,
3862 Opt_usrquota_block_hardlimit,
3863 Opt_usrquota_inode_hardlimit,
3864 Opt_grpquota_block_hardlimit,
3865 Opt_grpquota_inode_hardlimit,
3866 };
3867
3868 static const struct constant_table shmem_param_enums_huge[] = {
3869 {"never", SHMEM_HUGE_NEVER },
3870 {"always", SHMEM_HUGE_ALWAYS },
3871 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3872 {"advise", SHMEM_HUGE_ADVISE },
3873 {}
3874 };
3875
3876 const struct fs_parameter_spec shmem_fs_parameters[] = {
3877 fsparam_u32 ("gid", Opt_gid),
3878 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3879 fsparam_u32oct("mode", Opt_mode),
3880 fsparam_string("mpol", Opt_mpol),
3881 fsparam_string("nr_blocks", Opt_nr_blocks),
3882 fsparam_string("nr_inodes", Opt_nr_inodes),
3883 fsparam_string("size", Opt_size),
3884 fsparam_u32 ("uid", Opt_uid),
3885 fsparam_flag ("inode32", Opt_inode32),
3886 fsparam_flag ("inode64", Opt_inode64),
3887 fsparam_flag ("noswap", Opt_noswap),
3888 #ifdef CONFIG_TMPFS_QUOTA
3889 fsparam_flag ("quota", Opt_quota),
3890 fsparam_flag ("usrquota", Opt_usrquota),
3891 fsparam_flag ("grpquota", Opt_grpquota),
3892 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3893 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3894 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3895 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3896 #endif
3897 {}
3898 };
3899
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3900 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3901 {
3902 struct shmem_options *ctx = fc->fs_private;
3903 struct fs_parse_result result;
3904 unsigned long long size;
3905 char *rest;
3906 int opt;
3907 kuid_t kuid;
3908 kgid_t kgid;
3909
3910 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3911 if (opt < 0)
3912 return opt;
3913
3914 switch (opt) {
3915 case Opt_size:
3916 size = memparse(param->string, &rest);
3917 if (*rest == '%') {
3918 size <<= PAGE_SHIFT;
3919 size *= totalram_pages();
3920 do_div(size, 100);
3921 rest++;
3922 }
3923 if (*rest)
3924 goto bad_value;
3925 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3926 ctx->seen |= SHMEM_SEEN_BLOCKS;
3927 break;
3928 case Opt_nr_blocks:
3929 ctx->blocks = memparse(param->string, &rest);
3930 if (*rest || ctx->blocks > LONG_MAX)
3931 goto bad_value;
3932 ctx->seen |= SHMEM_SEEN_BLOCKS;
3933 break;
3934 case Opt_nr_inodes:
3935 ctx->inodes = memparse(param->string, &rest);
3936 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3937 goto bad_value;
3938 ctx->seen |= SHMEM_SEEN_INODES;
3939 break;
3940 case Opt_mode:
3941 ctx->mode = result.uint_32 & 07777;
3942 break;
3943 case Opt_uid:
3944 kuid = make_kuid(current_user_ns(), result.uint_32);
3945 if (!uid_valid(kuid))
3946 goto bad_value;
3947
3948 /*
3949 * The requested uid must be representable in the
3950 * filesystem's idmapping.
3951 */
3952 if (!kuid_has_mapping(fc->user_ns, kuid))
3953 goto bad_value;
3954
3955 ctx->uid = kuid;
3956 break;
3957 case Opt_gid:
3958 kgid = make_kgid(current_user_ns(), result.uint_32);
3959 if (!gid_valid(kgid))
3960 goto bad_value;
3961
3962 /*
3963 * The requested gid must be representable in the
3964 * filesystem's idmapping.
3965 */
3966 if (!kgid_has_mapping(fc->user_ns, kgid))
3967 goto bad_value;
3968
3969 ctx->gid = kgid;
3970 break;
3971 case Opt_huge:
3972 ctx->huge = result.uint_32;
3973 if (ctx->huge != SHMEM_HUGE_NEVER &&
3974 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3975 has_transparent_hugepage()))
3976 goto unsupported_parameter;
3977 ctx->seen |= SHMEM_SEEN_HUGE;
3978 break;
3979 case Opt_mpol:
3980 if (IS_ENABLED(CONFIG_NUMA)) {
3981 mpol_put(ctx->mpol);
3982 ctx->mpol = NULL;
3983 if (mpol_parse_str(param->string, &ctx->mpol))
3984 goto bad_value;
3985 break;
3986 }
3987 goto unsupported_parameter;
3988 case Opt_inode32:
3989 ctx->full_inums = false;
3990 ctx->seen |= SHMEM_SEEN_INUMS;
3991 break;
3992 case Opt_inode64:
3993 if (sizeof(ino_t) < 8) {
3994 return invalfc(fc,
3995 "Cannot use inode64 with <64bit inums in kernel\n");
3996 }
3997 ctx->full_inums = true;
3998 ctx->seen |= SHMEM_SEEN_INUMS;
3999 break;
4000 case Opt_noswap:
4001 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4002 return invalfc(fc,
4003 "Turning off swap in unprivileged tmpfs mounts unsupported");
4004 }
4005 ctx->noswap = true;
4006 ctx->seen |= SHMEM_SEEN_NOSWAP;
4007 break;
4008 case Opt_quota:
4009 if (fc->user_ns != &init_user_ns)
4010 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4011 ctx->seen |= SHMEM_SEEN_QUOTA;
4012 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4013 break;
4014 case Opt_usrquota:
4015 if (fc->user_ns != &init_user_ns)
4016 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4017 ctx->seen |= SHMEM_SEEN_QUOTA;
4018 ctx->quota_types |= QTYPE_MASK_USR;
4019 break;
4020 case Opt_grpquota:
4021 if (fc->user_ns != &init_user_ns)
4022 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4023 ctx->seen |= SHMEM_SEEN_QUOTA;
4024 ctx->quota_types |= QTYPE_MASK_GRP;
4025 break;
4026 case Opt_usrquota_block_hardlimit:
4027 size = memparse(param->string, &rest);
4028 if (*rest || !size)
4029 goto bad_value;
4030 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4031 return invalfc(fc,
4032 "User quota block hardlimit too large.");
4033 ctx->qlimits.usrquota_bhardlimit = size;
4034 break;
4035 case Opt_grpquota_block_hardlimit:
4036 size = memparse(param->string, &rest);
4037 if (*rest || !size)
4038 goto bad_value;
4039 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4040 return invalfc(fc,
4041 "Group quota block hardlimit too large.");
4042 ctx->qlimits.grpquota_bhardlimit = size;
4043 break;
4044 case Opt_usrquota_inode_hardlimit:
4045 size = memparse(param->string, &rest);
4046 if (*rest || !size)
4047 goto bad_value;
4048 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4049 return invalfc(fc,
4050 "User quota inode hardlimit too large.");
4051 ctx->qlimits.usrquota_ihardlimit = size;
4052 break;
4053 case Opt_grpquota_inode_hardlimit:
4054 size = memparse(param->string, &rest);
4055 if (*rest || !size)
4056 goto bad_value;
4057 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4058 return invalfc(fc,
4059 "Group quota inode hardlimit too large.");
4060 ctx->qlimits.grpquota_ihardlimit = size;
4061 break;
4062 }
4063 return 0;
4064
4065 unsupported_parameter:
4066 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4067 bad_value:
4068 return invalfc(fc, "Bad value for '%s'", param->key);
4069 }
4070
shmem_parse_options(struct fs_context * fc,void * data)4071 static int shmem_parse_options(struct fs_context *fc, void *data)
4072 {
4073 char *options = data;
4074
4075 if (options) {
4076 int err = security_sb_eat_lsm_opts(options, &fc->security);
4077 if (err)
4078 return err;
4079 }
4080
4081 while (options != NULL) {
4082 char *this_char = options;
4083 for (;;) {
4084 /*
4085 * NUL-terminate this option: unfortunately,
4086 * mount options form a comma-separated list,
4087 * but mpol's nodelist may also contain commas.
4088 */
4089 options = strchr(options, ',');
4090 if (options == NULL)
4091 break;
4092 options++;
4093 if (!isdigit(*options)) {
4094 options[-1] = '\0';
4095 break;
4096 }
4097 }
4098 if (*this_char) {
4099 char *value = strchr(this_char, '=');
4100 size_t len = 0;
4101 int err;
4102
4103 if (value) {
4104 *value++ = '\0';
4105 len = strlen(value);
4106 }
4107 err = vfs_parse_fs_string(fc, this_char, value, len);
4108 if (err < 0)
4109 return err;
4110 }
4111 }
4112 return 0;
4113 }
4114
4115 /*
4116 * Reconfigure a shmem filesystem.
4117 */
shmem_reconfigure(struct fs_context * fc)4118 static int shmem_reconfigure(struct fs_context *fc)
4119 {
4120 struct shmem_options *ctx = fc->fs_private;
4121 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4122 unsigned long used_isp;
4123 struct mempolicy *mpol = NULL;
4124 const char *err;
4125
4126 raw_spin_lock(&sbinfo->stat_lock);
4127 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4128
4129 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4130 if (!sbinfo->max_blocks) {
4131 err = "Cannot retroactively limit size";
4132 goto out;
4133 }
4134 if (percpu_counter_compare(&sbinfo->used_blocks,
4135 ctx->blocks) > 0) {
4136 err = "Too small a size for current use";
4137 goto out;
4138 }
4139 }
4140 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4141 if (!sbinfo->max_inodes) {
4142 err = "Cannot retroactively limit inodes";
4143 goto out;
4144 }
4145 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4146 err = "Too few inodes for current use";
4147 goto out;
4148 }
4149 }
4150
4151 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4152 sbinfo->next_ino > UINT_MAX) {
4153 err = "Current inum too high to switch to 32-bit inums";
4154 goto out;
4155 }
4156 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4157 err = "Cannot disable swap on remount";
4158 goto out;
4159 }
4160 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4161 err = "Cannot enable swap on remount if it was disabled on first mount";
4162 goto out;
4163 }
4164
4165 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4166 !sb_any_quota_loaded(fc->root->d_sb)) {
4167 err = "Cannot enable quota on remount";
4168 goto out;
4169 }
4170
4171 #ifdef CONFIG_TMPFS_QUOTA
4172 #define CHANGED_LIMIT(name) \
4173 (ctx->qlimits.name## hardlimit && \
4174 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4175
4176 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4177 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4178 err = "Cannot change global quota limit on remount";
4179 goto out;
4180 }
4181 #endif /* CONFIG_TMPFS_QUOTA */
4182
4183 if (ctx->seen & SHMEM_SEEN_HUGE)
4184 sbinfo->huge = ctx->huge;
4185 if (ctx->seen & SHMEM_SEEN_INUMS)
4186 sbinfo->full_inums = ctx->full_inums;
4187 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4188 sbinfo->max_blocks = ctx->blocks;
4189 if (ctx->seen & SHMEM_SEEN_INODES) {
4190 sbinfo->max_inodes = ctx->inodes;
4191 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4192 }
4193
4194 /*
4195 * Preserve previous mempolicy unless mpol remount option was specified.
4196 */
4197 if (ctx->mpol) {
4198 mpol = sbinfo->mpol;
4199 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4200 ctx->mpol = NULL;
4201 }
4202
4203 if (ctx->noswap)
4204 sbinfo->noswap = true;
4205
4206 raw_spin_unlock(&sbinfo->stat_lock);
4207 mpol_put(mpol);
4208 return 0;
4209 out:
4210 raw_spin_unlock(&sbinfo->stat_lock);
4211 return invalfc(fc, "%s", err);
4212 }
4213
shmem_show_options(struct seq_file * seq,struct dentry * root)4214 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4215 {
4216 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4217 struct mempolicy *mpol;
4218
4219 if (sbinfo->max_blocks != shmem_default_max_blocks())
4220 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4221 if (sbinfo->max_inodes != shmem_default_max_inodes())
4222 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4223 if (sbinfo->mode != (0777 | S_ISVTX))
4224 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4225 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4226 seq_printf(seq, ",uid=%u",
4227 from_kuid_munged(&init_user_ns, sbinfo->uid));
4228 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4229 seq_printf(seq, ",gid=%u",
4230 from_kgid_munged(&init_user_ns, sbinfo->gid));
4231
4232 /*
4233 * Showing inode{64,32} might be useful even if it's the system default,
4234 * since then people don't have to resort to checking both here and
4235 * /proc/config.gz to confirm 64-bit inums were successfully applied
4236 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4237 *
4238 * We hide it when inode64 isn't the default and we are using 32-bit
4239 * inodes, since that probably just means the feature isn't even under
4240 * consideration.
4241 *
4242 * As such:
4243 *
4244 * +-----------------+-----------------+
4245 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4246 * +------------------+-----------------+-----------------+
4247 * | full_inums=true | show | show |
4248 * | full_inums=false | show | hide |
4249 * +------------------+-----------------+-----------------+
4250 *
4251 */
4252 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4253 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4255 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4256 if (sbinfo->huge)
4257 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4258 #endif
4259 mpol = shmem_get_sbmpol(sbinfo);
4260 shmem_show_mpol(seq, mpol);
4261 mpol_put(mpol);
4262 if (sbinfo->noswap)
4263 seq_printf(seq, ",noswap");
4264 return 0;
4265 }
4266
4267 #endif /* CONFIG_TMPFS */
4268
shmem_put_super(struct super_block * sb)4269 static void shmem_put_super(struct super_block *sb)
4270 {
4271 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4272
4273 #ifdef CONFIG_TMPFS_QUOTA
4274 shmem_disable_quotas(sb);
4275 #endif
4276 free_percpu(sbinfo->ino_batch);
4277 percpu_counter_destroy(&sbinfo->used_blocks);
4278 mpol_put(sbinfo->mpol);
4279 kfree(sbinfo);
4280 sb->s_fs_info = NULL;
4281 }
4282
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4283 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4284 {
4285 struct shmem_options *ctx = fc->fs_private;
4286 struct inode *inode;
4287 struct shmem_sb_info *sbinfo;
4288 int error = -ENOMEM;
4289
4290 /* Round up to L1_CACHE_BYTES to resist false sharing */
4291 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4292 L1_CACHE_BYTES), GFP_KERNEL);
4293 if (!sbinfo)
4294 return error;
4295
4296 sb->s_fs_info = sbinfo;
4297
4298 #ifdef CONFIG_TMPFS
4299 /*
4300 * Per default we only allow half of the physical ram per
4301 * tmpfs instance, limiting inodes to one per page of lowmem;
4302 * but the internal instance is left unlimited.
4303 */
4304 if (!(sb->s_flags & SB_KERNMOUNT)) {
4305 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4306 ctx->blocks = shmem_default_max_blocks();
4307 if (!(ctx->seen & SHMEM_SEEN_INODES))
4308 ctx->inodes = shmem_default_max_inodes();
4309 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4310 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4311 sbinfo->noswap = ctx->noswap;
4312 } else {
4313 sb->s_flags |= SB_NOUSER;
4314 }
4315 sb->s_export_op = &shmem_export_ops;
4316 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4317 #else
4318 sb->s_flags |= SB_NOUSER;
4319 #endif
4320 sbinfo->max_blocks = ctx->blocks;
4321 sbinfo->max_inodes = ctx->inodes;
4322 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4323 if (sb->s_flags & SB_KERNMOUNT) {
4324 sbinfo->ino_batch = alloc_percpu(ino_t);
4325 if (!sbinfo->ino_batch)
4326 goto failed;
4327 }
4328 sbinfo->uid = ctx->uid;
4329 sbinfo->gid = ctx->gid;
4330 sbinfo->full_inums = ctx->full_inums;
4331 sbinfo->mode = ctx->mode;
4332 sbinfo->huge = ctx->huge;
4333 sbinfo->mpol = ctx->mpol;
4334 ctx->mpol = NULL;
4335
4336 raw_spin_lock_init(&sbinfo->stat_lock);
4337 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4338 goto failed;
4339 spin_lock_init(&sbinfo->shrinklist_lock);
4340 INIT_LIST_HEAD(&sbinfo->shrinklist);
4341
4342 sb->s_maxbytes = MAX_LFS_FILESIZE;
4343 sb->s_blocksize = PAGE_SIZE;
4344 sb->s_blocksize_bits = PAGE_SHIFT;
4345 sb->s_magic = TMPFS_MAGIC;
4346 sb->s_op = &shmem_ops;
4347 sb->s_time_gran = 1;
4348 #ifdef CONFIG_TMPFS_XATTR
4349 sb->s_xattr = shmem_xattr_handlers;
4350 #endif
4351 #ifdef CONFIG_TMPFS_POSIX_ACL
4352 sb->s_flags |= SB_POSIXACL;
4353 #endif
4354 uuid_gen(&sb->s_uuid);
4355
4356 #ifdef CONFIG_TMPFS_QUOTA
4357 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4358 sb->dq_op = &shmem_quota_operations;
4359 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4360 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4361
4362 /* Copy the default limits from ctx into sbinfo */
4363 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4364 sizeof(struct shmem_quota_limits));
4365
4366 if (shmem_enable_quotas(sb, ctx->quota_types))
4367 goto failed;
4368 }
4369 #endif /* CONFIG_TMPFS_QUOTA */
4370
4371 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4372 VM_NORESERVE);
4373 if (IS_ERR(inode)) {
4374 error = PTR_ERR(inode);
4375 goto failed;
4376 }
4377 inode->i_uid = sbinfo->uid;
4378 inode->i_gid = sbinfo->gid;
4379 sb->s_root = d_make_root(inode);
4380 if (!sb->s_root)
4381 goto failed;
4382 return 0;
4383
4384 failed:
4385 shmem_put_super(sb);
4386 return error;
4387 }
4388
shmem_get_tree(struct fs_context * fc)4389 static int shmem_get_tree(struct fs_context *fc)
4390 {
4391 return get_tree_nodev(fc, shmem_fill_super);
4392 }
4393
shmem_free_fc(struct fs_context * fc)4394 static void shmem_free_fc(struct fs_context *fc)
4395 {
4396 struct shmem_options *ctx = fc->fs_private;
4397
4398 if (ctx) {
4399 mpol_put(ctx->mpol);
4400 kfree(ctx);
4401 }
4402 }
4403
4404 static const struct fs_context_operations shmem_fs_context_ops = {
4405 .free = shmem_free_fc,
4406 .get_tree = shmem_get_tree,
4407 #ifdef CONFIG_TMPFS
4408 .parse_monolithic = shmem_parse_options,
4409 .parse_param = shmem_parse_one,
4410 .reconfigure = shmem_reconfigure,
4411 #endif
4412 };
4413
4414 static struct kmem_cache *shmem_inode_cachep;
4415
shmem_alloc_inode(struct super_block * sb)4416 static struct inode *shmem_alloc_inode(struct super_block *sb)
4417 {
4418 struct shmem_inode_info *info;
4419 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4420 if (!info)
4421 return NULL;
4422 return &info->vfs_inode;
4423 }
4424
shmem_free_in_core_inode(struct inode * inode)4425 static void shmem_free_in_core_inode(struct inode *inode)
4426 {
4427 if (S_ISLNK(inode->i_mode))
4428 kfree(inode->i_link);
4429 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4430 }
4431
shmem_destroy_inode(struct inode * inode)4432 static void shmem_destroy_inode(struct inode *inode)
4433 {
4434 if (S_ISREG(inode->i_mode))
4435 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4436 if (S_ISDIR(inode->i_mode))
4437 simple_offset_destroy(shmem_get_offset_ctx(inode));
4438 }
4439
shmem_init_inode(void * foo)4440 static void shmem_init_inode(void *foo)
4441 {
4442 struct shmem_inode_info *info = foo;
4443 inode_init_once(&info->vfs_inode);
4444 }
4445
shmem_init_inodecache(void)4446 static void shmem_init_inodecache(void)
4447 {
4448 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4449 sizeof(struct shmem_inode_info),
4450 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4451 }
4452
shmem_destroy_inodecache(void)4453 static void shmem_destroy_inodecache(void)
4454 {
4455 kmem_cache_destroy(shmem_inode_cachep);
4456 }
4457
4458 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_page(struct address_space * mapping,struct page * page)4459 static int shmem_error_remove_page(struct address_space *mapping,
4460 struct page *page)
4461 {
4462 return 0;
4463 }
4464
4465 const struct address_space_operations shmem_aops = {
4466 .writepage = shmem_writepage,
4467 .dirty_folio = noop_dirty_folio,
4468 #ifdef CONFIG_TMPFS
4469 .write_begin = shmem_write_begin,
4470 .write_end = shmem_write_end,
4471 #endif
4472 #ifdef CONFIG_MIGRATION
4473 .migrate_folio = migrate_folio,
4474 #endif
4475 .error_remove_page = shmem_error_remove_page,
4476 };
4477 EXPORT_SYMBOL(shmem_aops);
4478
4479 static const struct file_operations shmem_file_operations = {
4480 .mmap = shmem_mmap,
4481 .open = shmem_file_open,
4482 .get_unmapped_area = shmem_get_unmapped_area,
4483 #ifdef CONFIG_TMPFS
4484 .llseek = shmem_file_llseek,
4485 .read_iter = shmem_file_read_iter,
4486 .write_iter = shmem_file_write_iter,
4487 .fsync = noop_fsync,
4488 .splice_read = shmem_file_splice_read,
4489 .splice_write = iter_file_splice_write,
4490 .fallocate = shmem_fallocate,
4491 #endif
4492 };
4493
4494 static const struct inode_operations shmem_inode_operations = {
4495 .getattr = shmem_getattr,
4496 .setattr = shmem_setattr,
4497 #ifdef CONFIG_TMPFS_XATTR
4498 .listxattr = shmem_listxattr,
4499 .set_acl = simple_set_acl,
4500 .fileattr_get = shmem_fileattr_get,
4501 .fileattr_set = shmem_fileattr_set,
4502 #endif
4503 };
4504
4505 static const struct inode_operations shmem_dir_inode_operations = {
4506 #ifdef CONFIG_TMPFS
4507 .getattr = shmem_getattr,
4508 .create = shmem_create,
4509 .lookup = simple_lookup,
4510 .link = shmem_link,
4511 .unlink = shmem_unlink,
4512 .symlink = shmem_symlink,
4513 .mkdir = shmem_mkdir,
4514 .rmdir = shmem_rmdir,
4515 .mknod = shmem_mknod,
4516 .rename = shmem_rename2,
4517 .tmpfile = shmem_tmpfile,
4518 .get_offset_ctx = shmem_get_offset_ctx,
4519 #endif
4520 #ifdef CONFIG_TMPFS_XATTR
4521 .listxattr = shmem_listxattr,
4522 .fileattr_get = shmem_fileattr_get,
4523 .fileattr_set = shmem_fileattr_set,
4524 #endif
4525 #ifdef CONFIG_TMPFS_POSIX_ACL
4526 .setattr = shmem_setattr,
4527 .set_acl = simple_set_acl,
4528 #endif
4529 };
4530
4531 static const struct inode_operations shmem_special_inode_operations = {
4532 .getattr = shmem_getattr,
4533 #ifdef CONFIG_TMPFS_XATTR
4534 .listxattr = shmem_listxattr,
4535 #endif
4536 #ifdef CONFIG_TMPFS_POSIX_ACL
4537 .setattr = shmem_setattr,
4538 .set_acl = simple_set_acl,
4539 #endif
4540 };
4541
4542 static const struct super_operations shmem_ops = {
4543 .alloc_inode = shmem_alloc_inode,
4544 .free_inode = shmem_free_in_core_inode,
4545 .destroy_inode = shmem_destroy_inode,
4546 #ifdef CONFIG_TMPFS
4547 .statfs = shmem_statfs,
4548 .show_options = shmem_show_options,
4549 #endif
4550 #ifdef CONFIG_TMPFS_QUOTA
4551 .get_dquots = shmem_get_dquots,
4552 #endif
4553 .evict_inode = shmem_evict_inode,
4554 .drop_inode = generic_delete_inode,
4555 .put_super = shmem_put_super,
4556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4557 .nr_cached_objects = shmem_unused_huge_count,
4558 .free_cached_objects = shmem_unused_huge_scan,
4559 #endif
4560 };
4561
4562 static const struct vm_operations_struct shmem_vm_ops = {
4563 .fault = shmem_fault,
4564 .map_pages = filemap_map_pages,
4565 #ifdef CONFIG_NUMA
4566 .set_policy = shmem_set_policy,
4567 .get_policy = shmem_get_policy,
4568 #endif
4569 };
4570
4571 static const struct vm_operations_struct shmem_anon_vm_ops = {
4572 .fault = shmem_fault,
4573 .map_pages = filemap_map_pages,
4574 #ifdef CONFIG_NUMA
4575 .set_policy = shmem_set_policy,
4576 .get_policy = shmem_get_policy,
4577 #endif
4578 };
4579
shmem_init_fs_context(struct fs_context * fc)4580 int shmem_init_fs_context(struct fs_context *fc)
4581 {
4582 struct shmem_options *ctx;
4583
4584 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4585 if (!ctx)
4586 return -ENOMEM;
4587
4588 ctx->mode = 0777 | S_ISVTX;
4589 ctx->uid = current_fsuid();
4590 ctx->gid = current_fsgid();
4591
4592 fc->fs_private = ctx;
4593 fc->ops = &shmem_fs_context_ops;
4594 return 0;
4595 }
4596
4597 static struct file_system_type shmem_fs_type = {
4598 .owner = THIS_MODULE,
4599 .name = "tmpfs",
4600 .init_fs_context = shmem_init_fs_context,
4601 #ifdef CONFIG_TMPFS
4602 .parameters = shmem_fs_parameters,
4603 #endif
4604 .kill_sb = kill_litter_super,
4605 #ifdef CONFIG_SHMEM
4606 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4607 #else
4608 .fs_flags = FS_USERNS_MOUNT,
4609 #endif
4610 };
4611
shmem_init(void)4612 void __init shmem_init(void)
4613 {
4614 int error;
4615
4616 shmem_init_inodecache();
4617
4618 #ifdef CONFIG_TMPFS_QUOTA
4619 error = register_quota_format(&shmem_quota_format);
4620 if (error < 0) {
4621 pr_err("Could not register quota format\n");
4622 goto out3;
4623 }
4624 #endif
4625
4626 error = register_filesystem(&shmem_fs_type);
4627 if (error) {
4628 pr_err("Could not register tmpfs\n");
4629 goto out2;
4630 }
4631
4632 shm_mnt = kern_mount(&shmem_fs_type);
4633 if (IS_ERR(shm_mnt)) {
4634 error = PTR_ERR(shm_mnt);
4635 pr_err("Could not kern_mount tmpfs\n");
4636 goto out1;
4637 }
4638
4639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4640 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4641 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4642 else
4643 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4644 #endif
4645 return;
4646
4647 out1:
4648 unregister_filesystem(&shmem_fs_type);
4649 out2:
4650 #ifdef CONFIG_TMPFS_QUOTA
4651 unregister_quota_format(&shmem_quota_format);
4652 out3:
4653 #endif
4654 shmem_destroy_inodecache();
4655 shm_mnt = ERR_PTR(error);
4656 }
4657
4658 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4659 static ssize_t shmem_enabled_show(struct kobject *kobj,
4660 struct kobj_attribute *attr, char *buf)
4661 {
4662 static const int values[] = {
4663 SHMEM_HUGE_ALWAYS,
4664 SHMEM_HUGE_WITHIN_SIZE,
4665 SHMEM_HUGE_ADVISE,
4666 SHMEM_HUGE_NEVER,
4667 SHMEM_HUGE_DENY,
4668 SHMEM_HUGE_FORCE,
4669 };
4670 int len = 0;
4671 int i;
4672
4673 for (i = 0; i < ARRAY_SIZE(values); i++) {
4674 len += sysfs_emit_at(buf, len,
4675 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4676 i ? " " : "",
4677 shmem_format_huge(values[i]));
4678 }
4679
4680 len += sysfs_emit_at(buf, len, "\n");
4681
4682 return len;
4683 }
4684
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4685 static ssize_t shmem_enabled_store(struct kobject *kobj,
4686 struct kobj_attribute *attr, const char *buf, size_t count)
4687 {
4688 char tmp[16];
4689 int huge;
4690
4691 if (count + 1 > sizeof(tmp))
4692 return -EINVAL;
4693 memcpy(tmp, buf, count);
4694 tmp[count] = '\0';
4695 if (count && tmp[count - 1] == '\n')
4696 tmp[count - 1] = '\0';
4697
4698 huge = shmem_parse_huge(tmp);
4699 if (huge == -EINVAL)
4700 return -EINVAL;
4701 if (!has_transparent_hugepage() &&
4702 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4703 return -EINVAL;
4704
4705 shmem_huge = huge;
4706 if (shmem_huge > SHMEM_HUGE_DENY)
4707 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4708 return count;
4709 }
4710
4711 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4713
4714 #else /* !CONFIG_SHMEM */
4715
4716 /*
4717 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4718 *
4719 * This is intended for small system where the benefits of the full
4720 * shmem code (swap-backed and resource-limited) are outweighed by
4721 * their complexity. On systems without swap this code should be
4722 * effectively equivalent, but much lighter weight.
4723 */
4724
4725 static struct file_system_type shmem_fs_type = {
4726 .name = "tmpfs",
4727 .init_fs_context = ramfs_init_fs_context,
4728 .parameters = ramfs_fs_parameters,
4729 .kill_sb = ramfs_kill_sb,
4730 .fs_flags = FS_USERNS_MOUNT,
4731 };
4732
shmem_init(void)4733 void __init shmem_init(void)
4734 {
4735 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4736
4737 shm_mnt = kern_mount(&shmem_fs_type);
4738 BUG_ON(IS_ERR(shm_mnt));
4739 }
4740
shmem_unuse(unsigned int type)4741 int shmem_unuse(unsigned int type)
4742 {
4743 return 0;
4744 }
4745
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4746 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4747 {
4748 return 0;
4749 }
4750
shmem_unlock_mapping(struct address_space * mapping)4751 void shmem_unlock_mapping(struct address_space *mapping)
4752 {
4753 }
4754
4755 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4756 unsigned long shmem_get_unmapped_area(struct file *file,
4757 unsigned long addr, unsigned long len,
4758 unsigned long pgoff, unsigned long flags)
4759 {
4760 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4761 }
4762 #endif
4763
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4764 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4765 {
4766 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4767 }
4768 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4769
4770 #define shmem_vm_ops generic_file_vm_ops
4771 #define shmem_anon_vm_ops generic_file_vm_ops
4772 #define shmem_file_operations ramfs_file_operations
4773 #define shmem_acct_size(flags, size) 0
4774 #define shmem_unacct_size(flags, size) do {} while (0)
4775
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)4776 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4777 umode_t mode, dev_t dev, unsigned long flags)
4778 {
4779 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4780 return inode ? inode : ERR_PTR(-ENOSPC);
4781 }
4782
4783 #endif /* CONFIG_SHMEM */
4784
4785 /* common code */
4786
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4787 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4788 unsigned long flags, unsigned int i_flags)
4789 {
4790 struct inode *inode;
4791 struct file *res;
4792
4793 if (IS_ERR(mnt))
4794 return ERR_CAST(mnt);
4795
4796 if (size < 0 || size > MAX_LFS_FILESIZE)
4797 return ERR_PTR(-EINVAL);
4798
4799 if (shmem_acct_size(flags, size))
4800 return ERR_PTR(-ENOMEM);
4801
4802 if (is_idmapped_mnt(mnt))
4803 return ERR_PTR(-EINVAL);
4804
4805 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4806 S_IFREG | S_IRWXUGO, 0, flags);
4807
4808 if (IS_ERR(inode)) {
4809 shmem_unacct_size(flags, size);
4810 return ERR_CAST(inode);
4811 }
4812 inode->i_flags |= i_flags;
4813 inode->i_size = size;
4814 clear_nlink(inode); /* It is unlinked */
4815 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4816 if (!IS_ERR(res))
4817 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4818 &shmem_file_operations);
4819 if (IS_ERR(res))
4820 iput(inode);
4821 return res;
4822 }
4823
4824 /**
4825 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4826 * kernel internal. There will be NO LSM permission checks against the
4827 * underlying inode. So users of this interface must do LSM checks at a
4828 * higher layer. The users are the big_key and shm implementations. LSM
4829 * checks are provided at the key or shm level rather than the inode.
4830 * @name: name for dentry (to be seen in /proc/<pid>/maps
4831 * @size: size to be set for the file
4832 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4833 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4834 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4835 {
4836 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4837 }
4838
4839 /**
4840 * shmem_file_setup - get an unlinked file living in tmpfs
4841 * @name: name for dentry (to be seen in /proc/<pid>/maps
4842 * @size: size to be set for the file
4843 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4844 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4845 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4846 {
4847 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4848 }
4849 EXPORT_SYMBOL_GPL(shmem_file_setup);
4850
4851 /**
4852 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4853 * @mnt: the tmpfs mount where the file will be created
4854 * @name: name for dentry (to be seen in /proc/<pid>/maps
4855 * @size: size to be set for the file
4856 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4857 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4858 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4859 loff_t size, unsigned long flags)
4860 {
4861 return __shmem_file_setup(mnt, name, size, flags, 0);
4862 }
4863 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4864
4865 /**
4866 * shmem_zero_setup - setup a shared anonymous mapping
4867 * @vma: the vma to be mmapped is prepared by do_mmap
4868 */
shmem_zero_setup(struct vm_area_struct * vma)4869 int shmem_zero_setup(struct vm_area_struct *vma)
4870 {
4871 struct file *file;
4872 loff_t size = vma->vm_end - vma->vm_start;
4873
4874 /*
4875 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4876 * between XFS directory reading and selinux: since this file is only
4877 * accessible to the user through its mapping, use S_PRIVATE flag to
4878 * bypass file security, in the same way as shmem_kernel_file_setup().
4879 */
4880 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4881 if (IS_ERR(file))
4882 return PTR_ERR(file);
4883
4884 if (vma->vm_file)
4885 fput(vma->vm_file);
4886 vma->vm_file = file;
4887 vma->vm_ops = &shmem_anon_vm_ops;
4888
4889 return 0;
4890 }
4891
4892 /**
4893 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4894 * @mapping: the folio's address_space
4895 * @index: the folio index
4896 * @gfp: the page allocator flags to use if allocating
4897 *
4898 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4899 * with any new page allocations done using the specified allocation flags.
4900 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4901 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4902 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4903 *
4904 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4905 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4906 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4907 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4908 pgoff_t index, gfp_t gfp)
4909 {
4910 #ifdef CONFIG_SHMEM
4911 struct inode *inode = mapping->host;
4912 struct folio *folio;
4913 int error;
4914
4915 BUG_ON(!shmem_mapping(mapping));
4916 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4917 gfp, NULL, NULL, NULL);
4918 if (error)
4919 return ERR_PTR(error);
4920
4921 folio_unlock(folio);
4922 return folio;
4923 #else
4924 /*
4925 * The tiny !SHMEM case uses ramfs without swap
4926 */
4927 return mapping_read_folio_gfp(mapping, index, gfp);
4928 #endif
4929 }
4930 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4931
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4932 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4933 pgoff_t index, gfp_t gfp)
4934 {
4935 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4936 struct page *page;
4937
4938 if (IS_ERR(folio))
4939 return &folio->page;
4940
4941 page = folio_file_page(folio, index);
4942 if (PageHWPoison(page)) {
4943 folio_put(folio);
4944 return ERR_PTR(-EIO);
4945 }
4946
4947 return page;
4948 }
4949 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4950