1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2021, Microsoft Corporation.
4  *
5  * Authors:
6  *   Beau Belgrave <beaub@linux.microsoft.com>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/cdev.h>
11 #include <linux/hashtable.h>
12 #include <linux/list.h>
13 #include <linux/io.h>
14 #include <linux/uio.h>
15 #include <linux/ioctl.h>
16 #include <linux/jhash.h>
17 #include <linux/refcount.h>
18 #include <linux/trace_events.h>
19 #include <linux/tracefs.h>
20 #include <linux/types.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/user_events.h>
25 #include "trace_dynevent.h"
26 #include "trace_output.h"
27 #include "trace.h"
28 
29 #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30 
31 #define FIELD_DEPTH_TYPE 0
32 #define FIELD_DEPTH_NAME 1
33 #define FIELD_DEPTH_SIZE 2
34 
35 /* Limit how long of an event name plus args within the subsystem. */
36 #define MAX_EVENT_DESC 512
37 #define EVENT_NAME(user_event) ((user_event)->tracepoint.name)
38 #define MAX_FIELD_ARRAY_SIZE 1024
39 
40 /*
41  * Internal bits (kernel side only) to keep track of connected probes:
42  * These are used when status is requested in text form about an event. These
43  * bits are compared against an internal byte on the event to determine which
44  * probes to print out to the user.
45  *
46  * These do not reflect the mapped bytes between the user and kernel space.
47  */
48 #define EVENT_STATUS_FTRACE BIT(0)
49 #define EVENT_STATUS_PERF BIT(1)
50 #define EVENT_STATUS_OTHER BIT(7)
51 
52 /*
53  * User register flags are not allowed yet, keep them here until we are
54  * ready to expose them out to the user ABI.
55  */
56 enum user_reg_flag {
57 	/* Event will not delete upon last reference closing */
58 	USER_EVENT_REG_PERSIST		= 1U << 0,
59 
60 	/* This value or above is currently non-ABI */
61 	USER_EVENT_REG_MAX		= 1U << 1,
62 };
63 
64 /*
65  * Stores the system name, tables, and locks for a group of events. This
66  * allows isolation for events by various means.
67  */
68 struct user_event_group {
69 	char		*system_name;
70 	struct		hlist_node node;
71 	struct		mutex reg_mutex;
72 	DECLARE_HASHTABLE(register_table, 8);
73 };
74 
75 /* Group for init_user_ns mapping, top-most group */
76 static struct user_event_group *init_group;
77 
78 /* Max allowed events for the whole system */
79 static unsigned int max_user_events = 32768;
80 
81 /* Current number of events on the whole system */
82 static unsigned int current_user_events;
83 
84 /*
85  * Stores per-event properties, as users register events
86  * within a file a user_event might be created if it does not
87  * already exist. These are globally used and their lifetime
88  * is tied to the refcnt member. These cannot go away until the
89  * refcnt reaches one.
90  */
91 struct user_event {
92 	struct user_event_group		*group;
93 	struct tracepoint		tracepoint;
94 	struct trace_event_call		call;
95 	struct trace_event_class	class;
96 	struct dyn_event		devent;
97 	struct hlist_node		node;
98 	struct list_head		fields;
99 	struct list_head		validators;
100 	struct work_struct		put_work;
101 	refcount_t			refcnt;
102 	int				min_size;
103 	int				reg_flags;
104 	char				status;
105 };
106 
107 /*
108  * Stores per-mm/event properties that enable an address to be
109  * updated properly for each task. As tasks are forked, we use
110  * these to track enablement sites that are tied to an event.
111  */
112 struct user_event_enabler {
113 	struct list_head	mm_enablers_link;
114 	struct user_event	*event;
115 	unsigned long		addr;
116 
117 	/* Track enable bit, flags, etc. Aligned for bitops. */
118 	unsigned long		values;
119 };
120 
121 /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
122 #define ENABLE_VAL_BIT_MASK 0x3F
123 
124 /* Bit 6 is for faulting status of enablement */
125 #define ENABLE_VAL_FAULTING_BIT 6
126 
127 /* Bit 7 is for freeing status of enablement */
128 #define ENABLE_VAL_FREEING_BIT 7
129 
130 /* Bit 8 is for marking 32-bit on 64-bit */
131 #define ENABLE_VAL_32_ON_64_BIT 8
132 
133 #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
134 
135 /* Only duplicate the bit and compat values */
136 #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
137 
138 #define ENABLE_BITOPS(e) (&(e)->values)
139 
140 #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
141 
142 /* Used for asynchronous faulting in of pages */
143 struct user_event_enabler_fault {
144 	struct work_struct		work;
145 	struct user_event_mm		*mm;
146 	struct user_event_enabler	*enabler;
147 	int				attempt;
148 };
149 
150 static struct kmem_cache *fault_cache;
151 
152 /* Global list of memory descriptors using user_events */
153 static LIST_HEAD(user_event_mms);
154 static DEFINE_SPINLOCK(user_event_mms_lock);
155 
156 /*
157  * Stores per-file events references, as users register events
158  * within a file this structure is modified and freed via RCU.
159  * The lifetime of this struct is tied to the lifetime of the file.
160  * These are not shared and only accessible by the file that created it.
161  */
162 struct user_event_refs {
163 	struct rcu_head		rcu;
164 	int			count;
165 	struct user_event	*events[];
166 };
167 
168 struct user_event_file_info {
169 	struct user_event_group	*group;
170 	struct user_event_refs	*refs;
171 };
172 
173 #define VALIDATOR_ENSURE_NULL (1 << 0)
174 #define VALIDATOR_REL (1 << 1)
175 
176 struct user_event_validator {
177 	struct list_head	user_event_link;
178 	int			offset;
179 	int			flags;
180 };
181 
align_addr_bit(unsigned long * addr,int * bit,unsigned long * flags)182 static inline void align_addr_bit(unsigned long *addr, int *bit,
183 				  unsigned long *flags)
184 {
185 	if (IS_ALIGNED(*addr, sizeof(long))) {
186 #ifdef __BIG_ENDIAN
187 		/* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
188 		if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
189 			*bit += 32;
190 #endif
191 		return;
192 	}
193 
194 	*addr = ALIGN_DOWN(*addr, sizeof(long));
195 
196 	/*
197 	 * We only support 32 and 64 bit values. The only time we need
198 	 * to align is a 32 bit value on a 64 bit kernel, which on LE
199 	 * is always 32 bits, and on BE requires no change when unaligned.
200 	 */
201 #ifdef __LITTLE_ENDIAN
202 	*bit += 32;
203 #endif
204 }
205 
206 typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
207 				   void *tpdata, bool *faulted);
208 
209 static int user_event_parse(struct user_event_group *group, char *name,
210 			    char *args, char *flags,
211 			    struct user_event **newuser, int reg_flags);
212 
213 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
214 static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
215 static void user_event_mm_put(struct user_event_mm *mm);
216 static int destroy_user_event(struct user_event *user);
217 
user_event_key(char * name)218 static u32 user_event_key(char *name)
219 {
220 	return jhash(name, strlen(name), 0);
221 }
222 
user_event_get(struct user_event * user)223 static struct user_event *user_event_get(struct user_event *user)
224 {
225 	refcount_inc(&user->refcnt);
226 
227 	return user;
228 }
229 
delayed_destroy_user_event(struct work_struct * work)230 static void delayed_destroy_user_event(struct work_struct *work)
231 {
232 	struct user_event *user = container_of(
233 		work, struct user_event, put_work);
234 
235 	mutex_lock(&event_mutex);
236 
237 	if (!refcount_dec_and_test(&user->refcnt))
238 		goto out;
239 
240 	if (destroy_user_event(user)) {
241 		/*
242 		 * The only reason this would fail here is if we cannot
243 		 * update the visibility of the event. In this case the
244 		 * event stays in the hashtable, waiting for someone to
245 		 * attempt to delete it later.
246 		 */
247 		pr_warn("user_events: Unable to delete event\n");
248 		refcount_set(&user->refcnt, 1);
249 	}
250 out:
251 	mutex_unlock(&event_mutex);
252 }
253 
user_event_put(struct user_event * user,bool locked)254 static void user_event_put(struct user_event *user, bool locked)
255 {
256 	bool delete;
257 
258 	if (unlikely(!user))
259 		return;
260 
261 	/*
262 	 * When the event is not enabled for auto-delete there will always
263 	 * be at least 1 reference to the event. During the event creation
264 	 * we initially set the refcnt to 2 to achieve this. In those cases
265 	 * the caller must acquire event_mutex and after decrement check if
266 	 * the refcnt is 1, meaning this is the last reference. When auto
267 	 * delete is enabled, there will only be 1 ref, IE: refcnt will be
268 	 * only set to 1 during creation to allow the below checks to go
269 	 * through upon the last put. The last put must always be done with
270 	 * the event mutex held.
271 	 */
272 	if (!locked) {
273 		lockdep_assert_not_held(&event_mutex);
274 		delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
275 	} else {
276 		lockdep_assert_held(&event_mutex);
277 		delete = refcount_dec_and_test(&user->refcnt);
278 	}
279 
280 	if (!delete)
281 		return;
282 
283 	/*
284 	 * We now have the event_mutex in all cases, which ensures that
285 	 * no new references will be taken until event_mutex is released.
286 	 * New references come through find_user_event(), which requires
287 	 * the event_mutex to be held.
288 	 */
289 
290 	if (user->reg_flags & USER_EVENT_REG_PERSIST) {
291 		/* We should not get here when persist flag is set */
292 		pr_alert("BUG: Auto-delete engaged on persistent event\n");
293 		goto out;
294 	}
295 
296 	/*
297 	 * Unfortunately we have to attempt the actual destroy in a work
298 	 * queue. This is because not all cases handle a trace_event_call
299 	 * being removed within the class->reg() operation for unregister.
300 	 */
301 	INIT_WORK(&user->put_work, delayed_destroy_user_event);
302 
303 	/*
304 	 * Since the event is still in the hashtable, we have to re-inc
305 	 * the ref count to 1. This count will be decremented and checked
306 	 * in the work queue to ensure it's still the last ref. This is
307 	 * needed because a user-process could register the same event in
308 	 * between the time of event_mutex release and the work queue
309 	 * running the delayed destroy. If we removed the item now from
310 	 * the hashtable, this would result in a timing window where a
311 	 * user process would fail a register because the trace_event_call
312 	 * register would fail in the tracing layers.
313 	 */
314 	refcount_set(&user->refcnt, 1);
315 
316 	if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
317 		/*
318 		 * If we fail we must wait for an admin to attempt delete or
319 		 * another register/close of the event, whichever is first.
320 		 */
321 		pr_warn("user_events: Unable to queue delayed destroy\n");
322 	}
323 out:
324 	/* Ensure if we didn't have event_mutex before we unlock it */
325 	if (!locked)
326 		mutex_unlock(&event_mutex);
327 }
328 
user_event_group_destroy(struct user_event_group * group)329 static void user_event_group_destroy(struct user_event_group *group)
330 {
331 	kfree(group->system_name);
332 	kfree(group);
333 }
334 
user_event_group_system_name(void)335 static char *user_event_group_system_name(void)
336 {
337 	char *system_name;
338 	int len = sizeof(USER_EVENTS_SYSTEM) + 1;
339 
340 	system_name = kmalloc(len, GFP_KERNEL);
341 
342 	if (!system_name)
343 		return NULL;
344 
345 	snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
346 
347 	return system_name;
348 }
349 
current_user_event_group(void)350 static struct user_event_group *current_user_event_group(void)
351 {
352 	return init_group;
353 }
354 
user_event_group_create(void)355 static struct user_event_group *user_event_group_create(void)
356 {
357 	struct user_event_group *group;
358 
359 	group = kzalloc(sizeof(*group), GFP_KERNEL);
360 
361 	if (!group)
362 		return NULL;
363 
364 	group->system_name = user_event_group_system_name();
365 
366 	if (!group->system_name)
367 		goto error;
368 
369 	mutex_init(&group->reg_mutex);
370 	hash_init(group->register_table);
371 
372 	return group;
373 error:
374 	if (group)
375 		user_event_group_destroy(group);
376 
377 	return NULL;
378 };
379 
user_event_enabler_destroy(struct user_event_enabler * enabler,bool locked)380 static void user_event_enabler_destroy(struct user_event_enabler *enabler,
381 				       bool locked)
382 {
383 	list_del_rcu(&enabler->mm_enablers_link);
384 
385 	/* No longer tracking the event via the enabler */
386 	user_event_put(enabler->event, locked);
387 
388 	kfree(enabler);
389 }
390 
user_event_mm_fault_in(struct user_event_mm * mm,unsigned long uaddr,int attempt)391 static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
392 				  int attempt)
393 {
394 	bool unlocked;
395 	int ret;
396 
397 	/*
398 	 * Normally this is low, ensure that it cannot be taken advantage of by
399 	 * bad user processes to cause excessive looping.
400 	 */
401 	if (attempt > 10)
402 		return -EFAULT;
403 
404 	mmap_read_lock(mm->mm);
405 
406 	/* Ensure MM has tasks, cannot use after exit_mm() */
407 	if (refcount_read(&mm->tasks) == 0) {
408 		ret = -ENOENT;
409 		goto out;
410 	}
411 
412 	ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
413 			       &unlocked);
414 out:
415 	mmap_read_unlock(mm->mm);
416 
417 	return ret;
418 }
419 
420 static int user_event_enabler_write(struct user_event_mm *mm,
421 				    struct user_event_enabler *enabler,
422 				    bool fixup_fault, int *attempt);
423 
user_event_enabler_fault_fixup(struct work_struct * work)424 static void user_event_enabler_fault_fixup(struct work_struct *work)
425 {
426 	struct user_event_enabler_fault *fault = container_of(
427 		work, struct user_event_enabler_fault, work);
428 	struct user_event_enabler *enabler = fault->enabler;
429 	struct user_event_mm *mm = fault->mm;
430 	unsigned long uaddr = enabler->addr;
431 	int attempt = fault->attempt;
432 	int ret;
433 
434 	ret = user_event_mm_fault_in(mm, uaddr, attempt);
435 
436 	if (ret && ret != -ENOENT) {
437 		struct user_event *user = enabler->event;
438 
439 		pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
440 			mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
441 	}
442 
443 	/* Prevent state changes from racing */
444 	mutex_lock(&event_mutex);
445 
446 	/* User asked for enabler to be removed during fault */
447 	if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
448 		user_event_enabler_destroy(enabler, true);
449 		goto out;
450 	}
451 
452 	/*
453 	 * If we managed to get the page, re-issue the write. We do not
454 	 * want to get into a possible infinite loop, which is why we only
455 	 * attempt again directly if the page came in. If we couldn't get
456 	 * the page here, then we will try again the next time the event is
457 	 * enabled/disabled.
458 	 */
459 	clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
460 
461 	if (!ret) {
462 		mmap_read_lock(mm->mm);
463 		user_event_enabler_write(mm, enabler, true, &attempt);
464 		mmap_read_unlock(mm->mm);
465 	}
466 out:
467 	mutex_unlock(&event_mutex);
468 
469 	/* In all cases we no longer need the mm or fault */
470 	user_event_mm_put(mm);
471 	kmem_cache_free(fault_cache, fault);
472 }
473 
user_event_enabler_queue_fault(struct user_event_mm * mm,struct user_event_enabler * enabler,int attempt)474 static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
475 					   struct user_event_enabler *enabler,
476 					   int attempt)
477 {
478 	struct user_event_enabler_fault *fault;
479 
480 	fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
481 
482 	if (!fault)
483 		return false;
484 
485 	INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
486 	fault->mm = user_event_mm_get(mm);
487 	fault->enabler = enabler;
488 	fault->attempt = attempt;
489 
490 	/* Don't try to queue in again while we have a pending fault */
491 	set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
492 
493 	if (!schedule_work(&fault->work)) {
494 		/* Allow another attempt later */
495 		clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
496 
497 		user_event_mm_put(mm);
498 		kmem_cache_free(fault_cache, fault);
499 
500 		return false;
501 	}
502 
503 	return true;
504 }
505 
user_event_enabler_write(struct user_event_mm * mm,struct user_event_enabler * enabler,bool fixup_fault,int * attempt)506 static int user_event_enabler_write(struct user_event_mm *mm,
507 				    struct user_event_enabler *enabler,
508 				    bool fixup_fault, int *attempt)
509 {
510 	unsigned long uaddr = enabler->addr;
511 	unsigned long *ptr;
512 	struct page *page;
513 	void *kaddr;
514 	int bit = ENABLE_BIT(enabler);
515 	int ret;
516 
517 	lockdep_assert_held(&event_mutex);
518 	mmap_assert_locked(mm->mm);
519 
520 	*attempt += 1;
521 
522 	/* Ensure MM has tasks, cannot use after exit_mm() */
523 	if (refcount_read(&mm->tasks) == 0)
524 		return -ENOENT;
525 
526 	if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
527 		     test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
528 		return -EBUSY;
529 
530 	align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
531 
532 	ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
533 				    &page, NULL);
534 
535 	if (unlikely(ret <= 0)) {
536 		if (!fixup_fault)
537 			return -EFAULT;
538 
539 		if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
540 			pr_warn("user_events: Unable to queue fault handler\n");
541 
542 		return -EFAULT;
543 	}
544 
545 	kaddr = kmap_local_page(page);
546 	ptr = kaddr + (uaddr & ~PAGE_MASK);
547 
548 	/* Update bit atomically, user tracers must be atomic as well */
549 	if (enabler->event && enabler->event->status)
550 		set_bit(bit, ptr);
551 	else
552 		clear_bit(bit, ptr);
553 
554 	kunmap_local(kaddr);
555 	unpin_user_pages_dirty_lock(&page, 1, true);
556 
557 	return 0;
558 }
559 
user_event_enabler_exists(struct user_event_mm * mm,unsigned long uaddr,unsigned char bit)560 static bool user_event_enabler_exists(struct user_event_mm *mm,
561 				      unsigned long uaddr, unsigned char bit)
562 {
563 	struct user_event_enabler *enabler;
564 
565 	list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
566 		if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
567 			return true;
568 	}
569 
570 	return false;
571 }
572 
user_event_enabler_update(struct user_event * user)573 static void user_event_enabler_update(struct user_event *user)
574 {
575 	struct user_event_enabler *enabler;
576 	struct user_event_mm *next;
577 	struct user_event_mm *mm;
578 	int attempt;
579 
580 	lockdep_assert_held(&event_mutex);
581 
582 	/*
583 	 * We need to build a one-shot list of all the mms that have an
584 	 * enabler for the user_event passed in. This list is only valid
585 	 * while holding the event_mutex. The only reason for this is due
586 	 * to the global mm list being RCU protected and we use methods
587 	 * which can wait (mmap_read_lock and pin_user_pages_remote).
588 	 *
589 	 * NOTE: user_event_mm_get_all() increments the ref count of each
590 	 * mm that is added to the list to prevent removal timing windows.
591 	 * We must always put each mm after they are used, which may wait.
592 	 */
593 	mm = user_event_mm_get_all(user);
594 
595 	while (mm) {
596 		next = mm->next;
597 		mmap_read_lock(mm->mm);
598 
599 		list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
600 			if (enabler->event == user) {
601 				attempt = 0;
602 				user_event_enabler_write(mm, enabler, true, &attempt);
603 			}
604 		}
605 
606 		mmap_read_unlock(mm->mm);
607 		user_event_mm_put(mm);
608 		mm = next;
609 	}
610 }
611 
user_event_enabler_dup(struct user_event_enabler * orig,struct user_event_mm * mm)612 static bool user_event_enabler_dup(struct user_event_enabler *orig,
613 				   struct user_event_mm *mm)
614 {
615 	struct user_event_enabler *enabler;
616 
617 	/* Skip pending frees */
618 	if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
619 		return true;
620 
621 	enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
622 
623 	if (!enabler)
624 		return false;
625 
626 	enabler->event = user_event_get(orig->event);
627 	enabler->addr = orig->addr;
628 
629 	/* Only dup part of value (ignore future flags, etc) */
630 	enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
631 
632 	/* Enablers not exposed yet, RCU not required */
633 	list_add(&enabler->mm_enablers_link, &mm->enablers);
634 
635 	return true;
636 }
637 
user_event_mm_get(struct user_event_mm * mm)638 static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
639 {
640 	refcount_inc(&mm->refcnt);
641 
642 	return mm;
643 }
644 
user_event_mm_get_all(struct user_event * user)645 static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
646 {
647 	struct user_event_mm *found = NULL;
648 	struct user_event_enabler *enabler;
649 	struct user_event_mm *mm;
650 
651 	/*
652 	 * We use the mm->next field to build a one-shot list from the global
653 	 * RCU protected list. To build this list the event_mutex must be held.
654 	 * This lets us build a list without requiring allocs that could fail
655 	 * when user based events are most wanted for diagnostics.
656 	 */
657 	lockdep_assert_held(&event_mutex);
658 
659 	/*
660 	 * We do not want to block fork/exec while enablements are being
661 	 * updated, so we use RCU to walk the current tasks that have used
662 	 * user_events ABI for 1 or more events. Each enabler found in each
663 	 * task that matches the event being updated has a write to reflect
664 	 * the kernel state back into the process. Waits/faults must not occur
665 	 * during this. So we scan the list under RCU for all the mm that have
666 	 * the event within it. This is needed because mm_read_lock() can wait.
667 	 * Each user mm returned has a ref inc to handle remove RCU races.
668 	 */
669 	rcu_read_lock();
670 
671 	list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
672 		list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
673 			if (enabler->event == user) {
674 				mm->next = found;
675 				found = user_event_mm_get(mm);
676 				break;
677 			}
678 		}
679 	}
680 
681 	rcu_read_unlock();
682 
683 	return found;
684 }
685 
user_event_mm_alloc(struct task_struct * t)686 static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
687 {
688 	struct user_event_mm *user_mm;
689 
690 	user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
691 
692 	if (!user_mm)
693 		return NULL;
694 
695 	user_mm->mm = t->mm;
696 	INIT_LIST_HEAD(&user_mm->enablers);
697 	refcount_set(&user_mm->refcnt, 1);
698 	refcount_set(&user_mm->tasks, 1);
699 
700 	/*
701 	 * The lifetime of the memory descriptor can slightly outlast
702 	 * the task lifetime if a ref to the user_event_mm is taken
703 	 * between list_del_rcu() and call_rcu(). Therefore we need
704 	 * to take a reference to it to ensure it can live this long
705 	 * under this corner case. This can also occur in clones that
706 	 * outlast the parent.
707 	 */
708 	mmgrab(user_mm->mm);
709 
710 	return user_mm;
711 }
712 
user_event_mm_attach(struct user_event_mm * user_mm,struct task_struct * t)713 static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
714 {
715 	unsigned long flags;
716 
717 	spin_lock_irqsave(&user_event_mms_lock, flags);
718 	list_add_rcu(&user_mm->mms_link, &user_event_mms);
719 	spin_unlock_irqrestore(&user_event_mms_lock, flags);
720 
721 	t->user_event_mm = user_mm;
722 }
723 
current_user_event_mm(void)724 static struct user_event_mm *current_user_event_mm(void)
725 {
726 	struct user_event_mm *user_mm = current->user_event_mm;
727 
728 	if (user_mm)
729 		goto inc;
730 
731 	user_mm = user_event_mm_alloc(current);
732 
733 	if (!user_mm)
734 		goto error;
735 
736 	user_event_mm_attach(user_mm, current);
737 inc:
738 	refcount_inc(&user_mm->refcnt);
739 error:
740 	return user_mm;
741 }
742 
user_event_mm_destroy(struct user_event_mm * mm)743 static void user_event_mm_destroy(struct user_event_mm *mm)
744 {
745 	struct user_event_enabler *enabler, *next;
746 
747 	list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
748 		user_event_enabler_destroy(enabler, false);
749 
750 	mmdrop(mm->mm);
751 	kfree(mm);
752 }
753 
user_event_mm_put(struct user_event_mm * mm)754 static void user_event_mm_put(struct user_event_mm *mm)
755 {
756 	if (mm && refcount_dec_and_test(&mm->refcnt))
757 		user_event_mm_destroy(mm);
758 }
759 
delayed_user_event_mm_put(struct work_struct * work)760 static void delayed_user_event_mm_put(struct work_struct *work)
761 {
762 	struct user_event_mm *mm;
763 
764 	mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
765 	user_event_mm_put(mm);
766 }
767 
user_event_mm_remove(struct task_struct * t)768 void user_event_mm_remove(struct task_struct *t)
769 {
770 	struct user_event_mm *mm;
771 	unsigned long flags;
772 
773 	might_sleep();
774 
775 	mm = t->user_event_mm;
776 	t->user_event_mm = NULL;
777 
778 	/* Clone will increment the tasks, only remove if last clone */
779 	if (!refcount_dec_and_test(&mm->tasks))
780 		return;
781 
782 	/* Remove the mm from the list, so it can no longer be enabled */
783 	spin_lock_irqsave(&user_event_mms_lock, flags);
784 	list_del_rcu(&mm->mms_link);
785 	spin_unlock_irqrestore(&user_event_mms_lock, flags);
786 
787 	/*
788 	 * We need to wait for currently occurring writes to stop within
789 	 * the mm. This is required since exit_mm() snaps the current rss
790 	 * stats and clears them. On the final mmdrop(), check_mm() will
791 	 * report a bug if these increment.
792 	 *
793 	 * All writes/pins are done under mmap_read lock, take the write
794 	 * lock to ensure in-progress faults have completed. Faults that
795 	 * are pending but yet to run will check the task count and skip
796 	 * the fault since the mm is going away.
797 	 */
798 	mmap_write_lock(mm->mm);
799 	mmap_write_unlock(mm->mm);
800 
801 	/*
802 	 * Put for mm must be done after RCU delay to handle new refs in
803 	 * between the list_del_rcu() and now. This ensures any get refs
804 	 * during rcu_read_lock() are accounted for during list removal.
805 	 *
806 	 * CPU A			|	CPU B
807 	 * ---------------------------------------------------------------
808 	 * user_event_mm_remove()	|	rcu_read_lock();
809 	 * list_del_rcu()		|	list_for_each_entry_rcu();
810 	 * call_rcu()			|	refcount_inc();
811 	 * .				|	rcu_read_unlock();
812 	 * schedule_work()		|	.
813 	 * user_event_mm_put()		|	.
814 	 *
815 	 * mmdrop() cannot be called in the softirq context of call_rcu()
816 	 * so we use a work queue after call_rcu() to run within.
817 	 */
818 	INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
819 	queue_rcu_work(system_wq, &mm->put_rwork);
820 }
821 
user_event_mm_dup(struct task_struct * t,struct user_event_mm * old_mm)822 void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
823 {
824 	struct user_event_mm *mm = user_event_mm_alloc(t);
825 	struct user_event_enabler *enabler;
826 
827 	if (!mm)
828 		return;
829 
830 	rcu_read_lock();
831 
832 	list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
833 		if (!user_event_enabler_dup(enabler, mm))
834 			goto error;
835 	}
836 
837 	rcu_read_unlock();
838 
839 	user_event_mm_attach(mm, t);
840 	return;
841 error:
842 	rcu_read_unlock();
843 	user_event_mm_destroy(mm);
844 }
845 
current_user_event_enabler_exists(unsigned long uaddr,unsigned char bit)846 static bool current_user_event_enabler_exists(unsigned long uaddr,
847 					      unsigned char bit)
848 {
849 	struct user_event_mm *user_mm = current_user_event_mm();
850 	bool exists;
851 
852 	if (!user_mm)
853 		return false;
854 
855 	exists = user_event_enabler_exists(user_mm, uaddr, bit);
856 
857 	user_event_mm_put(user_mm);
858 
859 	return exists;
860 }
861 
862 static struct user_event_enabler
user_event_enabler_create(struct user_reg * reg,struct user_event * user,int * write_result)863 *user_event_enabler_create(struct user_reg *reg, struct user_event *user,
864 			   int *write_result)
865 {
866 	struct user_event_enabler *enabler;
867 	struct user_event_mm *user_mm;
868 	unsigned long uaddr = (unsigned long)reg->enable_addr;
869 	int attempt = 0;
870 
871 	user_mm = current_user_event_mm();
872 
873 	if (!user_mm)
874 		return NULL;
875 
876 	enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
877 
878 	if (!enabler)
879 		goto out;
880 
881 	enabler->event = user;
882 	enabler->addr = uaddr;
883 	enabler->values = reg->enable_bit;
884 
885 #if BITS_PER_LONG >= 64
886 	if (reg->enable_size == 4)
887 		set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
888 #endif
889 
890 retry:
891 	/* Prevents state changes from racing with new enablers */
892 	mutex_lock(&event_mutex);
893 
894 	/* Attempt to reflect the current state within the process */
895 	mmap_read_lock(user_mm->mm);
896 	*write_result = user_event_enabler_write(user_mm, enabler, false,
897 						 &attempt);
898 	mmap_read_unlock(user_mm->mm);
899 
900 	/*
901 	 * If the write works, then we will track the enabler. A ref to the
902 	 * underlying user_event is held by the enabler to prevent it going
903 	 * away while the enabler is still in use by a process. The ref is
904 	 * removed when the enabler is destroyed. This means a event cannot
905 	 * be forcefully deleted from the system until all tasks using it
906 	 * exit or run exec(), which includes forks and clones.
907 	 */
908 	if (!*write_result) {
909 		user_event_get(user);
910 		list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
911 	}
912 
913 	mutex_unlock(&event_mutex);
914 
915 	if (*write_result) {
916 		/* Attempt to fault-in and retry if it worked */
917 		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
918 			goto retry;
919 
920 		kfree(enabler);
921 		enabler = NULL;
922 	}
923 out:
924 	user_event_mm_put(user_mm);
925 
926 	return enabler;
927 }
928 
929 static __always_inline __must_check
user_event_last_ref(struct user_event * user)930 bool user_event_last_ref(struct user_event *user)
931 {
932 	int last = 0;
933 
934 	if (user->reg_flags & USER_EVENT_REG_PERSIST)
935 		last = 1;
936 
937 	return refcount_read(&user->refcnt) == last;
938 }
939 
940 static __always_inline __must_check
copy_nofault(void * addr,size_t bytes,struct iov_iter * i)941 size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
942 {
943 	size_t ret;
944 
945 	pagefault_disable();
946 
947 	ret = copy_from_iter_nocache(addr, bytes, i);
948 
949 	pagefault_enable();
950 
951 	return ret;
952 }
953 
user_event_get_fields(struct trace_event_call * call)954 static struct list_head *user_event_get_fields(struct trace_event_call *call)
955 {
956 	struct user_event *user = (struct user_event *)call->data;
957 
958 	return &user->fields;
959 }
960 
961 /*
962  * Parses a register command for user_events
963  * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
964  *
965  * Example event named 'test' with a 20 char 'msg' field with an unsigned int
966  * 'id' field after:
967  * test char[20] msg;unsigned int id
968  *
969  * NOTE: Offsets are from the user data perspective, they are not from the
970  * trace_entry/buffer perspective. We automatically add the common properties
971  * sizes to the offset for the user.
972  *
973  * Upon success user_event has its ref count increased by 1.
974  */
user_event_parse_cmd(struct user_event_group * group,char * raw_command,struct user_event ** newuser,int reg_flags)975 static int user_event_parse_cmd(struct user_event_group *group,
976 				char *raw_command, struct user_event **newuser,
977 				int reg_flags)
978 {
979 	char *name = raw_command;
980 	char *args = strpbrk(name, " ");
981 	char *flags;
982 
983 	if (args)
984 		*args++ = '\0';
985 
986 	flags = strpbrk(name, ":");
987 
988 	if (flags)
989 		*flags++ = '\0';
990 
991 	return user_event_parse(group, name, args, flags, newuser, reg_flags);
992 }
993 
user_field_array_size(const char * type)994 static int user_field_array_size(const char *type)
995 {
996 	const char *start = strchr(type, '[');
997 	char val[8];
998 	char *bracket;
999 	int size = 0;
1000 
1001 	if (start == NULL)
1002 		return -EINVAL;
1003 
1004 	if (strscpy(val, start + 1, sizeof(val)) <= 0)
1005 		return -EINVAL;
1006 
1007 	bracket = strchr(val, ']');
1008 
1009 	if (!bracket)
1010 		return -EINVAL;
1011 
1012 	*bracket = '\0';
1013 
1014 	if (kstrtouint(val, 0, &size))
1015 		return -EINVAL;
1016 
1017 	if (size > MAX_FIELD_ARRAY_SIZE)
1018 		return -EINVAL;
1019 
1020 	return size;
1021 }
1022 
user_field_size(const char * type)1023 static int user_field_size(const char *type)
1024 {
1025 	/* long is not allowed from a user, since it's ambigious in size */
1026 	if (strcmp(type, "s64") == 0)
1027 		return sizeof(s64);
1028 	if (strcmp(type, "u64") == 0)
1029 		return sizeof(u64);
1030 	if (strcmp(type, "s32") == 0)
1031 		return sizeof(s32);
1032 	if (strcmp(type, "u32") == 0)
1033 		return sizeof(u32);
1034 	if (strcmp(type, "int") == 0)
1035 		return sizeof(int);
1036 	if (strcmp(type, "unsigned int") == 0)
1037 		return sizeof(unsigned int);
1038 	if (strcmp(type, "s16") == 0)
1039 		return sizeof(s16);
1040 	if (strcmp(type, "u16") == 0)
1041 		return sizeof(u16);
1042 	if (strcmp(type, "short") == 0)
1043 		return sizeof(short);
1044 	if (strcmp(type, "unsigned short") == 0)
1045 		return sizeof(unsigned short);
1046 	if (strcmp(type, "s8") == 0)
1047 		return sizeof(s8);
1048 	if (strcmp(type, "u8") == 0)
1049 		return sizeof(u8);
1050 	if (strcmp(type, "char") == 0)
1051 		return sizeof(char);
1052 	if (strcmp(type, "unsigned char") == 0)
1053 		return sizeof(unsigned char);
1054 	if (str_has_prefix(type, "char["))
1055 		return user_field_array_size(type);
1056 	if (str_has_prefix(type, "unsigned char["))
1057 		return user_field_array_size(type);
1058 	if (str_has_prefix(type, "__data_loc "))
1059 		return sizeof(u32);
1060 	if (str_has_prefix(type, "__rel_loc "))
1061 		return sizeof(u32);
1062 
1063 	/* Uknown basic type, error */
1064 	return -EINVAL;
1065 }
1066 
user_event_destroy_validators(struct user_event * user)1067 static void user_event_destroy_validators(struct user_event *user)
1068 {
1069 	struct user_event_validator *validator, *next;
1070 	struct list_head *head = &user->validators;
1071 
1072 	list_for_each_entry_safe(validator, next, head, user_event_link) {
1073 		list_del(&validator->user_event_link);
1074 		kfree(validator);
1075 	}
1076 }
1077 
user_event_destroy_fields(struct user_event * user)1078 static void user_event_destroy_fields(struct user_event *user)
1079 {
1080 	struct ftrace_event_field *field, *next;
1081 	struct list_head *head = &user->fields;
1082 
1083 	list_for_each_entry_safe(field, next, head, link) {
1084 		list_del(&field->link);
1085 		kfree(field);
1086 	}
1087 }
1088 
user_event_add_field(struct user_event * user,const char * type,const char * name,int offset,int size,int is_signed,int filter_type)1089 static int user_event_add_field(struct user_event *user, const char *type,
1090 				const char *name, int offset, int size,
1091 				int is_signed, int filter_type)
1092 {
1093 	struct user_event_validator *validator;
1094 	struct ftrace_event_field *field;
1095 	int validator_flags = 0;
1096 
1097 	field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
1098 
1099 	if (!field)
1100 		return -ENOMEM;
1101 
1102 	if (str_has_prefix(type, "__data_loc "))
1103 		goto add_validator;
1104 
1105 	if (str_has_prefix(type, "__rel_loc ")) {
1106 		validator_flags |= VALIDATOR_REL;
1107 		goto add_validator;
1108 	}
1109 
1110 	goto add_field;
1111 
1112 add_validator:
1113 	if (strstr(type, "char") != NULL)
1114 		validator_flags |= VALIDATOR_ENSURE_NULL;
1115 
1116 	validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
1117 
1118 	if (!validator) {
1119 		kfree(field);
1120 		return -ENOMEM;
1121 	}
1122 
1123 	validator->flags = validator_flags;
1124 	validator->offset = offset;
1125 
1126 	/* Want sequential access when validating */
1127 	list_add_tail(&validator->user_event_link, &user->validators);
1128 
1129 add_field:
1130 	field->type = type;
1131 	field->name = name;
1132 	field->offset = offset;
1133 	field->size = size;
1134 	field->is_signed = is_signed;
1135 	field->filter_type = filter_type;
1136 
1137 	if (filter_type == FILTER_OTHER)
1138 		field->filter_type = filter_assign_type(type);
1139 
1140 	list_add(&field->link, &user->fields);
1141 
1142 	/*
1143 	 * Min size from user writes that are required, this does not include
1144 	 * the size of trace_entry (common fields).
1145 	 */
1146 	user->min_size = (offset + size) - sizeof(struct trace_entry);
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * Parses the values of a field within the description
1153  * Format: type name [size]
1154  */
user_event_parse_field(char * field,struct user_event * user,u32 * offset)1155 static int user_event_parse_field(char *field, struct user_event *user,
1156 				  u32 *offset)
1157 {
1158 	char *part, *type, *name;
1159 	u32 depth = 0, saved_offset = *offset;
1160 	int len, size = -EINVAL;
1161 	bool is_struct = false;
1162 
1163 	field = skip_spaces(field);
1164 
1165 	if (*field == '\0')
1166 		return 0;
1167 
1168 	/* Handle types that have a space within */
1169 	len = str_has_prefix(field, "unsigned ");
1170 	if (len)
1171 		goto skip_next;
1172 
1173 	len = str_has_prefix(field, "struct ");
1174 	if (len) {
1175 		is_struct = true;
1176 		goto skip_next;
1177 	}
1178 
1179 	len = str_has_prefix(field, "__data_loc unsigned ");
1180 	if (len)
1181 		goto skip_next;
1182 
1183 	len = str_has_prefix(field, "__data_loc ");
1184 	if (len)
1185 		goto skip_next;
1186 
1187 	len = str_has_prefix(field, "__rel_loc unsigned ");
1188 	if (len)
1189 		goto skip_next;
1190 
1191 	len = str_has_prefix(field, "__rel_loc ");
1192 	if (len)
1193 		goto skip_next;
1194 
1195 	goto parse;
1196 skip_next:
1197 	type = field;
1198 	field = strpbrk(field + len, " ");
1199 
1200 	if (field == NULL)
1201 		return -EINVAL;
1202 
1203 	*field++ = '\0';
1204 	depth++;
1205 parse:
1206 	name = NULL;
1207 
1208 	while ((part = strsep(&field, " ")) != NULL) {
1209 		switch (depth++) {
1210 		case FIELD_DEPTH_TYPE:
1211 			type = part;
1212 			break;
1213 		case FIELD_DEPTH_NAME:
1214 			name = part;
1215 			break;
1216 		case FIELD_DEPTH_SIZE:
1217 			if (!is_struct)
1218 				return -EINVAL;
1219 
1220 			if (kstrtou32(part, 10, &size))
1221 				return -EINVAL;
1222 			break;
1223 		default:
1224 			return -EINVAL;
1225 		}
1226 	}
1227 
1228 	if (depth < FIELD_DEPTH_SIZE || !name)
1229 		return -EINVAL;
1230 
1231 	if (depth == FIELD_DEPTH_SIZE)
1232 		size = user_field_size(type);
1233 
1234 	if (size == 0)
1235 		return -EINVAL;
1236 
1237 	if (size < 0)
1238 		return size;
1239 
1240 	*offset = saved_offset + size;
1241 
1242 	return user_event_add_field(user, type, name, saved_offset, size,
1243 				    type[0] != 'u', FILTER_OTHER);
1244 }
1245 
user_event_parse_fields(struct user_event * user,char * args)1246 static int user_event_parse_fields(struct user_event *user, char *args)
1247 {
1248 	char *field;
1249 	u32 offset = sizeof(struct trace_entry);
1250 	int ret = -EINVAL;
1251 
1252 	if (args == NULL)
1253 		return 0;
1254 
1255 	while ((field = strsep(&args, ";")) != NULL) {
1256 		ret = user_event_parse_field(field, user, &offset);
1257 
1258 		if (ret)
1259 			break;
1260 	}
1261 
1262 	return ret;
1263 }
1264 
1265 static struct trace_event_fields user_event_fields_array[1];
1266 
user_field_format(const char * type)1267 static const char *user_field_format(const char *type)
1268 {
1269 	if (strcmp(type, "s64") == 0)
1270 		return "%lld";
1271 	if (strcmp(type, "u64") == 0)
1272 		return "%llu";
1273 	if (strcmp(type, "s32") == 0)
1274 		return "%d";
1275 	if (strcmp(type, "u32") == 0)
1276 		return "%u";
1277 	if (strcmp(type, "int") == 0)
1278 		return "%d";
1279 	if (strcmp(type, "unsigned int") == 0)
1280 		return "%u";
1281 	if (strcmp(type, "s16") == 0)
1282 		return "%d";
1283 	if (strcmp(type, "u16") == 0)
1284 		return "%u";
1285 	if (strcmp(type, "short") == 0)
1286 		return "%d";
1287 	if (strcmp(type, "unsigned short") == 0)
1288 		return "%u";
1289 	if (strcmp(type, "s8") == 0)
1290 		return "%d";
1291 	if (strcmp(type, "u8") == 0)
1292 		return "%u";
1293 	if (strcmp(type, "char") == 0)
1294 		return "%d";
1295 	if (strcmp(type, "unsigned char") == 0)
1296 		return "%u";
1297 	if (strstr(type, "char[") != NULL)
1298 		return "%s";
1299 
1300 	/* Unknown, likely struct, allowed treat as 64-bit */
1301 	return "%llu";
1302 }
1303 
user_field_is_dyn_string(const char * type,const char ** str_func)1304 static bool user_field_is_dyn_string(const char *type, const char **str_func)
1305 {
1306 	if (str_has_prefix(type, "__data_loc ")) {
1307 		*str_func = "__get_str";
1308 		goto check;
1309 	}
1310 
1311 	if (str_has_prefix(type, "__rel_loc ")) {
1312 		*str_func = "__get_rel_str";
1313 		goto check;
1314 	}
1315 
1316 	return false;
1317 check:
1318 	return strstr(type, "char") != NULL;
1319 }
1320 
1321 #define LEN_OR_ZERO (len ? len - pos : 0)
user_dyn_field_set_string(int argc,const char ** argv,int * iout,char * buf,int len,bool * colon)1322 static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1323 				     char *buf, int len, bool *colon)
1324 {
1325 	int pos = 0, i = *iout;
1326 
1327 	*colon = false;
1328 
1329 	for (; i < argc; ++i) {
1330 		if (i != *iout)
1331 			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1332 
1333 		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1334 
1335 		if (strchr(argv[i], ';')) {
1336 			++i;
1337 			*colon = true;
1338 			break;
1339 		}
1340 	}
1341 
1342 	/* Actual set, advance i */
1343 	if (len != 0)
1344 		*iout = i;
1345 
1346 	return pos + 1;
1347 }
1348 
user_field_set_string(struct ftrace_event_field * field,char * buf,int len,bool colon)1349 static int user_field_set_string(struct ftrace_event_field *field,
1350 				 char *buf, int len, bool colon)
1351 {
1352 	int pos = 0;
1353 
1354 	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1355 	pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1356 	pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1357 
1358 	if (str_has_prefix(field->type, "struct "))
1359 		pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
1360 
1361 	if (colon)
1362 		pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1363 
1364 	return pos + 1;
1365 }
1366 
user_event_set_print_fmt(struct user_event * user,char * buf,int len)1367 static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1368 {
1369 	struct ftrace_event_field *field;
1370 	struct list_head *head = &user->fields;
1371 	int pos = 0, depth = 0;
1372 	const char *str_func;
1373 
1374 	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1375 
1376 	list_for_each_entry_reverse(field, head, link) {
1377 		if (depth != 0)
1378 			pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1379 
1380 		pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1381 				field->name, user_field_format(field->type));
1382 
1383 		depth++;
1384 	}
1385 
1386 	pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1387 
1388 	list_for_each_entry_reverse(field, head, link) {
1389 		if (user_field_is_dyn_string(field->type, &str_func))
1390 			pos += snprintf(buf + pos, LEN_OR_ZERO,
1391 					", %s(%s)", str_func, field->name);
1392 		else
1393 			pos += snprintf(buf + pos, LEN_OR_ZERO,
1394 					", REC->%s", field->name);
1395 	}
1396 
1397 	return pos + 1;
1398 }
1399 #undef LEN_OR_ZERO
1400 
user_event_create_print_fmt(struct user_event * user)1401 static int user_event_create_print_fmt(struct user_event *user)
1402 {
1403 	char *print_fmt;
1404 	int len;
1405 
1406 	len = user_event_set_print_fmt(user, NULL, 0);
1407 
1408 	print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
1409 
1410 	if (!print_fmt)
1411 		return -ENOMEM;
1412 
1413 	user_event_set_print_fmt(user, print_fmt, len);
1414 
1415 	user->call.print_fmt = print_fmt;
1416 
1417 	return 0;
1418 }
1419 
user_event_print_trace(struct trace_iterator * iter,int flags,struct trace_event * event)1420 static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1421 						int flags,
1422 						struct trace_event *event)
1423 {
1424 	return print_event_fields(iter, event);
1425 }
1426 
1427 static struct trace_event_functions user_event_funcs = {
1428 	.trace = user_event_print_trace,
1429 };
1430 
user_event_set_call_visible(struct user_event * user,bool visible)1431 static int user_event_set_call_visible(struct user_event *user, bool visible)
1432 {
1433 	int ret;
1434 	const struct cred *old_cred;
1435 	struct cred *cred;
1436 
1437 	cred = prepare_creds();
1438 
1439 	if (!cred)
1440 		return -ENOMEM;
1441 
1442 	/*
1443 	 * While by default tracefs is locked down, systems can be configured
1444 	 * to allow user_event files to be less locked down. The extreme case
1445 	 * being "other" has read/write access to user_events_data/status.
1446 	 *
1447 	 * When not locked down, processes may not have permissions to
1448 	 * add/remove calls themselves to tracefs. We need to temporarily
1449 	 * switch to root file permission to allow for this scenario.
1450 	 */
1451 	cred->fsuid = GLOBAL_ROOT_UID;
1452 
1453 	old_cred = override_creds(cred);
1454 
1455 	if (visible)
1456 		ret = trace_add_event_call(&user->call);
1457 	else
1458 		ret = trace_remove_event_call(&user->call);
1459 
1460 	revert_creds(old_cred);
1461 	put_cred(cred);
1462 
1463 	return ret;
1464 }
1465 
destroy_user_event(struct user_event * user)1466 static int destroy_user_event(struct user_event *user)
1467 {
1468 	int ret = 0;
1469 
1470 	lockdep_assert_held(&event_mutex);
1471 
1472 	/* Must destroy fields before call removal */
1473 	user_event_destroy_fields(user);
1474 
1475 	ret = user_event_set_call_visible(user, false);
1476 
1477 	if (ret)
1478 		return ret;
1479 
1480 	dyn_event_remove(&user->devent);
1481 	hash_del(&user->node);
1482 
1483 	user_event_destroy_validators(user);
1484 	kfree(user->call.print_fmt);
1485 	kfree(EVENT_NAME(user));
1486 	kfree(user);
1487 
1488 	if (current_user_events > 0)
1489 		current_user_events--;
1490 	else
1491 		pr_alert("BUG: Bad current_user_events\n");
1492 
1493 	return ret;
1494 }
1495 
find_user_event(struct user_event_group * group,char * name,u32 * outkey)1496 static struct user_event *find_user_event(struct user_event_group *group,
1497 					  char *name, u32 *outkey)
1498 {
1499 	struct user_event *user;
1500 	u32 key = user_event_key(name);
1501 
1502 	*outkey = key;
1503 
1504 	hash_for_each_possible(group->register_table, user, node, key)
1505 		if (!strcmp(EVENT_NAME(user), name))
1506 			return user_event_get(user);
1507 
1508 	return NULL;
1509 }
1510 
user_event_validate(struct user_event * user,void * data,int len)1511 static int user_event_validate(struct user_event *user, void *data, int len)
1512 {
1513 	struct list_head *head = &user->validators;
1514 	struct user_event_validator *validator;
1515 	void *pos, *end = data + len;
1516 	u32 loc, offset, size;
1517 
1518 	list_for_each_entry(validator, head, user_event_link) {
1519 		pos = data + validator->offset;
1520 
1521 		/* Already done min_size check, no bounds check here */
1522 		loc = *(u32 *)pos;
1523 		offset = loc & 0xffff;
1524 		size = loc >> 16;
1525 
1526 		if (likely(validator->flags & VALIDATOR_REL))
1527 			pos += offset + sizeof(loc);
1528 		else
1529 			pos = data + offset;
1530 
1531 		pos += size;
1532 
1533 		if (unlikely(pos > end))
1534 			return -EFAULT;
1535 
1536 		if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1537 			if (unlikely(*(char *)(pos - 1) != '\0'))
1538 				return -EFAULT;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Writes the user supplied payload out to a trace file.
1546  */
user_event_ftrace(struct user_event * user,struct iov_iter * i,void * tpdata,bool * faulted)1547 static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
1548 			      void *tpdata, bool *faulted)
1549 {
1550 	struct trace_event_file *file;
1551 	struct trace_entry *entry;
1552 	struct trace_event_buffer event_buffer;
1553 	size_t size = sizeof(*entry) + i->count;
1554 
1555 	file = (struct trace_event_file *)tpdata;
1556 
1557 	if (!file ||
1558 	    !(file->flags & EVENT_FILE_FL_ENABLED) ||
1559 	    trace_trigger_soft_disabled(file))
1560 		return;
1561 
1562 	/* Allocates and fills trace_entry, + 1 of this is data payload */
1563 	entry = trace_event_buffer_reserve(&event_buffer, file, size);
1564 
1565 	if (unlikely(!entry))
1566 		return;
1567 
1568 	if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
1569 		goto discard;
1570 
1571 	if (!list_empty(&user->validators) &&
1572 	    unlikely(user_event_validate(user, entry, size)))
1573 		goto discard;
1574 
1575 	trace_event_buffer_commit(&event_buffer);
1576 
1577 	return;
1578 discard:
1579 	*faulted = true;
1580 	__trace_event_discard_commit(event_buffer.buffer,
1581 				     event_buffer.event);
1582 }
1583 
1584 #ifdef CONFIG_PERF_EVENTS
1585 /*
1586  * Writes the user supplied payload out to perf ring buffer.
1587  */
user_event_perf(struct user_event * user,struct iov_iter * i,void * tpdata,bool * faulted)1588 static void user_event_perf(struct user_event *user, struct iov_iter *i,
1589 			    void *tpdata, bool *faulted)
1590 {
1591 	struct hlist_head *perf_head;
1592 
1593 	perf_head = this_cpu_ptr(user->call.perf_events);
1594 
1595 	if (perf_head && !hlist_empty(perf_head)) {
1596 		struct trace_entry *perf_entry;
1597 		struct pt_regs *regs;
1598 		size_t size = sizeof(*perf_entry) + i->count;
1599 		int context;
1600 
1601 		perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1602 						  &regs, &context);
1603 
1604 		if (unlikely(!perf_entry))
1605 			return;
1606 
1607 		perf_fetch_caller_regs(regs);
1608 
1609 		if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
1610 			goto discard;
1611 
1612 		if (!list_empty(&user->validators) &&
1613 		    unlikely(user_event_validate(user, perf_entry, size)))
1614 			goto discard;
1615 
1616 		perf_trace_buf_submit(perf_entry, size, context,
1617 				      user->call.event.type, 1, regs,
1618 				      perf_head, NULL);
1619 
1620 		return;
1621 discard:
1622 		*faulted = true;
1623 		perf_swevent_put_recursion_context(context);
1624 	}
1625 }
1626 #endif
1627 
1628 /*
1629  * Update the enabled bit among all user processes.
1630  */
update_enable_bit_for(struct user_event * user)1631 static void update_enable_bit_for(struct user_event *user)
1632 {
1633 	struct tracepoint *tp = &user->tracepoint;
1634 	char status = 0;
1635 
1636 	if (atomic_read(&tp->key.enabled) > 0) {
1637 		struct tracepoint_func *probe_func_ptr;
1638 		user_event_func_t probe_func;
1639 
1640 		rcu_read_lock_sched();
1641 
1642 		probe_func_ptr = rcu_dereference_sched(tp->funcs);
1643 
1644 		if (probe_func_ptr) {
1645 			do {
1646 				probe_func = probe_func_ptr->func;
1647 
1648 				if (probe_func == user_event_ftrace)
1649 					status |= EVENT_STATUS_FTRACE;
1650 #ifdef CONFIG_PERF_EVENTS
1651 				else if (probe_func == user_event_perf)
1652 					status |= EVENT_STATUS_PERF;
1653 #endif
1654 				else
1655 					status |= EVENT_STATUS_OTHER;
1656 			} while ((++probe_func_ptr)->func);
1657 		}
1658 
1659 		rcu_read_unlock_sched();
1660 	}
1661 
1662 	user->status = status;
1663 
1664 	user_event_enabler_update(user);
1665 }
1666 
1667 /*
1668  * Register callback for our events from tracing sub-systems.
1669  */
user_event_reg(struct trace_event_call * call,enum trace_reg type,void * data)1670 static int user_event_reg(struct trace_event_call *call,
1671 			  enum trace_reg type,
1672 			  void *data)
1673 {
1674 	struct user_event *user = (struct user_event *)call->data;
1675 	int ret = 0;
1676 
1677 	if (!user)
1678 		return -ENOENT;
1679 
1680 	switch (type) {
1681 	case TRACE_REG_REGISTER:
1682 		ret = tracepoint_probe_register(call->tp,
1683 						call->class->probe,
1684 						data);
1685 		if (!ret)
1686 			goto inc;
1687 		break;
1688 
1689 	case TRACE_REG_UNREGISTER:
1690 		tracepoint_probe_unregister(call->tp,
1691 					    call->class->probe,
1692 					    data);
1693 		goto dec;
1694 
1695 #ifdef CONFIG_PERF_EVENTS
1696 	case TRACE_REG_PERF_REGISTER:
1697 		ret = tracepoint_probe_register(call->tp,
1698 						call->class->perf_probe,
1699 						data);
1700 		if (!ret)
1701 			goto inc;
1702 		break;
1703 
1704 	case TRACE_REG_PERF_UNREGISTER:
1705 		tracepoint_probe_unregister(call->tp,
1706 					    call->class->perf_probe,
1707 					    data);
1708 		goto dec;
1709 
1710 	case TRACE_REG_PERF_OPEN:
1711 	case TRACE_REG_PERF_CLOSE:
1712 	case TRACE_REG_PERF_ADD:
1713 	case TRACE_REG_PERF_DEL:
1714 		break;
1715 #endif
1716 	}
1717 
1718 	return ret;
1719 inc:
1720 	user_event_get(user);
1721 	update_enable_bit_for(user);
1722 	return 0;
1723 dec:
1724 	update_enable_bit_for(user);
1725 	user_event_put(user, true);
1726 	return 0;
1727 }
1728 
user_event_create(const char * raw_command)1729 static int user_event_create(const char *raw_command)
1730 {
1731 	struct user_event_group *group;
1732 	struct user_event *user;
1733 	char *name;
1734 	int ret;
1735 
1736 	if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1737 		return -ECANCELED;
1738 
1739 	raw_command += USER_EVENTS_PREFIX_LEN;
1740 	raw_command = skip_spaces(raw_command);
1741 
1742 	name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
1743 
1744 	if (!name)
1745 		return -ENOMEM;
1746 
1747 	group = current_user_event_group();
1748 
1749 	if (!group) {
1750 		kfree(name);
1751 		return -ENOENT;
1752 	}
1753 
1754 	mutex_lock(&group->reg_mutex);
1755 
1756 	/* Dyn events persist, otherwise they would cleanup immediately */
1757 	ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
1758 
1759 	if (!ret)
1760 		user_event_put(user, false);
1761 
1762 	mutex_unlock(&group->reg_mutex);
1763 
1764 	if (ret)
1765 		kfree(name);
1766 
1767 	return ret;
1768 }
1769 
user_event_show(struct seq_file * m,struct dyn_event * ev)1770 static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1771 {
1772 	struct user_event *user = container_of(ev, struct user_event, devent);
1773 	struct ftrace_event_field *field;
1774 	struct list_head *head;
1775 	int depth = 0;
1776 
1777 	seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1778 
1779 	head = trace_get_fields(&user->call);
1780 
1781 	list_for_each_entry_reverse(field, head, link) {
1782 		if (depth == 0)
1783 			seq_puts(m, " ");
1784 		else
1785 			seq_puts(m, "; ");
1786 
1787 		seq_printf(m, "%s %s", field->type, field->name);
1788 
1789 		if (str_has_prefix(field->type, "struct "))
1790 			seq_printf(m, " %d", field->size);
1791 
1792 		depth++;
1793 	}
1794 
1795 	seq_puts(m, "\n");
1796 
1797 	return 0;
1798 }
1799 
user_event_is_busy(struct dyn_event * ev)1800 static bool user_event_is_busy(struct dyn_event *ev)
1801 {
1802 	struct user_event *user = container_of(ev, struct user_event, devent);
1803 
1804 	return !user_event_last_ref(user);
1805 }
1806 
user_event_free(struct dyn_event * ev)1807 static int user_event_free(struct dyn_event *ev)
1808 {
1809 	struct user_event *user = container_of(ev, struct user_event, devent);
1810 
1811 	if (!user_event_last_ref(user))
1812 		return -EBUSY;
1813 
1814 	return destroy_user_event(user);
1815 }
1816 
user_field_match(struct ftrace_event_field * field,int argc,const char ** argv,int * iout)1817 static bool user_field_match(struct ftrace_event_field *field, int argc,
1818 			     const char **argv, int *iout)
1819 {
1820 	char *field_name = NULL, *dyn_field_name = NULL;
1821 	bool colon = false, match = false;
1822 	int dyn_len, len;
1823 
1824 	if (*iout >= argc)
1825 		return false;
1826 
1827 	dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1828 					    0, &colon);
1829 
1830 	len = user_field_set_string(field, field_name, 0, colon);
1831 
1832 	if (dyn_len != len)
1833 		return false;
1834 
1835 	dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1836 	field_name = kmalloc(len, GFP_KERNEL);
1837 
1838 	if (!dyn_field_name || !field_name)
1839 		goto out;
1840 
1841 	user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1842 				  dyn_len, &colon);
1843 
1844 	user_field_set_string(field, field_name, len, colon);
1845 
1846 	match = strcmp(dyn_field_name, field_name) == 0;
1847 out:
1848 	kfree(dyn_field_name);
1849 	kfree(field_name);
1850 
1851 	return match;
1852 }
1853 
user_fields_match(struct user_event * user,int argc,const char ** argv)1854 static bool user_fields_match(struct user_event *user, int argc,
1855 			      const char **argv)
1856 {
1857 	struct ftrace_event_field *field;
1858 	struct list_head *head = &user->fields;
1859 	int i = 0;
1860 
1861 	list_for_each_entry_reverse(field, head, link) {
1862 		if (!user_field_match(field, argc, argv, &i))
1863 			return false;
1864 	}
1865 
1866 	if (i != argc)
1867 		return false;
1868 
1869 	return true;
1870 }
1871 
user_event_match(const char * system,const char * event,int argc,const char ** argv,struct dyn_event * ev)1872 static bool user_event_match(const char *system, const char *event,
1873 			     int argc, const char **argv, struct dyn_event *ev)
1874 {
1875 	struct user_event *user = container_of(ev, struct user_event, devent);
1876 	bool match;
1877 
1878 	match = strcmp(EVENT_NAME(user), event) == 0 &&
1879 		(!system || strcmp(system, USER_EVENTS_SYSTEM) == 0);
1880 
1881 	if (match && argc > 0)
1882 		match = user_fields_match(user, argc, argv);
1883 	else if (match && argc == 0)
1884 		match = list_empty(&user->fields);
1885 
1886 	return match;
1887 }
1888 
1889 static struct dyn_event_operations user_event_dops = {
1890 	.create = user_event_create,
1891 	.show = user_event_show,
1892 	.is_busy = user_event_is_busy,
1893 	.free = user_event_free,
1894 	.match = user_event_match,
1895 };
1896 
user_event_trace_register(struct user_event * user)1897 static int user_event_trace_register(struct user_event *user)
1898 {
1899 	int ret;
1900 
1901 	ret = register_trace_event(&user->call.event);
1902 
1903 	if (!ret)
1904 		return -ENODEV;
1905 
1906 	ret = user_event_set_call_visible(user, true);
1907 
1908 	if (ret)
1909 		unregister_trace_event(&user->call.event);
1910 
1911 	return ret;
1912 }
1913 
1914 /*
1915  * Parses the event name, arguments and flags then registers if successful.
1916  * The name buffer lifetime is owned by this method for success cases only.
1917  * Upon success the returned user_event has its ref count increased by 1.
1918  */
user_event_parse(struct user_event_group * group,char * name,char * args,char * flags,struct user_event ** newuser,int reg_flags)1919 static int user_event_parse(struct user_event_group *group, char *name,
1920 			    char *args, char *flags,
1921 			    struct user_event **newuser, int reg_flags)
1922 {
1923 	int ret;
1924 	u32 key;
1925 	struct user_event *user;
1926 	int argc = 0;
1927 	char **argv;
1928 
1929 	/* User register flags are not ready yet */
1930 	if (reg_flags != 0 || flags != NULL)
1931 		return -EINVAL;
1932 
1933 	/* Prevent dyn_event from racing */
1934 	mutex_lock(&event_mutex);
1935 	user = find_user_event(group, name, &key);
1936 	mutex_unlock(&event_mutex);
1937 
1938 	if (user) {
1939 		if (args) {
1940 			argv = argv_split(GFP_KERNEL, args, &argc);
1941 			if (!argv) {
1942 				ret = -ENOMEM;
1943 				goto error;
1944 			}
1945 
1946 			ret = user_fields_match(user, argc, (const char **)argv);
1947 			argv_free(argv);
1948 
1949 		} else
1950 			ret = list_empty(&user->fields);
1951 
1952 		if (ret) {
1953 			*newuser = user;
1954 			/*
1955 			 * Name is allocated by caller, free it since it already exists.
1956 			 * Caller only worries about failure cases for freeing.
1957 			 */
1958 			kfree(name);
1959 		} else {
1960 			ret = -EADDRINUSE;
1961 			goto error;
1962 		}
1963 
1964 		return 0;
1965 error:
1966 		user_event_put(user, false);
1967 		return ret;
1968 	}
1969 
1970 	user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
1971 
1972 	if (!user)
1973 		return -ENOMEM;
1974 
1975 	INIT_LIST_HEAD(&user->class.fields);
1976 	INIT_LIST_HEAD(&user->fields);
1977 	INIT_LIST_HEAD(&user->validators);
1978 
1979 	user->group = group;
1980 	user->tracepoint.name = name;
1981 
1982 	ret = user_event_parse_fields(user, args);
1983 
1984 	if (ret)
1985 		goto put_user;
1986 
1987 	ret = user_event_create_print_fmt(user);
1988 
1989 	if (ret)
1990 		goto put_user;
1991 
1992 	user->call.data = user;
1993 	user->call.class = &user->class;
1994 	user->call.name = name;
1995 	user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
1996 	user->call.tp = &user->tracepoint;
1997 	user->call.event.funcs = &user_event_funcs;
1998 	user->class.system = group->system_name;
1999 
2000 	user->class.fields_array = user_event_fields_array;
2001 	user->class.get_fields = user_event_get_fields;
2002 	user->class.reg = user_event_reg;
2003 	user->class.probe = user_event_ftrace;
2004 #ifdef CONFIG_PERF_EVENTS
2005 	user->class.perf_probe = user_event_perf;
2006 #endif
2007 
2008 	mutex_lock(&event_mutex);
2009 
2010 	if (current_user_events >= max_user_events) {
2011 		ret = -EMFILE;
2012 		goto put_user_lock;
2013 	}
2014 
2015 	ret = user_event_trace_register(user);
2016 
2017 	if (ret)
2018 		goto put_user_lock;
2019 
2020 	user->reg_flags = reg_flags;
2021 
2022 	if (user->reg_flags & USER_EVENT_REG_PERSIST) {
2023 		/* Ensure we track self ref and caller ref (2) */
2024 		refcount_set(&user->refcnt, 2);
2025 	} else {
2026 		/* Ensure we track only caller ref (1) */
2027 		refcount_set(&user->refcnt, 1);
2028 	}
2029 
2030 	dyn_event_init(&user->devent, &user_event_dops);
2031 	dyn_event_add(&user->devent, &user->call);
2032 	hash_add(group->register_table, &user->node, key);
2033 	current_user_events++;
2034 
2035 	mutex_unlock(&event_mutex);
2036 
2037 	*newuser = user;
2038 	return 0;
2039 put_user_lock:
2040 	mutex_unlock(&event_mutex);
2041 put_user:
2042 	user_event_destroy_fields(user);
2043 	user_event_destroy_validators(user);
2044 	kfree(user->call.print_fmt);
2045 	kfree(user);
2046 	return ret;
2047 }
2048 
2049 /*
2050  * Deletes a previously created event if it is no longer being used.
2051  */
delete_user_event(struct user_event_group * group,char * name)2052 static int delete_user_event(struct user_event_group *group, char *name)
2053 {
2054 	u32 key;
2055 	struct user_event *user = find_user_event(group, name, &key);
2056 
2057 	if (!user)
2058 		return -ENOENT;
2059 
2060 	user_event_put(user, true);
2061 
2062 	if (!user_event_last_ref(user))
2063 		return -EBUSY;
2064 
2065 	return destroy_user_event(user);
2066 }
2067 
2068 /*
2069  * Validates the user payload and writes via iterator.
2070  */
user_events_write_core(struct file * file,struct iov_iter * i)2071 static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
2072 {
2073 	struct user_event_file_info *info = file->private_data;
2074 	struct user_event_refs *refs;
2075 	struct user_event *user = NULL;
2076 	struct tracepoint *tp;
2077 	ssize_t ret = i->count;
2078 	int idx;
2079 
2080 	if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
2081 		return -EFAULT;
2082 
2083 	if (idx < 0)
2084 		return -EINVAL;
2085 
2086 	rcu_read_lock_sched();
2087 
2088 	refs = rcu_dereference_sched(info->refs);
2089 
2090 	/*
2091 	 * The refs->events array is protected by RCU, and new items may be
2092 	 * added. But the user retrieved from indexing into the events array
2093 	 * shall be immutable while the file is opened.
2094 	 */
2095 	if (likely(refs && idx < refs->count))
2096 		user = refs->events[idx];
2097 
2098 	rcu_read_unlock_sched();
2099 
2100 	if (unlikely(user == NULL))
2101 		return -ENOENT;
2102 
2103 	if (unlikely(i->count < user->min_size))
2104 		return -EINVAL;
2105 
2106 	tp = &user->tracepoint;
2107 
2108 	/*
2109 	 * It's possible key.enabled disables after this check, however
2110 	 * we don't mind if a few events are included in this condition.
2111 	 */
2112 	if (likely(atomic_read(&tp->key.enabled) > 0)) {
2113 		struct tracepoint_func *probe_func_ptr;
2114 		user_event_func_t probe_func;
2115 		struct iov_iter copy;
2116 		void *tpdata;
2117 		bool faulted;
2118 
2119 		if (unlikely(fault_in_iov_iter_readable(i, i->count)))
2120 			return -EFAULT;
2121 
2122 		faulted = false;
2123 
2124 		rcu_read_lock_sched();
2125 
2126 		probe_func_ptr = rcu_dereference_sched(tp->funcs);
2127 
2128 		if (probe_func_ptr) {
2129 			do {
2130 				copy = *i;
2131 				probe_func = probe_func_ptr->func;
2132 				tpdata = probe_func_ptr->data;
2133 				probe_func(user, &copy, tpdata, &faulted);
2134 			} while ((++probe_func_ptr)->func);
2135 		}
2136 
2137 		rcu_read_unlock_sched();
2138 
2139 		if (unlikely(faulted))
2140 			return -EFAULT;
2141 	} else
2142 		return -EBADF;
2143 
2144 	return ret;
2145 }
2146 
user_events_open(struct inode * node,struct file * file)2147 static int user_events_open(struct inode *node, struct file *file)
2148 {
2149 	struct user_event_group *group;
2150 	struct user_event_file_info *info;
2151 
2152 	group = current_user_event_group();
2153 
2154 	if (!group)
2155 		return -ENOENT;
2156 
2157 	info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
2158 
2159 	if (!info)
2160 		return -ENOMEM;
2161 
2162 	info->group = group;
2163 
2164 	file->private_data = info;
2165 
2166 	return 0;
2167 }
2168 
user_events_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)2169 static ssize_t user_events_write(struct file *file, const char __user *ubuf,
2170 				 size_t count, loff_t *ppos)
2171 {
2172 	struct iovec iov;
2173 	struct iov_iter i;
2174 
2175 	if (unlikely(*ppos != 0))
2176 		return -EFAULT;
2177 
2178 	if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf,
2179 					 count, &iov, &i)))
2180 		return -EFAULT;
2181 
2182 	return user_events_write_core(file, &i);
2183 }
2184 
user_events_write_iter(struct kiocb * kp,struct iov_iter * i)2185 static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
2186 {
2187 	return user_events_write_core(kp->ki_filp, i);
2188 }
2189 
user_events_ref_add(struct user_event_file_info * info,struct user_event * user)2190 static int user_events_ref_add(struct user_event_file_info *info,
2191 			       struct user_event *user)
2192 {
2193 	struct user_event_group *group = info->group;
2194 	struct user_event_refs *refs, *new_refs;
2195 	int i, size, count = 0;
2196 
2197 	refs = rcu_dereference_protected(info->refs,
2198 					 lockdep_is_held(&group->reg_mutex));
2199 
2200 	if (refs) {
2201 		count = refs->count;
2202 
2203 		for (i = 0; i < count; ++i)
2204 			if (refs->events[i] == user)
2205 				return i;
2206 	}
2207 
2208 	size = struct_size(refs, events, count + 1);
2209 
2210 	new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
2211 
2212 	if (!new_refs)
2213 		return -ENOMEM;
2214 
2215 	new_refs->count = count + 1;
2216 
2217 	for (i = 0; i < count; ++i)
2218 		new_refs->events[i] = refs->events[i];
2219 
2220 	new_refs->events[i] = user_event_get(user);
2221 
2222 	rcu_assign_pointer(info->refs, new_refs);
2223 
2224 	if (refs)
2225 		kfree_rcu(refs, rcu);
2226 
2227 	return i;
2228 }
2229 
user_reg_get(struct user_reg __user * ureg,struct user_reg * kreg)2230 static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2231 {
2232 	u32 size;
2233 	long ret;
2234 
2235 	ret = get_user(size, &ureg->size);
2236 
2237 	if (ret)
2238 		return ret;
2239 
2240 	if (size > PAGE_SIZE)
2241 		return -E2BIG;
2242 
2243 	if (size < offsetofend(struct user_reg, write_index))
2244 		return -EINVAL;
2245 
2246 	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2247 
2248 	if (ret)
2249 		return ret;
2250 
2251 	/* Ensure only valid flags */
2252 	if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
2253 		return -EINVAL;
2254 
2255 	/* Ensure supported size */
2256 	switch (kreg->enable_size) {
2257 	case 4:
2258 		/* 32-bit */
2259 		break;
2260 #if BITS_PER_LONG >= 64
2261 	case 8:
2262 		/* 64-bit */
2263 		break;
2264 #endif
2265 	default:
2266 		return -EINVAL;
2267 	}
2268 
2269 	/* Ensure natural alignment */
2270 	if (kreg->enable_addr % kreg->enable_size)
2271 		return -EINVAL;
2272 
2273 	/* Ensure bit range for size */
2274 	if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2275 		return -EINVAL;
2276 
2277 	/* Ensure accessible */
2278 	if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2279 		       kreg->enable_size))
2280 		return -EFAULT;
2281 
2282 	kreg->size = size;
2283 
2284 	return 0;
2285 }
2286 
2287 /*
2288  * Registers a user_event on behalf of a user process.
2289  */
user_events_ioctl_reg(struct user_event_file_info * info,unsigned long uarg)2290 static long user_events_ioctl_reg(struct user_event_file_info *info,
2291 				  unsigned long uarg)
2292 {
2293 	struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2294 	struct user_reg reg;
2295 	struct user_event *user;
2296 	struct user_event_enabler *enabler;
2297 	char *name;
2298 	long ret;
2299 	int write_result;
2300 
2301 	ret = user_reg_get(ureg, &reg);
2302 
2303 	if (ret)
2304 		return ret;
2305 
2306 	/*
2307 	 * Prevent users from using the same address and bit multiple times
2308 	 * within the same mm address space. This can cause unexpected behavior
2309 	 * for user processes that is far easier to debug if this is explictly
2310 	 * an error upon registering.
2311 	 */
2312 	if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2313 					      reg.enable_bit))
2314 		return -EADDRINUSE;
2315 
2316 	name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2317 			    MAX_EVENT_DESC);
2318 
2319 	if (IS_ERR(name)) {
2320 		ret = PTR_ERR(name);
2321 		return ret;
2322 	}
2323 
2324 	ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
2325 
2326 	if (ret) {
2327 		kfree(name);
2328 		return ret;
2329 	}
2330 
2331 	ret = user_events_ref_add(info, user);
2332 
2333 	/* No longer need parse ref, ref_add either worked or not */
2334 	user_event_put(user, false);
2335 
2336 	/* Positive number is index and valid */
2337 	if (ret < 0)
2338 		return ret;
2339 
2340 	/*
2341 	 * user_events_ref_add succeeded:
2342 	 * At this point we have a user_event, it's lifetime is bound by the
2343 	 * reference count, not this file. If anything fails, the user_event
2344 	 * still has a reference until the file is released. During release
2345 	 * any remaining references (from user_events_ref_add) are decremented.
2346 	 *
2347 	 * Attempt to create an enabler, which too has a lifetime tied in the
2348 	 * same way for the event. Once the task that caused the enabler to be
2349 	 * created exits or issues exec() then the enablers it has created
2350 	 * will be destroyed and the ref to the event will be decremented.
2351 	 */
2352 	enabler = user_event_enabler_create(&reg, user, &write_result);
2353 
2354 	if (!enabler)
2355 		return -ENOMEM;
2356 
2357 	/* Write failed/faulted, give error back to caller */
2358 	if (write_result)
2359 		return write_result;
2360 
2361 	put_user((u32)ret, &ureg->write_index);
2362 
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Deletes a user_event on behalf of a user process.
2368  */
user_events_ioctl_del(struct user_event_file_info * info,unsigned long uarg)2369 static long user_events_ioctl_del(struct user_event_file_info *info,
2370 				  unsigned long uarg)
2371 {
2372 	void __user *ubuf = (void __user *)uarg;
2373 	char *name;
2374 	long ret;
2375 
2376 	name = strndup_user(ubuf, MAX_EVENT_DESC);
2377 
2378 	if (IS_ERR(name))
2379 		return PTR_ERR(name);
2380 
2381 	/* event_mutex prevents dyn_event from racing */
2382 	mutex_lock(&event_mutex);
2383 	ret = delete_user_event(info->group, name);
2384 	mutex_unlock(&event_mutex);
2385 
2386 	kfree(name);
2387 
2388 	return ret;
2389 }
2390 
user_unreg_get(struct user_unreg __user * ureg,struct user_unreg * kreg)2391 static long user_unreg_get(struct user_unreg __user *ureg,
2392 			   struct user_unreg *kreg)
2393 {
2394 	u32 size;
2395 	long ret;
2396 
2397 	ret = get_user(size, &ureg->size);
2398 
2399 	if (ret)
2400 		return ret;
2401 
2402 	if (size > PAGE_SIZE)
2403 		return -E2BIG;
2404 
2405 	if (size < offsetofend(struct user_unreg, disable_addr))
2406 		return -EINVAL;
2407 
2408 	ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2409 
2410 	/* Ensure no reserved values, since we don't support any yet */
2411 	if (kreg->__reserved || kreg->__reserved2)
2412 		return -EINVAL;
2413 
2414 	return ret;
2415 }
2416 
user_event_mm_clear_bit(struct user_event_mm * user_mm,unsigned long uaddr,unsigned char bit,unsigned long flags)2417 static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2418 				   unsigned long uaddr, unsigned char bit,
2419 				   unsigned long flags)
2420 {
2421 	struct user_event_enabler enabler;
2422 	int result;
2423 	int attempt = 0;
2424 
2425 	memset(&enabler, 0, sizeof(enabler));
2426 	enabler.addr = uaddr;
2427 	enabler.values = bit | flags;
2428 retry:
2429 	/* Prevents state changes from racing with new enablers */
2430 	mutex_lock(&event_mutex);
2431 
2432 	/* Force the bit to be cleared, since no event is attached */
2433 	mmap_read_lock(user_mm->mm);
2434 	result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
2435 	mmap_read_unlock(user_mm->mm);
2436 
2437 	mutex_unlock(&event_mutex);
2438 
2439 	if (result) {
2440 		/* Attempt to fault-in and retry if it worked */
2441 		if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
2442 			goto retry;
2443 	}
2444 
2445 	return result;
2446 }
2447 
2448 /*
2449  * Unregisters an enablement address/bit within a task/user mm.
2450  */
user_events_ioctl_unreg(unsigned long uarg)2451 static long user_events_ioctl_unreg(unsigned long uarg)
2452 {
2453 	struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2454 	struct user_event_mm *mm = current->user_event_mm;
2455 	struct user_event_enabler *enabler, *next;
2456 	struct user_unreg reg;
2457 	unsigned long flags;
2458 	long ret;
2459 
2460 	ret = user_unreg_get(ureg, &reg);
2461 
2462 	if (ret)
2463 		return ret;
2464 
2465 	if (!mm)
2466 		return -ENOENT;
2467 
2468 	flags = 0;
2469 	ret = -ENOENT;
2470 
2471 	/*
2472 	 * Flags freeing and faulting are used to indicate if the enabler is in
2473 	 * use at all. When faulting is set a page-fault is occurring asyncly.
2474 	 * During async fault if freeing is set, the enabler will be destroyed.
2475 	 * If no async fault is happening, we can destroy it now since we hold
2476 	 * the event_mutex during these checks.
2477 	 */
2478 	mutex_lock(&event_mutex);
2479 
2480 	list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
2481 		if (enabler->addr == reg.disable_addr &&
2482 		    ENABLE_BIT(enabler) == reg.disable_bit) {
2483 			set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2484 
2485 			/* We must keep compat flags for the clear */
2486 			flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
2487 
2488 			if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
2489 				user_event_enabler_destroy(enabler, true);
2490 
2491 			/* Removed at least one */
2492 			ret = 0;
2493 		}
2494 	}
2495 
2496 	mutex_unlock(&event_mutex);
2497 
2498 	/* Ensure bit is now cleared for user, regardless of event status */
2499 	if (!ret)
2500 		ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2501 					      reg.disable_bit, flags);
2502 
2503 	return ret;
2504 }
2505 
2506 /*
2507  * Handles the ioctl from user mode to register or alter operations.
2508  */
user_events_ioctl(struct file * file,unsigned int cmd,unsigned long uarg)2509 static long user_events_ioctl(struct file *file, unsigned int cmd,
2510 			      unsigned long uarg)
2511 {
2512 	struct user_event_file_info *info = file->private_data;
2513 	struct user_event_group *group = info->group;
2514 	long ret = -ENOTTY;
2515 
2516 	switch (cmd) {
2517 	case DIAG_IOCSREG:
2518 		mutex_lock(&group->reg_mutex);
2519 		ret = user_events_ioctl_reg(info, uarg);
2520 		mutex_unlock(&group->reg_mutex);
2521 		break;
2522 
2523 	case DIAG_IOCSDEL:
2524 		mutex_lock(&group->reg_mutex);
2525 		ret = user_events_ioctl_del(info, uarg);
2526 		mutex_unlock(&group->reg_mutex);
2527 		break;
2528 
2529 	case DIAG_IOCSUNREG:
2530 		mutex_lock(&group->reg_mutex);
2531 		ret = user_events_ioctl_unreg(uarg);
2532 		mutex_unlock(&group->reg_mutex);
2533 		break;
2534 	}
2535 
2536 	return ret;
2537 }
2538 
2539 /*
2540  * Handles the final close of the file from user mode.
2541  */
user_events_release(struct inode * node,struct file * file)2542 static int user_events_release(struct inode *node, struct file *file)
2543 {
2544 	struct user_event_file_info *info = file->private_data;
2545 	struct user_event_group *group;
2546 	struct user_event_refs *refs;
2547 	int i;
2548 
2549 	if (!info)
2550 		return -EINVAL;
2551 
2552 	group = info->group;
2553 
2554 	/*
2555 	 * Ensure refs cannot change under any situation by taking the
2556 	 * register mutex during the final freeing of the references.
2557 	 */
2558 	mutex_lock(&group->reg_mutex);
2559 
2560 	refs = info->refs;
2561 
2562 	if (!refs)
2563 		goto out;
2564 
2565 	/*
2566 	 * The lifetime of refs has reached an end, it's tied to this file.
2567 	 * The underlying user_events are ref counted, and cannot be freed.
2568 	 * After this decrement, the user_events may be freed elsewhere.
2569 	 */
2570 	for (i = 0; i < refs->count; ++i)
2571 		user_event_put(refs->events[i], false);
2572 
2573 out:
2574 	file->private_data = NULL;
2575 
2576 	mutex_unlock(&group->reg_mutex);
2577 
2578 	kfree(refs);
2579 	kfree(info);
2580 
2581 	return 0;
2582 }
2583 
2584 static const struct file_operations user_data_fops = {
2585 	.open		= user_events_open,
2586 	.write		= user_events_write,
2587 	.write_iter	= user_events_write_iter,
2588 	.unlocked_ioctl	= user_events_ioctl,
2589 	.release	= user_events_release,
2590 };
2591 
user_seq_start(struct seq_file * m,loff_t * pos)2592 static void *user_seq_start(struct seq_file *m, loff_t *pos)
2593 {
2594 	if (*pos)
2595 		return NULL;
2596 
2597 	return (void *)1;
2598 }
2599 
user_seq_next(struct seq_file * m,void * p,loff_t * pos)2600 static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2601 {
2602 	++*pos;
2603 	return NULL;
2604 }
2605 
user_seq_stop(struct seq_file * m,void * p)2606 static void user_seq_stop(struct seq_file *m, void *p)
2607 {
2608 }
2609 
user_seq_show(struct seq_file * m,void * p)2610 static int user_seq_show(struct seq_file *m, void *p)
2611 {
2612 	struct user_event_group *group = m->private;
2613 	struct user_event *user;
2614 	char status;
2615 	int i, active = 0, busy = 0;
2616 
2617 	if (!group)
2618 		return -EINVAL;
2619 
2620 	mutex_lock(&group->reg_mutex);
2621 
2622 	hash_for_each(group->register_table, i, user, node) {
2623 		status = user->status;
2624 
2625 		seq_printf(m, "%s", EVENT_NAME(user));
2626 
2627 		if (status != 0)
2628 			seq_puts(m, " #");
2629 
2630 		if (status != 0) {
2631 			seq_puts(m, " Used by");
2632 			if (status & EVENT_STATUS_FTRACE)
2633 				seq_puts(m, " ftrace");
2634 			if (status & EVENT_STATUS_PERF)
2635 				seq_puts(m, " perf");
2636 			if (status & EVENT_STATUS_OTHER)
2637 				seq_puts(m, " other");
2638 			busy++;
2639 		}
2640 
2641 		seq_puts(m, "\n");
2642 		active++;
2643 	}
2644 
2645 	mutex_unlock(&group->reg_mutex);
2646 
2647 	seq_puts(m, "\n");
2648 	seq_printf(m, "Active: %d\n", active);
2649 	seq_printf(m, "Busy: %d\n", busy);
2650 
2651 	return 0;
2652 }
2653 
2654 static const struct seq_operations user_seq_ops = {
2655 	.start	= user_seq_start,
2656 	.next	= user_seq_next,
2657 	.stop	= user_seq_stop,
2658 	.show	= user_seq_show,
2659 };
2660 
user_status_open(struct inode * node,struct file * file)2661 static int user_status_open(struct inode *node, struct file *file)
2662 {
2663 	struct user_event_group *group;
2664 	int ret;
2665 
2666 	group = current_user_event_group();
2667 
2668 	if (!group)
2669 		return -ENOENT;
2670 
2671 	ret = seq_open(file, &user_seq_ops);
2672 
2673 	if (!ret) {
2674 		/* Chain group to seq_file */
2675 		struct seq_file *m = file->private_data;
2676 
2677 		m->private = group;
2678 	}
2679 
2680 	return ret;
2681 }
2682 
2683 static const struct file_operations user_status_fops = {
2684 	.open		= user_status_open,
2685 	.read		= seq_read,
2686 	.llseek		= seq_lseek,
2687 	.release	= seq_release,
2688 };
2689 
2690 /*
2691  * Creates a set of tracefs files to allow user mode interactions.
2692  */
create_user_tracefs(void)2693 static int create_user_tracefs(void)
2694 {
2695 	struct dentry *edata, *emmap;
2696 
2697 	edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2698 				    NULL, NULL, &user_data_fops);
2699 
2700 	if (!edata) {
2701 		pr_warn("Could not create tracefs 'user_events_data' entry\n");
2702 		goto err;
2703 	}
2704 
2705 	emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
2706 				    NULL, NULL, &user_status_fops);
2707 
2708 	if (!emmap) {
2709 		tracefs_remove(edata);
2710 		pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2711 		goto err;
2712 	}
2713 
2714 	return 0;
2715 err:
2716 	return -ENODEV;
2717 }
2718 
set_max_user_events_sysctl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2719 static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2720 				      void *buffer, size_t *lenp, loff_t *ppos)
2721 {
2722 	int ret;
2723 
2724 	mutex_lock(&event_mutex);
2725 
2726 	ret = proc_douintvec(table, write, buffer, lenp, ppos);
2727 
2728 	mutex_unlock(&event_mutex);
2729 
2730 	return ret;
2731 }
2732 
2733 static struct ctl_table user_event_sysctls[] = {
2734 	{
2735 		.procname	= "user_events_max",
2736 		.data		= &max_user_events,
2737 		.maxlen		= sizeof(unsigned int),
2738 		.mode		= 0644,
2739 		.proc_handler	= set_max_user_events_sysctl,
2740 	},
2741 	{}
2742 };
2743 
trace_events_user_init(void)2744 static int __init trace_events_user_init(void)
2745 {
2746 	int ret;
2747 
2748 	fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2749 
2750 	if (!fault_cache)
2751 		return -ENOMEM;
2752 
2753 	init_group = user_event_group_create();
2754 
2755 	if (!init_group) {
2756 		kmem_cache_destroy(fault_cache);
2757 		return -ENOMEM;
2758 	}
2759 
2760 	ret = create_user_tracefs();
2761 
2762 	if (ret) {
2763 		pr_warn("user_events could not register with tracefs\n");
2764 		user_event_group_destroy(init_group);
2765 		kmem_cache_destroy(fault_cache);
2766 		init_group = NULL;
2767 		return ret;
2768 	}
2769 
2770 	if (dyn_event_register(&user_event_dops))
2771 		pr_warn("user_events could not register with dyn_events\n");
2772 
2773 	register_sysctl_init("kernel", user_event_sysctls);
2774 
2775 	return 0;
2776 }
2777 
2778 fs_initcall(trace_events_user_init);
2779