1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51
52 #include <asm/switch_to.h>
53
54 #include <linux/sched/cond_resched.h>
55
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59
60 /*
61 * The initial- and re-scaling of tunables is configurable
62 *
63 * Options are:
64 *
65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68 *
69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70 */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72
73 /*
74 * Minimal preemption granularity for CPU-bound tasks:
75 *
76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 */
78 unsigned int sysctl_sched_base_slice = 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
80
81 /*
82 * After fork, child runs first. If set to 0 (default) then
83 * parent will (try to) run first.
84 */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 int _shift = 0;
93
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101
102 #ifdef CONFIG_SMP
103 /*
104 * For asym packing, by default the lower numbered CPU has higher priority.
105 */
arch_asym_cpu_priority(int cpu)106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 return -cpu;
109 }
110
111 /*
112 * The margin used when comparing utilization with CPU capacity.
113 *
114 * (default: ~20%)
115 */
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117
118 /*
119 * The margin used when comparing CPU capacities.
120 * is 'cap1' noticeably greater than 'cap2'
121 *
122 * (default: ~5%)
123 */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130 * each time a cfs_rq requests quota.
131 *
132 * Note: in the case that the slice exceeds the runtime remaining (either due
133 * to consumption or the quota being specified to be smaller than the slice)
134 * we will always only issue the remaining available time.
135 *
136 * (default: 5 msec, units: microseconds)
137 */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
139 #endif
140
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 {
149 .procname = "sched_child_runs_first",
150 .data = &sysctl_sched_child_runs_first,
151 .maxlen = sizeof(unsigned int),
152 .mode = 0644,
153 .proc_handler = proc_dointvec,
154 },
155 #ifdef CONFIG_CFS_BANDWIDTH
156 {
157 .procname = "sched_cfs_bandwidth_slice_us",
158 .data = &sysctl_sched_cfs_bandwidth_slice,
159 .maxlen = sizeof(unsigned int),
160 .mode = 0644,
161 .proc_handler = proc_dointvec_minmax,
162 .extra1 = SYSCTL_ONE,
163 },
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 {
167 .procname = "numa_balancing_promote_rate_limit_MBps",
168 .data = &sysctl_numa_balancing_promote_rate_limit,
169 .maxlen = sizeof(unsigned int),
170 .mode = 0644,
171 .proc_handler = proc_dointvec_minmax,
172 .extra1 = SYSCTL_ZERO,
173 },
174 #endif /* CONFIG_NUMA_BALANCING */
175 {}
176 };
177
sched_fair_sysctl_init(void)178 static int __init sched_fair_sysctl_init(void)
179 {
180 register_sysctl_init("kernel", sched_fair_sysctls);
181 return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185
update_load_add(struct load_weight * lw,unsigned long inc)186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 lw->weight += inc;
189 lw->inv_weight = 0;
190 }
191
update_load_sub(struct load_weight * lw,unsigned long dec)192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 lw->weight -= dec;
195 lw->inv_weight = 0;
196 }
197
update_load_set(struct load_weight * lw,unsigned long w)198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 lw->weight = w;
201 lw->inv_weight = 0;
202 }
203
204 /*
205 * Increase the granularity value when there are more CPUs,
206 * because with more CPUs the 'effective latency' as visible
207 * to users decreases. But the relationship is not linear,
208 * so pick a second-best guess by going with the log2 of the
209 * number of CPUs.
210 *
211 * This idea comes from the SD scheduler of Con Kolivas:
212 */
get_update_sysctl_factor(void)213 static unsigned int get_update_sysctl_factor(void)
214 {
215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 unsigned int factor;
217
218 switch (sysctl_sched_tunable_scaling) {
219 case SCHED_TUNABLESCALING_NONE:
220 factor = 1;
221 break;
222 case SCHED_TUNABLESCALING_LINEAR:
223 factor = cpus;
224 break;
225 case SCHED_TUNABLESCALING_LOG:
226 default:
227 factor = 1 + ilog2(cpus);
228 break;
229 }
230
231 return factor;
232 }
233
update_sysctl(void)234 static void update_sysctl(void)
235 {
236 unsigned int factor = get_update_sysctl_factor();
237
238 #define SET_SYSCTL(name) \
239 (sysctl_##name = (factor) * normalized_sysctl_##name)
240 SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243
sched_init_granularity(void)244 void __init sched_init_granularity(void)
245 {
246 update_sysctl();
247 }
248
249 #define WMULT_CONST (~0U)
250 #define WMULT_SHIFT 32
251
__update_inv_weight(struct load_weight * lw)252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 unsigned long w;
255
256 if (likely(lw->inv_weight))
257 return;
258
259 w = scale_load_down(lw->weight);
260
261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 lw->inv_weight = 1;
263 else if (unlikely(!w))
264 lw->inv_weight = WMULT_CONST;
265 else
266 lw->inv_weight = WMULT_CONST / w;
267 }
268
269 /*
270 * delta_exec * weight / lw.weight
271 * OR
272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273 *
274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275 * we're guaranteed shift stays positive because inv_weight is guaranteed to
276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277 *
278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279 * weight/lw.weight <= 1, and therefore our shift will also be positive.
280 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 u64 fact = scale_load_down(weight);
284 u32 fact_hi = (u32)(fact >> 32);
285 int shift = WMULT_SHIFT;
286 int fs;
287
288 __update_inv_weight(lw);
289
290 if (unlikely(fact_hi)) {
291 fs = fls(fact_hi);
292 shift -= fs;
293 fact >>= fs;
294 }
295
296 fact = mul_u32_u32(fact, lw->inv_weight);
297
298 fact_hi = (u32)(fact >> 32);
299 if (fact_hi) {
300 fs = fls(fact_hi);
301 shift -= fs;
302 fact >>= fs;
303 }
304
305 return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307
308 /*
309 * delta /= w
310 */
calc_delta_fair(u64 delta,struct sched_entity * se)311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 if (unlikely(se->load.weight != NICE_0_LOAD))
314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315
316 return delta;
317 }
318
319 const struct sched_class fair_sched_class;
320
321 /**************************************************************
322 * CFS operations on generic schedulable entities:
323 */
324
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 for (; se; se = se->parent)
330
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 struct rq *rq = rq_of(cfs_rq);
334 int cpu = cpu_of(rq);
335
336 if (cfs_rq->on_list)
337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338
339 cfs_rq->on_list = 1;
340
341 /*
342 * Ensure we either appear before our parent (if already
343 * enqueued) or force our parent to appear after us when it is
344 * enqueued. The fact that we always enqueue bottom-up
345 * reduces this to two cases and a special case for the root
346 * cfs_rq. Furthermore, it also means that we will always reset
347 * tmp_alone_branch either when the branch is connected
348 * to a tree or when we reach the top of the tree
349 */
350 if (cfs_rq->tg->parent &&
351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 /*
353 * If parent is already on the list, we add the child
354 * just before. Thanks to circular linked property of
355 * the list, this means to put the child at the tail
356 * of the list that starts by parent.
357 */
358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 /*
361 * The branch is now connected to its tree so we can
362 * reset tmp_alone_branch to the beginning of the
363 * list.
364 */
365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 return true;
367 }
368
369 if (!cfs_rq->tg->parent) {
370 /*
371 * cfs rq without parent should be put
372 * at the tail of the list.
373 */
374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 &rq->leaf_cfs_rq_list);
376 /*
377 * We have reach the top of a tree so we can reset
378 * tmp_alone_branch to the beginning of the list.
379 */
380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 return true;
382 }
383
384 /*
385 * The parent has not already been added so we want to
386 * make sure that it will be put after us.
387 * tmp_alone_branch points to the begin of the branch
388 * where we will add parent.
389 */
390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 /*
392 * update tmp_alone_branch to points to the new begin
393 * of the branch
394 */
395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 return false;
397 }
398
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 if (cfs_rq->on_list) {
402 struct rq *rq = rq_of(cfs_rq);
403
404 /*
405 * With cfs_rq being unthrottled/throttled during an enqueue,
406 * it can happen the tmp_alone_branch points the a leaf that
407 * we finally want to del. In this case, tmp_alone_branch moves
408 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 * at the end of the enqueue.
410 */
411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413
414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 cfs_rq->on_list = 0;
416 }
417 }
418
assert_list_leaf_cfs_rq(struct rq * rq)419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
427 leaf_cfs_rq_list)
428
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 if (se->cfs_rq == pse->cfs_rq)
434 return se->cfs_rq;
435
436 return NULL;
437 }
438
parent_entity(const struct sched_entity * se)439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 return se->parent;
442 }
443
444 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 int se_depth, pse_depth;
448
449 /*
450 * preemption test can be made between sibling entities who are in the
451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 * both tasks until we find their ancestors who are siblings of common
453 * parent.
454 */
455
456 /* First walk up until both entities are at same depth */
457 se_depth = (*se)->depth;
458 pse_depth = (*pse)->depth;
459
460 while (se_depth > pse_depth) {
461 se_depth--;
462 *se = parent_entity(*se);
463 }
464
465 while (pse_depth > se_depth) {
466 pse_depth--;
467 *pse = parent_entity(*pse);
468 }
469
470 while (!is_same_group(*se, *pse)) {
471 *se = parent_entity(*se);
472 *pse = parent_entity(*pse);
473 }
474 }
475
tg_is_idle(struct task_group * tg)476 static int tg_is_idle(struct task_group *tg)
477 {
478 return tg->idle > 0;
479 }
480
cfs_rq_is_idle(struct cfs_rq * cfs_rq)481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 return cfs_rq->idle > 0;
484 }
485
se_is_idle(struct sched_entity * se)486 static int se_is_idle(struct sched_entity *se)
487 {
488 if (entity_is_task(se))
489 return task_has_idle_policy(task_of(se));
490 return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492
493 #else /* !CONFIG_FAIR_GROUP_SCHED */
494
495 #define for_each_sched_entity(se) \
496 for (; se; se = NULL)
497
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 return true;
501 }
502
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506
assert_list_leaf_cfs_rq(struct rq * rq)507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513
parent_entity(struct sched_entity * se)514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 return NULL;
517 }
518
519 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523
tg_is_idle(struct task_group * tg)524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 return 0;
527 }
528
cfs_rq_is_idle(struct cfs_rq * cfs_rq)529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 return 0;
532 }
533
se_is_idle(struct sched_entity * se)534 static int se_is_idle(struct sched_entity *se)
535 {
536 return 0;
537 }
538
539 #endif /* CONFIG_FAIR_GROUP_SCHED */
540
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543
544 /**************************************************************
545 * Scheduling class tree data structure manipulation methods:
546 */
547
max_vruntime(u64 max_vruntime,u64 vruntime)548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 s64 delta = (s64)(vruntime - max_vruntime);
551 if (delta > 0)
552 max_vruntime = vruntime;
553
554 return max_vruntime;
555 }
556
min_vruntime(u64 min_vruntime,u64 vruntime)557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 s64 delta = (s64)(vruntime - min_vruntime);
560 if (delta < 0)
561 min_vruntime = vruntime;
562
563 return min_vruntime;
564 }
565
entity_before(const struct sched_entity * a,const struct sched_entity * b)566 static inline bool entity_before(const struct sched_entity *a,
567 const struct sched_entity *b)
568 {
569 return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576
577 #define __node_2_se(node) \
578 rb_entry((node), struct sched_entity, run_node)
579
580 /*
581 * Compute virtual time from the per-task service numbers:
582 *
583 * Fair schedulers conserve lag:
584 *
585 * \Sum lag_i = 0
586 *
587 * Where lag_i is given by:
588 *
589 * lag_i = S - s_i = w_i * (V - v_i)
590 *
591 * Where S is the ideal service time and V is it's virtual time counterpart.
592 * Therefore:
593 *
594 * \Sum lag_i = 0
595 * \Sum w_i * (V - v_i) = 0
596 * \Sum w_i * V - w_i * v_i = 0
597 *
598 * From which we can solve an expression for V in v_i (which we have in
599 * se->vruntime):
600 *
601 * \Sum v_i * w_i \Sum v_i * w_i
602 * V = -------------- = --------------
603 * \Sum w_i W
604 *
605 * Specifically, this is the weighted average of all entity virtual runtimes.
606 *
607 * [[ NOTE: this is only equal to the ideal scheduler under the condition
608 * that join/leave operations happen at lag_i = 0, otherwise the
609 * virtual time has non-continguous motion equivalent to:
610 *
611 * V +-= lag_i / W
612 *
613 * Also see the comment in place_entity() that deals with this. ]]
614 *
615 * However, since v_i is u64, and the multiplcation could easily overflow
616 * transform it into a relative form that uses smaller quantities:
617 *
618 * Substitute: v_i == (v_i - v0) + v0
619 *
620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
621 * V = ---------------------------- = --------------------- + v0
622 * W W
623 *
624 * Which we track using:
625 *
626 * v0 := cfs_rq->min_vruntime
627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628 * \Sum w_i := cfs_rq->avg_load
629 *
630 * Since min_vruntime is a monotonic increasing variable that closely tracks
631 * the per-task service, these deltas: (v_i - v), will be in the order of the
632 * maximal (virtual) lag induced in the system due to quantisation.
633 *
634 * Also, we use scale_load_down() to reduce the size.
635 *
636 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637 */
638 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 unsigned long weight = scale_load_down(se->load.weight);
642 s64 key = entity_key(cfs_rq, se);
643
644 cfs_rq->avg_vruntime += key * weight;
645 cfs_rq->avg_load += weight;
646 }
647
648 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 unsigned long weight = scale_load_down(se->load.weight);
652 s64 key = entity_key(cfs_rq, se);
653
654 cfs_rq->avg_vruntime -= key * weight;
655 cfs_rq->avg_load -= weight;
656 }
657
658 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 /*
662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 */
664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666
667 /*
668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669 * For this to be so, the result of this function must have a left bias.
670 */
avg_vruntime(struct cfs_rq * cfs_rq)671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 struct sched_entity *curr = cfs_rq->curr;
674 s64 avg = cfs_rq->avg_vruntime;
675 long load = cfs_rq->avg_load;
676
677 if (curr && curr->on_rq) {
678 unsigned long weight = scale_load_down(curr->load.weight);
679
680 avg += entity_key(cfs_rq, curr) * weight;
681 load += weight;
682 }
683
684 if (load) {
685 /* sign flips effective floor / ceil */
686 if (avg < 0)
687 avg -= (load - 1);
688 avg = div_s64(avg, load);
689 }
690
691 return cfs_rq->min_vruntime + avg;
692 }
693
694 /*
695 * lag_i = S - s_i = w_i * (V - v_i)
696 *
697 * However, since V is approximated by the weighted average of all entities it
698 * is possible -- by addition/removal/reweight to the tree -- to move V around
699 * and end up with a larger lag than we started with.
700 *
701 * Limit this to either double the slice length with a minimum of TICK_NSEC
702 * since that is the timing granularity.
703 *
704 * EEVDF gives the following limit for a steady state system:
705 *
706 * -r_max < lag < max(r_max, q)
707 *
708 * XXX could add max_slice to the augmented data to track this.
709 */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)710 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
711 {
712 s64 lag, limit;
713
714 SCHED_WARN_ON(!se->on_rq);
715 lag = avg_vruntime(cfs_rq) - se->vruntime;
716
717 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
718 se->vlag = clamp(lag, -limit, limit);
719 }
720
721 /*
722 * Entity is eligible once it received less service than it ought to have,
723 * eg. lag >= 0.
724 *
725 * lag_i = S - s_i = w_i*(V - v_i)
726 *
727 * lag_i >= 0 -> V >= v_i
728 *
729 * \Sum (v_i - v)*w_i
730 * V = ------------------ + v
731 * \Sum w_i
732 *
733 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
734 *
735 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
736 * to the loss in precision caused by the division.
737 */
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 struct sched_entity *curr = cfs_rq->curr;
741 s64 avg = cfs_rq->avg_vruntime;
742 long load = cfs_rq->avg_load;
743
744 if (curr && curr->on_rq) {
745 unsigned long weight = scale_load_down(curr->load.weight);
746
747 avg += entity_key(cfs_rq, curr) * weight;
748 load += weight;
749 }
750
751 return avg >= entity_key(cfs_rq, se) * load;
752 }
753
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)754 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
755 {
756 u64 min_vruntime = cfs_rq->min_vruntime;
757 /*
758 * open coded max_vruntime() to allow updating avg_vruntime
759 */
760 s64 delta = (s64)(vruntime - min_vruntime);
761 if (delta > 0) {
762 avg_vruntime_update(cfs_rq, delta);
763 min_vruntime = vruntime;
764 }
765 return min_vruntime;
766 }
767
update_min_vruntime(struct cfs_rq * cfs_rq)768 static void update_min_vruntime(struct cfs_rq *cfs_rq)
769 {
770 struct sched_entity *se = __pick_first_entity(cfs_rq);
771 struct sched_entity *curr = cfs_rq->curr;
772
773 u64 vruntime = cfs_rq->min_vruntime;
774
775 if (curr) {
776 if (curr->on_rq)
777 vruntime = curr->vruntime;
778 else
779 curr = NULL;
780 }
781
782 if (se) {
783 if (!curr)
784 vruntime = se->vruntime;
785 else
786 vruntime = min_vruntime(vruntime, se->vruntime);
787 }
788
789 /* ensure we never gain time by being placed backwards. */
790 u64_u32_store(cfs_rq->min_vruntime,
791 __update_min_vruntime(cfs_rq, vruntime));
792 }
793
__entity_less(struct rb_node * a,const struct rb_node * b)794 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
795 {
796 return entity_before(__node_2_se(a), __node_2_se(b));
797 }
798
799 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
800
__update_min_deadline(struct sched_entity * se,struct rb_node * node)801 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
802 {
803 if (node) {
804 struct sched_entity *rse = __node_2_se(node);
805 if (deadline_gt(min_deadline, se, rse))
806 se->min_deadline = rse->min_deadline;
807 }
808 }
809
810 /*
811 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
812 */
min_deadline_update(struct sched_entity * se,bool exit)813 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
814 {
815 u64 old_min_deadline = se->min_deadline;
816 struct rb_node *node = &se->run_node;
817
818 se->min_deadline = se->deadline;
819 __update_min_deadline(se, node->rb_right);
820 __update_min_deadline(se, node->rb_left);
821
822 return se->min_deadline == old_min_deadline;
823 }
824
825 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
826 run_node, min_deadline, min_deadline_update);
827
828 /*
829 * Enqueue an entity into the rb-tree:
830 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)831 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
832 {
833 avg_vruntime_add(cfs_rq, se);
834 se->min_deadline = se->deadline;
835 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
836 __entity_less, &min_deadline_cb);
837 }
838
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)839 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
840 {
841 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 &min_deadline_cb);
843 avg_vruntime_sub(cfs_rq, se);
844 }
845
__pick_first_entity(struct cfs_rq * cfs_rq)846 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
847 {
848 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
849
850 if (!left)
851 return NULL;
852
853 return __node_2_se(left);
854 }
855
856 /*
857 * Earliest Eligible Virtual Deadline First
858 *
859 * In order to provide latency guarantees for different request sizes
860 * EEVDF selects the best runnable task from two criteria:
861 *
862 * 1) the task must be eligible (must be owed service)
863 *
864 * 2) from those tasks that meet 1), we select the one
865 * with the earliest virtual deadline.
866 *
867 * We can do this in O(log n) time due to an augmented RB-tree. The
868 * tree keeps the entries sorted on service, but also functions as a
869 * heap based on the deadline by keeping:
870 *
871 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
872 *
873 * Which allows an EDF like search on (sub)trees.
874 */
__pick_eevdf(struct cfs_rq * cfs_rq)875 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
876 {
877 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
878 struct sched_entity *curr = cfs_rq->curr;
879 struct sched_entity *best = NULL;
880 struct sched_entity *best_left = NULL;
881
882 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
883 curr = NULL;
884 best = curr;
885
886 /*
887 * Once selected, run a task until it either becomes non-eligible or
888 * until it gets a new slice. See the HACK in set_next_entity().
889 */
890 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
891 return curr;
892
893 while (node) {
894 struct sched_entity *se = __node_2_se(node);
895
896 /*
897 * If this entity is not eligible, try the left subtree.
898 */
899 if (!entity_eligible(cfs_rq, se)) {
900 node = node->rb_left;
901 continue;
902 }
903
904 /*
905 * Now we heap search eligible trees for the best (min_)deadline
906 */
907 if (!best || deadline_gt(deadline, best, se))
908 best = se;
909
910 /*
911 * Every se in a left branch is eligible, keep track of the
912 * branch with the best min_deadline
913 */
914 if (node->rb_left) {
915 struct sched_entity *left = __node_2_se(node->rb_left);
916
917 if (!best_left || deadline_gt(min_deadline, best_left, left))
918 best_left = left;
919
920 /*
921 * min_deadline is in the left branch. rb_left and all
922 * descendants are eligible, so immediately switch to the second
923 * loop.
924 */
925 if (left->min_deadline == se->min_deadline)
926 break;
927 }
928
929 /* min_deadline is at this node, no need to look right */
930 if (se->deadline == se->min_deadline)
931 break;
932
933 /* else min_deadline is in the right branch. */
934 node = node->rb_right;
935 }
936
937 /*
938 * We ran into an eligible node which is itself the best.
939 * (Or nr_running == 0 and both are NULL)
940 */
941 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
942 return best;
943
944 /*
945 * Now best_left and all of its children are eligible, and we are just
946 * looking for deadline == min_deadline
947 */
948 node = &best_left->run_node;
949 while (node) {
950 struct sched_entity *se = __node_2_se(node);
951
952 /* min_deadline is the current node */
953 if (se->deadline == se->min_deadline)
954 return se;
955
956 /* min_deadline is in the left branch */
957 if (node->rb_left &&
958 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
959 node = node->rb_left;
960 continue;
961 }
962
963 /* else min_deadline is in the right branch */
964 node = node->rb_right;
965 }
966 return NULL;
967 }
968
pick_eevdf(struct cfs_rq * cfs_rq)969 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
970 {
971 struct sched_entity *se = __pick_eevdf(cfs_rq);
972
973 if (!se) {
974 struct sched_entity *left = __pick_first_entity(cfs_rq);
975 if (left) {
976 pr_err("EEVDF scheduling fail, picking leftmost\n");
977 return left;
978 }
979 }
980
981 return se;
982 }
983
984 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)985 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
986 {
987 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
988
989 if (!last)
990 return NULL;
991
992 return __node_2_se(last);
993 }
994
995 /**************************************************************
996 * Scheduling class statistics methods:
997 */
998 #ifdef CONFIG_SMP
sched_update_scaling(void)999 int sched_update_scaling(void)
1000 {
1001 unsigned int factor = get_update_sysctl_factor();
1002
1003 #define WRT_SYSCTL(name) \
1004 (normalized_sysctl_##name = sysctl_##name / (factor))
1005 WRT_SYSCTL(sched_base_slice);
1006 #undef WRT_SYSCTL
1007
1008 return 0;
1009 }
1010 #endif
1011 #endif
1012
1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1014
1015 /*
1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1017 * this is probably good enough.
1018 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1019 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 if ((s64)(se->vruntime - se->deadline) < 0)
1022 return;
1023
1024 /*
1025 * For EEVDF the virtual time slope is determined by w_i (iow.
1026 * nice) while the request time r_i is determined by
1027 * sysctl_sched_base_slice.
1028 */
1029 se->slice = sysctl_sched_base_slice;
1030
1031 /*
1032 * EEVDF: vd_i = ve_i + r_i / w_i
1033 */
1034 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1035
1036 /*
1037 * The task has consumed its request, reschedule.
1038 */
1039 if (cfs_rq->nr_running > 1) {
1040 resched_curr(rq_of(cfs_rq));
1041 clear_buddies(cfs_rq, se);
1042 }
1043 }
1044
1045 #include "pelt.h"
1046 #ifdef CONFIG_SMP
1047
1048 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1049 static unsigned long task_h_load(struct task_struct *p);
1050 static unsigned long capacity_of(int cpu);
1051
1052 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1053 void init_entity_runnable_average(struct sched_entity *se)
1054 {
1055 struct sched_avg *sa = &se->avg;
1056
1057 memset(sa, 0, sizeof(*sa));
1058
1059 /*
1060 * Tasks are initialized with full load to be seen as heavy tasks until
1061 * they get a chance to stabilize to their real load level.
1062 * Group entities are initialized with zero load to reflect the fact that
1063 * nothing has been attached to the task group yet.
1064 */
1065 if (entity_is_task(se))
1066 sa->load_avg = scale_load_down(se->load.weight);
1067
1068 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1069 }
1070
1071 /*
1072 * With new tasks being created, their initial util_avgs are extrapolated
1073 * based on the cfs_rq's current util_avg:
1074 *
1075 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1076 *
1077 * However, in many cases, the above util_avg does not give a desired
1078 * value. Moreover, the sum of the util_avgs may be divergent, such
1079 * as when the series is a harmonic series.
1080 *
1081 * To solve this problem, we also cap the util_avg of successive tasks to
1082 * only 1/2 of the left utilization budget:
1083 *
1084 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1085 *
1086 * where n denotes the nth task and cpu_scale the CPU capacity.
1087 *
1088 * For example, for a CPU with 1024 of capacity, a simplest series from
1089 * the beginning would be like:
1090 *
1091 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1092 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1093 *
1094 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1095 * if util_avg > util_avg_cap.
1096 */
post_init_entity_util_avg(struct task_struct * p)1097 void post_init_entity_util_avg(struct task_struct *p)
1098 {
1099 struct sched_entity *se = &p->se;
1100 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1101 struct sched_avg *sa = &se->avg;
1102 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1103 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1104
1105 if (p->sched_class != &fair_sched_class) {
1106 /*
1107 * For !fair tasks do:
1108 *
1109 update_cfs_rq_load_avg(now, cfs_rq);
1110 attach_entity_load_avg(cfs_rq, se);
1111 switched_from_fair(rq, p);
1112 *
1113 * such that the next switched_to_fair() has the
1114 * expected state.
1115 */
1116 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1117 return;
1118 }
1119
1120 if (cap > 0) {
1121 if (cfs_rq->avg.util_avg != 0) {
1122 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
1123 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1124
1125 if (sa->util_avg > cap)
1126 sa->util_avg = cap;
1127 } else {
1128 sa->util_avg = cap;
1129 }
1130 }
1131
1132 sa->runnable_avg = sa->util_avg;
1133 }
1134
1135 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1136 void init_entity_runnable_average(struct sched_entity *se)
1137 {
1138 }
post_init_entity_util_avg(struct task_struct * p)1139 void post_init_entity_util_avg(struct task_struct *p)
1140 {
1141 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1142 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1143 {
1144 }
1145 #endif /* CONFIG_SMP */
1146
1147 /*
1148 * Update the current task's runtime statistics.
1149 */
update_curr(struct cfs_rq * cfs_rq)1150 static void update_curr(struct cfs_rq *cfs_rq)
1151 {
1152 struct sched_entity *curr = cfs_rq->curr;
1153 u64 now = rq_clock_task(rq_of(cfs_rq));
1154 u64 delta_exec;
1155
1156 if (unlikely(!curr))
1157 return;
1158
1159 delta_exec = now - curr->exec_start;
1160 if (unlikely((s64)delta_exec <= 0))
1161 return;
1162
1163 curr->exec_start = now;
1164
1165 if (schedstat_enabled()) {
1166 struct sched_statistics *stats;
1167
1168 stats = __schedstats_from_se(curr);
1169 __schedstat_set(stats->exec_max,
1170 max(delta_exec, stats->exec_max));
1171 }
1172
1173 curr->sum_exec_runtime += delta_exec;
1174 schedstat_add(cfs_rq->exec_clock, delta_exec);
1175
1176 curr->vruntime += calc_delta_fair(delta_exec, curr);
1177 update_deadline(cfs_rq, curr);
1178 update_min_vruntime(cfs_rq);
1179
1180 if (entity_is_task(curr)) {
1181 struct task_struct *curtask = task_of(curr);
1182
1183 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1184 cgroup_account_cputime(curtask, delta_exec);
1185 account_group_exec_runtime(curtask, delta_exec);
1186 }
1187
1188 account_cfs_rq_runtime(cfs_rq, delta_exec);
1189 }
1190
update_curr_fair(struct rq * rq)1191 static void update_curr_fair(struct rq *rq)
1192 {
1193 update_curr(cfs_rq_of(&rq->curr->se));
1194 }
1195
1196 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1197 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1198 {
1199 struct sched_statistics *stats;
1200 struct task_struct *p = NULL;
1201
1202 if (!schedstat_enabled())
1203 return;
1204
1205 stats = __schedstats_from_se(se);
1206
1207 if (entity_is_task(se))
1208 p = task_of(se);
1209
1210 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1211 }
1212
1213 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1214 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1215 {
1216 struct sched_statistics *stats;
1217 struct task_struct *p = NULL;
1218
1219 if (!schedstat_enabled())
1220 return;
1221
1222 stats = __schedstats_from_se(se);
1223
1224 /*
1225 * When the sched_schedstat changes from 0 to 1, some sched se
1226 * maybe already in the runqueue, the se->statistics.wait_start
1227 * will be 0.So it will let the delta wrong. We need to avoid this
1228 * scenario.
1229 */
1230 if (unlikely(!schedstat_val(stats->wait_start)))
1231 return;
1232
1233 if (entity_is_task(se))
1234 p = task_of(se);
1235
1236 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1237 }
1238
1239 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1240 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1241 {
1242 struct sched_statistics *stats;
1243 struct task_struct *tsk = NULL;
1244
1245 if (!schedstat_enabled())
1246 return;
1247
1248 stats = __schedstats_from_se(se);
1249
1250 if (entity_is_task(se))
1251 tsk = task_of(se);
1252
1253 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1254 }
1255
1256 /*
1257 * Task is being enqueued - update stats:
1258 */
1259 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1260 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1261 {
1262 if (!schedstat_enabled())
1263 return;
1264
1265 /*
1266 * Are we enqueueing a waiting task? (for current tasks
1267 * a dequeue/enqueue event is a NOP)
1268 */
1269 if (se != cfs_rq->curr)
1270 update_stats_wait_start_fair(cfs_rq, se);
1271
1272 if (flags & ENQUEUE_WAKEUP)
1273 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1274 }
1275
1276 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1277 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1278 {
1279
1280 if (!schedstat_enabled())
1281 return;
1282
1283 /*
1284 * Mark the end of the wait period if dequeueing a
1285 * waiting task:
1286 */
1287 if (se != cfs_rq->curr)
1288 update_stats_wait_end_fair(cfs_rq, se);
1289
1290 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1291 struct task_struct *tsk = task_of(se);
1292 unsigned int state;
1293
1294 /* XXX racy against TTWU */
1295 state = READ_ONCE(tsk->__state);
1296 if (state & TASK_INTERRUPTIBLE)
1297 __schedstat_set(tsk->stats.sleep_start,
1298 rq_clock(rq_of(cfs_rq)));
1299 if (state & TASK_UNINTERRUPTIBLE)
1300 __schedstat_set(tsk->stats.block_start,
1301 rq_clock(rq_of(cfs_rq)));
1302 }
1303 }
1304
1305 /*
1306 * We are picking a new current task - update its stats:
1307 */
1308 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1309 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1310 {
1311 /*
1312 * We are starting a new run period:
1313 */
1314 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1315 }
1316
1317 /**************************************************
1318 * Scheduling class queueing methods:
1319 */
1320
is_core_idle(int cpu)1321 static inline bool is_core_idle(int cpu)
1322 {
1323 #ifdef CONFIG_SCHED_SMT
1324 int sibling;
1325
1326 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1327 if (cpu == sibling)
1328 continue;
1329
1330 if (!idle_cpu(sibling))
1331 return false;
1332 }
1333 #endif
1334
1335 return true;
1336 }
1337
1338 #ifdef CONFIG_NUMA
1339 #define NUMA_IMBALANCE_MIN 2
1340
1341 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1342 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1343 {
1344 /*
1345 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1346 * threshold. Above this threshold, individual tasks may be contending
1347 * for both memory bandwidth and any shared HT resources. This is an
1348 * approximation as the number of running tasks may not be related to
1349 * the number of busy CPUs due to sched_setaffinity.
1350 */
1351 if (dst_running > imb_numa_nr)
1352 return imbalance;
1353
1354 /*
1355 * Allow a small imbalance based on a simple pair of communicating
1356 * tasks that remain local when the destination is lightly loaded.
1357 */
1358 if (imbalance <= NUMA_IMBALANCE_MIN)
1359 return 0;
1360
1361 return imbalance;
1362 }
1363 #endif /* CONFIG_NUMA */
1364
1365 #ifdef CONFIG_NUMA_BALANCING
1366 /*
1367 * Approximate time to scan a full NUMA task in ms. The task scan period is
1368 * calculated based on the tasks virtual memory size and
1369 * numa_balancing_scan_size.
1370 */
1371 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1372 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1373
1374 /* Portion of address space to scan in MB */
1375 unsigned int sysctl_numa_balancing_scan_size = 256;
1376
1377 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1378 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1379
1380 /* The page with hint page fault latency < threshold in ms is considered hot */
1381 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1382
1383 struct numa_group {
1384 refcount_t refcount;
1385
1386 spinlock_t lock; /* nr_tasks, tasks */
1387 int nr_tasks;
1388 pid_t gid;
1389 int active_nodes;
1390
1391 struct rcu_head rcu;
1392 unsigned long total_faults;
1393 unsigned long max_faults_cpu;
1394 /*
1395 * faults[] array is split into two regions: faults_mem and faults_cpu.
1396 *
1397 * Faults_cpu is used to decide whether memory should move
1398 * towards the CPU. As a consequence, these stats are weighted
1399 * more by CPU use than by memory faults.
1400 */
1401 unsigned long faults[];
1402 };
1403
1404 /*
1405 * For functions that can be called in multiple contexts that permit reading
1406 * ->numa_group (see struct task_struct for locking rules).
1407 */
deref_task_numa_group(struct task_struct * p)1408 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1409 {
1410 return rcu_dereference_check(p->numa_group, p == current ||
1411 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1412 }
1413
deref_curr_numa_group(struct task_struct * p)1414 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1415 {
1416 return rcu_dereference_protected(p->numa_group, p == current);
1417 }
1418
1419 static inline unsigned long group_faults_priv(struct numa_group *ng);
1420 static inline unsigned long group_faults_shared(struct numa_group *ng);
1421
task_nr_scan_windows(struct task_struct * p)1422 static unsigned int task_nr_scan_windows(struct task_struct *p)
1423 {
1424 unsigned long rss = 0;
1425 unsigned long nr_scan_pages;
1426
1427 /*
1428 * Calculations based on RSS as non-present and empty pages are skipped
1429 * by the PTE scanner and NUMA hinting faults should be trapped based
1430 * on resident pages
1431 */
1432 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1433 rss = get_mm_rss(p->mm);
1434 if (!rss)
1435 rss = nr_scan_pages;
1436
1437 rss = round_up(rss, nr_scan_pages);
1438 return rss / nr_scan_pages;
1439 }
1440
1441 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1442 #define MAX_SCAN_WINDOW 2560
1443
task_scan_min(struct task_struct * p)1444 static unsigned int task_scan_min(struct task_struct *p)
1445 {
1446 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1447 unsigned int scan, floor;
1448 unsigned int windows = 1;
1449
1450 if (scan_size < MAX_SCAN_WINDOW)
1451 windows = MAX_SCAN_WINDOW / scan_size;
1452 floor = 1000 / windows;
1453
1454 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1455 return max_t(unsigned int, floor, scan);
1456 }
1457
task_scan_start(struct task_struct * p)1458 static unsigned int task_scan_start(struct task_struct *p)
1459 {
1460 unsigned long smin = task_scan_min(p);
1461 unsigned long period = smin;
1462 struct numa_group *ng;
1463
1464 /* Scale the maximum scan period with the amount of shared memory. */
1465 rcu_read_lock();
1466 ng = rcu_dereference(p->numa_group);
1467 if (ng) {
1468 unsigned long shared = group_faults_shared(ng);
1469 unsigned long private = group_faults_priv(ng);
1470
1471 period *= refcount_read(&ng->refcount);
1472 period *= shared + 1;
1473 period /= private + shared + 1;
1474 }
1475 rcu_read_unlock();
1476
1477 return max(smin, period);
1478 }
1479
task_scan_max(struct task_struct * p)1480 static unsigned int task_scan_max(struct task_struct *p)
1481 {
1482 unsigned long smin = task_scan_min(p);
1483 unsigned long smax;
1484 struct numa_group *ng;
1485
1486 /* Watch for min being lower than max due to floor calculations */
1487 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1488
1489 /* Scale the maximum scan period with the amount of shared memory. */
1490 ng = deref_curr_numa_group(p);
1491 if (ng) {
1492 unsigned long shared = group_faults_shared(ng);
1493 unsigned long private = group_faults_priv(ng);
1494 unsigned long period = smax;
1495
1496 period *= refcount_read(&ng->refcount);
1497 period *= shared + 1;
1498 period /= private + shared + 1;
1499
1500 smax = max(smax, period);
1501 }
1502
1503 return max(smin, smax);
1504 }
1505
account_numa_enqueue(struct rq * rq,struct task_struct * p)1506 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1507 {
1508 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1509 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1510 }
1511
account_numa_dequeue(struct rq * rq,struct task_struct * p)1512 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1513 {
1514 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1515 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1516 }
1517
1518 /* Shared or private faults. */
1519 #define NR_NUMA_HINT_FAULT_TYPES 2
1520
1521 /* Memory and CPU locality */
1522 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1523
1524 /* Averaged statistics, and temporary buffers. */
1525 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1526
task_numa_group_id(struct task_struct * p)1527 pid_t task_numa_group_id(struct task_struct *p)
1528 {
1529 struct numa_group *ng;
1530 pid_t gid = 0;
1531
1532 rcu_read_lock();
1533 ng = rcu_dereference(p->numa_group);
1534 if (ng)
1535 gid = ng->gid;
1536 rcu_read_unlock();
1537
1538 return gid;
1539 }
1540
1541 /*
1542 * The averaged statistics, shared & private, memory & CPU,
1543 * occupy the first half of the array. The second half of the
1544 * array is for current counters, which are averaged into the
1545 * first set by task_numa_placement.
1546 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1547 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1548 {
1549 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1550 }
1551
task_faults(struct task_struct * p,int nid)1552 static inline unsigned long task_faults(struct task_struct *p, int nid)
1553 {
1554 if (!p->numa_faults)
1555 return 0;
1556
1557 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1558 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1559 }
1560
group_faults(struct task_struct * p,int nid)1561 static inline unsigned long group_faults(struct task_struct *p, int nid)
1562 {
1563 struct numa_group *ng = deref_task_numa_group(p);
1564
1565 if (!ng)
1566 return 0;
1567
1568 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1569 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1570 }
1571
group_faults_cpu(struct numa_group * group,int nid)1572 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1573 {
1574 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1575 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1576 }
1577
group_faults_priv(struct numa_group * ng)1578 static inline unsigned long group_faults_priv(struct numa_group *ng)
1579 {
1580 unsigned long faults = 0;
1581 int node;
1582
1583 for_each_online_node(node) {
1584 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1585 }
1586
1587 return faults;
1588 }
1589
group_faults_shared(struct numa_group * ng)1590 static inline unsigned long group_faults_shared(struct numa_group *ng)
1591 {
1592 unsigned long faults = 0;
1593 int node;
1594
1595 for_each_online_node(node) {
1596 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1597 }
1598
1599 return faults;
1600 }
1601
1602 /*
1603 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1604 * considered part of a numa group's pseudo-interleaving set. Migrations
1605 * between these nodes are slowed down, to allow things to settle down.
1606 */
1607 #define ACTIVE_NODE_FRACTION 3
1608
numa_is_active_node(int nid,struct numa_group * ng)1609 static bool numa_is_active_node(int nid, struct numa_group *ng)
1610 {
1611 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1612 }
1613
1614 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1615 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1616 int lim_dist, bool task)
1617 {
1618 unsigned long score = 0;
1619 int node, max_dist;
1620
1621 /*
1622 * All nodes are directly connected, and the same distance
1623 * from each other. No need for fancy placement algorithms.
1624 */
1625 if (sched_numa_topology_type == NUMA_DIRECT)
1626 return 0;
1627
1628 /* sched_max_numa_distance may be changed in parallel. */
1629 max_dist = READ_ONCE(sched_max_numa_distance);
1630 /*
1631 * This code is called for each node, introducing N^2 complexity,
1632 * which should be ok given the number of nodes rarely exceeds 8.
1633 */
1634 for_each_online_node(node) {
1635 unsigned long faults;
1636 int dist = node_distance(nid, node);
1637
1638 /*
1639 * The furthest away nodes in the system are not interesting
1640 * for placement; nid was already counted.
1641 */
1642 if (dist >= max_dist || node == nid)
1643 continue;
1644
1645 /*
1646 * On systems with a backplane NUMA topology, compare groups
1647 * of nodes, and move tasks towards the group with the most
1648 * memory accesses. When comparing two nodes at distance
1649 * "hoplimit", only nodes closer by than "hoplimit" are part
1650 * of each group. Skip other nodes.
1651 */
1652 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1653 continue;
1654
1655 /* Add up the faults from nearby nodes. */
1656 if (task)
1657 faults = task_faults(p, node);
1658 else
1659 faults = group_faults(p, node);
1660
1661 /*
1662 * On systems with a glueless mesh NUMA topology, there are
1663 * no fixed "groups of nodes". Instead, nodes that are not
1664 * directly connected bounce traffic through intermediate
1665 * nodes; a numa_group can occupy any set of nodes.
1666 * The further away a node is, the less the faults count.
1667 * This seems to result in good task placement.
1668 */
1669 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1670 faults *= (max_dist - dist);
1671 faults /= (max_dist - LOCAL_DISTANCE);
1672 }
1673
1674 score += faults;
1675 }
1676
1677 return score;
1678 }
1679
1680 /*
1681 * These return the fraction of accesses done by a particular task, or
1682 * task group, on a particular numa node. The group weight is given a
1683 * larger multiplier, in order to group tasks together that are almost
1684 * evenly spread out between numa nodes.
1685 */
task_weight(struct task_struct * p,int nid,int dist)1686 static inline unsigned long task_weight(struct task_struct *p, int nid,
1687 int dist)
1688 {
1689 unsigned long faults, total_faults;
1690
1691 if (!p->numa_faults)
1692 return 0;
1693
1694 total_faults = p->total_numa_faults;
1695
1696 if (!total_faults)
1697 return 0;
1698
1699 faults = task_faults(p, nid);
1700 faults += score_nearby_nodes(p, nid, dist, true);
1701
1702 return 1000 * faults / total_faults;
1703 }
1704
group_weight(struct task_struct * p,int nid,int dist)1705 static inline unsigned long group_weight(struct task_struct *p, int nid,
1706 int dist)
1707 {
1708 struct numa_group *ng = deref_task_numa_group(p);
1709 unsigned long faults, total_faults;
1710
1711 if (!ng)
1712 return 0;
1713
1714 total_faults = ng->total_faults;
1715
1716 if (!total_faults)
1717 return 0;
1718
1719 faults = group_faults(p, nid);
1720 faults += score_nearby_nodes(p, nid, dist, false);
1721
1722 return 1000 * faults / total_faults;
1723 }
1724
1725 /*
1726 * If memory tiering mode is enabled, cpupid of slow memory page is
1727 * used to record scan time instead of CPU and PID. When tiering mode
1728 * is disabled at run time, the scan time (in cpupid) will be
1729 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1730 * access out of array bound.
1731 */
cpupid_valid(int cpupid)1732 static inline bool cpupid_valid(int cpupid)
1733 {
1734 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1735 }
1736
1737 /*
1738 * For memory tiering mode, if there are enough free pages (more than
1739 * enough watermark defined here) in fast memory node, to take full
1740 * advantage of fast memory capacity, all recently accessed slow
1741 * memory pages will be migrated to fast memory node without
1742 * considering hot threshold.
1743 */
pgdat_free_space_enough(struct pglist_data * pgdat)1744 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1745 {
1746 int z;
1747 unsigned long enough_wmark;
1748
1749 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1750 pgdat->node_present_pages >> 4);
1751 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1752 struct zone *zone = pgdat->node_zones + z;
1753
1754 if (!populated_zone(zone))
1755 continue;
1756
1757 if (zone_watermark_ok(zone, 0,
1758 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1759 ZONE_MOVABLE, 0))
1760 return true;
1761 }
1762 return false;
1763 }
1764
1765 /*
1766 * For memory tiering mode, when page tables are scanned, the scan
1767 * time will be recorded in struct page in addition to make page
1768 * PROT_NONE for slow memory page. So when the page is accessed, in
1769 * hint page fault handler, the hint page fault latency is calculated
1770 * via,
1771 *
1772 * hint page fault latency = hint page fault time - scan time
1773 *
1774 * The smaller the hint page fault latency, the higher the possibility
1775 * for the page to be hot.
1776 */
numa_hint_fault_latency(struct page * page)1777 static int numa_hint_fault_latency(struct page *page)
1778 {
1779 int last_time, time;
1780
1781 time = jiffies_to_msecs(jiffies);
1782 last_time = xchg_page_access_time(page, time);
1783
1784 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1785 }
1786
1787 /*
1788 * For memory tiering mode, too high promotion/demotion throughput may
1789 * hurt application latency. So we provide a mechanism to rate limit
1790 * the number of pages that are tried to be promoted.
1791 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1792 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1793 unsigned long rate_limit, int nr)
1794 {
1795 unsigned long nr_cand;
1796 unsigned int now, start;
1797
1798 now = jiffies_to_msecs(jiffies);
1799 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1800 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1801 start = pgdat->nbp_rl_start;
1802 if (now - start > MSEC_PER_SEC &&
1803 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1804 pgdat->nbp_rl_nr_cand = nr_cand;
1805 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1806 return true;
1807 return false;
1808 }
1809
1810 #define NUMA_MIGRATION_ADJUST_STEPS 16
1811
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1812 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1813 unsigned long rate_limit,
1814 unsigned int ref_th)
1815 {
1816 unsigned int now, start, th_period, unit_th, th;
1817 unsigned long nr_cand, ref_cand, diff_cand;
1818
1819 now = jiffies_to_msecs(jiffies);
1820 th_period = sysctl_numa_balancing_scan_period_max;
1821 start = pgdat->nbp_th_start;
1822 if (now - start > th_period &&
1823 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1824 ref_cand = rate_limit *
1825 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1826 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1827 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1828 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1829 th = pgdat->nbp_threshold ? : ref_th;
1830 if (diff_cand > ref_cand * 11 / 10)
1831 th = max(th - unit_th, unit_th);
1832 else if (diff_cand < ref_cand * 9 / 10)
1833 th = min(th + unit_th, ref_th * 2);
1834 pgdat->nbp_th_nr_cand = nr_cand;
1835 pgdat->nbp_threshold = th;
1836 }
1837 }
1838
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1839 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1840 int src_nid, int dst_cpu)
1841 {
1842 struct numa_group *ng = deref_curr_numa_group(p);
1843 int dst_nid = cpu_to_node(dst_cpu);
1844 int last_cpupid, this_cpupid;
1845
1846 /*
1847 * The pages in slow memory node should be migrated according
1848 * to hot/cold instead of private/shared.
1849 */
1850 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1851 !node_is_toptier(src_nid)) {
1852 struct pglist_data *pgdat;
1853 unsigned long rate_limit;
1854 unsigned int latency, th, def_th;
1855
1856 pgdat = NODE_DATA(dst_nid);
1857 if (pgdat_free_space_enough(pgdat)) {
1858 /* workload changed, reset hot threshold */
1859 pgdat->nbp_threshold = 0;
1860 return true;
1861 }
1862
1863 def_th = sysctl_numa_balancing_hot_threshold;
1864 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1865 (20 - PAGE_SHIFT);
1866 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1867
1868 th = pgdat->nbp_threshold ? : def_th;
1869 latency = numa_hint_fault_latency(page);
1870 if (latency >= th)
1871 return false;
1872
1873 return !numa_promotion_rate_limit(pgdat, rate_limit,
1874 thp_nr_pages(page));
1875 }
1876
1877 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1878 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1879
1880 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1881 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1882 return false;
1883
1884 /*
1885 * Allow first faults or private faults to migrate immediately early in
1886 * the lifetime of a task. The magic number 4 is based on waiting for
1887 * two full passes of the "multi-stage node selection" test that is
1888 * executed below.
1889 */
1890 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1891 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1892 return true;
1893
1894 /*
1895 * Multi-stage node selection is used in conjunction with a periodic
1896 * migration fault to build a temporal task<->page relation. By using
1897 * a two-stage filter we remove short/unlikely relations.
1898 *
1899 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1900 * a task's usage of a particular page (n_p) per total usage of this
1901 * page (n_t) (in a given time-span) to a probability.
1902 *
1903 * Our periodic faults will sample this probability and getting the
1904 * same result twice in a row, given these samples are fully
1905 * independent, is then given by P(n)^2, provided our sample period
1906 * is sufficiently short compared to the usage pattern.
1907 *
1908 * This quadric squishes small probabilities, making it less likely we
1909 * act on an unlikely task<->page relation.
1910 */
1911 if (!cpupid_pid_unset(last_cpupid) &&
1912 cpupid_to_nid(last_cpupid) != dst_nid)
1913 return false;
1914
1915 /* Always allow migrate on private faults */
1916 if (cpupid_match_pid(p, last_cpupid))
1917 return true;
1918
1919 /* A shared fault, but p->numa_group has not been set up yet. */
1920 if (!ng)
1921 return true;
1922
1923 /*
1924 * Destination node is much more heavily used than the source
1925 * node? Allow migration.
1926 */
1927 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1928 ACTIVE_NODE_FRACTION)
1929 return true;
1930
1931 /*
1932 * Distribute memory according to CPU & memory use on each node,
1933 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1934 *
1935 * faults_cpu(dst) 3 faults_cpu(src)
1936 * --------------- * - > ---------------
1937 * faults_mem(dst) 4 faults_mem(src)
1938 */
1939 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1940 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1941 }
1942
1943 /*
1944 * 'numa_type' describes the node at the moment of load balancing.
1945 */
1946 enum numa_type {
1947 /* The node has spare capacity that can be used to run more tasks. */
1948 node_has_spare = 0,
1949 /*
1950 * The node is fully used and the tasks don't compete for more CPU
1951 * cycles. Nevertheless, some tasks might wait before running.
1952 */
1953 node_fully_busy,
1954 /*
1955 * The node is overloaded and can't provide expected CPU cycles to all
1956 * tasks.
1957 */
1958 node_overloaded
1959 };
1960
1961 /* Cached statistics for all CPUs within a node */
1962 struct numa_stats {
1963 unsigned long load;
1964 unsigned long runnable;
1965 unsigned long util;
1966 /* Total compute capacity of CPUs on a node */
1967 unsigned long compute_capacity;
1968 unsigned int nr_running;
1969 unsigned int weight;
1970 enum numa_type node_type;
1971 int idle_cpu;
1972 };
1973
1974 struct task_numa_env {
1975 struct task_struct *p;
1976
1977 int src_cpu, src_nid;
1978 int dst_cpu, dst_nid;
1979 int imb_numa_nr;
1980
1981 struct numa_stats src_stats, dst_stats;
1982
1983 int imbalance_pct;
1984 int dist;
1985
1986 struct task_struct *best_task;
1987 long best_imp;
1988 int best_cpu;
1989 };
1990
1991 static unsigned long cpu_load(struct rq *rq);
1992 static unsigned long cpu_runnable(struct rq *rq);
1993
1994 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1995 numa_type numa_classify(unsigned int imbalance_pct,
1996 struct numa_stats *ns)
1997 {
1998 if ((ns->nr_running > ns->weight) &&
1999 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2000 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2001 return node_overloaded;
2002
2003 if ((ns->nr_running < ns->weight) ||
2004 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2005 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2006 return node_has_spare;
2007
2008 return node_fully_busy;
2009 }
2010
2011 #ifdef CONFIG_SCHED_SMT
2012 /* Forward declarations of select_idle_sibling helpers */
2013 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2014 static inline int numa_idle_core(int idle_core, int cpu)
2015 {
2016 if (!static_branch_likely(&sched_smt_present) ||
2017 idle_core >= 0 || !test_idle_cores(cpu))
2018 return idle_core;
2019
2020 /*
2021 * Prefer cores instead of packing HT siblings
2022 * and triggering future load balancing.
2023 */
2024 if (is_core_idle(cpu))
2025 idle_core = cpu;
2026
2027 return idle_core;
2028 }
2029 #else
numa_idle_core(int idle_core,int cpu)2030 static inline int numa_idle_core(int idle_core, int cpu)
2031 {
2032 return idle_core;
2033 }
2034 #endif
2035
2036 /*
2037 * Gather all necessary information to make NUMA balancing placement
2038 * decisions that are compatible with standard load balancer. This
2039 * borrows code and logic from update_sg_lb_stats but sharing a
2040 * common implementation is impractical.
2041 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2042 static void update_numa_stats(struct task_numa_env *env,
2043 struct numa_stats *ns, int nid,
2044 bool find_idle)
2045 {
2046 int cpu, idle_core = -1;
2047
2048 memset(ns, 0, sizeof(*ns));
2049 ns->idle_cpu = -1;
2050
2051 rcu_read_lock();
2052 for_each_cpu(cpu, cpumask_of_node(nid)) {
2053 struct rq *rq = cpu_rq(cpu);
2054
2055 ns->load += cpu_load(rq);
2056 ns->runnable += cpu_runnable(rq);
2057 ns->util += cpu_util_cfs(cpu);
2058 ns->nr_running += rq->cfs.h_nr_running;
2059 ns->compute_capacity += capacity_of(cpu);
2060
2061 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2062 if (READ_ONCE(rq->numa_migrate_on) ||
2063 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2064 continue;
2065
2066 if (ns->idle_cpu == -1)
2067 ns->idle_cpu = cpu;
2068
2069 idle_core = numa_idle_core(idle_core, cpu);
2070 }
2071 }
2072 rcu_read_unlock();
2073
2074 ns->weight = cpumask_weight(cpumask_of_node(nid));
2075
2076 ns->node_type = numa_classify(env->imbalance_pct, ns);
2077
2078 if (idle_core >= 0)
2079 ns->idle_cpu = idle_core;
2080 }
2081
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2082 static void task_numa_assign(struct task_numa_env *env,
2083 struct task_struct *p, long imp)
2084 {
2085 struct rq *rq = cpu_rq(env->dst_cpu);
2086
2087 /* Check if run-queue part of active NUMA balance. */
2088 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2089 int cpu;
2090 int start = env->dst_cpu;
2091
2092 /* Find alternative idle CPU. */
2093 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2094 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2095 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2096 continue;
2097 }
2098
2099 env->dst_cpu = cpu;
2100 rq = cpu_rq(env->dst_cpu);
2101 if (!xchg(&rq->numa_migrate_on, 1))
2102 goto assign;
2103 }
2104
2105 /* Failed to find an alternative idle CPU */
2106 return;
2107 }
2108
2109 assign:
2110 /*
2111 * Clear previous best_cpu/rq numa-migrate flag, since task now
2112 * found a better CPU to move/swap.
2113 */
2114 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2115 rq = cpu_rq(env->best_cpu);
2116 WRITE_ONCE(rq->numa_migrate_on, 0);
2117 }
2118
2119 if (env->best_task)
2120 put_task_struct(env->best_task);
2121 if (p)
2122 get_task_struct(p);
2123
2124 env->best_task = p;
2125 env->best_imp = imp;
2126 env->best_cpu = env->dst_cpu;
2127 }
2128
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2129 static bool load_too_imbalanced(long src_load, long dst_load,
2130 struct task_numa_env *env)
2131 {
2132 long imb, old_imb;
2133 long orig_src_load, orig_dst_load;
2134 long src_capacity, dst_capacity;
2135
2136 /*
2137 * The load is corrected for the CPU capacity available on each node.
2138 *
2139 * src_load dst_load
2140 * ------------ vs ---------
2141 * src_capacity dst_capacity
2142 */
2143 src_capacity = env->src_stats.compute_capacity;
2144 dst_capacity = env->dst_stats.compute_capacity;
2145
2146 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2147
2148 orig_src_load = env->src_stats.load;
2149 orig_dst_load = env->dst_stats.load;
2150
2151 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2152
2153 /* Would this change make things worse? */
2154 return (imb > old_imb);
2155 }
2156
2157 /*
2158 * Maximum NUMA importance can be 1998 (2*999);
2159 * SMALLIMP @ 30 would be close to 1998/64.
2160 * Used to deter task migration.
2161 */
2162 #define SMALLIMP 30
2163
2164 /*
2165 * This checks if the overall compute and NUMA accesses of the system would
2166 * be improved if the source tasks was migrated to the target dst_cpu taking
2167 * into account that it might be best if task running on the dst_cpu should
2168 * be exchanged with the source task
2169 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2170 static bool task_numa_compare(struct task_numa_env *env,
2171 long taskimp, long groupimp, bool maymove)
2172 {
2173 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2174 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2175 long imp = p_ng ? groupimp : taskimp;
2176 struct task_struct *cur;
2177 long src_load, dst_load;
2178 int dist = env->dist;
2179 long moveimp = imp;
2180 long load;
2181 bool stopsearch = false;
2182
2183 if (READ_ONCE(dst_rq->numa_migrate_on))
2184 return false;
2185
2186 rcu_read_lock();
2187 cur = rcu_dereference(dst_rq->curr);
2188 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2189 cur = NULL;
2190
2191 /*
2192 * Because we have preemption enabled we can get migrated around and
2193 * end try selecting ourselves (current == env->p) as a swap candidate.
2194 */
2195 if (cur == env->p) {
2196 stopsearch = true;
2197 goto unlock;
2198 }
2199
2200 if (!cur) {
2201 if (maymove && moveimp >= env->best_imp)
2202 goto assign;
2203 else
2204 goto unlock;
2205 }
2206
2207 /* Skip this swap candidate if cannot move to the source cpu. */
2208 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2209 goto unlock;
2210
2211 /*
2212 * Skip this swap candidate if it is not moving to its preferred
2213 * node and the best task is.
2214 */
2215 if (env->best_task &&
2216 env->best_task->numa_preferred_nid == env->src_nid &&
2217 cur->numa_preferred_nid != env->src_nid) {
2218 goto unlock;
2219 }
2220
2221 /*
2222 * "imp" is the fault differential for the source task between the
2223 * source and destination node. Calculate the total differential for
2224 * the source task and potential destination task. The more negative
2225 * the value is, the more remote accesses that would be expected to
2226 * be incurred if the tasks were swapped.
2227 *
2228 * If dst and source tasks are in the same NUMA group, or not
2229 * in any group then look only at task weights.
2230 */
2231 cur_ng = rcu_dereference(cur->numa_group);
2232 if (cur_ng == p_ng) {
2233 /*
2234 * Do not swap within a group or between tasks that have
2235 * no group if there is spare capacity. Swapping does
2236 * not address the load imbalance and helps one task at
2237 * the cost of punishing another.
2238 */
2239 if (env->dst_stats.node_type == node_has_spare)
2240 goto unlock;
2241
2242 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2243 task_weight(cur, env->dst_nid, dist);
2244 /*
2245 * Add some hysteresis to prevent swapping the
2246 * tasks within a group over tiny differences.
2247 */
2248 if (cur_ng)
2249 imp -= imp / 16;
2250 } else {
2251 /*
2252 * Compare the group weights. If a task is all by itself
2253 * (not part of a group), use the task weight instead.
2254 */
2255 if (cur_ng && p_ng)
2256 imp += group_weight(cur, env->src_nid, dist) -
2257 group_weight(cur, env->dst_nid, dist);
2258 else
2259 imp += task_weight(cur, env->src_nid, dist) -
2260 task_weight(cur, env->dst_nid, dist);
2261 }
2262
2263 /* Discourage picking a task already on its preferred node */
2264 if (cur->numa_preferred_nid == env->dst_nid)
2265 imp -= imp / 16;
2266
2267 /*
2268 * Encourage picking a task that moves to its preferred node.
2269 * This potentially makes imp larger than it's maximum of
2270 * 1998 (see SMALLIMP and task_weight for why) but in this
2271 * case, it does not matter.
2272 */
2273 if (cur->numa_preferred_nid == env->src_nid)
2274 imp += imp / 8;
2275
2276 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2277 imp = moveimp;
2278 cur = NULL;
2279 goto assign;
2280 }
2281
2282 /*
2283 * Prefer swapping with a task moving to its preferred node over a
2284 * task that is not.
2285 */
2286 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2287 env->best_task->numa_preferred_nid != env->src_nid) {
2288 goto assign;
2289 }
2290
2291 /*
2292 * If the NUMA importance is less than SMALLIMP,
2293 * task migration might only result in ping pong
2294 * of tasks and also hurt performance due to cache
2295 * misses.
2296 */
2297 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2298 goto unlock;
2299
2300 /*
2301 * In the overloaded case, try and keep the load balanced.
2302 */
2303 load = task_h_load(env->p) - task_h_load(cur);
2304 if (!load)
2305 goto assign;
2306
2307 dst_load = env->dst_stats.load + load;
2308 src_load = env->src_stats.load - load;
2309
2310 if (load_too_imbalanced(src_load, dst_load, env))
2311 goto unlock;
2312
2313 assign:
2314 /* Evaluate an idle CPU for a task numa move. */
2315 if (!cur) {
2316 int cpu = env->dst_stats.idle_cpu;
2317
2318 /* Nothing cached so current CPU went idle since the search. */
2319 if (cpu < 0)
2320 cpu = env->dst_cpu;
2321
2322 /*
2323 * If the CPU is no longer truly idle and the previous best CPU
2324 * is, keep using it.
2325 */
2326 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2327 idle_cpu(env->best_cpu)) {
2328 cpu = env->best_cpu;
2329 }
2330
2331 env->dst_cpu = cpu;
2332 }
2333
2334 task_numa_assign(env, cur, imp);
2335
2336 /*
2337 * If a move to idle is allowed because there is capacity or load
2338 * balance improves then stop the search. While a better swap
2339 * candidate may exist, a search is not free.
2340 */
2341 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2342 stopsearch = true;
2343
2344 /*
2345 * If a swap candidate must be identified and the current best task
2346 * moves its preferred node then stop the search.
2347 */
2348 if (!maymove && env->best_task &&
2349 env->best_task->numa_preferred_nid == env->src_nid) {
2350 stopsearch = true;
2351 }
2352 unlock:
2353 rcu_read_unlock();
2354
2355 return stopsearch;
2356 }
2357
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2358 static void task_numa_find_cpu(struct task_numa_env *env,
2359 long taskimp, long groupimp)
2360 {
2361 bool maymove = false;
2362 int cpu;
2363
2364 /*
2365 * If dst node has spare capacity, then check if there is an
2366 * imbalance that would be overruled by the load balancer.
2367 */
2368 if (env->dst_stats.node_type == node_has_spare) {
2369 unsigned int imbalance;
2370 int src_running, dst_running;
2371
2372 /*
2373 * Would movement cause an imbalance? Note that if src has
2374 * more running tasks that the imbalance is ignored as the
2375 * move improves the imbalance from the perspective of the
2376 * CPU load balancer.
2377 * */
2378 src_running = env->src_stats.nr_running - 1;
2379 dst_running = env->dst_stats.nr_running + 1;
2380 imbalance = max(0, dst_running - src_running);
2381 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2382 env->imb_numa_nr);
2383
2384 /* Use idle CPU if there is no imbalance */
2385 if (!imbalance) {
2386 maymove = true;
2387 if (env->dst_stats.idle_cpu >= 0) {
2388 env->dst_cpu = env->dst_stats.idle_cpu;
2389 task_numa_assign(env, NULL, 0);
2390 return;
2391 }
2392 }
2393 } else {
2394 long src_load, dst_load, load;
2395 /*
2396 * If the improvement from just moving env->p direction is better
2397 * than swapping tasks around, check if a move is possible.
2398 */
2399 load = task_h_load(env->p);
2400 dst_load = env->dst_stats.load + load;
2401 src_load = env->src_stats.load - load;
2402 maymove = !load_too_imbalanced(src_load, dst_load, env);
2403 }
2404
2405 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2406 /* Skip this CPU if the source task cannot migrate */
2407 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2408 continue;
2409
2410 env->dst_cpu = cpu;
2411 if (task_numa_compare(env, taskimp, groupimp, maymove))
2412 break;
2413 }
2414 }
2415
task_numa_migrate(struct task_struct * p)2416 static int task_numa_migrate(struct task_struct *p)
2417 {
2418 struct task_numa_env env = {
2419 .p = p,
2420
2421 .src_cpu = task_cpu(p),
2422 .src_nid = task_node(p),
2423
2424 .imbalance_pct = 112,
2425
2426 .best_task = NULL,
2427 .best_imp = 0,
2428 .best_cpu = -1,
2429 };
2430 unsigned long taskweight, groupweight;
2431 struct sched_domain *sd;
2432 long taskimp, groupimp;
2433 struct numa_group *ng;
2434 struct rq *best_rq;
2435 int nid, ret, dist;
2436
2437 /*
2438 * Pick the lowest SD_NUMA domain, as that would have the smallest
2439 * imbalance and would be the first to start moving tasks about.
2440 *
2441 * And we want to avoid any moving of tasks about, as that would create
2442 * random movement of tasks -- counter the numa conditions we're trying
2443 * to satisfy here.
2444 */
2445 rcu_read_lock();
2446 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2447 if (sd) {
2448 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2449 env.imb_numa_nr = sd->imb_numa_nr;
2450 }
2451 rcu_read_unlock();
2452
2453 /*
2454 * Cpusets can break the scheduler domain tree into smaller
2455 * balance domains, some of which do not cross NUMA boundaries.
2456 * Tasks that are "trapped" in such domains cannot be migrated
2457 * elsewhere, so there is no point in (re)trying.
2458 */
2459 if (unlikely(!sd)) {
2460 sched_setnuma(p, task_node(p));
2461 return -EINVAL;
2462 }
2463
2464 env.dst_nid = p->numa_preferred_nid;
2465 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2466 taskweight = task_weight(p, env.src_nid, dist);
2467 groupweight = group_weight(p, env.src_nid, dist);
2468 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2469 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2470 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2471 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2472
2473 /* Try to find a spot on the preferred nid. */
2474 task_numa_find_cpu(&env, taskimp, groupimp);
2475
2476 /*
2477 * Look at other nodes in these cases:
2478 * - there is no space available on the preferred_nid
2479 * - the task is part of a numa_group that is interleaved across
2480 * multiple NUMA nodes; in order to better consolidate the group,
2481 * we need to check other locations.
2482 */
2483 ng = deref_curr_numa_group(p);
2484 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2485 for_each_node_state(nid, N_CPU) {
2486 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2487 continue;
2488
2489 dist = node_distance(env.src_nid, env.dst_nid);
2490 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2491 dist != env.dist) {
2492 taskweight = task_weight(p, env.src_nid, dist);
2493 groupweight = group_weight(p, env.src_nid, dist);
2494 }
2495
2496 /* Only consider nodes where both task and groups benefit */
2497 taskimp = task_weight(p, nid, dist) - taskweight;
2498 groupimp = group_weight(p, nid, dist) - groupweight;
2499 if (taskimp < 0 && groupimp < 0)
2500 continue;
2501
2502 env.dist = dist;
2503 env.dst_nid = nid;
2504 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2505 task_numa_find_cpu(&env, taskimp, groupimp);
2506 }
2507 }
2508
2509 /*
2510 * If the task is part of a workload that spans multiple NUMA nodes,
2511 * and is migrating into one of the workload's active nodes, remember
2512 * this node as the task's preferred numa node, so the workload can
2513 * settle down.
2514 * A task that migrated to a second choice node will be better off
2515 * trying for a better one later. Do not set the preferred node here.
2516 */
2517 if (ng) {
2518 if (env.best_cpu == -1)
2519 nid = env.src_nid;
2520 else
2521 nid = cpu_to_node(env.best_cpu);
2522
2523 if (nid != p->numa_preferred_nid)
2524 sched_setnuma(p, nid);
2525 }
2526
2527 /* No better CPU than the current one was found. */
2528 if (env.best_cpu == -1) {
2529 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2530 return -EAGAIN;
2531 }
2532
2533 best_rq = cpu_rq(env.best_cpu);
2534 if (env.best_task == NULL) {
2535 ret = migrate_task_to(p, env.best_cpu);
2536 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2537 if (ret != 0)
2538 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2539 return ret;
2540 }
2541
2542 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2543 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2544
2545 if (ret != 0)
2546 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2547 put_task_struct(env.best_task);
2548 return ret;
2549 }
2550
2551 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2552 static void numa_migrate_preferred(struct task_struct *p)
2553 {
2554 unsigned long interval = HZ;
2555
2556 /* This task has no NUMA fault statistics yet */
2557 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2558 return;
2559
2560 /* Periodically retry migrating the task to the preferred node */
2561 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2562 p->numa_migrate_retry = jiffies + interval;
2563
2564 /* Success if task is already running on preferred CPU */
2565 if (task_node(p) == p->numa_preferred_nid)
2566 return;
2567
2568 /* Otherwise, try migrate to a CPU on the preferred node */
2569 task_numa_migrate(p);
2570 }
2571
2572 /*
2573 * Find out how many nodes the workload is actively running on. Do this by
2574 * tracking the nodes from which NUMA hinting faults are triggered. This can
2575 * be different from the set of nodes where the workload's memory is currently
2576 * located.
2577 */
numa_group_count_active_nodes(struct numa_group * numa_group)2578 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2579 {
2580 unsigned long faults, max_faults = 0;
2581 int nid, active_nodes = 0;
2582
2583 for_each_node_state(nid, N_CPU) {
2584 faults = group_faults_cpu(numa_group, nid);
2585 if (faults > max_faults)
2586 max_faults = faults;
2587 }
2588
2589 for_each_node_state(nid, N_CPU) {
2590 faults = group_faults_cpu(numa_group, nid);
2591 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2592 active_nodes++;
2593 }
2594
2595 numa_group->max_faults_cpu = max_faults;
2596 numa_group->active_nodes = active_nodes;
2597 }
2598
2599 /*
2600 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2601 * increments. The more local the fault statistics are, the higher the scan
2602 * period will be for the next scan window. If local/(local+remote) ratio is
2603 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2604 * the scan period will decrease. Aim for 70% local accesses.
2605 */
2606 #define NUMA_PERIOD_SLOTS 10
2607 #define NUMA_PERIOD_THRESHOLD 7
2608
2609 /*
2610 * Increase the scan period (slow down scanning) if the majority of
2611 * our memory is already on our local node, or if the majority of
2612 * the page accesses are shared with other processes.
2613 * Otherwise, decrease the scan period.
2614 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2615 static void update_task_scan_period(struct task_struct *p,
2616 unsigned long shared, unsigned long private)
2617 {
2618 unsigned int period_slot;
2619 int lr_ratio, ps_ratio;
2620 int diff;
2621
2622 unsigned long remote = p->numa_faults_locality[0];
2623 unsigned long local = p->numa_faults_locality[1];
2624
2625 /*
2626 * If there were no record hinting faults then either the task is
2627 * completely idle or all activity is in areas that are not of interest
2628 * to automatic numa balancing. Related to that, if there were failed
2629 * migration then it implies we are migrating too quickly or the local
2630 * node is overloaded. In either case, scan slower
2631 */
2632 if (local + shared == 0 || p->numa_faults_locality[2]) {
2633 p->numa_scan_period = min(p->numa_scan_period_max,
2634 p->numa_scan_period << 1);
2635
2636 p->mm->numa_next_scan = jiffies +
2637 msecs_to_jiffies(p->numa_scan_period);
2638
2639 return;
2640 }
2641
2642 /*
2643 * Prepare to scale scan period relative to the current period.
2644 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2645 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2646 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2647 */
2648 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2649 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2650 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2651
2652 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2653 /*
2654 * Most memory accesses are local. There is no need to
2655 * do fast NUMA scanning, since memory is already local.
2656 */
2657 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2658 if (!slot)
2659 slot = 1;
2660 diff = slot * period_slot;
2661 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2662 /*
2663 * Most memory accesses are shared with other tasks.
2664 * There is no point in continuing fast NUMA scanning,
2665 * since other tasks may just move the memory elsewhere.
2666 */
2667 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2668 if (!slot)
2669 slot = 1;
2670 diff = slot * period_slot;
2671 } else {
2672 /*
2673 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2674 * yet they are not on the local NUMA node. Speed up
2675 * NUMA scanning to get the memory moved over.
2676 */
2677 int ratio = max(lr_ratio, ps_ratio);
2678 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2679 }
2680
2681 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2682 task_scan_min(p), task_scan_max(p));
2683 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2684 }
2685
2686 /*
2687 * Get the fraction of time the task has been running since the last
2688 * NUMA placement cycle. The scheduler keeps similar statistics, but
2689 * decays those on a 32ms period, which is orders of magnitude off
2690 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2691 * stats only if the task is so new there are no NUMA statistics yet.
2692 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2693 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2694 {
2695 u64 runtime, delta, now;
2696 /* Use the start of this time slice to avoid calculations. */
2697 now = p->se.exec_start;
2698 runtime = p->se.sum_exec_runtime;
2699
2700 if (p->last_task_numa_placement) {
2701 delta = runtime - p->last_sum_exec_runtime;
2702 *period = now - p->last_task_numa_placement;
2703
2704 /* Avoid time going backwards, prevent potential divide error: */
2705 if (unlikely((s64)*period < 0))
2706 *period = 0;
2707 } else {
2708 delta = p->se.avg.load_sum;
2709 *period = LOAD_AVG_MAX;
2710 }
2711
2712 p->last_sum_exec_runtime = runtime;
2713 p->last_task_numa_placement = now;
2714
2715 return delta;
2716 }
2717
2718 /*
2719 * Determine the preferred nid for a task in a numa_group. This needs to
2720 * be done in a way that produces consistent results with group_weight,
2721 * otherwise workloads might not converge.
2722 */
preferred_group_nid(struct task_struct * p,int nid)2723 static int preferred_group_nid(struct task_struct *p, int nid)
2724 {
2725 nodemask_t nodes;
2726 int dist;
2727
2728 /* Direct connections between all NUMA nodes. */
2729 if (sched_numa_topology_type == NUMA_DIRECT)
2730 return nid;
2731
2732 /*
2733 * On a system with glueless mesh NUMA topology, group_weight
2734 * scores nodes according to the number of NUMA hinting faults on
2735 * both the node itself, and on nearby nodes.
2736 */
2737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2738 unsigned long score, max_score = 0;
2739 int node, max_node = nid;
2740
2741 dist = sched_max_numa_distance;
2742
2743 for_each_node_state(node, N_CPU) {
2744 score = group_weight(p, node, dist);
2745 if (score > max_score) {
2746 max_score = score;
2747 max_node = node;
2748 }
2749 }
2750 return max_node;
2751 }
2752
2753 /*
2754 * Finding the preferred nid in a system with NUMA backplane
2755 * interconnect topology is more involved. The goal is to locate
2756 * tasks from numa_groups near each other in the system, and
2757 * untangle workloads from different sides of the system. This requires
2758 * searching down the hierarchy of node groups, recursively searching
2759 * inside the highest scoring group of nodes. The nodemask tricks
2760 * keep the complexity of the search down.
2761 */
2762 nodes = node_states[N_CPU];
2763 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2764 unsigned long max_faults = 0;
2765 nodemask_t max_group = NODE_MASK_NONE;
2766 int a, b;
2767
2768 /* Are there nodes at this distance from each other? */
2769 if (!find_numa_distance(dist))
2770 continue;
2771
2772 for_each_node_mask(a, nodes) {
2773 unsigned long faults = 0;
2774 nodemask_t this_group;
2775 nodes_clear(this_group);
2776
2777 /* Sum group's NUMA faults; includes a==b case. */
2778 for_each_node_mask(b, nodes) {
2779 if (node_distance(a, b) < dist) {
2780 faults += group_faults(p, b);
2781 node_set(b, this_group);
2782 node_clear(b, nodes);
2783 }
2784 }
2785
2786 /* Remember the top group. */
2787 if (faults > max_faults) {
2788 max_faults = faults;
2789 max_group = this_group;
2790 /*
2791 * subtle: at the smallest distance there is
2792 * just one node left in each "group", the
2793 * winner is the preferred nid.
2794 */
2795 nid = a;
2796 }
2797 }
2798 /* Next round, evaluate the nodes within max_group. */
2799 if (!max_faults)
2800 break;
2801 nodes = max_group;
2802 }
2803 return nid;
2804 }
2805
task_numa_placement(struct task_struct * p)2806 static void task_numa_placement(struct task_struct *p)
2807 {
2808 int seq, nid, max_nid = NUMA_NO_NODE;
2809 unsigned long max_faults = 0;
2810 unsigned long fault_types[2] = { 0, 0 };
2811 unsigned long total_faults;
2812 u64 runtime, period;
2813 spinlock_t *group_lock = NULL;
2814 struct numa_group *ng;
2815
2816 /*
2817 * The p->mm->numa_scan_seq field gets updated without
2818 * exclusive access. Use READ_ONCE() here to ensure
2819 * that the field is read in a single access:
2820 */
2821 seq = READ_ONCE(p->mm->numa_scan_seq);
2822 if (p->numa_scan_seq == seq)
2823 return;
2824 p->numa_scan_seq = seq;
2825 p->numa_scan_period_max = task_scan_max(p);
2826
2827 total_faults = p->numa_faults_locality[0] +
2828 p->numa_faults_locality[1];
2829 runtime = numa_get_avg_runtime(p, &period);
2830
2831 /* If the task is part of a group prevent parallel updates to group stats */
2832 ng = deref_curr_numa_group(p);
2833 if (ng) {
2834 group_lock = &ng->lock;
2835 spin_lock_irq(group_lock);
2836 }
2837
2838 /* Find the node with the highest number of faults */
2839 for_each_online_node(nid) {
2840 /* Keep track of the offsets in numa_faults array */
2841 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2842 unsigned long faults = 0, group_faults = 0;
2843 int priv;
2844
2845 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2846 long diff, f_diff, f_weight;
2847
2848 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2849 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2850 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2851 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2852
2853 /* Decay existing window, copy faults since last scan */
2854 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2855 fault_types[priv] += p->numa_faults[membuf_idx];
2856 p->numa_faults[membuf_idx] = 0;
2857
2858 /*
2859 * Normalize the faults_from, so all tasks in a group
2860 * count according to CPU use, instead of by the raw
2861 * number of faults. Tasks with little runtime have
2862 * little over-all impact on throughput, and thus their
2863 * faults are less important.
2864 */
2865 f_weight = div64_u64(runtime << 16, period + 1);
2866 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2867 (total_faults + 1);
2868 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2869 p->numa_faults[cpubuf_idx] = 0;
2870
2871 p->numa_faults[mem_idx] += diff;
2872 p->numa_faults[cpu_idx] += f_diff;
2873 faults += p->numa_faults[mem_idx];
2874 p->total_numa_faults += diff;
2875 if (ng) {
2876 /*
2877 * safe because we can only change our own group
2878 *
2879 * mem_idx represents the offset for a given
2880 * nid and priv in a specific region because it
2881 * is at the beginning of the numa_faults array.
2882 */
2883 ng->faults[mem_idx] += diff;
2884 ng->faults[cpu_idx] += f_diff;
2885 ng->total_faults += diff;
2886 group_faults += ng->faults[mem_idx];
2887 }
2888 }
2889
2890 if (!ng) {
2891 if (faults > max_faults) {
2892 max_faults = faults;
2893 max_nid = nid;
2894 }
2895 } else if (group_faults > max_faults) {
2896 max_faults = group_faults;
2897 max_nid = nid;
2898 }
2899 }
2900
2901 /* Cannot migrate task to CPU-less node */
2902 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2903 int near_nid = max_nid;
2904 int distance, near_distance = INT_MAX;
2905
2906 for_each_node_state(nid, N_CPU) {
2907 distance = node_distance(max_nid, nid);
2908 if (distance < near_distance) {
2909 near_nid = nid;
2910 near_distance = distance;
2911 }
2912 }
2913 max_nid = near_nid;
2914 }
2915
2916 if (ng) {
2917 numa_group_count_active_nodes(ng);
2918 spin_unlock_irq(group_lock);
2919 max_nid = preferred_group_nid(p, max_nid);
2920 }
2921
2922 if (max_faults) {
2923 /* Set the new preferred node */
2924 if (max_nid != p->numa_preferred_nid)
2925 sched_setnuma(p, max_nid);
2926 }
2927
2928 update_task_scan_period(p, fault_types[0], fault_types[1]);
2929 }
2930
get_numa_group(struct numa_group * grp)2931 static inline int get_numa_group(struct numa_group *grp)
2932 {
2933 return refcount_inc_not_zero(&grp->refcount);
2934 }
2935
put_numa_group(struct numa_group * grp)2936 static inline void put_numa_group(struct numa_group *grp)
2937 {
2938 if (refcount_dec_and_test(&grp->refcount))
2939 kfree_rcu(grp, rcu);
2940 }
2941
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2942 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2943 int *priv)
2944 {
2945 struct numa_group *grp, *my_grp;
2946 struct task_struct *tsk;
2947 bool join = false;
2948 int cpu = cpupid_to_cpu(cpupid);
2949 int i;
2950
2951 if (unlikely(!deref_curr_numa_group(p))) {
2952 unsigned int size = sizeof(struct numa_group) +
2953 NR_NUMA_HINT_FAULT_STATS *
2954 nr_node_ids * sizeof(unsigned long);
2955
2956 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2957 if (!grp)
2958 return;
2959
2960 refcount_set(&grp->refcount, 1);
2961 grp->active_nodes = 1;
2962 grp->max_faults_cpu = 0;
2963 spin_lock_init(&grp->lock);
2964 grp->gid = p->pid;
2965
2966 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2967 grp->faults[i] = p->numa_faults[i];
2968
2969 grp->total_faults = p->total_numa_faults;
2970
2971 grp->nr_tasks++;
2972 rcu_assign_pointer(p->numa_group, grp);
2973 }
2974
2975 rcu_read_lock();
2976 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2977
2978 if (!cpupid_match_pid(tsk, cpupid))
2979 goto no_join;
2980
2981 grp = rcu_dereference(tsk->numa_group);
2982 if (!grp)
2983 goto no_join;
2984
2985 my_grp = deref_curr_numa_group(p);
2986 if (grp == my_grp)
2987 goto no_join;
2988
2989 /*
2990 * Only join the other group if its bigger; if we're the bigger group,
2991 * the other task will join us.
2992 */
2993 if (my_grp->nr_tasks > grp->nr_tasks)
2994 goto no_join;
2995
2996 /*
2997 * Tie-break on the grp address.
2998 */
2999 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3000 goto no_join;
3001
3002 /* Always join threads in the same process. */
3003 if (tsk->mm == current->mm)
3004 join = true;
3005
3006 /* Simple filter to avoid false positives due to PID collisions */
3007 if (flags & TNF_SHARED)
3008 join = true;
3009
3010 /* Update priv based on whether false sharing was detected */
3011 *priv = !join;
3012
3013 if (join && !get_numa_group(grp))
3014 goto no_join;
3015
3016 rcu_read_unlock();
3017
3018 if (!join)
3019 return;
3020
3021 WARN_ON_ONCE(irqs_disabled());
3022 double_lock_irq(&my_grp->lock, &grp->lock);
3023
3024 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3025 my_grp->faults[i] -= p->numa_faults[i];
3026 grp->faults[i] += p->numa_faults[i];
3027 }
3028 my_grp->total_faults -= p->total_numa_faults;
3029 grp->total_faults += p->total_numa_faults;
3030
3031 my_grp->nr_tasks--;
3032 grp->nr_tasks++;
3033
3034 spin_unlock(&my_grp->lock);
3035 spin_unlock_irq(&grp->lock);
3036
3037 rcu_assign_pointer(p->numa_group, grp);
3038
3039 put_numa_group(my_grp);
3040 return;
3041
3042 no_join:
3043 rcu_read_unlock();
3044 return;
3045 }
3046
3047 /*
3048 * Get rid of NUMA statistics associated with a task (either current or dead).
3049 * If @final is set, the task is dead and has reached refcount zero, so we can
3050 * safely free all relevant data structures. Otherwise, there might be
3051 * concurrent reads from places like load balancing and procfs, and we should
3052 * reset the data back to default state without freeing ->numa_faults.
3053 */
task_numa_free(struct task_struct * p,bool final)3054 void task_numa_free(struct task_struct *p, bool final)
3055 {
3056 /* safe: p either is current or is being freed by current */
3057 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3058 unsigned long *numa_faults = p->numa_faults;
3059 unsigned long flags;
3060 int i;
3061
3062 if (!numa_faults)
3063 return;
3064
3065 if (grp) {
3066 spin_lock_irqsave(&grp->lock, flags);
3067 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3068 grp->faults[i] -= p->numa_faults[i];
3069 grp->total_faults -= p->total_numa_faults;
3070
3071 grp->nr_tasks--;
3072 spin_unlock_irqrestore(&grp->lock, flags);
3073 RCU_INIT_POINTER(p->numa_group, NULL);
3074 put_numa_group(grp);
3075 }
3076
3077 if (final) {
3078 p->numa_faults = NULL;
3079 kfree(numa_faults);
3080 } else {
3081 p->total_numa_faults = 0;
3082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3083 numa_faults[i] = 0;
3084 }
3085 }
3086
3087 /*
3088 * Got a PROT_NONE fault for a page on @node.
3089 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3090 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3091 {
3092 struct task_struct *p = current;
3093 bool migrated = flags & TNF_MIGRATED;
3094 int cpu_node = task_node(current);
3095 int local = !!(flags & TNF_FAULT_LOCAL);
3096 struct numa_group *ng;
3097 int priv;
3098
3099 if (!static_branch_likely(&sched_numa_balancing))
3100 return;
3101
3102 /* for example, ksmd faulting in a user's mm */
3103 if (!p->mm)
3104 return;
3105
3106 /*
3107 * NUMA faults statistics are unnecessary for the slow memory
3108 * node for memory tiering mode.
3109 */
3110 if (!node_is_toptier(mem_node) &&
3111 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3112 !cpupid_valid(last_cpupid)))
3113 return;
3114
3115 /* Allocate buffer to track faults on a per-node basis */
3116 if (unlikely(!p->numa_faults)) {
3117 int size = sizeof(*p->numa_faults) *
3118 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3119
3120 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3121 if (!p->numa_faults)
3122 return;
3123
3124 p->total_numa_faults = 0;
3125 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3126 }
3127
3128 /*
3129 * First accesses are treated as private, otherwise consider accesses
3130 * to be private if the accessing pid has not changed
3131 */
3132 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3133 priv = 1;
3134 } else {
3135 priv = cpupid_match_pid(p, last_cpupid);
3136 if (!priv && !(flags & TNF_NO_GROUP))
3137 task_numa_group(p, last_cpupid, flags, &priv);
3138 }
3139
3140 /*
3141 * If a workload spans multiple NUMA nodes, a shared fault that
3142 * occurs wholly within the set of nodes that the workload is
3143 * actively using should be counted as local. This allows the
3144 * scan rate to slow down when a workload has settled down.
3145 */
3146 ng = deref_curr_numa_group(p);
3147 if (!priv && !local && ng && ng->active_nodes > 1 &&
3148 numa_is_active_node(cpu_node, ng) &&
3149 numa_is_active_node(mem_node, ng))
3150 local = 1;
3151
3152 /*
3153 * Retry to migrate task to preferred node periodically, in case it
3154 * previously failed, or the scheduler moved us.
3155 */
3156 if (time_after(jiffies, p->numa_migrate_retry)) {
3157 task_numa_placement(p);
3158 numa_migrate_preferred(p);
3159 }
3160
3161 if (migrated)
3162 p->numa_pages_migrated += pages;
3163 if (flags & TNF_MIGRATE_FAIL)
3164 p->numa_faults_locality[2] += pages;
3165
3166 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3167 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3168 p->numa_faults_locality[local] += pages;
3169 }
3170
reset_ptenuma_scan(struct task_struct * p)3171 static void reset_ptenuma_scan(struct task_struct *p)
3172 {
3173 /*
3174 * We only did a read acquisition of the mmap sem, so
3175 * p->mm->numa_scan_seq is written to without exclusive access
3176 * and the update is not guaranteed to be atomic. That's not
3177 * much of an issue though, since this is just used for
3178 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3179 * expensive, to avoid any form of compiler optimizations:
3180 */
3181 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3182 p->mm->numa_scan_offset = 0;
3183 }
3184
vma_is_accessed(struct vm_area_struct * vma)3185 static bool vma_is_accessed(struct vm_area_struct *vma)
3186 {
3187 unsigned long pids;
3188 /*
3189 * Allow unconditional access first two times, so that all the (pages)
3190 * of VMAs get prot_none fault introduced irrespective of accesses.
3191 * This is also done to avoid any side effect of task scanning
3192 * amplifying the unfairness of disjoint set of VMAs' access.
3193 */
3194 if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3195 return true;
3196
3197 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
3198 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
3199 }
3200
3201 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3202
3203 /*
3204 * The expensive part of numa migration is done from task_work context.
3205 * Triggered from task_tick_numa().
3206 */
task_numa_work(struct callback_head * work)3207 static void task_numa_work(struct callback_head *work)
3208 {
3209 unsigned long migrate, next_scan, now = jiffies;
3210 struct task_struct *p = current;
3211 struct mm_struct *mm = p->mm;
3212 u64 runtime = p->se.sum_exec_runtime;
3213 struct vm_area_struct *vma;
3214 unsigned long start, end;
3215 unsigned long nr_pte_updates = 0;
3216 long pages, virtpages;
3217 struct vma_iterator vmi;
3218
3219 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3220
3221 work->next = work;
3222 /*
3223 * Who cares about NUMA placement when they're dying.
3224 *
3225 * NOTE: make sure not to dereference p->mm before this check,
3226 * exit_task_work() happens _after_ exit_mm() so we could be called
3227 * without p->mm even though we still had it when we enqueued this
3228 * work.
3229 */
3230 if (p->flags & PF_EXITING)
3231 return;
3232
3233 if (!mm->numa_next_scan) {
3234 mm->numa_next_scan = now +
3235 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3236 }
3237
3238 /*
3239 * Enforce maximal scan/migration frequency..
3240 */
3241 migrate = mm->numa_next_scan;
3242 if (time_before(now, migrate))
3243 return;
3244
3245 if (p->numa_scan_period == 0) {
3246 p->numa_scan_period_max = task_scan_max(p);
3247 p->numa_scan_period = task_scan_start(p);
3248 }
3249
3250 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3251 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3252 return;
3253
3254 /*
3255 * Delay this task enough that another task of this mm will likely win
3256 * the next time around.
3257 */
3258 p->node_stamp += 2 * TICK_NSEC;
3259
3260 start = mm->numa_scan_offset;
3261 pages = sysctl_numa_balancing_scan_size;
3262 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3263 virtpages = pages * 8; /* Scan up to this much virtual space */
3264 if (!pages)
3265 return;
3266
3267
3268 if (!mmap_read_trylock(mm))
3269 return;
3270 vma_iter_init(&vmi, mm, start);
3271 vma = vma_next(&vmi);
3272 if (!vma) {
3273 reset_ptenuma_scan(p);
3274 start = 0;
3275 vma_iter_set(&vmi, start);
3276 vma = vma_next(&vmi);
3277 }
3278
3279 do {
3280 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3281 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3282 continue;
3283 }
3284
3285 /*
3286 * Shared library pages mapped by multiple processes are not
3287 * migrated as it is expected they are cache replicated. Avoid
3288 * hinting faults in read-only file-backed mappings or the vdso
3289 * as migrating the pages will be of marginal benefit.
3290 */
3291 if (!vma->vm_mm ||
3292 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3293 continue;
3294
3295 /*
3296 * Skip inaccessible VMAs to avoid any confusion between
3297 * PROT_NONE and NUMA hinting ptes
3298 */
3299 if (!vma_is_accessible(vma))
3300 continue;
3301
3302 /* Initialise new per-VMA NUMAB state. */
3303 if (!vma->numab_state) {
3304 vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3305 GFP_KERNEL);
3306 if (!vma->numab_state)
3307 continue;
3308
3309 vma->numab_state->next_scan = now +
3310 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3311
3312 /* Reset happens after 4 times scan delay of scan start */
3313 vma->numab_state->next_pid_reset = vma->numab_state->next_scan +
3314 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3315 }
3316
3317 /*
3318 * Scanning the VMA's of short lived tasks add more overhead. So
3319 * delay the scan for new VMAs.
3320 */
3321 if (mm->numa_scan_seq && time_before(jiffies,
3322 vma->numab_state->next_scan))
3323 continue;
3324
3325 /* Do not scan the VMA if task has not accessed */
3326 if (!vma_is_accessed(vma))
3327 continue;
3328
3329 /*
3330 * RESET access PIDs regularly for old VMAs. Resetting after checking
3331 * vma for recent access to avoid clearing PID info before access..
3332 */
3333 if (mm->numa_scan_seq &&
3334 time_after(jiffies, vma->numab_state->next_pid_reset)) {
3335 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3336 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3337 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3338 vma->numab_state->access_pids[1] = 0;
3339 }
3340
3341 do {
3342 start = max(start, vma->vm_start);
3343 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3344 end = min(end, vma->vm_end);
3345 nr_pte_updates = change_prot_numa(vma, start, end);
3346
3347 /*
3348 * Try to scan sysctl_numa_balancing_size worth of
3349 * hpages that have at least one present PTE that
3350 * is not already pte-numa. If the VMA contains
3351 * areas that are unused or already full of prot_numa
3352 * PTEs, scan up to virtpages, to skip through those
3353 * areas faster.
3354 */
3355 if (nr_pte_updates)
3356 pages -= (end - start) >> PAGE_SHIFT;
3357 virtpages -= (end - start) >> PAGE_SHIFT;
3358
3359 start = end;
3360 if (pages <= 0 || virtpages <= 0)
3361 goto out;
3362
3363 cond_resched();
3364 } while (end != vma->vm_end);
3365 } for_each_vma(vmi, vma);
3366
3367 out:
3368 /*
3369 * It is possible to reach the end of the VMA list but the last few
3370 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3371 * would find the !migratable VMA on the next scan but not reset the
3372 * scanner to the start so check it now.
3373 */
3374 if (vma)
3375 mm->numa_scan_offset = start;
3376 else
3377 reset_ptenuma_scan(p);
3378 mmap_read_unlock(mm);
3379
3380 /*
3381 * Make sure tasks use at least 32x as much time to run other code
3382 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3383 * Usually update_task_scan_period slows down scanning enough; on an
3384 * overloaded system we need to limit overhead on a per task basis.
3385 */
3386 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3387 u64 diff = p->se.sum_exec_runtime - runtime;
3388 p->node_stamp += 32 * diff;
3389 }
3390 }
3391
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3392 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3393 {
3394 int mm_users = 0;
3395 struct mm_struct *mm = p->mm;
3396
3397 if (mm) {
3398 mm_users = atomic_read(&mm->mm_users);
3399 if (mm_users == 1) {
3400 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3401 mm->numa_scan_seq = 0;
3402 }
3403 }
3404 p->node_stamp = 0;
3405 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3406 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3407 p->numa_migrate_retry = 0;
3408 /* Protect against double add, see task_tick_numa and task_numa_work */
3409 p->numa_work.next = &p->numa_work;
3410 p->numa_faults = NULL;
3411 p->numa_pages_migrated = 0;
3412 p->total_numa_faults = 0;
3413 RCU_INIT_POINTER(p->numa_group, NULL);
3414 p->last_task_numa_placement = 0;
3415 p->last_sum_exec_runtime = 0;
3416
3417 init_task_work(&p->numa_work, task_numa_work);
3418
3419 /* New address space, reset the preferred nid */
3420 if (!(clone_flags & CLONE_VM)) {
3421 p->numa_preferred_nid = NUMA_NO_NODE;
3422 return;
3423 }
3424
3425 /*
3426 * New thread, keep existing numa_preferred_nid which should be copied
3427 * already by arch_dup_task_struct but stagger when scans start.
3428 */
3429 if (mm) {
3430 unsigned int delay;
3431
3432 delay = min_t(unsigned int, task_scan_max(current),
3433 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3434 delay += 2 * TICK_NSEC;
3435 p->node_stamp = delay;
3436 }
3437 }
3438
3439 /*
3440 * Drive the periodic memory faults..
3441 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3442 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3443 {
3444 struct callback_head *work = &curr->numa_work;
3445 u64 period, now;
3446
3447 /*
3448 * We don't care about NUMA placement if we don't have memory.
3449 */
3450 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3451 return;
3452
3453 /*
3454 * Using runtime rather than walltime has the dual advantage that
3455 * we (mostly) drive the selection from busy threads and that the
3456 * task needs to have done some actual work before we bother with
3457 * NUMA placement.
3458 */
3459 now = curr->se.sum_exec_runtime;
3460 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3461
3462 if (now > curr->node_stamp + period) {
3463 if (!curr->node_stamp)
3464 curr->numa_scan_period = task_scan_start(curr);
3465 curr->node_stamp += period;
3466
3467 if (!time_before(jiffies, curr->mm->numa_next_scan))
3468 task_work_add(curr, work, TWA_RESUME);
3469 }
3470 }
3471
update_scan_period(struct task_struct * p,int new_cpu)3472 static void update_scan_period(struct task_struct *p, int new_cpu)
3473 {
3474 int src_nid = cpu_to_node(task_cpu(p));
3475 int dst_nid = cpu_to_node(new_cpu);
3476
3477 if (!static_branch_likely(&sched_numa_balancing))
3478 return;
3479
3480 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3481 return;
3482
3483 if (src_nid == dst_nid)
3484 return;
3485
3486 /*
3487 * Allow resets if faults have been trapped before one scan
3488 * has completed. This is most likely due to a new task that
3489 * is pulled cross-node due to wakeups or load balancing.
3490 */
3491 if (p->numa_scan_seq) {
3492 /*
3493 * Avoid scan adjustments if moving to the preferred
3494 * node or if the task was not previously running on
3495 * the preferred node.
3496 */
3497 if (dst_nid == p->numa_preferred_nid ||
3498 (p->numa_preferred_nid != NUMA_NO_NODE &&
3499 src_nid != p->numa_preferred_nid))
3500 return;
3501 }
3502
3503 p->numa_scan_period = task_scan_start(p);
3504 }
3505
3506 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3507 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3508 {
3509 }
3510
account_numa_enqueue(struct rq * rq,struct task_struct * p)3511 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3512 {
3513 }
3514
account_numa_dequeue(struct rq * rq,struct task_struct * p)3515 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3516 {
3517 }
3518
update_scan_period(struct task_struct * p,int new_cpu)3519 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3520 {
3521 }
3522
3523 #endif /* CONFIG_NUMA_BALANCING */
3524
3525 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3526 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3527 {
3528 update_load_add(&cfs_rq->load, se->load.weight);
3529 #ifdef CONFIG_SMP
3530 if (entity_is_task(se)) {
3531 struct rq *rq = rq_of(cfs_rq);
3532
3533 account_numa_enqueue(rq, task_of(se));
3534 list_add(&se->group_node, &rq->cfs_tasks);
3535 }
3536 #endif
3537 cfs_rq->nr_running++;
3538 if (se_is_idle(se))
3539 cfs_rq->idle_nr_running++;
3540 }
3541
3542 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3543 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3544 {
3545 update_load_sub(&cfs_rq->load, se->load.weight);
3546 #ifdef CONFIG_SMP
3547 if (entity_is_task(se)) {
3548 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3549 list_del_init(&se->group_node);
3550 }
3551 #endif
3552 cfs_rq->nr_running--;
3553 if (se_is_idle(se))
3554 cfs_rq->idle_nr_running--;
3555 }
3556
3557 /*
3558 * Signed add and clamp on underflow.
3559 *
3560 * Explicitly do a load-store to ensure the intermediate value never hits
3561 * memory. This allows lockless observations without ever seeing the negative
3562 * values.
3563 */
3564 #define add_positive(_ptr, _val) do { \
3565 typeof(_ptr) ptr = (_ptr); \
3566 typeof(_val) val = (_val); \
3567 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3568 \
3569 res = var + val; \
3570 \
3571 if (val < 0 && res > var) \
3572 res = 0; \
3573 \
3574 WRITE_ONCE(*ptr, res); \
3575 } while (0)
3576
3577 /*
3578 * Unsigned subtract and clamp on underflow.
3579 *
3580 * Explicitly do a load-store to ensure the intermediate value never hits
3581 * memory. This allows lockless observations without ever seeing the negative
3582 * values.
3583 */
3584 #define sub_positive(_ptr, _val) do { \
3585 typeof(_ptr) ptr = (_ptr); \
3586 typeof(*ptr) val = (_val); \
3587 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3588 res = var - val; \
3589 if (res > var) \
3590 res = 0; \
3591 WRITE_ONCE(*ptr, res); \
3592 } while (0)
3593
3594 /*
3595 * Remove and clamp on negative, from a local variable.
3596 *
3597 * A variant of sub_positive(), which does not use explicit load-store
3598 * and is thus optimized for local variable updates.
3599 */
3600 #define lsub_positive(_ptr, _val) do { \
3601 typeof(_ptr) ptr = (_ptr); \
3602 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3603 } while (0)
3604
3605 #ifdef CONFIG_SMP
3606 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3607 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3608 {
3609 cfs_rq->avg.load_avg += se->avg.load_avg;
3610 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3611 }
3612
3613 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3614 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3615 {
3616 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3617 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3618 /* See update_cfs_rq_load_avg() */
3619 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3620 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3621 }
3622 #else
3623 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3624 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3625 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3626 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3627 #endif
3628
reweight_eevdf(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3629 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3630 unsigned long weight)
3631 {
3632 unsigned long old_weight = se->load.weight;
3633 u64 avruntime = avg_vruntime(cfs_rq);
3634 s64 vlag, vslice;
3635
3636 /*
3637 * VRUNTIME
3638 * ========
3639 *
3640 * COROLLARY #1: The virtual runtime of the entity needs to be
3641 * adjusted if re-weight at !0-lag point.
3642 *
3643 * Proof: For contradiction assume this is not true, so we can
3644 * re-weight without changing vruntime at !0-lag point.
3645 *
3646 * Weight VRuntime Avg-VRuntime
3647 * before w v V
3648 * after w' v' V'
3649 *
3650 * Since lag needs to be preserved through re-weight:
3651 *
3652 * lag = (V - v)*w = (V'- v')*w', where v = v'
3653 * ==> V' = (V - v)*w/w' + v (1)
3654 *
3655 * Let W be the total weight of the entities before reweight,
3656 * since V' is the new weighted average of entities:
3657 *
3658 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3659 *
3660 * by using (1) & (2) we obtain:
3661 *
3662 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3663 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3664 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3665 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3666 *
3667 * Since we are doing at !0-lag point which means V != v, we
3668 * can simplify (3):
3669 *
3670 * ==> W / (W + w' - w) = w / w'
3671 * ==> Ww' = Ww + ww' - ww
3672 * ==> W * (w' - w) = w * (w' - w)
3673 * ==> W = w (re-weight indicates w' != w)
3674 *
3675 * So the cfs_rq contains only one entity, hence vruntime of
3676 * the entity @v should always equal to the cfs_rq's weighted
3677 * average vruntime @V, which means we will always re-weight
3678 * at 0-lag point, thus breach assumption. Proof completed.
3679 *
3680 *
3681 * COROLLARY #2: Re-weight does NOT affect weighted average
3682 * vruntime of all the entities.
3683 *
3684 * Proof: According to corollary #1, Eq. (1) should be:
3685 *
3686 * (V - v)*w = (V' - v')*w'
3687 * ==> v' = V' - (V - v)*w/w' (4)
3688 *
3689 * According to the weighted average formula, we have:
3690 *
3691 * V' = (WV - wv + w'v') / (W - w + w')
3692 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3693 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3694 * = (WV + w'V' - Vw) / (W - w + w')
3695 *
3696 * ==> V'*(W - w + w') = WV + w'V' - Vw
3697 * ==> V' * (W - w) = (W - w) * V (5)
3698 *
3699 * If the entity is the only one in the cfs_rq, then reweight
3700 * always occurs at 0-lag point, so V won't change. Or else
3701 * there are other entities, hence W != w, then Eq. (5) turns
3702 * into V' = V. So V won't change in either case, proof done.
3703 *
3704 *
3705 * So according to corollary #1 & #2, the effect of re-weight
3706 * on vruntime should be:
3707 *
3708 * v' = V' - (V - v) * w / w' (4)
3709 * = V - (V - v) * w / w'
3710 * = V - vl * w / w'
3711 * = V - vl'
3712 */
3713 if (avruntime != se->vruntime) {
3714 vlag = (s64)(avruntime - se->vruntime);
3715 vlag = div_s64(vlag * old_weight, weight);
3716 se->vruntime = avruntime - vlag;
3717 }
3718
3719 /*
3720 * DEADLINE
3721 * ========
3722 *
3723 * When the weight changes, the virtual time slope changes and
3724 * we should adjust the relative virtual deadline accordingly.
3725 *
3726 * d' = v' + (d - v)*w/w'
3727 * = V' - (V - v)*w/w' + (d - v)*w/w'
3728 * = V - (V - v)*w/w' + (d - v)*w/w'
3729 * = V + (d - V)*w/w'
3730 */
3731 vslice = (s64)(se->deadline - avruntime);
3732 vslice = div_s64(vslice * old_weight, weight);
3733 se->deadline = avruntime + vslice;
3734 }
3735
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3736 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3737 unsigned long weight)
3738 {
3739 bool curr = cfs_rq->curr == se;
3740
3741 if (se->on_rq) {
3742 /* commit outstanding execution time */
3743 if (curr)
3744 update_curr(cfs_rq);
3745 else
3746 __dequeue_entity(cfs_rq, se);
3747 update_load_sub(&cfs_rq->load, se->load.weight);
3748 }
3749 dequeue_load_avg(cfs_rq, se);
3750
3751 if (!se->on_rq) {
3752 /*
3753 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3754 * we need to scale se->vlag when w_i changes.
3755 */
3756 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3757 } else {
3758 reweight_eevdf(cfs_rq, se, weight);
3759 }
3760
3761 update_load_set(&se->load, weight);
3762
3763 #ifdef CONFIG_SMP
3764 do {
3765 u32 divider = get_pelt_divider(&se->avg);
3766
3767 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3768 } while (0);
3769 #endif
3770
3771 enqueue_load_avg(cfs_rq, se);
3772 if (se->on_rq) {
3773 update_load_add(&cfs_rq->load, se->load.weight);
3774 if (!curr)
3775 __enqueue_entity(cfs_rq, se);
3776
3777 /*
3778 * The entity's vruntime has been adjusted, so let's check
3779 * whether the rq-wide min_vruntime needs updated too. Since
3780 * the calculations above require stable min_vruntime rather
3781 * than up-to-date one, we do the update at the end of the
3782 * reweight process.
3783 */
3784 update_min_vruntime(cfs_rq);
3785 }
3786 }
3787
reweight_task(struct task_struct * p,int prio)3788 void reweight_task(struct task_struct *p, int prio)
3789 {
3790 struct sched_entity *se = &p->se;
3791 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3792 struct load_weight *load = &se->load;
3793 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3794
3795 reweight_entity(cfs_rq, se, weight);
3796 load->inv_weight = sched_prio_to_wmult[prio];
3797 }
3798
3799 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3800
3801 #ifdef CONFIG_FAIR_GROUP_SCHED
3802 #ifdef CONFIG_SMP
3803 /*
3804 * All this does is approximate the hierarchical proportion which includes that
3805 * global sum we all love to hate.
3806 *
3807 * That is, the weight of a group entity, is the proportional share of the
3808 * group weight based on the group runqueue weights. That is:
3809 *
3810 * tg->weight * grq->load.weight
3811 * ge->load.weight = ----------------------------- (1)
3812 * \Sum grq->load.weight
3813 *
3814 * Now, because computing that sum is prohibitively expensive to compute (been
3815 * there, done that) we approximate it with this average stuff. The average
3816 * moves slower and therefore the approximation is cheaper and more stable.
3817 *
3818 * So instead of the above, we substitute:
3819 *
3820 * grq->load.weight -> grq->avg.load_avg (2)
3821 *
3822 * which yields the following:
3823 *
3824 * tg->weight * grq->avg.load_avg
3825 * ge->load.weight = ------------------------------ (3)
3826 * tg->load_avg
3827 *
3828 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3829 *
3830 * That is shares_avg, and it is right (given the approximation (2)).
3831 *
3832 * The problem with it is that because the average is slow -- it was designed
3833 * to be exactly that of course -- this leads to transients in boundary
3834 * conditions. In specific, the case where the group was idle and we start the
3835 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3836 * yielding bad latency etc..
3837 *
3838 * Now, in that special case (1) reduces to:
3839 *
3840 * tg->weight * grq->load.weight
3841 * ge->load.weight = ----------------------------- = tg->weight (4)
3842 * grp->load.weight
3843 *
3844 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3845 *
3846 * So what we do is modify our approximation (3) to approach (4) in the (near)
3847 * UP case, like:
3848 *
3849 * ge->load.weight =
3850 *
3851 * tg->weight * grq->load.weight
3852 * --------------------------------------------------- (5)
3853 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3854 *
3855 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3856 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3857 *
3858 *
3859 * tg->weight * grq->load.weight
3860 * ge->load.weight = ----------------------------- (6)
3861 * tg_load_avg'
3862 *
3863 * Where:
3864 *
3865 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3866 * max(grq->load.weight, grq->avg.load_avg)
3867 *
3868 * And that is shares_weight and is icky. In the (near) UP case it approaches
3869 * (4) while in the normal case it approaches (3). It consistently
3870 * overestimates the ge->load.weight and therefore:
3871 *
3872 * \Sum ge->load.weight >= tg->weight
3873 *
3874 * hence icky!
3875 */
calc_group_shares(struct cfs_rq * cfs_rq)3876 static long calc_group_shares(struct cfs_rq *cfs_rq)
3877 {
3878 long tg_weight, tg_shares, load, shares;
3879 struct task_group *tg = cfs_rq->tg;
3880
3881 tg_shares = READ_ONCE(tg->shares);
3882
3883 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3884
3885 tg_weight = atomic_long_read(&tg->load_avg);
3886
3887 /* Ensure tg_weight >= load */
3888 tg_weight -= cfs_rq->tg_load_avg_contrib;
3889 tg_weight += load;
3890
3891 shares = (tg_shares * load);
3892 if (tg_weight)
3893 shares /= tg_weight;
3894
3895 /*
3896 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3897 * of a group with small tg->shares value. It is a floor value which is
3898 * assigned as a minimum load.weight to the sched_entity representing
3899 * the group on a CPU.
3900 *
3901 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3902 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3903 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3904 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3905 * instead of 0.
3906 */
3907 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3908 }
3909 #endif /* CONFIG_SMP */
3910
3911 /*
3912 * Recomputes the group entity based on the current state of its group
3913 * runqueue.
3914 */
update_cfs_group(struct sched_entity * se)3915 static void update_cfs_group(struct sched_entity *se)
3916 {
3917 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3918 long shares;
3919
3920 if (!gcfs_rq)
3921 return;
3922
3923 if (throttled_hierarchy(gcfs_rq))
3924 return;
3925
3926 #ifndef CONFIG_SMP
3927 shares = READ_ONCE(gcfs_rq->tg->shares);
3928 #else
3929 shares = calc_group_shares(gcfs_rq);
3930 #endif
3931 if (unlikely(se->load.weight != shares))
3932 reweight_entity(cfs_rq_of(se), se, shares);
3933 }
3934
3935 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3936 static inline void update_cfs_group(struct sched_entity *se)
3937 {
3938 }
3939 #endif /* CONFIG_FAIR_GROUP_SCHED */
3940
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3941 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3942 {
3943 struct rq *rq = rq_of(cfs_rq);
3944
3945 if (&rq->cfs == cfs_rq) {
3946 /*
3947 * There are a few boundary cases this might miss but it should
3948 * get called often enough that that should (hopefully) not be
3949 * a real problem.
3950 *
3951 * It will not get called when we go idle, because the idle
3952 * thread is a different class (!fair), nor will the utilization
3953 * number include things like RT tasks.
3954 *
3955 * As is, the util number is not freq-invariant (we'd have to
3956 * implement arch_scale_freq_capacity() for that).
3957 *
3958 * See cpu_util_cfs().
3959 */
3960 cpufreq_update_util(rq, flags);
3961 }
3962 }
3963
3964 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)3965 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3966 {
3967 if (sa->load_sum)
3968 return false;
3969
3970 if (sa->util_sum)
3971 return false;
3972
3973 if (sa->runnable_sum)
3974 return false;
3975
3976 /*
3977 * _avg must be null when _sum are null because _avg = _sum / divider
3978 * Make sure that rounding and/or propagation of PELT values never
3979 * break this.
3980 */
3981 SCHED_WARN_ON(sa->load_avg ||
3982 sa->util_avg ||
3983 sa->runnable_avg);
3984
3985 return true;
3986 }
3987
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3988 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3989 {
3990 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3991 cfs_rq->last_update_time_copy);
3992 }
3993 #ifdef CONFIG_FAIR_GROUP_SCHED
3994 /*
3995 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3996 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3997 * bottom-up, we only have to test whether the cfs_rq before us on the list
3998 * is our child.
3999 * If cfs_rq is not on the list, test whether a child needs its to be added to
4000 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4001 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4002 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4003 {
4004 struct cfs_rq *prev_cfs_rq;
4005 struct list_head *prev;
4006
4007 if (cfs_rq->on_list) {
4008 prev = cfs_rq->leaf_cfs_rq_list.prev;
4009 } else {
4010 struct rq *rq = rq_of(cfs_rq);
4011
4012 prev = rq->tmp_alone_branch;
4013 }
4014
4015 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4016
4017 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4018 }
4019
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4020 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4021 {
4022 if (cfs_rq->load.weight)
4023 return false;
4024
4025 if (!load_avg_is_decayed(&cfs_rq->avg))
4026 return false;
4027
4028 if (child_cfs_rq_on_list(cfs_rq))
4029 return false;
4030
4031 return true;
4032 }
4033
4034 /**
4035 * update_tg_load_avg - update the tg's load avg
4036 * @cfs_rq: the cfs_rq whose avg changed
4037 *
4038 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4039 * However, because tg->load_avg is a global value there are performance
4040 * considerations.
4041 *
4042 * In order to avoid having to look at the other cfs_rq's, we use a
4043 * differential update where we store the last value we propagated. This in
4044 * turn allows skipping updates if the differential is 'small'.
4045 *
4046 * Updating tg's load_avg is necessary before update_cfs_share().
4047 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4048 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4049 {
4050 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4051
4052 /*
4053 * No need to update load_avg for root_task_group as it is not used.
4054 */
4055 if (cfs_rq->tg == &root_task_group)
4056 return;
4057
4058 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4059 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4060 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4061 }
4062 }
4063
4064 /*
4065 * Called within set_task_rq() right before setting a task's CPU. The
4066 * caller only guarantees p->pi_lock is held; no other assumptions,
4067 * including the state of rq->lock, should be made.
4068 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4069 void set_task_rq_fair(struct sched_entity *se,
4070 struct cfs_rq *prev, struct cfs_rq *next)
4071 {
4072 u64 p_last_update_time;
4073 u64 n_last_update_time;
4074
4075 if (!sched_feat(ATTACH_AGE_LOAD))
4076 return;
4077
4078 /*
4079 * We are supposed to update the task to "current" time, then its up to
4080 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4081 * getting what current time is, so simply throw away the out-of-date
4082 * time. This will result in the wakee task is less decayed, but giving
4083 * the wakee more load sounds not bad.
4084 */
4085 if (!(se->avg.last_update_time && prev))
4086 return;
4087
4088 p_last_update_time = cfs_rq_last_update_time(prev);
4089 n_last_update_time = cfs_rq_last_update_time(next);
4090
4091 __update_load_avg_blocked_se(p_last_update_time, se);
4092 se->avg.last_update_time = n_last_update_time;
4093 }
4094
4095 /*
4096 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4097 * propagate its contribution. The key to this propagation is the invariant
4098 * that for each group:
4099 *
4100 * ge->avg == grq->avg (1)
4101 *
4102 * _IFF_ we look at the pure running and runnable sums. Because they
4103 * represent the very same entity, just at different points in the hierarchy.
4104 *
4105 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4106 * and simply copies the running/runnable sum over (but still wrong, because
4107 * the group entity and group rq do not have their PELT windows aligned).
4108 *
4109 * However, update_tg_cfs_load() is more complex. So we have:
4110 *
4111 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4112 *
4113 * And since, like util, the runnable part should be directly transferable,
4114 * the following would _appear_ to be the straight forward approach:
4115 *
4116 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4117 *
4118 * And per (1) we have:
4119 *
4120 * ge->avg.runnable_avg == grq->avg.runnable_avg
4121 *
4122 * Which gives:
4123 *
4124 * ge->load.weight * grq->avg.load_avg
4125 * ge->avg.load_avg = ----------------------------------- (4)
4126 * grq->load.weight
4127 *
4128 * Except that is wrong!
4129 *
4130 * Because while for entities historical weight is not important and we
4131 * really only care about our future and therefore can consider a pure
4132 * runnable sum, runqueues can NOT do this.
4133 *
4134 * We specifically want runqueues to have a load_avg that includes
4135 * historical weights. Those represent the blocked load, the load we expect
4136 * to (shortly) return to us. This only works by keeping the weights as
4137 * integral part of the sum. We therefore cannot decompose as per (3).
4138 *
4139 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4140 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4141 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4142 * runnable section of these tasks overlap (or not). If they were to perfectly
4143 * align the rq as a whole would be runnable 2/3 of the time. If however we
4144 * always have at least 1 runnable task, the rq as a whole is always runnable.
4145 *
4146 * So we'll have to approximate.. :/
4147 *
4148 * Given the constraint:
4149 *
4150 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4151 *
4152 * We can construct a rule that adds runnable to a rq by assuming minimal
4153 * overlap.
4154 *
4155 * On removal, we'll assume each task is equally runnable; which yields:
4156 *
4157 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4158 *
4159 * XXX: only do this for the part of runnable > running ?
4160 *
4161 */
4162 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4163 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4164 {
4165 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4166 u32 new_sum, divider;
4167
4168 /* Nothing to update */
4169 if (!delta_avg)
4170 return;
4171
4172 /*
4173 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4174 * See ___update_load_avg() for details.
4175 */
4176 divider = get_pelt_divider(&cfs_rq->avg);
4177
4178
4179 /* Set new sched_entity's utilization */
4180 se->avg.util_avg = gcfs_rq->avg.util_avg;
4181 new_sum = se->avg.util_avg * divider;
4182 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4183 se->avg.util_sum = new_sum;
4184
4185 /* Update parent cfs_rq utilization */
4186 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4187 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4188
4189 /* See update_cfs_rq_load_avg() */
4190 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4191 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4192 }
4193
4194 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4195 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4196 {
4197 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4198 u32 new_sum, divider;
4199
4200 /* Nothing to update */
4201 if (!delta_avg)
4202 return;
4203
4204 /*
4205 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4206 * See ___update_load_avg() for details.
4207 */
4208 divider = get_pelt_divider(&cfs_rq->avg);
4209
4210 /* Set new sched_entity's runnable */
4211 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4212 new_sum = se->avg.runnable_avg * divider;
4213 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4214 se->avg.runnable_sum = new_sum;
4215
4216 /* Update parent cfs_rq runnable */
4217 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4218 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4219 /* See update_cfs_rq_load_avg() */
4220 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4221 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4222 }
4223
4224 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4225 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4226 {
4227 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4228 unsigned long load_avg;
4229 u64 load_sum = 0;
4230 s64 delta_sum;
4231 u32 divider;
4232
4233 if (!runnable_sum)
4234 return;
4235
4236 gcfs_rq->prop_runnable_sum = 0;
4237
4238 /*
4239 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4240 * See ___update_load_avg() for details.
4241 */
4242 divider = get_pelt_divider(&cfs_rq->avg);
4243
4244 if (runnable_sum >= 0) {
4245 /*
4246 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4247 * the CPU is saturated running == runnable.
4248 */
4249 runnable_sum += se->avg.load_sum;
4250 runnable_sum = min_t(long, runnable_sum, divider);
4251 } else {
4252 /*
4253 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4254 * assuming all tasks are equally runnable.
4255 */
4256 if (scale_load_down(gcfs_rq->load.weight)) {
4257 load_sum = div_u64(gcfs_rq->avg.load_sum,
4258 scale_load_down(gcfs_rq->load.weight));
4259 }
4260
4261 /* But make sure to not inflate se's runnable */
4262 runnable_sum = min(se->avg.load_sum, load_sum);
4263 }
4264
4265 /*
4266 * runnable_sum can't be lower than running_sum
4267 * Rescale running sum to be in the same range as runnable sum
4268 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4269 * runnable_sum is in [0 : LOAD_AVG_MAX]
4270 */
4271 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4272 runnable_sum = max(runnable_sum, running_sum);
4273
4274 load_sum = se_weight(se) * runnable_sum;
4275 load_avg = div_u64(load_sum, divider);
4276
4277 delta_avg = load_avg - se->avg.load_avg;
4278 if (!delta_avg)
4279 return;
4280
4281 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4282
4283 se->avg.load_sum = runnable_sum;
4284 se->avg.load_avg = load_avg;
4285 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4286 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4287 /* See update_cfs_rq_load_avg() */
4288 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4289 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4290 }
4291
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4292 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4293 {
4294 cfs_rq->propagate = 1;
4295 cfs_rq->prop_runnable_sum += runnable_sum;
4296 }
4297
4298 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4299 static inline int propagate_entity_load_avg(struct sched_entity *se)
4300 {
4301 struct cfs_rq *cfs_rq, *gcfs_rq;
4302
4303 if (entity_is_task(se))
4304 return 0;
4305
4306 gcfs_rq = group_cfs_rq(se);
4307 if (!gcfs_rq->propagate)
4308 return 0;
4309
4310 gcfs_rq->propagate = 0;
4311
4312 cfs_rq = cfs_rq_of(se);
4313
4314 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4315
4316 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4317 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4318 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4319
4320 trace_pelt_cfs_tp(cfs_rq);
4321 trace_pelt_se_tp(se);
4322
4323 return 1;
4324 }
4325
4326 /*
4327 * Check if we need to update the load and the utilization of a blocked
4328 * group_entity:
4329 */
skip_blocked_update(struct sched_entity * se)4330 static inline bool skip_blocked_update(struct sched_entity *se)
4331 {
4332 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4333
4334 /*
4335 * If sched_entity still have not zero load or utilization, we have to
4336 * decay it:
4337 */
4338 if (se->avg.load_avg || se->avg.util_avg)
4339 return false;
4340
4341 /*
4342 * If there is a pending propagation, we have to update the load and
4343 * the utilization of the sched_entity:
4344 */
4345 if (gcfs_rq->propagate)
4346 return false;
4347
4348 /*
4349 * Otherwise, the load and the utilization of the sched_entity is
4350 * already zero and there is no pending propagation, so it will be a
4351 * waste of time to try to decay it:
4352 */
4353 return true;
4354 }
4355
4356 #else /* CONFIG_FAIR_GROUP_SCHED */
4357
update_tg_load_avg(struct cfs_rq * cfs_rq)4358 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4359
propagate_entity_load_avg(struct sched_entity * se)4360 static inline int propagate_entity_load_avg(struct sched_entity *se)
4361 {
4362 return 0;
4363 }
4364
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4365 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4366
4367 #endif /* CONFIG_FAIR_GROUP_SCHED */
4368
4369 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4370 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4371 {
4372 u64 throttled = 0, now, lut;
4373 struct cfs_rq *cfs_rq;
4374 struct rq *rq;
4375 bool is_idle;
4376
4377 if (load_avg_is_decayed(&se->avg))
4378 return;
4379
4380 cfs_rq = cfs_rq_of(se);
4381 rq = rq_of(cfs_rq);
4382
4383 rcu_read_lock();
4384 is_idle = is_idle_task(rcu_dereference(rq->curr));
4385 rcu_read_unlock();
4386
4387 /*
4388 * The lag estimation comes with a cost we don't want to pay all the
4389 * time. Hence, limiting to the case where the source CPU is idle and
4390 * we know we are at the greatest risk to have an outdated clock.
4391 */
4392 if (!is_idle)
4393 return;
4394
4395 /*
4396 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4397 *
4398 * last_update_time (the cfs_rq's last_update_time)
4399 * = cfs_rq_clock_pelt()@cfs_rq_idle
4400 * = rq_clock_pelt()@cfs_rq_idle
4401 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4402 *
4403 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4404 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4405 *
4406 * rq_idle_lag (delta between now and rq's update)
4407 * = sched_clock_cpu() - rq_clock()@rq_idle
4408 *
4409 * We can then write:
4410 *
4411 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4412 * sched_clock_cpu() - rq_clock()@rq_idle
4413 * Where:
4414 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4415 * rq_clock()@rq_idle is rq->clock_idle
4416 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4417 * is cfs_rq->throttled_pelt_idle
4418 */
4419
4420 #ifdef CONFIG_CFS_BANDWIDTH
4421 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4422 /* The clock has been stopped for throttling */
4423 if (throttled == U64_MAX)
4424 return;
4425 #endif
4426 now = u64_u32_load(rq->clock_pelt_idle);
4427 /*
4428 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4429 * is observed the old clock_pelt_idle value and the new clock_idle,
4430 * which lead to an underestimation. The opposite would lead to an
4431 * overestimation.
4432 */
4433 smp_rmb();
4434 lut = cfs_rq_last_update_time(cfs_rq);
4435
4436 now -= throttled;
4437 if (now < lut)
4438 /*
4439 * cfs_rq->avg.last_update_time is more recent than our
4440 * estimation, let's use it.
4441 */
4442 now = lut;
4443 else
4444 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4445
4446 __update_load_avg_blocked_se(now, se);
4447 }
4448 #else
migrate_se_pelt_lag(struct sched_entity * se)4449 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4450 #endif
4451
4452 /**
4453 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4454 * @now: current time, as per cfs_rq_clock_pelt()
4455 * @cfs_rq: cfs_rq to update
4456 *
4457 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4458 * avg. The immediate corollary is that all (fair) tasks must be attached.
4459 *
4460 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4461 *
4462 * Return: true if the load decayed or we removed load.
4463 *
4464 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4465 * call update_tg_load_avg() when this function returns true.
4466 */
4467 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4468 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4469 {
4470 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4471 struct sched_avg *sa = &cfs_rq->avg;
4472 int decayed = 0;
4473
4474 if (cfs_rq->removed.nr) {
4475 unsigned long r;
4476 u32 divider = get_pelt_divider(&cfs_rq->avg);
4477
4478 raw_spin_lock(&cfs_rq->removed.lock);
4479 swap(cfs_rq->removed.util_avg, removed_util);
4480 swap(cfs_rq->removed.load_avg, removed_load);
4481 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4482 cfs_rq->removed.nr = 0;
4483 raw_spin_unlock(&cfs_rq->removed.lock);
4484
4485 r = removed_load;
4486 sub_positive(&sa->load_avg, r);
4487 sub_positive(&sa->load_sum, r * divider);
4488 /* See sa->util_sum below */
4489 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4490
4491 r = removed_util;
4492 sub_positive(&sa->util_avg, r);
4493 sub_positive(&sa->util_sum, r * divider);
4494 /*
4495 * Because of rounding, se->util_sum might ends up being +1 more than
4496 * cfs->util_sum. Although this is not a problem by itself, detaching
4497 * a lot of tasks with the rounding problem between 2 updates of
4498 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4499 * cfs_util_avg is not.
4500 * Check that util_sum is still above its lower bound for the new
4501 * util_avg. Given that period_contrib might have moved since the last
4502 * sync, we are only sure that util_sum must be above or equal to
4503 * util_avg * minimum possible divider
4504 */
4505 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4506
4507 r = removed_runnable;
4508 sub_positive(&sa->runnable_avg, r);
4509 sub_positive(&sa->runnable_sum, r * divider);
4510 /* See sa->util_sum above */
4511 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4512 sa->runnable_avg * PELT_MIN_DIVIDER);
4513
4514 /*
4515 * removed_runnable is the unweighted version of removed_load so we
4516 * can use it to estimate removed_load_sum.
4517 */
4518 add_tg_cfs_propagate(cfs_rq,
4519 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4520
4521 decayed = 1;
4522 }
4523
4524 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4525 u64_u32_store_copy(sa->last_update_time,
4526 cfs_rq->last_update_time_copy,
4527 sa->last_update_time);
4528 return decayed;
4529 }
4530
4531 /**
4532 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4533 * @cfs_rq: cfs_rq to attach to
4534 * @se: sched_entity to attach
4535 *
4536 * Must call update_cfs_rq_load_avg() before this, since we rely on
4537 * cfs_rq->avg.last_update_time being current.
4538 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4539 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4540 {
4541 /*
4542 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4543 * See ___update_load_avg() for details.
4544 */
4545 u32 divider = get_pelt_divider(&cfs_rq->avg);
4546
4547 /*
4548 * When we attach the @se to the @cfs_rq, we must align the decay
4549 * window because without that, really weird and wonderful things can
4550 * happen.
4551 *
4552 * XXX illustrate
4553 */
4554 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4555 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4556
4557 /*
4558 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4559 * period_contrib. This isn't strictly correct, but since we're
4560 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4561 * _sum a little.
4562 */
4563 se->avg.util_sum = se->avg.util_avg * divider;
4564
4565 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4566
4567 se->avg.load_sum = se->avg.load_avg * divider;
4568 if (se_weight(se) < se->avg.load_sum)
4569 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4570 else
4571 se->avg.load_sum = 1;
4572
4573 enqueue_load_avg(cfs_rq, se);
4574 cfs_rq->avg.util_avg += se->avg.util_avg;
4575 cfs_rq->avg.util_sum += se->avg.util_sum;
4576 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4577 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4578
4579 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4580
4581 cfs_rq_util_change(cfs_rq, 0);
4582
4583 trace_pelt_cfs_tp(cfs_rq);
4584 }
4585
4586 /**
4587 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4588 * @cfs_rq: cfs_rq to detach from
4589 * @se: sched_entity to detach
4590 *
4591 * Must call update_cfs_rq_load_avg() before this, since we rely on
4592 * cfs_rq->avg.last_update_time being current.
4593 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4594 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4595 {
4596 dequeue_load_avg(cfs_rq, se);
4597 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4598 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4599 /* See update_cfs_rq_load_avg() */
4600 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4601 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4602
4603 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4604 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4605 /* See update_cfs_rq_load_avg() */
4606 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4607 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4608
4609 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4610
4611 cfs_rq_util_change(cfs_rq, 0);
4612
4613 trace_pelt_cfs_tp(cfs_rq);
4614 }
4615
4616 /*
4617 * Optional action to be done while updating the load average
4618 */
4619 #define UPDATE_TG 0x1
4620 #define SKIP_AGE_LOAD 0x2
4621 #define DO_ATTACH 0x4
4622 #define DO_DETACH 0x8
4623
4624 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4625 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4626 {
4627 u64 now = cfs_rq_clock_pelt(cfs_rq);
4628 int decayed;
4629
4630 /*
4631 * Track task load average for carrying it to new CPU after migrated, and
4632 * track group sched_entity load average for task_h_load calc in migration
4633 */
4634 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4635 __update_load_avg_se(now, cfs_rq, se);
4636
4637 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4638 decayed |= propagate_entity_load_avg(se);
4639
4640 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4641
4642 /*
4643 * DO_ATTACH means we're here from enqueue_entity().
4644 * !last_update_time means we've passed through
4645 * migrate_task_rq_fair() indicating we migrated.
4646 *
4647 * IOW we're enqueueing a task on a new CPU.
4648 */
4649 attach_entity_load_avg(cfs_rq, se);
4650 update_tg_load_avg(cfs_rq);
4651
4652 } else if (flags & DO_DETACH) {
4653 /*
4654 * DO_DETACH means we're here from dequeue_entity()
4655 * and we are migrating task out of the CPU.
4656 */
4657 detach_entity_load_avg(cfs_rq, se);
4658 update_tg_load_avg(cfs_rq);
4659 } else if (decayed) {
4660 cfs_rq_util_change(cfs_rq, 0);
4661
4662 if (flags & UPDATE_TG)
4663 update_tg_load_avg(cfs_rq);
4664 }
4665 }
4666
4667 /*
4668 * Synchronize entity load avg of dequeued entity without locking
4669 * the previous rq.
4670 */
sync_entity_load_avg(struct sched_entity * se)4671 static void sync_entity_load_avg(struct sched_entity *se)
4672 {
4673 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4674 u64 last_update_time;
4675
4676 last_update_time = cfs_rq_last_update_time(cfs_rq);
4677 __update_load_avg_blocked_se(last_update_time, se);
4678 }
4679
4680 /*
4681 * Task first catches up with cfs_rq, and then subtract
4682 * itself from the cfs_rq (task must be off the queue now).
4683 */
remove_entity_load_avg(struct sched_entity * se)4684 static void remove_entity_load_avg(struct sched_entity *se)
4685 {
4686 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4687 unsigned long flags;
4688
4689 /*
4690 * tasks cannot exit without having gone through wake_up_new_task() ->
4691 * enqueue_task_fair() which will have added things to the cfs_rq,
4692 * so we can remove unconditionally.
4693 */
4694
4695 sync_entity_load_avg(se);
4696
4697 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4698 ++cfs_rq->removed.nr;
4699 cfs_rq->removed.util_avg += se->avg.util_avg;
4700 cfs_rq->removed.load_avg += se->avg.load_avg;
4701 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4702 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4703 }
4704
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4705 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4706 {
4707 return cfs_rq->avg.runnable_avg;
4708 }
4709
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4710 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4711 {
4712 return cfs_rq->avg.load_avg;
4713 }
4714
4715 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4716
task_util(struct task_struct * p)4717 static inline unsigned long task_util(struct task_struct *p)
4718 {
4719 return READ_ONCE(p->se.avg.util_avg);
4720 }
4721
_task_util_est(struct task_struct * p)4722 static inline unsigned long _task_util_est(struct task_struct *p)
4723 {
4724 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4725
4726 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4727 }
4728
task_util_est(struct task_struct * p)4729 static inline unsigned long task_util_est(struct task_struct *p)
4730 {
4731 return max(task_util(p), _task_util_est(p));
4732 }
4733
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4734 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4735 struct task_struct *p)
4736 {
4737 unsigned int enqueued;
4738
4739 if (!sched_feat(UTIL_EST))
4740 return;
4741
4742 /* Update root cfs_rq's estimated utilization */
4743 enqueued = cfs_rq->avg.util_est.enqueued;
4744 enqueued += _task_util_est(p);
4745 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4746
4747 trace_sched_util_est_cfs_tp(cfs_rq);
4748 }
4749
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4750 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4751 struct task_struct *p)
4752 {
4753 unsigned int enqueued;
4754
4755 if (!sched_feat(UTIL_EST))
4756 return;
4757
4758 /* Update root cfs_rq's estimated utilization */
4759 enqueued = cfs_rq->avg.util_est.enqueued;
4760 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4761 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4762
4763 trace_sched_util_est_cfs_tp(cfs_rq);
4764 }
4765
4766 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4767
4768 /*
4769 * Check if a (signed) value is within a specified (unsigned) margin,
4770 * based on the observation that:
4771 *
4772 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4773 *
4774 * NOTE: this only works when value + margin < INT_MAX.
4775 */
within_margin(int value,int margin)4776 static inline bool within_margin(int value, int margin)
4777 {
4778 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4779 }
4780
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4781 static inline void util_est_update(struct cfs_rq *cfs_rq,
4782 struct task_struct *p,
4783 bool task_sleep)
4784 {
4785 long last_ewma_diff, last_enqueued_diff;
4786 struct util_est ue;
4787
4788 if (!sched_feat(UTIL_EST))
4789 return;
4790
4791 /*
4792 * Skip update of task's estimated utilization when the task has not
4793 * yet completed an activation, e.g. being migrated.
4794 */
4795 if (!task_sleep)
4796 return;
4797
4798 /*
4799 * If the PELT values haven't changed since enqueue time,
4800 * skip the util_est update.
4801 */
4802 ue = p->se.avg.util_est;
4803 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4804 return;
4805
4806 last_enqueued_diff = ue.enqueued;
4807
4808 /*
4809 * Reset EWMA on utilization increases, the moving average is used only
4810 * to smooth utilization decreases.
4811 */
4812 ue.enqueued = task_util(p);
4813 if (sched_feat(UTIL_EST_FASTUP)) {
4814 if (ue.ewma < ue.enqueued) {
4815 ue.ewma = ue.enqueued;
4816 goto done;
4817 }
4818 }
4819
4820 /*
4821 * Skip update of task's estimated utilization when its members are
4822 * already ~1% close to its last activation value.
4823 */
4824 last_ewma_diff = ue.enqueued - ue.ewma;
4825 last_enqueued_diff -= ue.enqueued;
4826 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4827 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4828 goto done;
4829
4830 return;
4831 }
4832
4833 /*
4834 * To avoid overestimation of actual task utilization, skip updates if
4835 * we cannot grant there is idle time in this CPU.
4836 */
4837 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4838 return;
4839
4840 /*
4841 * Update Task's estimated utilization
4842 *
4843 * When *p completes an activation we can consolidate another sample
4844 * of the task size. This is done by storing the current PELT value
4845 * as ue.enqueued and by using this value to update the Exponential
4846 * Weighted Moving Average (EWMA):
4847 *
4848 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4849 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4850 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4851 * = w * ( last_ewma_diff ) + ewma(t-1)
4852 * = w * (last_ewma_diff + ewma(t-1) / w)
4853 *
4854 * Where 'w' is the weight of new samples, which is configured to be
4855 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4856 */
4857 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4858 ue.ewma += last_ewma_diff;
4859 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4860 done:
4861 ue.enqueued |= UTIL_AVG_UNCHANGED;
4862 WRITE_ONCE(p->se.avg.util_est, ue);
4863
4864 trace_sched_util_est_se_tp(&p->se);
4865 }
4866
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4867 static inline int util_fits_cpu(unsigned long util,
4868 unsigned long uclamp_min,
4869 unsigned long uclamp_max,
4870 int cpu)
4871 {
4872 unsigned long capacity_orig, capacity_orig_thermal;
4873 unsigned long capacity = capacity_of(cpu);
4874 bool fits, uclamp_max_fits;
4875
4876 /*
4877 * Check if the real util fits without any uclamp boost/cap applied.
4878 */
4879 fits = fits_capacity(util, capacity);
4880
4881 if (!uclamp_is_used())
4882 return fits;
4883
4884 /*
4885 * We must use capacity_orig_of() for comparing against uclamp_min and
4886 * uclamp_max. We only care about capacity pressure (by using
4887 * capacity_of()) for comparing against the real util.
4888 *
4889 * If a task is boosted to 1024 for example, we don't want a tiny
4890 * pressure to skew the check whether it fits a CPU or not.
4891 *
4892 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4893 * should fit a little cpu even if there's some pressure.
4894 *
4895 * Only exception is for thermal pressure since it has a direct impact
4896 * on available OPP of the system.
4897 *
4898 * We honour it for uclamp_min only as a drop in performance level
4899 * could result in not getting the requested minimum performance level.
4900 *
4901 * For uclamp_max, we can tolerate a drop in performance level as the
4902 * goal is to cap the task. So it's okay if it's getting less.
4903 */
4904 capacity_orig = capacity_orig_of(cpu);
4905 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4906
4907 /*
4908 * We want to force a task to fit a cpu as implied by uclamp_max.
4909 * But we do have some corner cases to cater for..
4910 *
4911 *
4912 * C=z
4913 * | ___
4914 * | C=y | |
4915 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4916 * | C=x | | | |
4917 * | ___ | | | |
4918 * | | | | | | | (util somewhere in this region)
4919 * | | | | | | |
4920 * | | | | | | |
4921 * +----------------------------------------
4922 * cpu0 cpu1 cpu2
4923 *
4924 * In the above example if a task is capped to a specific performance
4925 * point, y, then when:
4926 *
4927 * * util = 80% of x then it does not fit on cpu0 and should migrate
4928 * to cpu1
4929 * * util = 80% of y then it is forced to fit on cpu1 to honour
4930 * uclamp_max request.
4931 *
4932 * which is what we're enforcing here. A task always fits if
4933 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4934 * the normal upmigration rules should withhold still.
4935 *
4936 * Only exception is when we are on max capacity, then we need to be
4937 * careful not to block overutilized state. This is so because:
4938 *
4939 * 1. There's no concept of capping at max_capacity! We can't go
4940 * beyond this performance level anyway.
4941 * 2. The system is being saturated when we're operating near
4942 * max capacity, it doesn't make sense to block overutilized.
4943 */
4944 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4945 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4946 fits = fits || uclamp_max_fits;
4947
4948 /*
4949 *
4950 * C=z
4951 * | ___ (region a, capped, util >= uclamp_max)
4952 * | C=y | |
4953 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4954 * | C=x | | | |
4955 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
4956 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4957 * | | | | | | |
4958 * | | | | | | | (region c, boosted, util < uclamp_min)
4959 * +----------------------------------------
4960 * cpu0 cpu1 cpu2
4961 *
4962 * a) If util > uclamp_max, then we're capped, we don't care about
4963 * actual fitness value here. We only care if uclamp_max fits
4964 * capacity without taking margin/pressure into account.
4965 * See comment above.
4966 *
4967 * b) If uclamp_min <= util <= uclamp_max, then the normal
4968 * fits_capacity() rules apply. Except we need to ensure that we
4969 * enforce we remain within uclamp_max, see comment above.
4970 *
4971 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4972 * need to take into account the boosted value fits the CPU without
4973 * taking margin/pressure into account.
4974 *
4975 * Cases (a) and (b) are handled in the 'fits' variable already. We
4976 * just need to consider an extra check for case (c) after ensuring we
4977 * handle the case uclamp_min > uclamp_max.
4978 */
4979 uclamp_min = min(uclamp_min, uclamp_max);
4980 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4981 return -1;
4982
4983 return fits;
4984 }
4985
task_fits_cpu(struct task_struct * p,int cpu)4986 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4987 {
4988 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4989 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4990 unsigned long util = task_util_est(p);
4991 /*
4992 * Return true only if the cpu fully fits the task requirements, which
4993 * include the utilization but also the performance hints.
4994 */
4995 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
4996 }
4997
update_misfit_status(struct task_struct * p,struct rq * rq)4998 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4999 {
5000 if (!sched_asym_cpucap_active())
5001 return;
5002
5003 if (!p || p->nr_cpus_allowed == 1) {
5004 rq->misfit_task_load = 0;
5005 return;
5006 }
5007
5008 if (task_fits_cpu(p, cpu_of(rq))) {
5009 rq->misfit_task_load = 0;
5010 return;
5011 }
5012
5013 /*
5014 * Make sure that misfit_task_load will not be null even if
5015 * task_h_load() returns 0.
5016 */
5017 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5018 }
5019
5020 #else /* CONFIG_SMP */
5021
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5022 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5023 {
5024 return !cfs_rq->nr_running;
5025 }
5026
5027 #define UPDATE_TG 0x0
5028 #define SKIP_AGE_LOAD 0x0
5029 #define DO_ATTACH 0x0
5030 #define DO_DETACH 0x0
5031
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5032 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5033 {
5034 cfs_rq_util_change(cfs_rq, 0);
5035 }
5036
remove_entity_load_avg(struct sched_entity * se)5037 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5038
5039 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5040 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5041 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5042 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5043
newidle_balance(struct rq * rq,struct rq_flags * rf)5044 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5045 {
5046 return 0;
5047 }
5048
5049 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5050 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5051
5052 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5053 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5054
5055 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5056 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5057 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5058 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5059
5060 #endif /* CONFIG_SMP */
5061
5062 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5063 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5064 {
5065 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5066 s64 lag = 0;
5067
5068 se->slice = sysctl_sched_base_slice;
5069 vslice = calc_delta_fair(se->slice, se);
5070
5071 /*
5072 * Due to how V is constructed as the weighted average of entities,
5073 * adding tasks with positive lag, or removing tasks with negative lag
5074 * will move 'time' backwards, this can screw around with the lag of
5075 * other tasks.
5076 *
5077 * EEVDF: placement strategy #1 / #2
5078 */
5079 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5080 struct sched_entity *curr = cfs_rq->curr;
5081 unsigned long load;
5082
5083 lag = se->vlag;
5084
5085 /*
5086 * If we want to place a task and preserve lag, we have to
5087 * consider the effect of the new entity on the weighted
5088 * average and compensate for this, otherwise lag can quickly
5089 * evaporate.
5090 *
5091 * Lag is defined as:
5092 *
5093 * lag_i = S - s_i = w_i * (V - v_i)
5094 *
5095 * To avoid the 'w_i' term all over the place, we only track
5096 * the virtual lag:
5097 *
5098 * vl_i = V - v_i <=> v_i = V - vl_i
5099 *
5100 * And we take V to be the weighted average of all v:
5101 *
5102 * V = (\Sum w_j*v_j) / W
5103 *
5104 * Where W is: \Sum w_j
5105 *
5106 * Then, the weighted average after adding an entity with lag
5107 * vl_i is given by:
5108 *
5109 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5110 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5111 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5112 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5113 * = V - w_i*vl_i / (W + w_i)
5114 *
5115 * And the actual lag after adding an entity with vl_i is:
5116 *
5117 * vl'_i = V' - v_i
5118 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5119 * = vl_i - w_i*vl_i / (W + w_i)
5120 *
5121 * Which is strictly less than vl_i. So in order to preserve lag
5122 * we should inflate the lag before placement such that the
5123 * effective lag after placement comes out right.
5124 *
5125 * As such, invert the above relation for vl'_i to get the vl_i
5126 * we need to use such that the lag after placement is the lag
5127 * we computed before dequeue.
5128 *
5129 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5130 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5131 *
5132 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5133 * = W*vl_i
5134 *
5135 * vl_i = (W + w_i)*vl'_i / W
5136 */
5137 load = cfs_rq->avg_load;
5138 if (curr && curr->on_rq)
5139 load += scale_load_down(curr->load.weight);
5140
5141 lag *= load + scale_load_down(se->load.weight);
5142 if (WARN_ON_ONCE(!load))
5143 load = 1;
5144 lag = div_s64(lag, load);
5145 }
5146
5147 se->vruntime = vruntime - lag;
5148
5149 /*
5150 * When joining the competition; the exisiting tasks will be,
5151 * on average, halfway through their slice, as such start tasks
5152 * off with half a slice to ease into the competition.
5153 */
5154 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5155 vslice /= 2;
5156
5157 /*
5158 * EEVDF: vd_i = ve_i + r_i/w_i
5159 */
5160 se->deadline = se->vruntime + vslice;
5161 }
5162
5163 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5164 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5165
5166 static inline bool cfs_bandwidth_used(void);
5167
5168 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5169 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5170 {
5171 bool curr = cfs_rq->curr == se;
5172
5173 /*
5174 * If we're the current task, we must renormalise before calling
5175 * update_curr().
5176 */
5177 if (curr)
5178 place_entity(cfs_rq, se, flags);
5179
5180 update_curr(cfs_rq);
5181
5182 /*
5183 * When enqueuing a sched_entity, we must:
5184 * - Update loads to have both entity and cfs_rq synced with now.
5185 * - For group_entity, update its runnable_weight to reflect the new
5186 * h_nr_running of its group cfs_rq.
5187 * - For group_entity, update its weight to reflect the new share of
5188 * its group cfs_rq
5189 * - Add its new weight to cfs_rq->load.weight
5190 */
5191 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5192 se_update_runnable(se);
5193 /*
5194 * XXX update_load_avg() above will have attached us to the pelt sum;
5195 * but update_cfs_group() here will re-adjust the weight and have to
5196 * undo/redo all that. Seems wasteful.
5197 */
5198 update_cfs_group(se);
5199
5200 /*
5201 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5202 * we can place the entity.
5203 */
5204 if (!curr)
5205 place_entity(cfs_rq, se, flags);
5206
5207 account_entity_enqueue(cfs_rq, se);
5208
5209 /* Entity has migrated, no longer consider this task hot */
5210 if (flags & ENQUEUE_MIGRATED)
5211 se->exec_start = 0;
5212
5213 check_schedstat_required();
5214 update_stats_enqueue_fair(cfs_rq, se, flags);
5215 if (!curr)
5216 __enqueue_entity(cfs_rq, se);
5217 se->on_rq = 1;
5218
5219 if (cfs_rq->nr_running == 1) {
5220 check_enqueue_throttle(cfs_rq);
5221 if (!throttled_hierarchy(cfs_rq)) {
5222 list_add_leaf_cfs_rq(cfs_rq);
5223 } else {
5224 #ifdef CONFIG_CFS_BANDWIDTH
5225 struct rq *rq = rq_of(cfs_rq);
5226
5227 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5228 cfs_rq->throttled_clock = rq_clock(rq);
5229 if (!cfs_rq->throttled_clock_self)
5230 cfs_rq->throttled_clock_self = rq_clock(rq);
5231 #endif
5232 }
5233 }
5234 }
5235
__clear_buddies_next(struct sched_entity * se)5236 static void __clear_buddies_next(struct sched_entity *se)
5237 {
5238 for_each_sched_entity(se) {
5239 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5240 if (cfs_rq->next != se)
5241 break;
5242
5243 cfs_rq->next = NULL;
5244 }
5245 }
5246
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5247 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5248 {
5249 if (cfs_rq->next == se)
5250 __clear_buddies_next(se);
5251 }
5252
5253 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5254
5255 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5256 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5257 {
5258 int action = UPDATE_TG;
5259
5260 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5261 action |= DO_DETACH;
5262
5263 /*
5264 * Update run-time statistics of the 'current'.
5265 */
5266 update_curr(cfs_rq);
5267
5268 /*
5269 * When dequeuing a sched_entity, we must:
5270 * - Update loads to have both entity and cfs_rq synced with now.
5271 * - For group_entity, update its runnable_weight to reflect the new
5272 * h_nr_running of its group cfs_rq.
5273 * - Subtract its previous weight from cfs_rq->load.weight.
5274 * - For group entity, update its weight to reflect the new share
5275 * of its group cfs_rq.
5276 */
5277 update_load_avg(cfs_rq, se, action);
5278 se_update_runnable(se);
5279
5280 update_stats_dequeue_fair(cfs_rq, se, flags);
5281
5282 clear_buddies(cfs_rq, se);
5283
5284 update_entity_lag(cfs_rq, se);
5285 if (se != cfs_rq->curr)
5286 __dequeue_entity(cfs_rq, se);
5287 se->on_rq = 0;
5288 account_entity_dequeue(cfs_rq, se);
5289
5290 /* return excess runtime on last dequeue */
5291 return_cfs_rq_runtime(cfs_rq);
5292
5293 update_cfs_group(se);
5294
5295 /*
5296 * Now advance min_vruntime if @se was the entity holding it back,
5297 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5298 * put back on, and if we advance min_vruntime, we'll be placed back
5299 * further than we started -- ie. we'll be penalized.
5300 */
5301 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5302 update_min_vruntime(cfs_rq);
5303
5304 if (cfs_rq->nr_running == 0)
5305 update_idle_cfs_rq_clock_pelt(cfs_rq);
5306 }
5307
5308 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5309 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5310 {
5311 clear_buddies(cfs_rq, se);
5312
5313 /* 'current' is not kept within the tree. */
5314 if (se->on_rq) {
5315 /*
5316 * Any task has to be enqueued before it get to execute on
5317 * a CPU. So account for the time it spent waiting on the
5318 * runqueue.
5319 */
5320 update_stats_wait_end_fair(cfs_rq, se);
5321 __dequeue_entity(cfs_rq, se);
5322 update_load_avg(cfs_rq, se, UPDATE_TG);
5323 /*
5324 * HACK, stash a copy of deadline at the point of pick in vlag,
5325 * which isn't used until dequeue.
5326 */
5327 se->vlag = se->deadline;
5328 }
5329
5330 update_stats_curr_start(cfs_rq, se);
5331 cfs_rq->curr = se;
5332
5333 /*
5334 * Track our maximum slice length, if the CPU's load is at
5335 * least twice that of our own weight (i.e. dont track it
5336 * when there are only lesser-weight tasks around):
5337 */
5338 if (schedstat_enabled() &&
5339 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5340 struct sched_statistics *stats;
5341
5342 stats = __schedstats_from_se(se);
5343 __schedstat_set(stats->slice_max,
5344 max((u64)stats->slice_max,
5345 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5346 }
5347
5348 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5349 }
5350
5351 /*
5352 * Pick the next process, keeping these things in mind, in this order:
5353 * 1) keep things fair between processes/task groups
5354 * 2) pick the "next" process, since someone really wants that to run
5355 * 3) pick the "last" process, for cache locality
5356 * 4) do not run the "skip" process, if something else is available
5357 */
5358 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5359 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5360 {
5361 /*
5362 * Enabling NEXT_BUDDY will affect latency but not fairness.
5363 */
5364 if (sched_feat(NEXT_BUDDY) &&
5365 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5366 return cfs_rq->next;
5367
5368 return pick_eevdf(cfs_rq);
5369 }
5370
5371 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5372
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5373 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5374 {
5375 /*
5376 * If still on the runqueue then deactivate_task()
5377 * was not called and update_curr() has to be done:
5378 */
5379 if (prev->on_rq)
5380 update_curr(cfs_rq);
5381
5382 /* throttle cfs_rqs exceeding runtime */
5383 check_cfs_rq_runtime(cfs_rq);
5384
5385 if (prev->on_rq) {
5386 update_stats_wait_start_fair(cfs_rq, prev);
5387 /* Put 'current' back into the tree. */
5388 __enqueue_entity(cfs_rq, prev);
5389 /* in !on_rq case, update occurred at dequeue */
5390 update_load_avg(cfs_rq, prev, 0);
5391 }
5392 cfs_rq->curr = NULL;
5393 }
5394
5395 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5396 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5397 {
5398 /*
5399 * Update run-time statistics of the 'current'.
5400 */
5401 update_curr(cfs_rq);
5402
5403 /*
5404 * Ensure that runnable average is periodically updated.
5405 */
5406 update_load_avg(cfs_rq, curr, UPDATE_TG);
5407 update_cfs_group(curr);
5408
5409 #ifdef CONFIG_SCHED_HRTICK
5410 /*
5411 * queued ticks are scheduled to match the slice, so don't bother
5412 * validating it and just reschedule.
5413 */
5414 if (queued) {
5415 resched_curr(rq_of(cfs_rq));
5416 return;
5417 }
5418 /*
5419 * don't let the period tick interfere with the hrtick preemption
5420 */
5421 if (!sched_feat(DOUBLE_TICK) &&
5422 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5423 return;
5424 #endif
5425 }
5426
5427
5428 /**************************************************
5429 * CFS bandwidth control machinery
5430 */
5431
5432 #ifdef CONFIG_CFS_BANDWIDTH
5433
5434 #ifdef CONFIG_JUMP_LABEL
5435 static struct static_key __cfs_bandwidth_used;
5436
cfs_bandwidth_used(void)5437 static inline bool cfs_bandwidth_used(void)
5438 {
5439 return static_key_false(&__cfs_bandwidth_used);
5440 }
5441
cfs_bandwidth_usage_inc(void)5442 void cfs_bandwidth_usage_inc(void)
5443 {
5444 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5445 }
5446
cfs_bandwidth_usage_dec(void)5447 void cfs_bandwidth_usage_dec(void)
5448 {
5449 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5450 }
5451 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5452 static bool cfs_bandwidth_used(void)
5453 {
5454 return true;
5455 }
5456
cfs_bandwidth_usage_inc(void)5457 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5458 void cfs_bandwidth_usage_dec(void) {}
5459 #endif /* CONFIG_JUMP_LABEL */
5460
5461 /*
5462 * default period for cfs group bandwidth.
5463 * default: 0.1s, units: nanoseconds
5464 */
default_cfs_period(void)5465 static inline u64 default_cfs_period(void)
5466 {
5467 return 100000000ULL;
5468 }
5469
sched_cfs_bandwidth_slice(void)5470 static inline u64 sched_cfs_bandwidth_slice(void)
5471 {
5472 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5473 }
5474
5475 /*
5476 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5477 * directly instead of rq->clock to avoid adding additional synchronization
5478 * around rq->lock.
5479 *
5480 * requires cfs_b->lock
5481 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5482 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5483 {
5484 s64 runtime;
5485
5486 if (unlikely(cfs_b->quota == RUNTIME_INF))
5487 return;
5488
5489 cfs_b->runtime += cfs_b->quota;
5490 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5491 if (runtime > 0) {
5492 cfs_b->burst_time += runtime;
5493 cfs_b->nr_burst++;
5494 }
5495
5496 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5497 cfs_b->runtime_snap = cfs_b->runtime;
5498 }
5499
tg_cfs_bandwidth(struct task_group * tg)5500 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5501 {
5502 return &tg->cfs_bandwidth;
5503 }
5504
5505 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5506 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5507 struct cfs_rq *cfs_rq, u64 target_runtime)
5508 {
5509 u64 min_amount, amount = 0;
5510
5511 lockdep_assert_held(&cfs_b->lock);
5512
5513 /* note: this is a positive sum as runtime_remaining <= 0 */
5514 min_amount = target_runtime - cfs_rq->runtime_remaining;
5515
5516 if (cfs_b->quota == RUNTIME_INF)
5517 amount = min_amount;
5518 else {
5519 start_cfs_bandwidth(cfs_b);
5520
5521 if (cfs_b->runtime > 0) {
5522 amount = min(cfs_b->runtime, min_amount);
5523 cfs_b->runtime -= amount;
5524 cfs_b->idle = 0;
5525 }
5526 }
5527
5528 cfs_rq->runtime_remaining += amount;
5529
5530 return cfs_rq->runtime_remaining > 0;
5531 }
5532
5533 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5534 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5535 {
5536 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5537 int ret;
5538
5539 raw_spin_lock(&cfs_b->lock);
5540 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5541 raw_spin_unlock(&cfs_b->lock);
5542
5543 return ret;
5544 }
5545
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5546 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5547 {
5548 /* dock delta_exec before expiring quota (as it could span periods) */
5549 cfs_rq->runtime_remaining -= delta_exec;
5550
5551 if (likely(cfs_rq->runtime_remaining > 0))
5552 return;
5553
5554 if (cfs_rq->throttled)
5555 return;
5556 /*
5557 * if we're unable to extend our runtime we resched so that the active
5558 * hierarchy can be throttled
5559 */
5560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5561 resched_curr(rq_of(cfs_rq));
5562 }
5563
5564 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5565 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5566 {
5567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5568 return;
5569
5570 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5571 }
5572
cfs_rq_throttled(struct cfs_rq * cfs_rq)5573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5574 {
5575 return cfs_bandwidth_used() && cfs_rq->throttled;
5576 }
5577
5578 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5579 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5580 {
5581 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5582 }
5583
5584 /*
5585 * Ensure that neither of the group entities corresponding to src_cpu or
5586 * dest_cpu are members of a throttled hierarchy when performing group
5587 * load-balance operations.
5588 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5589 static inline int throttled_lb_pair(struct task_group *tg,
5590 int src_cpu, int dest_cpu)
5591 {
5592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5593
5594 src_cfs_rq = tg->cfs_rq[src_cpu];
5595 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5596
5597 return throttled_hierarchy(src_cfs_rq) ||
5598 throttled_hierarchy(dest_cfs_rq);
5599 }
5600
tg_unthrottle_up(struct task_group * tg,void * data)5601 static int tg_unthrottle_up(struct task_group *tg, void *data)
5602 {
5603 struct rq *rq = data;
5604 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5605
5606 cfs_rq->throttle_count--;
5607 if (!cfs_rq->throttle_count) {
5608 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5609 cfs_rq->throttled_clock_pelt;
5610
5611 /* Add cfs_rq with load or one or more already running entities to the list */
5612 if (!cfs_rq_is_decayed(cfs_rq))
5613 list_add_leaf_cfs_rq(cfs_rq);
5614
5615 if (cfs_rq->throttled_clock_self) {
5616 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5617
5618 cfs_rq->throttled_clock_self = 0;
5619
5620 if (SCHED_WARN_ON((s64)delta < 0))
5621 delta = 0;
5622
5623 cfs_rq->throttled_clock_self_time += delta;
5624 }
5625 }
5626
5627 return 0;
5628 }
5629
tg_throttle_down(struct task_group * tg,void * data)5630 static int tg_throttle_down(struct task_group *tg, void *data)
5631 {
5632 struct rq *rq = data;
5633 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5634
5635 /* group is entering throttled state, stop time */
5636 if (!cfs_rq->throttle_count) {
5637 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5638 list_del_leaf_cfs_rq(cfs_rq);
5639
5640 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5641 if (cfs_rq->nr_running)
5642 cfs_rq->throttled_clock_self = rq_clock(rq);
5643 }
5644 cfs_rq->throttle_count++;
5645
5646 return 0;
5647 }
5648
throttle_cfs_rq(struct cfs_rq * cfs_rq)5649 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5650 {
5651 struct rq *rq = rq_of(cfs_rq);
5652 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5653 struct sched_entity *se;
5654 long task_delta, idle_task_delta, dequeue = 1;
5655
5656 raw_spin_lock(&cfs_b->lock);
5657 /* This will start the period timer if necessary */
5658 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5659 /*
5660 * We have raced with bandwidth becoming available, and if we
5661 * actually throttled the timer might not unthrottle us for an
5662 * entire period. We additionally needed to make sure that any
5663 * subsequent check_cfs_rq_runtime calls agree not to throttle
5664 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5665 * for 1ns of runtime rather than just check cfs_b.
5666 */
5667 dequeue = 0;
5668 } else {
5669 list_add_tail_rcu(&cfs_rq->throttled_list,
5670 &cfs_b->throttled_cfs_rq);
5671 }
5672 raw_spin_unlock(&cfs_b->lock);
5673
5674 if (!dequeue)
5675 return false; /* Throttle no longer required. */
5676
5677 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5678
5679 /* freeze hierarchy runnable averages while throttled */
5680 rcu_read_lock();
5681 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5682 rcu_read_unlock();
5683
5684 task_delta = cfs_rq->h_nr_running;
5685 idle_task_delta = cfs_rq->idle_h_nr_running;
5686 for_each_sched_entity(se) {
5687 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5688 /* throttled entity or throttle-on-deactivate */
5689 if (!se->on_rq)
5690 goto done;
5691
5692 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5693
5694 if (cfs_rq_is_idle(group_cfs_rq(se)))
5695 idle_task_delta = cfs_rq->h_nr_running;
5696
5697 qcfs_rq->h_nr_running -= task_delta;
5698 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5699
5700 if (qcfs_rq->load.weight) {
5701 /* Avoid re-evaluating load for this entity: */
5702 se = parent_entity(se);
5703 break;
5704 }
5705 }
5706
5707 for_each_sched_entity(se) {
5708 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5709 /* throttled entity or throttle-on-deactivate */
5710 if (!se->on_rq)
5711 goto done;
5712
5713 update_load_avg(qcfs_rq, se, 0);
5714 se_update_runnable(se);
5715
5716 if (cfs_rq_is_idle(group_cfs_rq(se)))
5717 idle_task_delta = cfs_rq->h_nr_running;
5718
5719 qcfs_rq->h_nr_running -= task_delta;
5720 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5721 }
5722
5723 /* At this point se is NULL and we are at root level*/
5724 sub_nr_running(rq, task_delta);
5725
5726 done:
5727 /*
5728 * Note: distribution will already see us throttled via the
5729 * throttled-list. rq->lock protects completion.
5730 */
5731 cfs_rq->throttled = 1;
5732 SCHED_WARN_ON(cfs_rq->throttled_clock);
5733 if (cfs_rq->nr_running)
5734 cfs_rq->throttled_clock = rq_clock(rq);
5735 return true;
5736 }
5737
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5738 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5739 {
5740 struct rq *rq = rq_of(cfs_rq);
5741 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5742 struct sched_entity *se;
5743 long task_delta, idle_task_delta;
5744
5745 se = cfs_rq->tg->se[cpu_of(rq)];
5746
5747 cfs_rq->throttled = 0;
5748
5749 update_rq_clock(rq);
5750
5751 raw_spin_lock(&cfs_b->lock);
5752 if (cfs_rq->throttled_clock) {
5753 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5754 cfs_rq->throttled_clock = 0;
5755 }
5756 list_del_rcu(&cfs_rq->throttled_list);
5757 raw_spin_unlock(&cfs_b->lock);
5758
5759 /* update hierarchical throttle state */
5760 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5761
5762 if (!cfs_rq->load.weight) {
5763 if (!cfs_rq->on_list)
5764 return;
5765 /*
5766 * Nothing to run but something to decay (on_list)?
5767 * Complete the branch.
5768 */
5769 for_each_sched_entity(se) {
5770 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5771 break;
5772 }
5773 goto unthrottle_throttle;
5774 }
5775
5776 task_delta = cfs_rq->h_nr_running;
5777 idle_task_delta = cfs_rq->idle_h_nr_running;
5778 for_each_sched_entity(se) {
5779 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5780
5781 if (se->on_rq)
5782 break;
5783 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5784
5785 if (cfs_rq_is_idle(group_cfs_rq(se)))
5786 idle_task_delta = cfs_rq->h_nr_running;
5787
5788 qcfs_rq->h_nr_running += task_delta;
5789 qcfs_rq->idle_h_nr_running += idle_task_delta;
5790
5791 /* end evaluation on encountering a throttled cfs_rq */
5792 if (cfs_rq_throttled(qcfs_rq))
5793 goto unthrottle_throttle;
5794 }
5795
5796 for_each_sched_entity(se) {
5797 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5798
5799 update_load_avg(qcfs_rq, se, UPDATE_TG);
5800 se_update_runnable(se);
5801
5802 if (cfs_rq_is_idle(group_cfs_rq(se)))
5803 idle_task_delta = cfs_rq->h_nr_running;
5804
5805 qcfs_rq->h_nr_running += task_delta;
5806 qcfs_rq->idle_h_nr_running += idle_task_delta;
5807
5808 /* end evaluation on encountering a throttled cfs_rq */
5809 if (cfs_rq_throttled(qcfs_rq))
5810 goto unthrottle_throttle;
5811 }
5812
5813 /* At this point se is NULL and we are at root level*/
5814 add_nr_running(rq, task_delta);
5815
5816 unthrottle_throttle:
5817 assert_list_leaf_cfs_rq(rq);
5818
5819 /* Determine whether we need to wake up potentially idle CPU: */
5820 if (rq->curr == rq->idle && rq->cfs.nr_running)
5821 resched_curr(rq);
5822 }
5823
5824 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)5825 static void __cfsb_csd_unthrottle(void *arg)
5826 {
5827 struct cfs_rq *cursor, *tmp;
5828 struct rq *rq = arg;
5829 struct rq_flags rf;
5830
5831 rq_lock(rq, &rf);
5832
5833 /*
5834 * Iterating over the list can trigger several call to
5835 * update_rq_clock() in unthrottle_cfs_rq().
5836 * Do it once and skip the potential next ones.
5837 */
5838 update_rq_clock(rq);
5839 rq_clock_start_loop_update(rq);
5840
5841 /*
5842 * Since we hold rq lock we're safe from concurrent manipulation of
5843 * the CSD list. However, this RCU critical section annotates the
5844 * fact that we pair with sched_free_group_rcu(), so that we cannot
5845 * race with group being freed in the window between removing it
5846 * from the list and advancing to the next entry in the list.
5847 */
5848 rcu_read_lock();
5849
5850 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5851 throttled_csd_list) {
5852 list_del_init(&cursor->throttled_csd_list);
5853
5854 if (cfs_rq_throttled(cursor))
5855 unthrottle_cfs_rq(cursor);
5856 }
5857
5858 rcu_read_unlock();
5859
5860 rq_clock_stop_loop_update(rq);
5861 rq_unlock(rq, &rf);
5862 }
5863
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5864 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5865 {
5866 struct rq *rq = rq_of(cfs_rq);
5867 bool first;
5868
5869 if (rq == this_rq()) {
5870 unthrottle_cfs_rq(cfs_rq);
5871 return;
5872 }
5873
5874 /* Already enqueued */
5875 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5876 return;
5877
5878 first = list_empty(&rq->cfsb_csd_list);
5879 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5880 if (first)
5881 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5882 }
5883 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5884 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5885 {
5886 unthrottle_cfs_rq(cfs_rq);
5887 }
5888 #endif
5889
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5890 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5891 {
5892 lockdep_assert_rq_held(rq_of(cfs_rq));
5893
5894 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5895 cfs_rq->runtime_remaining <= 0))
5896 return;
5897
5898 __unthrottle_cfs_rq_async(cfs_rq);
5899 }
5900
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5901 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5902 {
5903 struct cfs_rq *local_unthrottle = NULL;
5904 int this_cpu = smp_processor_id();
5905 u64 runtime, remaining = 1;
5906 bool throttled = false;
5907 struct cfs_rq *cfs_rq;
5908 struct rq_flags rf;
5909 struct rq *rq;
5910
5911 rcu_read_lock();
5912 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5913 throttled_list) {
5914 rq = rq_of(cfs_rq);
5915
5916 if (!remaining) {
5917 throttled = true;
5918 break;
5919 }
5920
5921 rq_lock_irqsave(rq, &rf);
5922 if (!cfs_rq_throttled(cfs_rq))
5923 goto next;
5924
5925 #ifdef CONFIG_SMP
5926 /* Already queued for async unthrottle */
5927 if (!list_empty(&cfs_rq->throttled_csd_list))
5928 goto next;
5929 #endif
5930
5931 /* By the above checks, this should never be true */
5932 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5933
5934 raw_spin_lock(&cfs_b->lock);
5935 runtime = -cfs_rq->runtime_remaining + 1;
5936 if (runtime > cfs_b->runtime)
5937 runtime = cfs_b->runtime;
5938 cfs_b->runtime -= runtime;
5939 remaining = cfs_b->runtime;
5940 raw_spin_unlock(&cfs_b->lock);
5941
5942 cfs_rq->runtime_remaining += runtime;
5943
5944 /* we check whether we're throttled above */
5945 if (cfs_rq->runtime_remaining > 0) {
5946 if (cpu_of(rq) != this_cpu ||
5947 SCHED_WARN_ON(local_unthrottle))
5948 unthrottle_cfs_rq_async(cfs_rq);
5949 else
5950 local_unthrottle = cfs_rq;
5951 } else {
5952 throttled = true;
5953 }
5954
5955 next:
5956 rq_unlock_irqrestore(rq, &rf);
5957 }
5958 rcu_read_unlock();
5959
5960 if (local_unthrottle) {
5961 rq = cpu_rq(this_cpu);
5962 rq_lock_irqsave(rq, &rf);
5963 if (cfs_rq_throttled(local_unthrottle))
5964 unthrottle_cfs_rq(local_unthrottle);
5965 rq_unlock_irqrestore(rq, &rf);
5966 }
5967
5968 return throttled;
5969 }
5970
5971 /*
5972 * Responsible for refilling a task_group's bandwidth and unthrottling its
5973 * cfs_rqs as appropriate. If there has been no activity within the last
5974 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5975 * used to track this state.
5976 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5977 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5978 {
5979 int throttled;
5980
5981 /* no need to continue the timer with no bandwidth constraint */
5982 if (cfs_b->quota == RUNTIME_INF)
5983 goto out_deactivate;
5984
5985 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5986 cfs_b->nr_periods += overrun;
5987
5988 /* Refill extra burst quota even if cfs_b->idle */
5989 __refill_cfs_bandwidth_runtime(cfs_b);
5990
5991 /*
5992 * idle depends on !throttled (for the case of a large deficit), and if
5993 * we're going inactive then everything else can be deferred
5994 */
5995 if (cfs_b->idle && !throttled)
5996 goto out_deactivate;
5997
5998 if (!throttled) {
5999 /* mark as potentially idle for the upcoming period */
6000 cfs_b->idle = 1;
6001 return 0;
6002 }
6003
6004 /* account preceding periods in which throttling occurred */
6005 cfs_b->nr_throttled += overrun;
6006
6007 /*
6008 * This check is repeated as we release cfs_b->lock while we unthrottle.
6009 */
6010 while (throttled && cfs_b->runtime > 0) {
6011 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6012 /* we can't nest cfs_b->lock while distributing bandwidth */
6013 throttled = distribute_cfs_runtime(cfs_b);
6014 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6015 }
6016
6017 /*
6018 * While we are ensured activity in the period following an
6019 * unthrottle, this also covers the case in which the new bandwidth is
6020 * insufficient to cover the existing bandwidth deficit. (Forcing the
6021 * timer to remain active while there are any throttled entities.)
6022 */
6023 cfs_b->idle = 0;
6024
6025 return 0;
6026
6027 out_deactivate:
6028 return 1;
6029 }
6030
6031 /* a cfs_rq won't donate quota below this amount */
6032 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6033 /* minimum remaining period time to redistribute slack quota */
6034 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6035 /* how long we wait to gather additional slack before distributing */
6036 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6037
6038 /*
6039 * Are we near the end of the current quota period?
6040 *
6041 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6042 * hrtimer base being cleared by hrtimer_start. In the case of
6043 * migrate_hrtimers, base is never cleared, so we are fine.
6044 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6045 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6046 {
6047 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6048 s64 remaining;
6049
6050 /* if the call-back is running a quota refresh is already occurring */
6051 if (hrtimer_callback_running(refresh_timer))
6052 return 1;
6053
6054 /* is a quota refresh about to occur? */
6055 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6056 if (remaining < (s64)min_expire)
6057 return 1;
6058
6059 return 0;
6060 }
6061
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6062 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6063 {
6064 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6065
6066 /* if there's a quota refresh soon don't bother with slack */
6067 if (runtime_refresh_within(cfs_b, min_left))
6068 return;
6069
6070 /* don't push forwards an existing deferred unthrottle */
6071 if (cfs_b->slack_started)
6072 return;
6073 cfs_b->slack_started = true;
6074
6075 hrtimer_start(&cfs_b->slack_timer,
6076 ns_to_ktime(cfs_bandwidth_slack_period),
6077 HRTIMER_MODE_REL);
6078 }
6079
6080 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6081 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6082 {
6083 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6084 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6085
6086 if (slack_runtime <= 0)
6087 return;
6088
6089 raw_spin_lock(&cfs_b->lock);
6090 if (cfs_b->quota != RUNTIME_INF) {
6091 cfs_b->runtime += slack_runtime;
6092
6093 /* we are under rq->lock, defer unthrottling using a timer */
6094 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6095 !list_empty(&cfs_b->throttled_cfs_rq))
6096 start_cfs_slack_bandwidth(cfs_b);
6097 }
6098 raw_spin_unlock(&cfs_b->lock);
6099
6100 /* even if it's not valid for return we don't want to try again */
6101 cfs_rq->runtime_remaining -= slack_runtime;
6102 }
6103
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6104 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6105 {
6106 if (!cfs_bandwidth_used())
6107 return;
6108
6109 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6110 return;
6111
6112 __return_cfs_rq_runtime(cfs_rq);
6113 }
6114
6115 /*
6116 * This is done with a timer (instead of inline with bandwidth return) since
6117 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6118 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6119 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6120 {
6121 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6122 unsigned long flags;
6123
6124 /* confirm we're still not at a refresh boundary */
6125 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6126 cfs_b->slack_started = false;
6127
6128 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6129 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6130 return;
6131 }
6132
6133 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6134 runtime = cfs_b->runtime;
6135
6136 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6137
6138 if (!runtime)
6139 return;
6140
6141 distribute_cfs_runtime(cfs_b);
6142 }
6143
6144 /*
6145 * When a group wakes up we want to make sure that its quota is not already
6146 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6147 * runtime as update_curr() throttling can not trigger until it's on-rq.
6148 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6149 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6150 {
6151 if (!cfs_bandwidth_used())
6152 return;
6153
6154 /* an active group must be handled by the update_curr()->put() path */
6155 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6156 return;
6157
6158 /* ensure the group is not already throttled */
6159 if (cfs_rq_throttled(cfs_rq))
6160 return;
6161
6162 /* update runtime allocation */
6163 account_cfs_rq_runtime(cfs_rq, 0);
6164 if (cfs_rq->runtime_remaining <= 0)
6165 throttle_cfs_rq(cfs_rq);
6166 }
6167
sync_throttle(struct task_group * tg,int cpu)6168 static void sync_throttle(struct task_group *tg, int cpu)
6169 {
6170 struct cfs_rq *pcfs_rq, *cfs_rq;
6171
6172 if (!cfs_bandwidth_used())
6173 return;
6174
6175 if (!tg->parent)
6176 return;
6177
6178 cfs_rq = tg->cfs_rq[cpu];
6179 pcfs_rq = tg->parent->cfs_rq[cpu];
6180
6181 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6182 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6183 }
6184
6185 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6186 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6187 {
6188 if (!cfs_bandwidth_used())
6189 return false;
6190
6191 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6192 return false;
6193
6194 /*
6195 * it's possible for a throttled entity to be forced into a running
6196 * state (e.g. set_curr_task), in this case we're finished.
6197 */
6198 if (cfs_rq_throttled(cfs_rq))
6199 return true;
6200
6201 return throttle_cfs_rq(cfs_rq);
6202 }
6203
sched_cfs_slack_timer(struct hrtimer * timer)6204 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6205 {
6206 struct cfs_bandwidth *cfs_b =
6207 container_of(timer, struct cfs_bandwidth, slack_timer);
6208
6209 do_sched_cfs_slack_timer(cfs_b);
6210
6211 return HRTIMER_NORESTART;
6212 }
6213
6214 extern const u64 max_cfs_quota_period;
6215
sched_cfs_period_timer(struct hrtimer * timer)6216 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6217 {
6218 struct cfs_bandwidth *cfs_b =
6219 container_of(timer, struct cfs_bandwidth, period_timer);
6220 unsigned long flags;
6221 int overrun;
6222 int idle = 0;
6223 int count = 0;
6224
6225 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6226 for (;;) {
6227 overrun = hrtimer_forward_now(timer, cfs_b->period);
6228 if (!overrun)
6229 break;
6230
6231 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6232
6233 if (++count > 3) {
6234 u64 new, old = ktime_to_ns(cfs_b->period);
6235
6236 /*
6237 * Grow period by a factor of 2 to avoid losing precision.
6238 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6239 * to fail.
6240 */
6241 new = old * 2;
6242 if (new < max_cfs_quota_period) {
6243 cfs_b->period = ns_to_ktime(new);
6244 cfs_b->quota *= 2;
6245 cfs_b->burst *= 2;
6246
6247 pr_warn_ratelimited(
6248 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6249 smp_processor_id(),
6250 div_u64(new, NSEC_PER_USEC),
6251 div_u64(cfs_b->quota, NSEC_PER_USEC));
6252 } else {
6253 pr_warn_ratelimited(
6254 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6255 smp_processor_id(),
6256 div_u64(old, NSEC_PER_USEC),
6257 div_u64(cfs_b->quota, NSEC_PER_USEC));
6258 }
6259
6260 /* reset count so we don't come right back in here */
6261 count = 0;
6262 }
6263 }
6264 if (idle)
6265 cfs_b->period_active = 0;
6266 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6267
6268 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6269 }
6270
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6271 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6272 {
6273 raw_spin_lock_init(&cfs_b->lock);
6274 cfs_b->runtime = 0;
6275 cfs_b->quota = RUNTIME_INF;
6276 cfs_b->period = ns_to_ktime(default_cfs_period());
6277 cfs_b->burst = 0;
6278 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6279
6280 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6281 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6282 cfs_b->period_timer.function = sched_cfs_period_timer;
6283
6284 /* Add a random offset so that timers interleave */
6285 hrtimer_set_expires(&cfs_b->period_timer,
6286 get_random_u32_below(cfs_b->period));
6287 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6288 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6289 cfs_b->slack_started = false;
6290 }
6291
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6292 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6293 {
6294 cfs_rq->runtime_enabled = 0;
6295 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6296 #ifdef CONFIG_SMP
6297 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6298 #endif
6299 }
6300
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6301 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6302 {
6303 lockdep_assert_held(&cfs_b->lock);
6304
6305 if (cfs_b->period_active)
6306 return;
6307
6308 cfs_b->period_active = 1;
6309 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6310 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6311 }
6312
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6313 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6314 {
6315 int __maybe_unused i;
6316
6317 /* init_cfs_bandwidth() was not called */
6318 if (!cfs_b->throttled_cfs_rq.next)
6319 return;
6320
6321 hrtimer_cancel(&cfs_b->period_timer);
6322 hrtimer_cancel(&cfs_b->slack_timer);
6323
6324 /*
6325 * It is possible that we still have some cfs_rq's pending on a CSD
6326 * list, though this race is very rare. In order for this to occur, we
6327 * must have raced with the last task leaving the group while there
6328 * exist throttled cfs_rq(s), and the period_timer must have queued the
6329 * CSD item but the remote cpu has not yet processed it. To handle this,
6330 * we can simply flush all pending CSD work inline here. We're
6331 * guaranteed at this point that no additional cfs_rq of this group can
6332 * join a CSD list.
6333 */
6334 #ifdef CONFIG_SMP
6335 for_each_possible_cpu(i) {
6336 struct rq *rq = cpu_rq(i);
6337 unsigned long flags;
6338
6339 if (list_empty(&rq->cfsb_csd_list))
6340 continue;
6341
6342 local_irq_save(flags);
6343 __cfsb_csd_unthrottle(rq);
6344 local_irq_restore(flags);
6345 }
6346 #endif
6347 }
6348
6349 /*
6350 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6351 *
6352 * The race is harmless, since modifying bandwidth settings of unhooked group
6353 * bits doesn't do much.
6354 */
6355
6356 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6357 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6358 {
6359 struct task_group *tg;
6360
6361 lockdep_assert_rq_held(rq);
6362
6363 rcu_read_lock();
6364 list_for_each_entry_rcu(tg, &task_groups, list) {
6365 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6366 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6367
6368 raw_spin_lock(&cfs_b->lock);
6369 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6370 raw_spin_unlock(&cfs_b->lock);
6371 }
6372 rcu_read_unlock();
6373 }
6374
6375 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6376 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6377 {
6378 struct task_group *tg;
6379
6380 lockdep_assert_rq_held(rq);
6381
6382 /*
6383 * The rq clock has already been updated in the
6384 * set_rq_offline(), so we should skip updating
6385 * the rq clock again in unthrottle_cfs_rq().
6386 */
6387 rq_clock_start_loop_update(rq);
6388
6389 rcu_read_lock();
6390 list_for_each_entry_rcu(tg, &task_groups, list) {
6391 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6392
6393 if (!cfs_rq->runtime_enabled)
6394 continue;
6395
6396 /*
6397 * clock_task is not advancing so we just need to make sure
6398 * there's some valid quota amount
6399 */
6400 cfs_rq->runtime_remaining = 1;
6401 /*
6402 * Offline rq is schedulable till CPU is completely disabled
6403 * in take_cpu_down(), so we prevent new cfs throttling here.
6404 */
6405 cfs_rq->runtime_enabled = 0;
6406
6407 if (cfs_rq_throttled(cfs_rq))
6408 unthrottle_cfs_rq(cfs_rq);
6409 }
6410 rcu_read_unlock();
6411
6412 rq_clock_stop_loop_update(rq);
6413 }
6414
cfs_task_bw_constrained(struct task_struct * p)6415 bool cfs_task_bw_constrained(struct task_struct *p)
6416 {
6417 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6418
6419 if (!cfs_bandwidth_used())
6420 return false;
6421
6422 if (cfs_rq->runtime_enabled ||
6423 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6424 return true;
6425
6426 return false;
6427 }
6428
6429 #ifdef CONFIG_NO_HZ_FULL
6430 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6431 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6432 {
6433 int cpu = cpu_of(rq);
6434
6435 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6436 return;
6437
6438 if (!tick_nohz_full_cpu(cpu))
6439 return;
6440
6441 if (rq->nr_running != 1)
6442 return;
6443
6444 /*
6445 * We know there is only one task runnable and we've just picked it. The
6446 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6447 * be otherwise able to stop the tick. Just need to check if we are using
6448 * bandwidth control.
6449 */
6450 if (cfs_task_bw_constrained(p))
6451 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6452 }
6453 #endif
6454
6455 #else /* CONFIG_CFS_BANDWIDTH */
6456
cfs_bandwidth_used(void)6457 static inline bool cfs_bandwidth_used(void)
6458 {
6459 return false;
6460 }
6461
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6462 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6463 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6464 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6465 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6466 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6467
cfs_rq_throttled(struct cfs_rq * cfs_rq)6468 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6469 {
6470 return 0;
6471 }
6472
throttled_hierarchy(struct cfs_rq * cfs_rq)6473 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6474 {
6475 return 0;
6476 }
6477
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6478 static inline int throttled_lb_pair(struct task_group *tg,
6479 int src_cpu, int dest_cpu)
6480 {
6481 return 0;
6482 }
6483
6484 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6485 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6486 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6487 #endif
6488
tg_cfs_bandwidth(struct task_group * tg)6489 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6490 {
6491 return NULL;
6492 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6493 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6494 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6495 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6496 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6497 bool cfs_task_bw_constrained(struct task_struct *p)
6498 {
6499 return false;
6500 }
6501 #endif
6502 #endif /* CONFIG_CFS_BANDWIDTH */
6503
6504 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6505 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6506 #endif
6507
6508 /**************************************************
6509 * CFS operations on tasks:
6510 */
6511
6512 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6513 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6514 {
6515 struct sched_entity *se = &p->se;
6516
6517 SCHED_WARN_ON(task_rq(p) != rq);
6518
6519 if (rq->cfs.h_nr_running > 1) {
6520 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6521 u64 slice = se->slice;
6522 s64 delta = slice - ran;
6523
6524 if (delta < 0) {
6525 if (task_current(rq, p))
6526 resched_curr(rq);
6527 return;
6528 }
6529 hrtick_start(rq, delta);
6530 }
6531 }
6532
6533 /*
6534 * called from enqueue/dequeue and updates the hrtick when the
6535 * current task is from our class and nr_running is low enough
6536 * to matter.
6537 */
hrtick_update(struct rq * rq)6538 static void hrtick_update(struct rq *rq)
6539 {
6540 struct task_struct *curr = rq->curr;
6541
6542 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6543 return;
6544
6545 hrtick_start_fair(rq, curr);
6546 }
6547 #else /* !CONFIG_SCHED_HRTICK */
6548 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6549 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6550 {
6551 }
6552
hrtick_update(struct rq * rq)6553 static inline void hrtick_update(struct rq *rq)
6554 {
6555 }
6556 #endif
6557
6558 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6559 static inline bool cpu_overutilized(int cpu)
6560 {
6561 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6562 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6563
6564 /* Return true only if the utilization doesn't fit CPU's capacity */
6565 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6566 }
6567
update_overutilized_status(struct rq * rq)6568 static inline void update_overutilized_status(struct rq *rq)
6569 {
6570 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6571 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6572 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6573 }
6574 }
6575 #else
update_overutilized_status(struct rq * rq)6576 static inline void update_overutilized_status(struct rq *rq) { }
6577 #endif
6578
6579 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6580 static int sched_idle_rq(struct rq *rq)
6581 {
6582 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6583 rq->nr_running);
6584 }
6585
6586 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6587 static int sched_idle_cpu(int cpu)
6588 {
6589 return sched_idle_rq(cpu_rq(cpu));
6590 }
6591 #endif
6592
6593 /*
6594 * The enqueue_task method is called before nr_running is
6595 * increased. Here we update the fair scheduling stats and
6596 * then put the task into the rbtree:
6597 */
6598 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6599 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6600 {
6601 struct cfs_rq *cfs_rq;
6602 struct sched_entity *se = &p->se;
6603 int idle_h_nr_running = task_has_idle_policy(p);
6604 int task_new = !(flags & ENQUEUE_WAKEUP);
6605
6606 /*
6607 * The code below (indirectly) updates schedutil which looks at
6608 * the cfs_rq utilization to select a frequency.
6609 * Let's add the task's estimated utilization to the cfs_rq's
6610 * estimated utilization, before we update schedutil.
6611 */
6612 util_est_enqueue(&rq->cfs, p);
6613
6614 /*
6615 * If in_iowait is set, the code below may not trigger any cpufreq
6616 * utilization updates, so do it here explicitly with the IOWAIT flag
6617 * passed.
6618 */
6619 if (p->in_iowait)
6620 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6621
6622 for_each_sched_entity(se) {
6623 if (se->on_rq)
6624 break;
6625 cfs_rq = cfs_rq_of(se);
6626 enqueue_entity(cfs_rq, se, flags);
6627
6628 cfs_rq->h_nr_running++;
6629 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6630
6631 if (cfs_rq_is_idle(cfs_rq))
6632 idle_h_nr_running = 1;
6633
6634 /* end evaluation on encountering a throttled cfs_rq */
6635 if (cfs_rq_throttled(cfs_rq))
6636 goto enqueue_throttle;
6637
6638 flags = ENQUEUE_WAKEUP;
6639 }
6640
6641 for_each_sched_entity(se) {
6642 cfs_rq = cfs_rq_of(se);
6643
6644 update_load_avg(cfs_rq, se, UPDATE_TG);
6645 se_update_runnable(se);
6646 update_cfs_group(se);
6647
6648 cfs_rq->h_nr_running++;
6649 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6650
6651 if (cfs_rq_is_idle(cfs_rq))
6652 idle_h_nr_running = 1;
6653
6654 /* end evaluation on encountering a throttled cfs_rq */
6655 if (cfs_rq_throttled(cfs_rq))
6656 goto enqueue_throttle;
6657 }
6658
6659 /* At this point se is NULL and we are at root level*/
6660 add_nr_running(rq, 1);
6661
6662 /*
6663 * Since new tasks are assigned an initial util_avg equal to
6664 * half of the spare capacity of their CPU, tiny tasks have the
6665 * ability to cross the overutilized threshold, which will
6666 * result in the load balancer ruining all the task placement
6667 * done by EAS. As a way to mitigate that effect, do not account
6668 * for the first enqueue operation of new tasks during the
6669 * overutilized flag detection.
6670 *
6671 * A better way of solving this problem would be to wait for
6672 * the PELT signals of tasks to converge before taking them
6673 * into account, but that is not straightforward to implement,
6674 * and the following generally works well enough in practice.
6675 */
6676 if (!task_new)
6677 update_overutilized_status(rq);
6678
6679 enqueue_throttle:
6680 assert_list_leaf_cfs_rq(rq);
6681
6682 hrtick_update(rq);
6683 }
6684
6685 static void set_next_buddy(struct sched_entity *se);
6686
6687 /*
6688 * The dequeue_task method is called before nr_running is
6689 * decreased. We remove the task from the rbtree and
6690 * update the fair scheduling stats:
6691 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6692 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6693 {
6694 struct cfs_rq *cfs_rq;
6695 struct sched_entity *se = &p->se;
6696 int task_sleep = flags & DEQUEUE_SLEEP;
6697 int idle_h_nr_running = task_has_idle_policy(p);
6698 bool was_sched_idle = sched_idle_rq(rq);
6699
6700 util_est_dequeue(&rq->cfs, p);
6701
6702 for_each_sched_entity(se) {
6703 cfs_rq = cfs_rq_of(se);
6704 dequeue_entity(cfs_rq, se, flags);
6705
6706 cfs_rq->h_nr_running--;
6707 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6708
6709 if (cfs_rq_is_idle(cfs_rq))
6710 idle_h_nr_running = 1;
6711
6712 /* end evaluation on encountering a throttled cfs_rq */
6713 if (cfs_rq_throttled(cfs_rq))
6714 goto dequeue_throttle;
6715
6716 /* Don't dequeue parent if it has other entities besides us */
6717 if (cfs_rq->load.weight) {
6718 /* Avoid re-evaluating load for this entity: */
6719 se = parent_entity(se);
6720 /*
6721 * Bias pick_next to pick a task from this cfs_rq, as
6722 * p is sleeping when it is within its sched_slice.
6723 */
6724 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6725 set_next_buddy(se);
6726 break;
6727 }
6728 flags |= DEQUEUE_SLEEP;
6729 }
6730
6731 for_each_sched_entity(se) {
6732 cfs_rq = cfs_rq_of(se);
6733
6734 update_load_avg(cfs_rq, se, UPDATE_TG);
6735 se_update_runnable(se);
6736 update_cfs_group(se);
6737
6738 cfs_rq->h_nr_running--;
6739 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6740
6741 if (cfs_rq_is_idle(cfs_rq))
6742 idle_h_nr_running = 1;
6743
6744 /* end evaluation on encountering a throttled cfs_rq */
6745 if (cfs_rq_throttled(cfs_rq))
6746 goto dequeue_throttle;
6747
6748 }
6749
6750 /* At this point se is NULL and we are at root level*/
6751 sub_nr_running(rq, 1);
6752
6753 /* balance early to pull high priority tasks */
6754 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6755 rq->next_balance = jiffies;
6756
6757 dequeue_throttle:
6758 util_est_update(&rq->cfs, p, task_sleep);
6759 hrtick_update(rq);
6760 }
6761
6762 #ifdef CONFIG_SMP
6763
6764 /* Working cpumask for: load_balance, load_balance_newidle. */
6765 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6766 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6767 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6768
6769 #ifdef CONFIG_NO_HZ_COMMON
6770
6771 static struct {
6772 cpumask_var_t idle_cpus_mask;
6773 atomic_t nr_cpus;
6774 int has_blocked; /* Idle CPUS has blocked load */
6775 int needs_update; /* Newly idle CPUs need their next_balance collated */
6776 unsigned long next_balance; /* in jiffy units */
6777 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6778 } nohz ____cacheline_aligned;
6779
6780 #endif /* CONFIG_NO_HZ_COMMON */
6781
cpu_load(struct rq * rq)6782 static unsigned long cpu_load(struct rq *rq)
6783 {
6784 return cfs_rq_load_avg(&rq->cfs);
6785 }
6786
6787 /*
6788 * cpu_load_without - compute CPU load without any contributions from *p
6789 * @cpu: the CPU which load is requested
6790 * @p: the task which load should be discounted
6791 *
6792 * The load of a CPU is defined by the load of tasks currently enqueued on that
6793 * CPU as well as tasks which are currently sleeping after an execution on that
6794 * CPU.
6795 *
6796 * This method returns the load of the specified CPU by discounting the load of
6797 * the specified task, whenever the task is currently contributing to the CPU
6798 * load.
6799 */
cpu_load_without(struct rq * rq,struct task_struct * p)6800 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6801 {
6802 struct cfs_rq *cfs_rq;
6803 unsigned int load;
6804
6805 /* Task has no contribution or is new */
6806 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6807 return cpu_load(rq);
6808
6809 cfs_rq = &rq->cfs;
6810 load = READ_ONCE(cfs_rq->avg.load_avg);
6811
6812 /* Discount task's util from CPU's util */
6813 lsub_positive(&load, task_h_load(p));
6814
6815 return load;
6816 }
6817
cpu_runnable(struct rq * rq)6818 static unsigned long cpu_runnable(struct rq *rq)
6819 {
6820 return cfs_rq_runnable_avg(&rq->cfs);
6821 }
6822
cpu_runnable_without(struct rq * rq,struct task_struct * p)6823 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6824 {
6825 struct cfs_rq *cfs_rq;
6826 unsigned int runnable;
6827
6828 /* Task has no contribution or is new */
6829 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6830 return cpu_runnable(rq);
6831
6832 cfs_rq = &rq->cfs;
6833 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6834
6835 /* Discount task's runnable from CPU's runnable */
6836 lsub_positive(&runnable, p->se.avg.runnable_avg);
6837
6838 return runnable;
6839 }
6840
capacity_of(int cpu)6841 static unsigned long capacity_of(int cpu)
6842 {
6843 return cpu_rq(cpu)->cpu_capacity;
6844 }
6845
record_wakee(struct task_struct * p)6846 static void record_wakee(struct task_struct *p)
6847 {
6848 /*
6849 * Only decay a single time; tasks that have less then 1 wakeup per
6850 * jiffy will not have built up many flips.
6851 */
6852 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6853 current->wakee_flips >>= 1;
6854 current->wakee_flip_decay_ts = jiffies;
6855 }
6856
6857 if (current->last_wakee != p) {
6858 current->last_wakee = p;
6859 current->wakee_flips++;
6860 }
6861 }
6862
6863 /*
6864 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6865 *
6866 * A waker of many should wake a different task than the one last awakened
6867 * at a frequency roughly N times higher than one of its wakees.
6868 *
6869 * In order to determine whether we should let the load spread vs consolidating
6870 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6871 * partner, and a factor of lls_size higher frequency in the other.
6872 *
6873 * With both conditions met, we can be relatively sure that the relationship is
6874 * non-monogamous, with partner count exceeding socket size.
6875 *
6876 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6877 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6878 * socket size.
6879 */
wake_wide(struct task_struct * p)6880 static int wake_wide(struct task_struct *p)
6881 {
6882 unsigned int master = current->wakee_flips;
6883 unsigned int slave = p->wakee_flips;
6884 int factor = __this_cpu_read(sd_llc_size);
6885
6886 if (master < slave)
6887 swap(master, slave);
6888 if (slave < factor || master < slave * factor)
6889 return 0;
6890 return 1;
6891 }
6892
6893 /*
6894 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6895 * soonest. For the purpose of speed we only consider the waking and previous
6896 * CPU.
6897 *
6898 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6899 * cache-affine and is (or will be) idle.
6900 *
6901 * wake_affine_weight() - considers the weight to reflect the average
6902 * scheduling latency of the CPUs. This seems to work
6903 * for the overloaded case.
6904 */
6905 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6906 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6907 {
6908 /*
6909 * If this_cpu is idle, it implies the wakeup is from interrupt
6910 * context. Only allow the move if cache is shared. Otherwise an
6911 * interrupt intensive workload could force all tasks onto one
6912 * node depending on the IO topology or IRQ affinity settings.
6913 *
6914 * If the prev_cpu is idle and cache affine then avoid a migration.
6915 * There is no guarantee that the cache hot data from an interrupt
6916 * is more important than cache hot data on the prev_cpu and from
6917 * a cpufreq perspective, it's better to have higher utilisation
6918 * on one CPU.
6919 */
6920 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6921 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6922
6923 if (sync && cpu_rq(this_cpu)->nr_running == 1)
6924 return this_cpu;
6925
6926 if (available_idle_cpu(prev_cpu))
6927 return prev_cpu;
6928
6929 return nr_cpumask_bits;
6930 }
6931
6932 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6933 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6934 int this_cpu, int prev_cpu, int sync)
6935 {
6936 s64 this_eff_load, prev_eff_load;
6937 unsigned long task_load;
6938
6939 this_eff_load = cpu_load(cpu_rq(this_cpu));
6940
6941 if (sync) {
6942 unsigned long current_load = task_h_load(current);
6943
6944 if (current_load > this_eff_load)
6945 return this_cpu;
6946
6947 this_eff_load -= current_load;
6948 }
6949
6950 task_load = task_h_load(p);
6951
6952 this_eff_load += task_load;
6953 if (sched_feat(WA_BIAS))
6954 this_eff_load *= 100;
6955 this_eff_load *= capacity_of(prev_cpu);
6956
6957 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6958 prev_eff_load -= task_load;
6959 if (sched_feat(WA_BIAS))
6960 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6961 prev_eff_load *= capacity_of(this_cpu);
6962
6963 /*
6964 * If sync, adjust the weight of prev_eff_load such that if
6965 * prev_eff == this_eff that select_idle_sibling() will consider
6966 * stacking the wakee on top of the waker if no other CPU is
6967 * idle.
6968 */
6969 if (sync)
6970 prev_eff_load += 1;
6971
6972 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6973 }
6974
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6975 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6976 int this_cpu, int prev_cpu, int sync)
6977 {
6978 int target = nr_cpumask_bits;
6979
6980 if (sched_feat(WA_IDLE))
6981 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6982
6983 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6984 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6985
6986 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6987 if (target != this_cpu)
6988 return prev_cpu;
6989
6990 schedstat_inc(sd->ttwu_move_affine);
6991 schedstat_inc(p->stats.nr_wakeups_affine);
6992 return target;
6993 }
6994
6995 static struct sched_group *
6996 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6997
6998 /*
6999 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7000 */
7001 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7002 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7003 {
7004 unsigned long load, min_load = ULONG_MAX;
7005 unsigned int min_exit_latency = UINT_MAX;
7006 u64 latest_idle_timestamp = 0;
7007 int least_loaded_cpu = this_cpu;
7008 int shallowest_idle_cpu = -1;
7009 int i;
7010
7011 /* Check if we have any choice: */
7012 if (group->group_weight == 1)
7013 return cpumask_first(sched_group_span(group));
7014
7015 /* Traverse only the allowed CPUs */
7016 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7017 struct rq *rq = cpu_rq(i);
7018
7019 if (!sched_core_cookie_match(rq, p))
7020 continue;
7021
7022 if (sched_idle_cpu(i))
7023 return i;
7024
7025 if (available_idle_cpu(i)) {
7026 struct cpuidle_state *idle = idle_get_state(rq);
7027 if (idle && idle->exit_latency < min_exit_latency) {
7028 /*
7029 * We give priority to a CPU whose idle state
7030 * has the smallest exit latency irrespective
7031 * of any idle timestamp.
7032 */
7033 min_exit_latency = idle->exit_latency;
7034 latest_idle_timestamp = rq->idle_stamp;
7035 shallowest_idle_cpu = i;
7036 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7037 rq->idle_stamp > latest_idle_timestamp) {
7038 /*
7039 * If equal or no active idle state, then
7040 * the most recently idled CPU might have
7041 * a warmer cache.
7042 */
7043 latest_idle_timestamp = rq->idle_stamp;
7044 shallowest_idle_cpu = i;
7045 }
7046 } else if (shallowest_idle_cpu == -1) {
7047 load = cpu_load(cpu_rq(i));
7048 if (load < min_load) {
7049 min_load = load;
7050 least_loaded_cpu = i;
7051 }
7052 }
7053 }
7054
7055 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7056 }
7057
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7058 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7059 int cpu, int prev_cpu, int sd_flag)
7060 {
7061 int new_cpu = cpu;
7062
7063 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7064 return prev_cpu;
7065
7066 /*
7067 * We need task's util for cpu_util_without, sync it up to
7068 * prev_cpu's last_update_time.
7069 */
7070 if (!(sd_flag & SD_BALANCE_FORK))
7071 sync_entity_load_avg(&p->se);
7072
7073 while (sd) {
7074 struct sched_group *group;
7075 struct sched_domain *tmp;
7076 int weight;
7077
7078 if (!(sd->flags & sd_flag)) {
7079 sd = sd->child;
7080 continue;
7081 }
7082
7083 group = find_idlest_group(sd, p, cpu);
7084 if (!group) {
7085 sd = sd->child;
7086 continue;
7087 }
7088
7089 new_cpu = find_idlest_group_cpu(group, p, cpu);
7090 if (new_cpu == cpu) {
7091 /* Now try balancing at a lower domain level of 'cpu': */
7092 sd = sd->child;
7093 continue;
7094 }
7095
7096 /* Now try balancing at a lower domain level of 'new_cpu': */
7097 cpu = new_cpu;
7098 weight = sd->span_weight;
7099 sd = NULL;
7100 for_each_domain(cpu, tmp) {
7101 if (weight <= tmp->span_weight)
7102 break;
7103 if (tmp->flags & sd_flag)
7104 sd = tmp;
7105 }
7106 }
7107
7108 return new_cpu;
7109 }
7110
__select_idle_cpu(int cpu,struct task_struct * p)7111 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7112 {
7113 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7114 sched_cpu_cookie_match(cpu_rq(cpu), p))
7115 return cpu;
7116
7117 return -1;
7118 }
7119
7120 #ifdef CONFIG_SCHED_SMT
7121 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7122 EXPORT_SYMBOL_GPL(sched_smt_present);
7123
set_idle_cores(int cpu,int val)7124 static inline void set_idle_cores(int cpu, int val)
7125 {
7126 struct sched_domain_shared *sds;
7127
7128 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7129 if (sds)
7130 WRITE_ONCE(sds->has_idle_cores, val);
7131 }
7132
test_idle_cores(int cpu)7133 static inline bool test_idle_cores(int cpu)
7134 {
7135 struct sched_domain_shared *sds;
7136
7137 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7138 if (sds)
7139 return READ_ONCE(sds->has_idle_cores);
7140
7141 return false;
7142 }
7143
7144 /*
7145 * Scans the local SMT mask to see if the entire core is idle, and records this
7146 * information in sd_llc_shared->has_idle_cores.
7147 *
7148 * Since SMT siblings share all cache levels, inspecting this limited remote
7149 * state should be fairly cheap.
7150 */
__update_idle_core(struct rq * rq)7151 void __update_idle_core(struct rq *rq)
7152 {
7153 int core = cpu_of(rq);
7154 int cpu;
7155
7156 rcu_read_lock();
7157 if (test_idle_cores(core))
7158 goto unlock;
7159
7160 for_each_cpu(cpu, cpu_smt_mask(core)) {
7161 if (cpu == core)
7162 continue;
7163
7164 if (!available_idle_cpu(cpu))
7165 goto unlock;
7166 }
7167
7168 set_idle_cores(core, 1);
7169 unlock:
7170 rcu_read_unlock();
7171 }
7172
7173 /*
7174 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7175 * there are no idle cores left in the system; tracked through
7176 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7177 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7178 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7179 {
7180 bool idle = true;
7181 int cpu;
7182
7183 for_each_cpu(cpu, cpu_smt_mask(core)) {
7184 if (!available_idle_cpu(cpu)) {
7185 idle = false;
7186 if (*idle_cpu == -1) {
7187 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
7188 *idle_cpu = cpu;
7189 break;
7190 }
7191 continue;
7192 }
7193 break;
7194 }
7195 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
7196 *idle_cpu = cpu;
7197 }
7198
7199 if (idle)
7200 return core;
7201
7202 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7203 return -1;
7204 }
7205
7206 /*
7207 * Scan the local SMT mask for idle CPUs.
7208 */
select_idle_smt(struct task_struct * p,int target)7209 static int select_idle_smt(struct task_struct *p, int target)
7210 {
7211 int cpu;
7212
7213 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7214 if (cpu == target)
7215 continue;
7216 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7217 return cpu;
7218 }
7219
7220 return -1;
7221 }
7222
7223 #else /* CONFIG_SCHED_SMT */
7224
set_idle_cores(int cpu,int val)7225 static inline void set_idle_cores(int cpu, int val)
7226 {
7227 }
7228
test_idle_cores(int cpu)7229 static inline bool test_idle_cores(int cpu)
7230 {
7231 return false;
7232 }
7233
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7234 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7235 {
7236 return __select_idle_cpu(core, p);
7237 }
7238
select_idle_smt(struct task_struct * p,int target)7239 static inline int select_idle_smt(struct task_struct *p, int target)
7240 {
7241 return -1;
7242 }
7243
7244 #endif /* CONFIG_SCHED_SMT */
7245
7246 /*
7247 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7248 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7249 * average idle time for this rq (as found in rq->avg_idle).
7250 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7251 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7252 {
7253 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7254 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7255 struct sched_domain_shared *sd_share;
7256 struct rq *this_rq = this_rq();
7257 int this = smp_processor_id();
7258 struct sched_domain *this_sd = NULL;
7259 u64 time = 0;
7260
7261 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7262
7263 if (sched_feat(SIS_PROP) && !has_idle_core) {
7264 u64 avg_cost, avg_idle, span_avg;
7265 unsigned long now = jiffies;
7266
7267 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7268 if (!this_sd)
7269 return -1;
7270
7271 /*
7272 * If we're busy, the assumption that the last idle period
7273 * predicts the future is flawed; age away the remaining
7274 * predicted idle time.
7275 */
7276 if (unlikely(this_rq->wake_stamp < now)) {
7277 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7278 this_rq->wake_stamp++;
7279 this_rq->wake_avg_idle >>= 1;
7280 }
7281 }
7282
7283 avg_idle = this_rq->wake_avg_idle;
7284 avg_cost = this_sd->avg_scan_cost + 1;
7285
7286 span_avg = sd->span_weight * avg_idle;
7287 if (span_avg > 4*avg_cost)
7288 nr = div_u64(span_avg, avg_cost);
7289 else
7290 nr = 4;
7291
7292 time = cpu_clock(this);
7293 }
7294
7295 if (sched_feat(SIS_UTIL)) {
7296 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7297 if (sd_share) {
7298 /* because !--nr is the condition to stop scan */
7299 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7300 /* overloaded LLC is unlikely to have idle cpu/core */
7301 if (nr == 1)
7302 return -1;
7303 }
7304 }
7305
7306 for_each_cpu_wrap(cpu, cpus, target + 1) {
7307 if (has_idle_core) {
7308 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7309 if ((unsigned int)i < nr_cpumask_bits)
7310 return i;
7311
7312 } else {
7313 if (!--nr)
7314 return -1;
7315 idle_cpu = __select_idle_cpu(cpu, p);
7316 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7317 break;
7318 }
7319 }
7320
7321 if (has_idle_core)
7322 set_idle_cores(target, false);
7323
7324 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7325 time = cpu_clock(this) - time;
7326
7327 /*
7328 * Account for the scan cost of wakeups against the average
7329 * idle time.
7330 */
7331 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7332
7333 update_avg(&this_sd->avg_scan_cost, time);
7334 }
7335
7336 return idle_cpu;
7337 }
7338
7339 /*
7340 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7341 * the task fits. If no CPU is big enough, but there are idle ones, try to
7342 * maximize capacity.
7343 */
7344 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7345 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7346 {
7347 unsigned long task_util, util_min, util_max, best_cap = 0;
7348 int fits, best_fits = 0;
7349 int cpu, best_cpu = -1;
7350 struct cpumask *cpus;
7351
7352 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7353 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7354
7355 task_util = task_util_est(p);
7356 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7357 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7358
7359 for_each_cpu_wrap(cpu, cpus, target) {
7360 unsigned long cpu_cap = capacity_of(cpu);
7361
7362 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7363 continue;
7364
7365 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7366
7367 /* This CPU fits with all requirements */
7368 if (fits > 0)
7369 return cpu;
7370 /*
7371 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7372 * Look for the CPU with best capacity.
7373 */
7374 else if (fits < 0)
7375 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7376
7377 /*
7378 * First, select CPU which fits better (-1 being better than 0).
7379 * Then, select the one with best capacity at same level.
7380 */
7381 if ((fits < best_fits) ||
7382 ((fits == best_fits) && (cpu_cap > best_cap))) {
7383 best_cap = cpu_cap;
7384 best_cpu = cpu;
7385 best_fits = fits;
7386 }
7387 }
7388
7389 return best_cpu;
7390 }
7391
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7392 static inline bool asym_fits_cpu(unsigned long util,
7393 unsigned long util_min,
7394 unsigned long util_max,
7395 int cpu)
7396 {
7397 if (sched_asym_cpucap_active())
7398 /*
7399 * Return true only if the cpu fully fits the task requirements
7400 * which include the utilization and the performance hints.
7401 */
7402 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7403
7404 return true;
7405 }
7406
7407 /*
7408 * Try and locate an idle core/thread in the LLC cache domain.
7409 */
select_idle_sibling(struct task_struct * p,int prev,int target)7410 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7411 {
7412 bool has_idle_core = false;
7413 struct sched_domain *sd;
7414 unsigned long task_util, util_min, util_max;
7415 int i, recent_used_cpu;
7416
7417 /*
7418 * On asymmetric system, update task utilization because we will check
7419 * that the task fits with cpu's capacity.
7420 */
7421 if (sched_asym_cpucap_active()) {
7422 sync_entity_load_avg(&p->se);
7423 task_util = task_util_est(p);
7424 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7425 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7426 }
7427
7428 /*
7429 * per-cpu select_rq_mask usage
7430 */
7431 lockdep_assert_irqs_disabled();
7432
7433 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7434 asym_fits_cpu(task_util, util_min, util_max, target))
7435 return target;
7436
7437 /*
7438 * If the previous CPU is cache affine and idle, don't be stupid:
7439 */
7440 if (prev != target && cpus_share_cache(prev, target) &&
7441 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7442 asym_fits_cpu(task_util, util_min, util_max, prev))
7443 return prev;
7444
7445 /*
7446 * Allow a per-cpu kthread to stack with the wakee if the
7447 * kworker thread and the tasks previous CPUs are the same.
7448 * The assumption is that the wakee queued work for the
7449 * per-cpu kthread that is now complete and the wakeup is
7450 * essentially a sync wakeup. An obvious example of this
7451 * pattern is IO completions.
7452 */
7453 if (is_per_cpu_kthread(current) &&
7454 in_task() &&
7455 prev == smp_processor_id() &&
7456 this_rq()->nr_running <= 1 &&
7457 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7458 return prev;
7459 }
7460
7461 /* Check a recently used CPU as a potential idle candidate: */
7462 recent_used_cpu = p->recent_used_cpu;
7463 p->recent_used_cpu = prev;
7464 if (recent_used_cpu != prev &&
7465 recent_used_cpu != target &&
7466 cpus_share_cache(recent_used_cpu, target) &&
7467 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7468 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7469 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7470 return recent_used_cpu;
7471 }
7472
7473 /*
7474 * For asymmetric CPU capacity systems, our domain of interest is
7475 * sd_asym_cpucapacity rather than sd_llc.
7476 */
7477 if (sched_asym_cpucap_active()) {
7478 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7479 /*
7480 * On an asymmetric CPU capacity system where an exclusive
7481 * cpuset defines a symmetric island (i.e. one unique
7482 * capacity_orig value through the cpuset), the key will be set
7483 * but the CPUs within that cpuset will not have a domain with
7484 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7485 * capacity path.
7486 */
7487 if (sd) {
7488 i = select_idle_capacity(p, sd, target);
7489 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7490 }
7491 }
7492
7493 sd = rcu_dereference(per_cpu(sd_llc, target));
7494 if (!sd)
7495 return target;
7496
7497 if (sched_smt_active()) {
7498 has_idle_core = test_idle_cores(target);
7499
7500 if (!has_idle_core && cpus_share_cache(prev, target)) {
7501 i = select_idle_smt(p, prev);
7502 if ((unsigned int)i < nr_cpumask_bits)
7503 return i;
7504 }
7505 }
7506
7507 i = select_idle_cpu(p, sd, has_idle_core, target);
7508 if ((unsigned)i < nr_cpumask_bits)
7509 return i;
7510
7511 return target;
7512 }
7513
7514 /**
7515 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7516 * @cpu: the CPU to get the utilization for
7517 * @p: task for which the CPU utilization should be predicted or NULL
7518 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7519 * @boost: 1 to enable boosting, otherwise 0
7520 *
7521 * The unit of the return value must be the same as the one of CPU capacity
7522 * so that CPU utilization can be compared with CPU capacity.
7523 *
7524 * CPU utilization is the sum of running time of runnable tasks plus the
7525 * recent utilization of currently non-runnable tasks on that CPU.
7526 * It represents the amount of CPU capacity currently used by CFS tasks in
7527 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7528 * capacity at f_max.
7529 *
7530 * The estimated CPU utilization is defined as the maximum between CPU
7531 * utilization and sum of the estimated utilization of the currently
7532 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7533 * previously-executed tasks, which helps better deduce how busy a CPU will
7534 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7535 * of such a task would be significantly decayed at this point of time.
7536 *
7537 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7538 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7539 * utilization. Boosting is implemented in cpu_util() so that internal
7540 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7541 * latter via cpu_util_cfs_boost().
7542 *
7543 * CPU utilization can be higher than the current CPU capacity
7544 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7545 * of rounding errors as well as task migrations or wakeups of new tasks.
7546 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7547 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7548 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7549 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7550 * though since this is useful for predicting the CPU capacity required
7551 * after task migrations (scheduler-driven DVFS).
7552 *
7553 * Return: (Boosted) (estimated) utilization for the specified CPU.
7554 */
7555 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7556 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7557 {
7558 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7559 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7560 unsigned long runnable;
7561
7562 if (boost) {
7563 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7564 util = max(util, runnable);
7565 }
7566
7567 /*
7568 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7569 * contribution. If @p migrates from another CPU to @cpu add its
7570 * contribution. In all the other cases @cpu is not impacted by the
7571 * migration so its util_avg is already correct.
7572 */
7573 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7574 lsub_positive(&util, task_util(p));
7575 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7576 util += task_util(p);
7577
7578 if (sched_feat(UTIL_EST)) {
7579 unsigned long util_est;
7580
7581 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7582
7583 /*
7584 * During wake-up @p isn't enqueued yet and doesn't contribute
7585 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7586 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7587 * has been enqueued.
7588 *
7589 * During exec (@dst_cpu = -1) @p is enqueued and does
7590 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7591 * Remove it to "simulate" cpu_util without @p's contribution.
7592 *
7593 * Despite the task_on_rq_queued(@p) check there is still a
7594 * small window for a possible race when an exec
7595 * select_task_rq_fair() races with LB's detach_task().
7596 *
7597 * detach_task()
7598 * deactivate_task()
7599 * p->on_rq = TASK_ON_RQ_MIGRATING;
7600 * -------------------------------- A
7601 * dequeue_task() \
7602 * dequeue_task_fair() + Race Time
7603 * util_est_dequeue() /
7604 * -------------------------------- B
7605 *
7606 * The additional check "current == p" is required to further
7607 * reduce the race window.
7608 */
7609 if (dst_cpu == cpu)
7610 util_est += _task_util_est(p);
7611 else if (p && unlikely(task_on_rq_queued(p) || current == p))
7612 lsub_positive(&util_est, _task_util_est(p));
7613
7614 util = max(util, util_est);
7615 }
7616
7617 return min(util, capacity_orig_of(cpu));
7618 }
7619
cpu_util_cfs(int cpu)7620 unsigned long cpu_util_cfs(int cpu)
7621 {
7622 return cpu_util(cpu, NULL, -1, 0);
7623 }
7624
cpu_util_cfs_boost(int cpu)7625 unsigned long cpu_util_cfs_boost(int cpu)
7626 {
7627 return cpu_util(cpu, NULL, -1, 1);
7628 }
7629
7630 /*
7631 * cpu_util_without: compute cpu utilization without any contributions from *p
7632 * @cpu: the CPU which utilization is requested
7633 * @p: the task which utilization should be discounted
7634 *
7635 * The utilization of a CPU is defined by the utilization of tasks currently
7636 * enqueued on that CPU as well as tasks which are currently sleeping after an
7637 * execution on that CPU.
7638 *
7639 * This method returns the utilization of the specified CPU by discounting the
7640 * utilization of the specified task, whenever the task is currently
7641 * contributing to the CPU utilization.
7642 */
cpu_util_without(int cpu,struct task_struct * p)7643 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7644 {
7645 /* Task has no contribution or is new */
7646 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7647 p = NULL;
7648
7649 return cpu_util(cpu, p, -1, 0);
7650 }
7651
7652 /*
7653 * energy_env - Utilization landscape for energy estimation.
7654 * @task_busy_time: Utilization contribution by the task for which we test the
7655 * placement. Given by eenv_task_busy_time().
7656 * @pd_busy_time: Utilization of the whole perf domain without the task
7657 * contribution. Given by eenv_pd_busy_time().
7658 * @cpu_cap: Maximum CPU capacity for the perf domain.
7659 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7660 */
7661 struct energy_env {
7662 unsigned long task_busy_time;
7663 unsigned long pd_busy_time;
7664 unsigned long cpu_cap;
7665 unsigned long pd_cap;
7666 };
7667
7668 /*
7669 * Compute the task busy time for compute_energy(). This time cannot be
7670 * injected directly into effective_cpu_util() because of the IRQ scaling.
7671 * The latter only makes sense with the most recent CPUs where the task has
7672 * run.
7673 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7674 static inline void eenv_task_busy_time(struct energy_env *eenv,
7675 struct task_struct *p, int prev_cpu)
7676 {
7677 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7678 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7679
7680 if (unlikely(irq >= max_cap))
7681 busy_time = max_cap;
7682 else
7683 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7684
7685 eenv->task_busy_time = busy_time;
7686 }
7687
7688 /*
7689 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7690 * utilization for each @pd_cpus, it however doesn't take into account
7691 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7692 * scale the EM reported power consumption at the (eventually clamped)
7693 * cpu_capacity.
7694 *
7695 * The contribution of the task @p for which we want to estimate the
7696 * energy cost is removed (by cpu_util()) and must be calculated
7697 * separately (see eenv_task_busy_time). This ensures:
7698 *
7699 * - A stable PD utilization, no matter which CPU of that PD we want to place
7700 * the task on.
7701 *
7702 * - A fair comparison between CPUs as the task contribution (task_util())
7703 * will always be the same no matter which CPU utilization we rely on
7704 * (util_avg or util_est).
7705 *
7706 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7707 * exceed @eenv->pd_cap.
7708 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7709 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7710 struct cpumask *pd_cpus,
7711 struct task_struct *p)
7712 {
7713 unsigned long busy_time = 0;
7714 int cpu;
7715
7716 for_each_cpu(cpu, pd_cpus) {
7717 unsigned long util = cpu_util(cpu, p, -1, 0);
7718
7719 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7720 }
7721
7722 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7723 }
7724
7725 /*
7726 * Compute the maximum utilization for compute_energy() when the task @p
7727 * is placed on the cpu @dst_cpu.
7728 *
7729 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7730 * exceed @eenv->cpu_cap.
7731 */
7732 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7733 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7734 struct task_struct *p, int dst_cpu)
7735 {
7736 unsigned long max_util = 0;
7737 int cpu;
7738
7739 for_each_cpu(cpu, pd_cpus) {
7740 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7741 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7742 unsigned long eff_util;
7743
7744 /*
7745 * Performance domain frequency: utilization clamping
7746 * must be considered since it affects the selection
7747 * of the performance domain frequency.
7748 * NOTE: in case RT tasks are running, by default the
7749 * FREQUENCY_UTIL's utilization can be max OPP.
7750 */
7751 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7752 max_util = max(max_util, eff_util);
7753 }
7754
7755 return min(max_util, eenv->cpu_cap);
7756 }
7757
7758 /*
7759 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7760 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7761 * contribution is ignored.
7762 */
7763 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7764 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7765 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7766 {
7767 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7768 unsigned long busy_time = eenv->pd_busy_time;
7769
7770 if (dst_cpu >= 0)
7771 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7772
7773 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7774 }
7775
7776 /*
7777 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7778 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7779 * spare capacity in each performance domain and uses it as a potential
7780 * candidate to execute the task. Then, it uses the Energy Model to figure
7781 * out which of the CPU candidates is the most energy-efficient.
7782 *
7783 * The rationale for this heuristic is as follows. In a performance domain,
7784 * all the most energy efficient CPU candidates (according to the Energy
7785 * Model) are those for which we'll request a low frequency. When there are
7786 * several CPUs for which the frequency request will be the same, we don't
7787 * have enough data to break the tie between them, because the Energy Model
7788 * only includes active power costs. With this model, if we assume that
7789 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7790 * the maximum spare capacity in a performance domain is guaranteed to be among
7791 * the best candidates of the performance domain.
7792 *
7793 * In practice, it could be preferable from an energy standpoint to pack
7794 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7795 * but that could also hurt our chances to go cluster idle, and we have no
7796 * ways to tell with the current Energy Model if this is actually a good
7797 * idea or not. So, find_energy_efficient_cpu() basically favors
7798 * cluster-packing, and spreading inside a cluster. That should at least be
7799 * a good thing for latency, and this is consistent with the idea that most
7800 * of the energy savings of EAS come from the asymmetry of the system, and
7801 * not so much from breaking the tie between identical CPUs. That's also the
7802 * reason why EAS is enabled in the topology code only for systems where
7803 * SD_ASYM_CPUCAPACITY is set.
7804 *
7805 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7806 * they don't have any useful utilization data yet and it's not possible to
7807 * forecast their impact on energy consumption. Consequently, they will be
7808 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7809 * to be energy-inefficient in some use-cases. The alternative would be to
7810 * bias new tasks towards specific types of CPUs first, or to try to infer
7811 * their util_avg from the parent task, but those heuristics could hurt
7812 * other use-cases too. So, until someone finds a better way to solve this,
7813 * let's keep things simple by re-using the existing slow path.
7814 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)7815 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7816 {
7817 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7818 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7819 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7820 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7821 struct root_domain *rd = this_rq()->rd;
7822 int cpu, best_energy_cpu, target = -1;
7823 int prev_fits = -1, best_fits = -1;
7824 unsigned long best_thermal_cap = 0;
7825 unsigned long prev_thermal_cap = 0;
7826 struct sched_domain *sd;
7827 struct perf_domain *pd;
7828 struct energy_env eenv;
7829
7830 rcu_read_lock();
7831 pd = rcu_dereference(rd->pd);
7832 if (!pd || READ_ONCE(rd->overutilized))
7833 goto unlock;
7834
7835 /*
7836 * Energy-aware wake-up happens on the lowest sched_domain starting
7837 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7838 */
7839 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7840 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7841 sd = sd->parent;
7842 if (!sd)
7843 goto unlock;
7844
7845 target = prev_cpu;
7846
7847 sync_entity_load_avg(&p->se);
7848 if (!task_util_est(p) && p_util_min == 0)
7849 goto unlock;
7850
7851 eenv_task_busy_time(&eenv, p, prev_cpu);
7852
7853 for (; pd; pd = pd->next) {
7854 unsigned long util_min = p_util_min, util_max = p_util_max;
7855 unsigned long cpu_cap, cpu_thermal_cap, util;
7856 long prev_spare_cap = -1, max_spare_cap = -1;
7857 unsigned long rq_util_min, rq_util_max;
7858 unsigned long cur_delta, base_energy;
7859 int max_spare_cap_cpu = -1;
7860 int fits, max_fits = -1;
7861
7862 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7863
7864 if (cpumask_empty(cpus))
7865 continue;
7866
7867 /* Account thermal pressure for the energy estimation */
7868 cpu = cpumask_first(cpus);
7869 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7870 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7871
7872 eenv.cpu_cap = cpu_thermal_cap;
7873 eenv.pd_cap = 0;
7874
7875 for_each_cpu(cpu, cpus) {
7876 struct rq *rq = cpu_rq(cpu);
7877
7878 eenv.pd_cap += cpu_thermal_cap;
7879
7880 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7881 continue;
7882
7883 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7884 continue;
7885
7886 util = cpu_util(cpu, p, cpu, 0);
7887 cpu_cap = capacity_of(cpu);
7888
7889 /*
7890 * Skip CPUs that cannot satisfy the capacity request.
7891 * IOW, placing the task there would make the CPU
7892 * overutilized. Take uclamp into account to see how
7893 * much capacity we can get out of the CPU; this is
7894 * aligned with sched_cpu_util().
7895 */
7896 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7897 /*
7898 * Open code uclamp_rq_util_with() except for
7899 * the clamp() part. Ie: apply max aggregation
7900 * only. util_fits_cpu() logic requires to
7901 * operate on non clamped util but must use the
7902 * max-aggregated uclamp_{min, max}.
7903 */
7904 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7905 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7906
7907 util_min = max(rq_util_min, p_util_min);
7908 util_max = max(rq_util_max, p_util_max);
7909 }
7910
7911 fits = util_fits_cpu(util, util_min, util_max, cpu);
7912 if (!fits)
7913 continue;
7914
7915 lsub_positive(&cpu_cap, util);
7916
7917 if (cpu == prev_cpu) {
7918 /* Always use prev_cpu as a candidate. */
7919 prev_spare_cap = cpu_cap;
7920 prev_fits = fits;
7921 } else if ((fits > max_fits) ||
7922 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
7923 /*
7924 * Find the CPU with the maximum spare capacity
7925 * among the remaining CPUs in the performance
7926 * domain.
7927 */
7928 max_spare_cap = cpu_cap;
7929 max_spare_cap_cpu = cpu;
7930 max_fits = fits;
7931 }
7932 }
7933
7934 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
7935 continue;
7936
7937 eenv_pd_busy_time(&eenv, cpus, p);
7938 /* Compute the 'base' energy of the pd, without @p */
7939 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7940
7941 /* Evaluate the energy impact of using prev_cpu. */
7942 if (prev_spare_cap > -1) {
7943 prev_delta = compute_energy(&eenv, pd, cpus, p,
7944 prev_cpu);
7945 /* CPU utilization has changed */
7946 if (prev_delta < base_energy)
7947 goto unlock;
7948 prev_delta -= base_energy;
7949 prev_thermal_cap = cpu_thermal_cap;
7950 best_delta = min(best_delta, prev_delta);
7951 }
7952
7953 /* Evaluate the energy impact of using max_spare_cap_cpu. */
7954 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7955 /* Current best energy cpu fits better */
7956 if (max_fits < best_fits)
7957 continue;
7958
7959 /*
7960 * Both don't fit performance hint (i.e. uclamp_min)
7961 * but best energy cpu has better capacity.
7962 */
7963 if ((max_fits < 0) &&
7964 (cpu_thermal_cap <= best_thermal_cap))
7965 continue;
7966
7967 cur_delta = compute_energy(&eenv, pd, cpus, p,
7968 max_spare_cap_cpu);
7969 /* CPU utilization has changed */
7970 if (cur_delta < base_energy)
7971 goto unlock;
7972 cur_delta -= base_energy;
7973
7974 /*
7975 * Both fit for the task but best energy cpu has lower
7976 * energy impact.
7977 */
7978 if ((max_fits > 0) && (best_fits > 0) &&
7979 (cur_delta >= best_delta))
7980 continue;
7981
7982 best_delta = cur_delta;
7983 best_energy_cpu = max_spare_cap_cpu;
7984 best_fits = max_fits;
7985 best_thermal_cap = cpu_thermal_cap;
7986 }
7987 }
7988 rcu_read_unlock();
7989
7990 if ((best_fits > prev_fits) ||
7991 ((best_fits > 0) && (best_delta < prev_delta)) ||
7992 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
7993 target = best_energy_cpu;
7994
7995 return target;
7996
7997 unlock:
7998 rcu_read_unlock();
7999
8000 return target;
8001 }
8002
8003 /*
8004 * select_task_rq_fair: Select target runqueue for the waking task in domains
8005 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8006 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8007 *
8008 * Balances load by selecting the idlest CPU in the idlest group, or under
8009 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8010 *
8011 * Returns the target CPU number.
8012 */
8013 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8014 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8015 {
8016 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8017 struct sched_domain *tmp, *sd = NULL;
8018 int cpu = smp_processor_id();
8019 int new_cpu = prev_cpu;
8020 int want_affine = 0;
8021 /* SD_flags and WF_flags share the first nibble */
8022 int sd_flag = wake_flags & 0xF;
8023
8024 /*
8025 * required for stable ->cpus_allowed
8026 */
8027 lockdep_assert_held(&p->pi_lock);
8028 if (wake_flags & WF_TTWU) {
8029 record_wakee(p);
8030
8031 if ((wake_flags & WF_CURRENT_CPU) &&
8032 cpumask_test_cpu(cpu, p->cpus_ptr))
8033 return cpu;
8034
8035 if (sched_energy_enabled()) {
8036 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8037 if (new_cpu >= 0)
8038 return new_cpu;
8039 new_cpu = prev_cpu;
8040 }
8041
8042 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8043 }
8044
8045 rcu_read_lock();
8046 for_each_domain(cpu, tmp) {
8047 /*
8048 * If both 'cpu' and 'prev_cpu' are part of this domain,
8049 * cpu is a valid SD_WAKE_AFFINE target.
8050 */
8051 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8052 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8053 if (cpu != prev_cpu)
8054 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8055
8056 sd = NULL; /* Prefer wake_affine over balance flags */
8057 break;
8058 }
8059
8060 /*
8061 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8062 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8063 * will usually go to the fast path.
8064 */
8065 if (tmp->flags & sd_flag)
8066 sd = tmp;
8067 else if (!want_affine)
8068 break;
8069 }
8070
8071 if (unlikely(sd)) {
8072 /* Slow path */
8073 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8074 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8075 /* Fast path */
8076 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8077 }
8078 rcu_read_unlock();
8079
8080 return new_cpu;
8081 }
8082
8083 /*
8084 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8085 * cfs_rq_of(p) references at time of call are still valid and identify the
8086 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8087 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8088 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8089 {
8090 struct sched_entity *se = &p->se;
8091
8092 if (!task_on_rq_migrating(p)) {
8093 remove_entity_load_avg(se);
8094
8095 /*
8096 * Here, the task's PELT values have been updated according to
8097 * the current rq's clock. But if that clock hasn't been
8098 * updated in a while, a substantial idle time will be missed,
8099 * leading to an inflation after wake-up on the new rq.
8100 *
8101 * Estimate the missing time from the cfs_rq last_update_time
8102 * and update sched_avg to improve the PELT continuity after
8103 * migration.
8104 */
8105 migrate_se_pelt_lag(se);
8106 }
8107
8108 /* Tell new CPU we are migrated */
8109 se->avg.last_update_time = 0;
8110
8111 update_scan_period(p, new_cpu);
8112 }
8113
task_dead_fair(struct task_struct * p)8114 static void task_dead_fair(struct task_struct *p)
8115 {
8116 remove_entity_load_avg(&p->se);
8117 }
8118
8119 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8120 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8121 {
8122 if (rq->nr_running)
8123 return 1;
8124
8125 return newidle_balance(rq, rf) != 0;
8126 }
8127 #endif /* CONFIG_SMP */
8128
set_next_buddy(struct sched_entity * se)8129 static void set_next_buddy(struct sched_entity *se)
8130 {
8131 for_each_sched_entity(se) {
8132 if (SCHED_WARN_ON(!se->on_rq))
8133 return;
8134 if (se_is_idle(se))
8135 return;
8136 cfs_rq_of(se)->next = se;
8137 }
8138 }
8139
8140 /*
8141 * Preempt the current task with a newly woken task if needed:
8142 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)8143 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8144 {
8145 struct task_struct *curr = rq->curr;
8146 struct sched_entity *se = &curr->se, *pse = &p->se;
8147 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8148 int next_buddy_marked = 0;
8149 int cse_is_idle, pse_is_idle;
8150
8151 if (unlikely(se == pse))
8152 return;
8153
8154 /*
8155 * This is possible from callers such as attach_tasks(), in which we
8156 * unconditionally check_preempt_curr() after an enqueue (which may have
8157 * lead to a throttle). This both saves work and prevents false
8158 * next-buddy nomination below.
8159 */
8160 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8161 return;
8162
8163 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8164 set_next_buddy(pse);
8165 next_buddy_marked = 1;
8166 }
8167
8168 /*
8169 * We can come here with TIF_NEED_RESCHED already set from new task
8170 * wake up path.
8171 *
8172 * Note: this also catches the edge-case of curr being in a throttled
8173 * group (e.g. via set_curr_task), since update_curr() (in the
8174 * enqueue of curr) will have resulted in resched being set. This
8175 * prevents us from potentially nominating it as a false LAST_BUDDY
8176 * below.
8177 */
8178 if (test_tsk_need_resched(curr))
8179 return;
8180
8181 /* Idle tasks are by definition preempted by non-idle tasks. */
8182 if (unlikely(task_has_idle_policy(curr)) &&
8183 likely(!task_has_idle_policy(p)))
8184 goto preempt;
8185
8186 /*
8187 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8188 * is driven by the tick):
8189 */
8190 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8191 return;
8192
8193 find_matching_se(&se, &pse);
8194 WARN_ON_ONCE(!pse);
8195
8196 cse_is_idle = se_is_idle(se);
8197 pse_is_idle = se_is_idle(pse);
8198
8199 /*
8200 * Preempt an idle group in favor of a non-idle group (and don't preempt
8201 * in the inverse case).
8202 */
8203 if (cse_is_idle && !pse_is_idle)
8204 goto preempt;
8205 if (cse_is_idle != pse_is_idle)
8206 return;
8207
8208 cfs_rq = cfs_rq_of(se);
8209 update_curr(cfs_rq);
8210
8211 /*
8212 * XXX pick_eevdf(cfs_rq) != se ?
8213 */
8214 if (pick_eevdf(cfs_rq) == pse)
8215 goto preempt;
8216
8217 return;
8218
8219 preempt:
8220 resched_curr(rq);
8221 }
8222
8223 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)8224 static struct task_struct *pick_task_fair(struct rq *rq)
8225 {
8226 struct sched_entity *se;
8227 struct cfs_rq *cfs_rq;
8228
8229 again:
8230 cfs_rq = &rq->cfs;
8231 if (!cfs_rq->nr_running)
8232 return NULL;
8233
8234 do {
8235 struct sched_entity *curr = cfs_rq->curr;
8236
8237 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8238 if (curr) {
8239 if (curr->on_rq)
8240 update_curr(cfs_rq);
8241 else
8242 curr = NULL;
8243
8244 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8245 goto again;
8246 }
8247
8248 se = pick_next_entity(cfs_rq, curr);
8249 cfs_rq = group_cfs_rq(se);
8250 } while (cfs_rq);
8251
8252 return task_of(se);
8253 }
8254 #endif
8255
8256 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8257 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8258 {
8259 struct cfs_rq *cfs_rq = &rq->cfs;
8260 struct sched_entity *se;
8261 struct task_struct *p;
8262 int new_tasks;
8263
8264 again:
8265 if (!sched_fair_runnable(rq))
8266 goto idle;
8267
8268 #ifdef CONFIG_FAIR_GROUP_SCHED
8269 if (!prev || prev->sched_class != &fair_sched_class)
8270 goto simple;
8271
8272 /*
8273 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8274 * likely that a next task is from the same cgroup as the current.
8275 *
8276 * Therefore attempt to avoid putting and setting the entire cgroup
8277 * hierarchy, only change the part that actually changes.
8278 */
8279
8280 do {
8281 struct sched_entity *curr = cfs_rq->curr;
8282
8283 /*
8284 * Since we got here without doing put_prev_entity() we also
8285 * have to consider cfs_rq->curr. If it is still a runnable
8286 * entity, update_curr() will update its vruntime, otherwise
8287 * forget we've ever seen it.
8288 */
8289 if (curr) {
8290 if (curr->on_rq)
8291 update_curr(cfs_rq);
8292 else
8293 curr = NULL;
8294
8295 /*
8296 * This call to check_cfs_rq_runtime() will do the
8297 * throttle and dequeue its entity in the parent(s).
8298 * Therefore the nr_running test will indeed
8299 * be correct.
8300 */
8301 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8302 cfs_rq = &rq->cfs;
8303
8304 if (!cfs_rq->nr_running)
8305 goto idle;
8306
8307 goto simple;
8308 }
8309 }
8310
8311 se = pick_next_entity(cfs_rq, curr);
8312 cfs_rq = group_cfs_rq(se);
8313 } while (cfs_rq);
8314
8315 p = task_of(se);
8316
8317 /*
8318 * Since we haven't yet done put_prev_entity and if the selected task
8319 * is a different task than we started out with, try and touch the
8320 * least amount of cfs_rqs.
8321 */
8322 if (prev != p) {
8323 struct sched_entity *pse = &prev->se;
8324
8325 while (!(cfs_rq = is_same_group(se, pse))) {
8326 int se_depth = se->depth;
8327 int pse_depth = pse->depth;
8328
8329 if (se_depth <= pse_depth) {
8330 put_prev_entity(cfs_rq_of(pse), pse);
8331 pse = parent_entity(pse);
8332 }
8333 if (se_depth >= pse_depth) {
8334 set_next_entity(cfs_rq_of(se), se);
8335 se = parent_entity(se);
8336 }
8337 }
8338
8339 put_prev_entity(cfs_rq, pse);
8340 set_next_entity(cfs_rq, se);
8341 }
8342
8343 goto done;
8344 simple:
8345 #endif
8346 if (prev)
8347 put_prev_task(rq, prev);
8348
8349 do {
8350 se = pick_next_entity(cfs_rq, NULL);
8351 set_next_entity(cfs_rq, se);
8352 cfs_rq = group_cfs_rq(se);
8353 } while (cfs_rq);
8354
8355 p = task_of(se);
8356
8357 done: __maybe_unused;
8358 #ifdef CONFIG_SMP
8359 /*
8360 * Move the next running task to the front of
8361 * the list, so our cfs_tasks list becomes MRU
8362 * one.
8363 */
8364 list_move(&p->se.group_node, &rq->cfs_tasks);
8365 #endif
8366
8367 if (hrtick_enabled_fair(rq))
8368 hrtick_start_fair(rq, p);
8369
8370 update_misfit_status(p, rq);
8371 sched_fair_update_stop_tick(rq, p);
8372
8373 return p;
8374
8375 idle:
8376 if (!rf)
8377 return NULL;
8378
8379 new_tasks = newidle_balance(rq, rf);
8380
8381 /*
8382 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8383 * possible for any higher priority task to appear. In that case we
8384 * must re-start the pick_next_entity() loop.
8385 */
8386 if (new_tasks < 0)
8387 return RETRY_TASK;
8388
8389 if (new_tasks > 0)
8390 goto again;
8391
8392 /*
8393 * rq is about to be idle, check if we need to update the
8394 * lost_idle_time of clock_pelt
8395 */
8396 update_idle_rq_clock_pelt(rq);
8397
8398 return NULL;
8399 }
8400
__pick_next_task_fair(struct rq * rq)8401 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8402 {
8403 return pick_next_task_fair(rq, NULL, NULL);
8404 }
8405
8406 /*
8407 * Account for a descheduled task:
8408 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8409 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8410 {
8411 struct sched_entity *se = &prev->se;
8412 struct cfs_rq *cfs_rq;
8413
8414 for_each_sched_entity(se) {
8415 cfs_rq = cfs_rq_of(se);
8416 put_prev_entity(cfs_rq, se);
8417 }
8418 }
8419
8420 /*
8421 * sched_yield() is very simple
8422 */
yield_task_fair(struct rq * rq)8423 static void yield_task_fair(struct rq *rq)
8424 {
8425 struct task_struct *curr = rq->curr;
8426 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8427 struct sched_entity *se = &curr->se;
8428
8429 /*
8430 * Are we the only task in the tree?
8431 */
8432 if (unlikely(rq->nr_running == 1))
8433 return;
8434
8435 clear_buddies(cfs_rq, se);
8436
8437 update_rq_clock(rq);
8438 /*
8439 * Update run-time statistics of the 'current'.
8440 */
8441 update_curr(cfs_rq);
8442 /*
8443 * Tell update_rq_clock() that we've just updated,
8444 * so we don't do microscopic update in schedule()
8445 * and double the fastpath cost.
8446 */
8447 rq_clock_skip_update(rq);
8448
8449 se->deadline += calc_delta_fair(se->slice, se);
8450 }
8451
yield_to_task_fair(struct rq * rq,struct task_struct * p)8452 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8453 {
8454 struct sched_entity *se = &p->se;
8455
8456 /* throttled hierarchies are not runnable */
8457 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8458 return false;
8459
8460 /* Tell the scheduler that we'd really like pse to run next. */
8461 set_next_buddy(se);
8462
8463 yield_task_fair(rq);
8464
8465 return true;
8466 }
8467
8468 #ifdef CONFIG_SMP
8469 /**************************************************
8470 * Fair scheduling class load-balancing methods.
8471 *
8472 * BASICS
8473 *
8474 * The purpose of load-balancing is to achieve the same basic fairness the
8475 * per-CPU scheduler provides, namely provide a proportional amount of compute
8476 * time to each task. This is expressed in the following equation:
8477 *
8478 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8479 *
8480 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8481 * W_i,0 is defined as:
8482 *
8483 * W_i,0 = \Sum_j w_i,j (2)
8484 *
8485 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8486 * is derived from the nice value as per sched_prio_to_weight[].
8487 *
8488 * The weight average is an exponential decay average of the instantaneous
8489 * weight:
8490 *
8491 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8492 *
8493 * C_i is the compute capacity of CPU i, typically it is the
8494 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8495 * can also include other factors [XXX].
8496 *
8497 * To achieve this balance we define a measure of imbalance which follows
8498 * directly from (1):
8499 *
8500 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
8501 *
8502 * We them move tasks around to minimize the imbalance. In the continuous
8503 * function space it is obvious this converges, in the discrete case we get
8504 * a few fun cases generally called infeasible weight scenarios.
8505 *
8506 * [XXX expand on:
8507 * - infeasible weights;
8508 * - local vs global optima in the discrete case. ]
8509 *
8510 *
8511 * SCHED DOMAINS
8512 *
8513 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8514 * for all i,j solution, we create a tree of CPUs that follows the hardware
8515 * topology where each level pairs two lower groups (or better). This results
8516 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8517 * tree to only the first of the previous level and we decrease the frequency
8518 * of load-balance at each level inv. proportional to the number of CPUs in
8519 * the groups.
8520 *
8521 * This yields:
8522 *
8523 * log_2 n 1 n
8524 * \Sum { --- * --- * 2^i } = O(n) (5)
8525 * i = 0 2^i 2^i
8526 * `- size of each group
8527 * | | `- number of CPUs doing load-balance
8528 * | `- freq
8529 * `- sum over all levels
8530 *
8531 * Coupled with a limit on how many tasks we can migrate every balance pass,
8532 * this makes (5) the runtime complexity of the balancer.
8533 *
8534 * An important property here is that each CPU is still (indirectly) connected
8535 * to every other CPU in at most O(log n) steps:
8536 *
8537 * The adjacency matrix of the resulting graph is given by:
8538 *
8539 * log_2 n
8540 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
8541 * k = 0
8542 *
8543 * And you'll find that:
8544 *
8545 * A^(log_2 n)_i,j != 0 for all i,j (7)
8546 *
8547 * Showing there's indeed a path between every CPU in at most O(log n) steps.
8548 * The task movement gives a factor of O(m), giving a convergence complexity
8549 * of:
8550 *
8551 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
8552 *
8553 *
8554 * WORK CONSERVING
8555 *
8556 * In order to avoid CPUs going idle while there's still work to do, new idle
8557 * balancing is more aggressive and has the newly idle CPU iterate up the domain
8558 * tree itself instead of relying on other CPUs to bring it work.
8559 *
8560 * This adds some complexity to both (5) and (8) but it reduces the total idle
8561 * time.
8562 *
8563 * [XXX more?]
8564 *
8565 *
8566 * CGROUPS
8567 *
8568 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8569 *
8570 * s_k,i
8571 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8572 * S_k
8573 *
8574 * Where
8575 *
8576 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8577 *
8578 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8579 *
8580 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8581 * property.
8582 *
8583 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8584 * rewrite all of this once again.]
8585 */
8586
8587 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8588
8589 enum fbq_type { regular, remote, all };
8590
8591 /*
8592 * 'group_type' describes the group of CPUs at the moment of load balancing.
8593 *
8594 * The enum is ordered by pulling priority, with the group with lowest priority
8595 * first so the group_type can simply be compared when selecting the busiest
8596 * group. See update_sd_pick_busiest().
8597 */
8598 enum group_type {
8599 /* The group has spare capacity that can be used to run more tasks. */
8600 group_has_spare = 0,
8601 /*
8602 * The group is fully used and the tasks don't compete for more CPU
8603 * cycles. Nevertheless, some tasks might wait before running.
8604 */
8605 group_fully_busy,
8606 /*
8607 * One task doesn't fit with CPU's capacity and must be migrated to a
8608 * more powerful CPU.
8609 */
8610 group_misfit_task,
8611 /*
8612 * Balance SMT group that's fully busy. Can benefit from migration
8613 * a task on SMT with busy sibling to another CPU on idle core.
8614 */
8615 group_smt_balance,
8616 /*
8617 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8618 * and the task should be migrated to it instead of running on the
8619 * current CPU.
8620 */
8621 group_asym_packing,
8622 /*
8623 * The tasks' affinity constraints previously prevented the scheduler
8624 * from balancing the load across the system.
8625 */
8626 group_imbalanced,
8627 /*
8628 * The CPU is overloaded and can't provide expected CPU cycles to all
8629 * tasks.
8630 */
8631 group_overloaded
8632 };
8633
8634 enum migration_type {
8635 migrate_load = 0,
8636 migrate_util,
8637 migrate_task,
8638 migrate_misfit
8639 };
8640
8641 #define LBF_ALL_PINNED 0x01
8642 #define LBF_NEED_BREAK 0x02
8643 #define LBF_DST_PINNED 0x04
8644 #define LBF_SOME_PINNED 0x08
8645 #define LBF_ACTIVE_LB 0x10
8646
8647 struct lb_env {
8648 struct sched_domain *sd;
8649
8650 struct rq *src_rq;
8651 int src_cpu;
8652
8653 int dst_cpu;
8654 struct rq *dst_rq;
8655
8656 struct cpumask *dst_grpmask;
8657 int new_dst_cpu;
8658 enum cpu_idle_type idle;
8659 long imbalance;
8660 /* The set of CPUs under consideration for load-balancing */
8661 struct cpumask *cpus;
8662
8663 unsigned int flags;
8664
8665 unsigned int loop;
8666 unsigned int loop_break;
8667 unsigned int loop_max;
8668
8669 enum fbq_type fbq_type;
8670 enum migration_type migration_type;
8671 struct list_head tasks;
8672 };
8673
8674 /*
8675 * Is this task likely cache-hot:
8676 */
task_hot(struct task_struct * p,struct lb_env * env)8677 static int task_hot(struct task_struct *p, struct lb_env *env)
8678 {
8679 s64 delta;
8680
8681 lockdep_assert_rq_held(env->src_rq);
8682
8683 if (p->sched_class != &fair_sched_class)
8684 return 0;
8685
8686 if (unlikely(task_has_idle_policy(p)))
8687 return 0;
8688
8689 /* SMT siblings share cache */
8690 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8691 return 0;
8692
8693 /*
8694 * Buddy candidates are cache hot:
8695 */
8696 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8697 (&p->se == cfs_rq_of(&p->se)->next))
8698 return 1;
8699
8700 if (sysctl_sched_migration_cost == -1)
8701 return 1;
8702
8703 /*
8704 * Don't migrate task if the task's cookie does not match
8705 * with the destination CPU's core cookie.
8706 */
8707 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8708 return 1;
8709
8710 if (sysctl_sched_migration_cost == 0)
8711 return 0;
8712
8713 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8714
8715 return delta < (s64)sysctl_sched_migration_cost;
8716 }
8717
8718 #ifdef CONFIG_NUMA_BALANCING
8719 /*
8720 * Returns 1, if task migration degrades locality
8721 * Returns 0, if task migration improves locality i.e migration preferred.
8722 * Returns -1, if task migration is not affected by locality.
8723 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8724 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8725 {
8726 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8727 unsigned long src_weight, dst_weight;
8728 int src_nid, dst_nid, dist;
8729
8730 if (!static_branch_likely(&sched_numa_balancing))
8731 return -1;
8732
8733 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8734 return -1;
8735
8736 src_nid = cpu_to_node(env->src_cpu);
8737 dst_nid = cpu_to_node(env->dst_cpu);
8738
8739 if (src_nid == dst_nid)
8740 return -1;
8741
8742 /* Migrating away from the preferred node is always bad. */
8743 if (src_nid == p->numa_preferred_nid) {
8744 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8745 return 1;
8746 else
8747 return -1;
8748 }
8749
8750 /* Encourage migration to the preferred node. */
8751 if (dst_nid == p->numa_preferred_nid)
8752 return 0;
8753
8754 /* Leaving a core idle is often worse than degrading locality. */
8755 if (env->idle == CPU_IDLE)
8756 return -1;
8757
8758 dist = node_distance(src_nid, dst_nid);
8759 if (numa_group) {
8760 src_weight = group_weight(p, src_nid, dist);
8761 dst_weight = group_weight(p, dst_nid, dist);
8762 } else {
8763 src_weight = task_weight(p, src_nid, dist);
8764 dst_weight = task_weight(p, dst_nid, dist);
8765 }
8766
8767 return dst_weight < src_weight;
8768 }
8769
8770 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8771 static inline int migrate_degrades_locality(struct task_struct *p,
8772 struct lb_env *env)
8773 {
8774 return -1;
8775 }
8776 #endif
8777
8778 /*
8779 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8780 */
8781 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8782 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8783 {
8784 int tsk_cache_hot;
8785
8786 lockdep_assert_rq_held(env->src_rq);
8787
8788 /*
8789 * We do not migrate tasks that are:
8790 * 1) throttled_lb_pair, or
8791 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8792 * 3) running (obviously), or
8793 * 4) are cache-hot on their current CPU.
8794 */
8795 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8796 return 0;
8797
8798 /* Disregard pcpu kthreads; they are where they need to be. */
8799 if (kthread_is_per_cpu(p))
8800 return 0;
8801
8802 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8803 int cpu;
8804
8805 schedstat_inc(p->stats.nr_failed_migrations_affine);
8806
8807 env->flags |= LBF_SOME_PINNED;
8808
8809 /*
8810 * Remember if this task can be migrated to any other CPU in
8811 * our sched_group. We may want to revisit it if we couldn't
8812 * meet load balance goals by pulling other tasks on src_cpu.
8813 *
8814 * Avoid computing new_dst_cpu
8815 * - for NEWLY_IDLE
8816 * - if we have already computed one in current iteration
8817 * - if it's an active balance
8818 */
8819 if (env->idle == CPU_NEWLY_IDLE ||
8820 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8821 return 0;
8822
8823 /* Prevent to re-select dst_cpu via env's CPUs: */
8824 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8825 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8826 env->flags |= LBF_DST_PINNED;
8827 env->new_dst_cpu = cpu;
8828 break;
8829 }
8830 }
8831
8832 return 0;
8833 }
8834
8835 /* Record that we found at least one task that could run on dst_cpu */
8836 env->flags &= ~LBF_ALL_PINNED;
8837
8838 if (task_on_cpu(env->src_rq, p)) {
8839 schedstat_inc(p->stats.nr_failed_migrations_running);
8840 return 0;
8841 }
8842
8843 /*
8844 * Aggressive migration if:
8845 * 1) active balance
8846 * 2) destination numa is preferred
8847 * 3) task is cache cold, or
8848 * 4) too many balance attempts have failed.
8849 */
8850 if (env->flags & LBF_ACTIVE_LB)
8851 return 1;
8852
8853 tsk_cache_hot = migrate_degrades_locality(p, env);
8854 if (tsk_cache_hot == -1)
8855 tsk_cache_hot = task_hot(p, env);
8856
8857 if (tsk_cache_hot <= 0 ||
8858 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8859 if (tsk_cache_hot == 1) {
8860 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8861 schedstat_inc(p->stats.nr_forced_migrations);
8862 }
8863 return 1;
8864 }
8865
8866 schedstat_inc(p->stats.nr_failed_migrations_hot);
8867 return 0;
8868 }
8869
8870 /*
8871 * detach_task() -- detach the task for the migration specified in env
8872 */
detach_task(struct task_struct * p,struct lb_env * env)8873 static void detach_task(struct task_struct *p, struct lb_env *env)
8874 {
8875 lockdep_assert_rq_held(env->src_rq);
8876
8877 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8878 set_task_cpu(p, env->dst_cpu);
8879 }
8880
8881 /*
8882 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8883 * part of active balancing operations within "domain".
8884 *
8885 * Returns a task if successful and NULL otherwise.
8886 */
detach_one_task(struct lb_env * env)8887 static struct task_struct *detach_one_task(struct lb_env *env)
8888 {
8889 struct task_struct *p;
8890
8891 lockdep_assert_rq_held(env->src_rq);
8892
8893 list_for_each_entry_reverse(p,
8894 &env->src_rq->cfs_tasks, se.group_node) {
8895 if (!can_migrate_task(p, env))
8896 continue;
8897
8898 detach_task(p, env);
8899
8900 /*
8901 * Right now, this is only the second place where
8902 * lb_gained[env->idle] is updated (other is detach_tasks)
8903 * so we can safely collect stats here rather than
8904 * inside detach_tasks().
8905 */
8906 schedstat_inc(env->sd->lb_gained[env->idle]);
8907 return p;
8908 }
8909 return NULL;
8910 }
8911
8912 /*
8913 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8914 * busiest_rq, as part of a balancing operation within domain "sd".
8915 *
8916 * Returns number of detached tasks if successful and 0 otherwise.
8917 */
detach_tasks(struct lb_env * env)8918 static int detach_tasks(struct lb_env *env)
8919 {
8920 struct list_head *tasks = &env->src_rq->cfs_tasks;
8921 unsigned long util, load;
8922 struct task_struct *p;
8923 int detached = 0;
8924
8925 lockdep_assert_rq_held(env->src_rq);
8926
8927 /*
8928 * Source run queue has been emptied by another CPU, clear
8929 * LBF_ALL_PINNED flag as we will not test any task.
8930 */
8931 if (env->src_rq->nr_running <= 1) {
8932 env->flags &= ~LBF_ALL_PINNED;
8933 return 0;
8934 }
8935
8936 if (env->imbalance <= 0)
8937 return 0;
8938
8939 while (!list_empty(tasks)) {
8940 /*
8941 * We don't want to steal all, otherwise we may be treated likewise,
8942 * which could at worst lead to a livelock crash.
8943 */
8944 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8945 break;
8946
8947 env->loop++;
8948 /*
8949 * We've more or less seen every task there is, call it quits
8950 * unless we haven't found any movable task yet.
8951 */
8952 if (env->loop > env->loop_max &&
8953 !(env->flags & LBF_ALL_PINNED))
8954 break;
8955
8956 /* take a breather every nr_migrate tasks */
8957 if (env->loop > env->loop_break) {
8958 env->loop_break += SCHED_NR_MIGRATE_BREAK;
8959 env->flags |= LBF_NEED_BREAK;
8960 break;
8961 }
8962
8963 p = list_last_entry(tasks, struct task_struct, se.group_node);
8964
8965 if (!can_migrate_task(p, env))
8966 goto next;
8967
8968 switch (env->migration_type) {
8969 case migrate_load:
8970 /*
8971 * Depending of the number of CPUs and tasks and the
8972 * cgroup hierarchy, task_h_load() can return a null
8973 * value. Make sure that env->imbalance decreases
8974 * otherwise detach_tasks() will stop only after
8975 * detaching up to loop_max tasks.
8976 */
8977 load = max_t(unsigned long, task_h_load(p), 1);
8978
8979 if (sched_feat(LB_MIN) &&
8980 load < 16 && !env->sd->nr_balance_failed)
8981 goto next;
8982
8983 /*
8984 * Make sure that we don't migrate too much load.
8985 * Nevertheless, let relax the constraint if
8986 * scheduler fails to find a good waiting task to
8987 * migrate.
8988 */
8989 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8990 goto next;
8991
8992 env->imbalance -= load;
8993 break;
8994
8995 case migrate_util:
8996 util = task_util_est(p);
8997
8998 if (util > env->imbalance)
8999 goto next;
9000
9001 env->imbalance -= util;
9002 break;
9003
9004 case migrate_task:
9005 env->imbalance--;
9006 break;
9007
9008 case migrate_misfit:
9009 /* This is not a misfit task */
9010 if (task_fits_cpu(p, env->src_cpu))
9011 goto next;
9012
9013 env->imbalance = 0;
9014 break;
9015 }
9016
9017 detach_task(p, env);
9018 list_add(&p->se.group_node, &env->tasks);
9019
9020 detached++;
9021
9022 #ifdef CONFIG_PREEMPTION
9023 /*
9024 * NEWIDLE balancing is a source of latency, so preemptible
9025 * kernels will stop after the first task is detached to minimize
9026 * the critical section.
9027 */
9028 if (env->idle == CPU_NEWLY_IDLE)
9029 break;
9030 #endif
9031
9032 /*
9033 * We only want to steal up to the prescribed amount of
9034 * load/util/tasks.
9035 */
9036 if (env->imbalance <= 0)
9037 break;
9038
9039 continue;
9040 next:
9041 list_move(&p->se.group_node, tasks);
9042 }
9043
9044 /*
9045 * Right now, this is one of only two places we collect this stat
9046 * so we can safely collect detach_one_task() stats here rather
9047 * than inside detach_one_task().
9048 */
9049 schedstat_add(env->sd->lb_gained[env->idle], detached);
9050
9051 return detached;
9052 }
9053
9054 /*
9055 * attach_task() -- attach the task detached by detach_task() to its new rq.
9056 */
attach_task(struct rq * rq,struct task_struct * p)9057 static void attach_task(struct rq *rq, struct task_struct *p)
9058 {
9059 lockdep_assert_rq_held(rq);
9060
9061 WARN_ON_ONCE(task_rq(p) != rq);
9062 activate_task(rq, p, ENQUEUE_NOCLOCK);
9063 check_preempt_curr(rq, p, 0);
9064 }
9065
9066 /*
9067 * attach_one_task() -- attaches the task returned from detach_one_task() to
9068 * its new rq.
9069 */
attach_one_task(struct rq * rq,struct task_struct * p)9070 static void attach_one_task(struct rq *rq, struct task_struct *p)
9071 {
9072 struct rq_flags rf;
9073
9074 rq_lock(rq, &rf);
9075 update_rq_clock(rq);
9076 attach_task(rq, p);
9077 rq_unlock(rq, &rf);
9078 }
9079
9080 /*
9081 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9082 * new rq.
9083 */
attach_tasks(struct lb_env * env)9084 static void attach_tasks(struct lb_env *env)
9085 {
9086 struct list_head *tasks = &env->tasks;
9087 struct task_struct *p;
9088 struct rq_flags rf;
9089
9090 rq_lock(env->dst_rq, &rf);
9091 update_rq_clock(env->dst_rq);
9092
9093 while (!list_empty(tasks)) {
9094 p = list_first_entry(tasks, struct task_struct, se.group_node);
9095 list_del_init(&p->se.group_node);
9096
9097 attach_task(env->dst_rq, p);
9098 }
9099
9100 rq_unlock(env->dst_rq, &rf);
9101 }
9102
9103 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9104 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9105 {
9106 if (cfs_rq->avg.load_avg)
9107 return true;
9108
9109 if (cfs_rq->avg.util_avg)
9110 return true;
9111
9112 return false;
9113 }
9114
others_have_blocked(struct rq * rq)9115 static inline bool others_have_blocked(struct rq *rq)
9116 {
9117 if (READ_ONCE(rq->avg_rt.util_avg))
9118 return true;
9119
9120 if (READ_ONCE(rq->avg_dl.util_avg))
9121 return true;
9122
9123 if (thermal_load_avg(rq))
9124 return true;
9125
9126 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9127 if (READ_ONCE(rq->avg_irq.util_avg))
9128 return true;
9129 #endif
9130
9131 return false;
9132 }
9133
update_blocked_load_tick(struct rq * rq)9134 static inline void update_blocked_load_tick(struct rq *rq)
9135 {
9136 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9137 }
9138
update_blocked_load_status(struct rq * rq,bool has_blocked)9139 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9140 {
9141 if (!has_blocked)
9142 rq->has_blocked_load = 0;
9143 }
9144 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9145 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9146 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9147 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9148 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9149 #endif
9150
__update_blocked_others(struct rq * rq,bool * done)9151 static bool __update_blocked_others(struct rq *rq, bool *done)
9152 {
9153 const struct sched_class *curr_class;
9154 u64 now = rq_clock_pelt(rq);
9155 unsigned long thermal_pressure;
9156 bool decayed;
9157
9158 /*
9159 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9160 * DL and IRQ signals have been updated before updating CFS.
9161 */
9162 curr_class = rq->curr->sched_class;
9163
9164 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9165
9166 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9167 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9168 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9169 update_irq_load_avg(rq, 0);
9170
9171 if (others_have_blocked(rq))
9172 *done = false;
9173
9174 return decayed;
9175 }
9176
9177 #ifdef CONFIG_FAIR_GROUP_SCHED
9178
__update_blocked_fair(struct rq * rq,bool * done)9179 static bool __update_blocked_fair(struct rq *rq, bool *done)
9180 {
9181 struct cfs_rq *cfs_rq, *pos;
9182 bool decayed = false;
9183 int cpu = cpu_of(rq);
9184
9185 /*
9186 * Iterates the task_group tree in a bottom up fashion, see
9187 * list_add_leaf_cfs_rq() for details.
9188 */
9189 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9190 struct sched_entity *se;
9191
9192 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9193 update_tg_load_avg(cfs_rq);
9194
9195 if (cfs_rq->nr_running == 0)
9196 update_idle_cfs_rq_clock_pelt(cfs_rq);
9197
9198 if (cfs_rq == &rq->cfs)
9199 decayed = true;
9200 }
9201
9202 /* Propagate pending load changes to the parent, if any: */
9203 se = cfs_rq->tg->se[cpu];
9204 if (se && !skip_blocked_update(se))
9205 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9206
9207 /*
9208 * There can be a lot of idle CPU cgroups. Don't let fully
9209 * decayed cfs_rqs linger on the list.
9210 */
9211 if (cfs_rq_is_decayed(cfs_rq))
9212 list_del_leaf_cfs_rq(cfs_rq);
9213
9214 /* Don't need periodic decay once load/util_avg are null */
9215 if (cfs_rq_has_blocked(cfs_rq))
9216 *done = false;
9217 }
9218
9219 return decayed;
9220 }
9221
9222 /*
9223 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9224 * This needs to be done in a top-down fashion because the load of a child
9225 * group is a fraction of its parents load.
9226 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9227 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9228 {
9229 struct rq *rq = rq_of(cfs_rq);
9230 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9231 unsigned long now = jiffies;
9232 unsigned long load;
9233
9234 if (cfs_rq->last_h_load_update == now)
9235 return;
9236
9237 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9238 for_each_sched_entity(se) {
9239 cfs_rq = cfs_rq_of(se);
9240 WRITE_ONCE(cfs_rq->h_load_next, se);
9241 if (cfs_rq->last_h_load_update == now)
9242 break;
9243 }
9244
9245 if (!se) {
9246 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9247 cfs_rq->last_h_load_update = now;
9248 }
9249
9250 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9251 load = cfs_rq->h_load;
9252 load = div64_ul(load * se->avg.load_avg,
9253 cfs_rq_load_avg(cfs_rq) + 1);
9254 cfs_rq = group_cfs_rq(se);
9255 cfs_rq->h_load = load;
9256 cfs_rq->last_h_load_update = now;
9257 }
9258 }
9259
task_h_load(struct task_struct * p)9260 static unsigned long task_h_load(struct task_struct *p)
9261 {
9262 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9263
9264 update_cfs_rq_h_load(cfs_rq);
9265 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9266 cfs_rq_load_avg(cfs_rq) + 1);
9267 }
9268 #else
__update_blocked_fair(struct rq * rq,bool * done)9269 static bool __update_blocked_fair(struct rq *rq, bool *done)
9270 {
9271 struct cfs_rq *cfs_rq = &rq->cfs;
9272 bool decayed;
9273
9274 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9275 if (cfs_rq_has_blocked(cfs_rq))
9276 *done = false;
9277
9278 return decayed;
9279 }
9280
task_h_load(struct task_struct * p)9281 static unsigned long task_h_load(struct task_struct *p)
9282 {
9283 return p->se.avg.load_avg;
9284 }
9285 #endif
9286
update_blocked_averages(int cpu)9287 static void update_blocked_averages(int cpu)
9288 {
9289 bool decayed = false, done = true;
9290 struct rq *rq = cpu_rq(cpu);
9291 struct rq_flags rf;
9292
9293 rq_lock_irqsave(rq, &rf);
9294 update_blocked_load_tick(rq);
9295 update_rq_clock(rq);
9296
9297 decayed |= __update_blocked_others(rq, &done);
9298 decayed |= __update_blocked_fair(rq, &done);
9299
9300 update_blocked_load_status(rq, !done);
9301 if (decayed)
9302 cpufreq_update_util(rq, 0);
9303 rq_unlock_irqrestore(rq, &rf);
9304 }
9305
9306 /********** Helpers for find_busiest_group ************************/
9307
9308 /*
9309 * sg_lb_stats - stats of a sched_group required for load_balancing
9310 */
9311 struct sg_lb_stats {
9312 unsigned long avg_load; /*Avg load across the CPUs of the group */
9313 unsigned long group_load; /* Total load over the CPUs of the group */
9314 unsigned long group_capacity;
9315 unsigned long group_util; /* Total utilization over the CPUs of the group */
9316 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9317 unsigned int sum_nr_running; /* Nr of tasks running in the group */
9318 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9319 unsigned int idle_cpus;
9320 unsigned int group_weight;
9321 enum group_type group_type;
9322 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9323 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9324 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9325 #ifdef CONFIG_NUMA_BALANCING
9326 unsigned int nr_numa_running;
9327 unsigned int nr_preferred_running;
9328 #endif
9329 };
9330
9331 /*
9332 * sd_lb_stats - Structure to store the statistics of a sched_domain
9333 * during load balancing.
9334 */
9335 struct sd_lb_stats {
9336 struct sched_group *busiest; /* Busiest group in this sd */
9337 struct sched_group *local; /* Local group in this sd */
9338 unsigned long total_load; /* Total load of all groups in sd */
9339 unsigned long total_capacity; /* Total capacity of all groups in sd */
9340 unsigned long avg_load; /* Average load across all groups in sd */
9341 unsigned int prefer_sibling; /* tasks should go to sibling first */
9342
9343 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9344 struct sg_lb_stats local_stat; /* Statistics of the local group */
9345 };
9346
init_sd_lb_stats(struct sd_lb_stats * sds)9347 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9348 {
9349 /*
9350 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9351 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9352 * We must however set busiest_stat::group_type and
9353 * busiest_stat::idle_cpus to the worst busiest group because
9354 * update_sd_pick_busiest() reads these before assignment.
9355 */
9356 *sds = (struct sd_lb_stats){
9357 .busiest = NULL,
9358 .local = NULL,
9359 .total_load = 0UL,
9360 .total_capacity = 0UL,
9361 .busiest_stat = {
9362 .idle_cpus = UINT_MAX,
9363 .group_type = group_has_spare,
9364 },
9365 };
9366 }
9367
scale_rt_capacity(int cpu)9368 static unsigned long scale_rt_capacity(int cpu)
9369 {
9370 struct rq *rq = cpu_rq(cpu);
9371 unsigned long max = arch_scale_cpu_capacity(cpu);
9372 unsigned long used, free;
9373 unsigned long irq;
9374
9375 irq = cpu_util_irq(rq);
9376
9377 if (unlikely(irq >= max))
9378 return 1;
9379
9380 /*
9381 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9382 * (running and not running) with weights 0 and 1024 respectively.
9383 * avg_thermal.load_avg tracks thermal pressure and the weighted
9384 * average uses the actual delta max capacity(load).
9385 */
9386 used = READ_ONCE(rq->avg_rt.util_avg);
9387 used += READ_ONCE(rq->avg_dl.util_avg);
9388 used += thermal_load_avg(rq);
9389
9390 if (unlikely(used >= max))
9391 return 1;
9392
9393 free = max - used;
9394
9395 return scale_irq_capacity(free, irq, max);
9396 }
9397
update_cpu_capacity(struct sched_domain * sd,int cpu)9398 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9399 {
9400 unsigned long capacity = scale_rt_capacity(cpu);
9401 struct sched_group *sdg = sd->groups;
9402
9403 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9404
9405 if (!capacity)
9406 capacity = 1;
9407
9408 cpu_rq(cpu)->cpu_capacity = capacity;
9409 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9410
9411 sdg->sgc->capacity = capacity;
9412 sdg->sgc->min_capacity = capacity;
9413 sdg->sgc->max_capacity = capacity;
9414 }
9415
update_group_capacity(struct sched_domain * sd,int cpu)9416 void update_group_capacity(struct sched_domain *sd, int cpu)
9417 {
9418 struct sched_domain *child = sd->child;
9419 struct sched_group *group, *sdg = sd->groups;
9420 unsigned long capacity, min_capacity, max_capacity;
9421 unsigned long interval;
9422
9423 interval = msecs_to_jiffies(sd->balance_interval);
9424 interval = clamp(interval, 1UL, max_load_balance_interval);
9425 sdg->sgc->next_update = jiffies + interval;
9426
9427 if (!child) {
9428 update_cpu_capacity(sd, cpu);
9429 return;
9430 }
9431
9432 capacity = 0;
9433 min_capacity = ULONG_MAX;
9434 max_capacity = 0;
9435
9436 if (child->flags & SD_OVERLAP) {
9437 /*
9438 * SD_OVERLAP domains cannot assume that child groups
9439 * span the current group.
9440 */
9441
9442 for_each_cpu(cpu, sched_group_span(sdg)) {
9443 unsigned long cpu_cap = capacity_of(cpu);
9444
9445 capacity += cpu_cap;
9446 min_capacity = min(cpu_cap, min_capacity);
9447 max_capacity = max(cpu_cap, max_capacity);
9448 }
9449 } else {
9450 /*
9451 * !SD_OVERLAP domains can assume that child groups
9452 * span the current group.
9453 */
9454
9455 group = child->groups;
9456 do {
9457 struct sched_group_capacity *sgc = group->sgc;
9458
9459 capacity += sgc->capacity;
9460 min_capacity = min(sgc->min_capacity, min_capacity);
9461 max_capacity = max(sgc->max_capacity, max_capacity);
9462 group = group->next;
9463 } while (group != child->groups);
9464 }
9465
9466 sdg->sgc->capacity = capacity;
9467 sdg->sgc->min_capacity = min_capacity;
9468 sdg->sgc->max_capacity = max_capacity;
9469 }
9470
9471 /*
9472 * Check whether the capacity of the rq has been noticeably reduced by side
9473 * activity. The imbalance_pct is used for the threshold.
9474 * Return true is the capacity is reduced
9475 */
9476 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9477 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9478 {
9479 return ((rq->cpu_capacity * sd->imbalance_pct) <
9480 (rq->cpu_capacity_orig * 100));
9481 }
9482
9483 /*
9484 * Check whether a rq has a misfit task and if it looks like we can actually
9485 * help that task: we can migrate the task to a CPU of higher capacity, or
9486 * the task's current CPU is heavily pressured.
9487 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9488 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9489 {
9490 return rq->misfit_task_load &&
9491 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9492 check_cpu_capacity(rq, sd));
9493 }
9494
9495 /*
9496 * Group imbalance indicates (and tries to solve) the problem where balancing
9497 * groups is inadequate due to ->cpus_ptr constraints.
9498 *
9499 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9500 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9501 * Something like:
9502 *
9503 * { 0 1 2 3 } { 4 5 6 7 }
9504 * * * * *
9505 *
9506 * If we were to balance group-wise we'd place two tasks in the first group and
9507 * two tasks in the second group. Clearly this is undesired as it will overload
9508 * cpu 3 and leave one of the CPUs in the second group unused.
9509 *
9510 * The current solution to this issue is detecting the skew in the first group
9511 * by noticing the lower domain failed to reach balance and had difficulty
9512 * moving tasks due to affinity constraints.
9513 *
9514 * When this is so detected; this group becomes a candidate for busiest; see
9515 * update_sd_pick_busiest(). And calculate_imbalance() and
9516 * find_busiest_group() avoid some of the usual balance conditions to allow it
9517 * to create an effective group imbalance.
9518 *
9519 * This is a somewhat tricky proposition since the next run might not find the
9520 * group imbalance and decide the groups need to be balanced again. A most
9521 * subtle and fragile situation.
9522 */
9523
sg_imbalanced(struct sched_group * group)9524 static inline int sg_imbalanced(struct sched_group *group)
9525 {
9526 return group->sgc->imbalance;
9527 }
9528
9529 /*
9530 * group_has_capacity returns true if the group has spare capacity that could
9531 * be used by some tasks.
9532 * We consider that a group has spare capacity if the number of task is
9533 * smaller than the number of CPUs or if the utilization is lower than the
9534 * available capacity for CFS tasks.
9535 * For the latter, we use a threshold to stabilize the state, to take into
9536 * account the variance of the tasks' load and to return true if the available
9537 * capacity in meaningful for the load balancer.
9538 * As an example, an available capacity of 1% can appear but it doesn't make
9539 * any benefit for the load balance.
9540 */
9541 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9542 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9543 {
9544 if (sgs->sum_nr_running < sgs->group_weight)
9545 return true;
9546
9547 if ((sgs->group_capacity * imbalance_pct) <
9548 (sgs->group_runnable * 100))
9549 return false;
9550
9551 if ((sgs->group_capacity * 100) >
9552 (sgs->group_util * imbalance_pct))
9553 return true;
9554
9555 return false;
9556 }
9557
9558 /*
9559 * group_is_overloaded returns true if the group has more tasks than it can
9560 * handle.
9561 * group_is_overloaded is not equals to !group_has_capacity because a group
9562 * with the exact right number of tasks, has no more spare capacity but is not
9563 * overloaded so both group_has_capacity and group_is_overloaded return
9564 * false.
9565 */
9566 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9567 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9568 {
9569 if (sgs->sum_nr_running <= sgs->group_weight)
9570 return false;
9571
9572 if ((sgs->group_capacity * 100) <
9573 (sgs->group_util * imbalance_pct))
9574 return true;
9575
9576 if ((sgs->group_capacity * imbalance_pct) <
9577 (sgs->group_runnable * 100))
9578 return true;
9579
9580 return false;
9581 }
9582
9583 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9584 group_type group_classify(unsigned int imbalance_pct,
9585 struct sched_group *group,
9586 struct sg_lb_stats *sgs)
9587 {
9588 if (group_is_overloaded(imbalance_pct, sgs))
9589 return group_overloaded;
9590
9591 if (sg_imbalanced(group))
9592 return group_imbalanced;
9593
9594 if (sgs->group_asym_packing)
9595 return group_asym_packing;
9596
9597 if (sgs->group_smt_balance)
9598 return group_smt_balance;
9599
9600 if (sgs->group_misfit_task_load)
9601 return group_misfit_task;
9602
9603 if (!group_has_capacity(imbalance_pct, sgs))
9604 return group_fully_busy;
9605
9606 return group_has_spare;
9607 }
9608
9609 /**
9610 * sched_use_asym_prio - Check whether asym_packing priority must be used
9611 * @sd: The scheduling domain of the load balancing
9612 * @cpu: A CPU
9613 *
9614 * Always use CPU priority when balancing load between SMT siblings. When
9615 * balancing load between cores, it is not sufficient that @cpu is idle. Only
9616 * use CPU priority if the whole core is idle.
9617 *
9618 * Returns: True if the priority of @cpu must be followed. False otherwise.
9619 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)9620 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9621 {
9622 if (!sched_smt_active())
9623 return true;
9624
9625 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9626 }
9627
9628 /**
9629 * sched_asym - Check if the destination CPU can do asym_packing load balance
9630 * @env: The load balancing environment
9631 * @sds: Load-balancing data with statistics of the local group
9632 * @sgs: Load-balancing statistics of the candidate busiest group
9633 * @group: The candidate busiest group
9634 *
9635 * @env::dst_cpu can do asym_packing if it has higher priority than the
9636 * preferred CPU of @group.
9637 *
9638 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9639 * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9640 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9641 * imbalances in the number of CPUS are dealt with in find_busiest_group().
9642 *
9643 * If we are balancing load within an SMT core, or at DIE domain level, always
9644 * proceed.
9645 *
9646 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9647 * otherwise.
9648 */
9649 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9650 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
9651 struct sched_group *group)
9652 {
9653 /* Ensure that the whole local core is idle, if applicable. */
9654 if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9655 return false;
9656
9657 /*
9658 * CPU priorities does not make sense for SMT cores with more than one
9659 * busy sibling.
9660 */
9661 if (group->flags & SD_SHARE_CPUCAPACITY) {
9662 if (sgs->group_weight - sgs->idle_cpus != 1)
9663 return false;
9664 }
9665
9666 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9667 }
9668
9669 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)9670 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9671 struct sched_group *sg2)
9672 {
9673 if (!sg1 || !sg2)
9674 return false;
9675
9676 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9677 (sg2->flags & SD_SHARE_CPUCAPACITY);
9678 }
9679
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)9680 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9681 struct sched_group *group)
9682 {
9683 if (env->idle == CPU_NOT_IDLE)
9684 return false;
9685
9686 /*
9687 * For SMT source group, it is better to move a task
9688 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9689 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9690 * will not be on.
9691 */
9692 if (group->flags & SD_SHARE_CPUCAPACITY &&
9693 sgs->sum_h_nr_running > 1)
9694 return true;
9695
9696 return false;
9697 }
9698
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)9699 static inline long sibling_imbalance(struct lb_env *env,
9700 struct sd_lb_stats *sds,
9701 struct sg_lb_stats *busiest,
9702 struct sg_lb_stats *local)
9703 {
9704 int ncores_busiest, ncores_local;
9705 long imbalance;
9706
9707 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9708 return 0;
9709
9710 ncores_busiest = sds->busiest->cores;
9711 ncores_local = sds->local->cores;
9712
9713 if (ncores_busiest == ncores_local) {
9714 imbalance = busiest->sum_nr_running;
9715 lsub_positive(&imbalance, local->sum_nr_running);
9716 return imbalance;
9717 }
9718
9719 /* Balance such that nr_running/ncores ratio are same on both groups */
9720 imbalance = ncores_local * busiest->sum_nr_running;
9721 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9722 /* Normalize imbalance and do rounding on normalization */
9723 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9724 imbalance /= ncores_local + ncores_busiest;
9725
9726 /* Take advantage of resource in an empty sched group */
9727 if (imbalance <= 1 && local->sum_nr_running == 0 &&
9728 busiest->sum_nr_running > 1)
9729 imbalance = 2;
9730
9731 return imbalance;
9732 }
9733
9734 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9735 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9736 {
9737 /*
9738 * When there is more than 1 task, the group_overloaded case already
9739 * takes care of cpu with reduced capacity
9740 */
9741 if (rq->cfs.h_nr_running != 1)
9742 return false;
9743
9744 return check_cpu_capacity(rq, sd);
9745 }
9746
9747 /**
9748 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9749 * @env: The load balancing environment.
9750 * @sds: Load-balancing data with statistics of the local group.
9751 * @group: sched_group whose statistics are to be updated.
9752 * @sgs: variable to hold the statistics for this group.
9753 * @sg_status: Holds flag indicating the status of the sched_group
9754 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9755 static inline void update_sg_lb_stats(struct lb_env *env,
9756 struct sd_lb_stats *sds,
9757 struct sched_group *group,
9758 struct sg_lb_stats *sgs,
9759 int *sg_status)
9760 {
9761 int i, nr_running, local_group;
9762
9763 memset(sgs, 0, sizeof(*sgs));
9764
9765 local_group = group == sds->local;
9766
9767 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9768 struct rq *rq = cpu_rq(i);
9769 unsigned long load = cpu_load(rq);
9770
9771 sgs->group_load += load;
9772 sgs->group_util += cpu_util_cfs(i);
9773 sgs->group_runnable += cpu_runnable(rq);
9774 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9775
9776 nr_running = rq->nr_running;
9777 sgs->sum_nr_running += nr_running;
9778
9779 if (nr_running > 1)
9780 *sg_status |= SG_OVERLOAD;
9781
9782 if (cpu_overutilized(i))
9783 *sg_status |= SG_OVERUTILIZED;
9784
9785 #ifdef CONFIG_NUMA_BALANCING
9786 sgs->nr_numa_running += rq->nr_numa_running;
9787 sgs->nr_preferred_running += rq->nr_preferred_running;
9788 #endif
9789 /*
9790 * No need to call idle_cpu() if nr_running is not 0
9791 */
9792 if (!nr_running && idle_cpu(i)) {
9793 sgs->idle_cpus++;
9794 /* Idle cpu can't have misfit task */
9795 continue;
9796 }
9797
9798 if (local_group)
9799 continue;
9800
9801 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9802 /* Check for a misfit task on the cpu */
9803 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9804 sgs->group_misfit_task_load = rq->misfit_task_load;
9805 *sg_status |= SG_OVERLOAD;
9806 }
9807 } else if ((env->idle != CPU_NOT_IDLE) &&
9808 sched_reduced_capacity(rq, env->sd)) {
9809 /* Check for a task running on a CPU with reduced capacity */
9810 if (sgs->group_misfit_task_load < load)
9811 sgs->group_misfit_task_load = load;
9812 }
9813 }
9814
9815 sgs->group_capacity = group->sgc->capacity;
9816
9817 sgs->group_weight = group->group_weight;
9818
9819 /* Check if dst CPU is idle and preferred to this group */
9820 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9821 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9822 sched_asym(env, sds, sgs, group)) {
9823 sgs->group_asym_packing = 1;
9824 }
9825
9826 /* Check for loaded SMT group to be balanced to dst CPU */
9827 if (!local_group && smt_balance(env, sgs, group))
9828 sgs->group_smt_balance = 1;
9829
9830 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9831
9832 /* Computing avg_load makes sense only when group is overloaded */
9833 if (sgs->group_type == group_overloaded)
9834 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9835 sgs->group_capacity;
9836 }
9837
9838 /**
9839 * update_sd_pick_busiest - return 1 on busiest group
9840 * @env: The load balancing environment.
9841 * @sds: sched_domain statistics
9842 * @sg: sched_group candidate to be checked for being the busiest
9843 * @sgs: sched_group statistics
9844 *
9845 * Determine if @sg is a busier group than the previously selected
9846 * busiest group.
9847 *
9848 * Return: %true if @sg is a busier group than the previously selected
9849 * busiest group. %false otherwise.
9850 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9851 static bool update_sd_pick_busiest(struct lb_env *env,
9852 struct sd_lb_stats *sds,
9853 struct sched_group *sg,
9854 struct sg_lb_stats *sgs)
9855 {
9856 struct sg_lb_stats *busiest = &sds->busiest_stat;
9857
9858 /* Make sure that there is at least one task to pull */
9859 if (!sgs->sum_h_nr_running)
9860 return false;
9861
9862 /*
9863 * Don't try to pull misfit tasks we can't help.
9864 * We can use max_capacity here as reduction in capacity on some
9865 * CPUs in the group should either be possible to resolve
9866 * internally or be covered by avg_load imbalance (eventually).
9867 */
9868 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9869 (sgs->group_type == group_misfit_task) &&
9870 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9871 sds->local_stat.group_type != group_has_spare))
9872 return false;
9873
9874 if (sgs->group_type > busiest->group_type)
9875 return true;
9876
9877 if (sgs->group_type < busiest->group_type)
9878 return false;
9879
9880 /*
9881 * The candidate and the current busiest group are the same type of
9882 * group. Let check which one is the busiest according to the type.
9883 */
9884
9885 switch (sgs->group_type) {
9886 case group_overloaded:
9887 /* Select the overloaded group with highest avg_load. */
9888 if (sgs->avg_load <= busiest->avg_load)
9889 return false;
9890 break;
9891
9892 case group_imbalanced:
9893 /*
9894 * Select the 1st imbalanced group as we don't have any way to
9895 * choose one more than another.
9896 */
9897 return false;
9898
9899 case group_asym_packing:
9900 /* Prefer to move from lowest priority CPU's work */
9901 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9902 return false;
9903 break;
9904
9905 case group_misfit_task:
9906 /*
9907 * If we have more than one misfit sg go with the biggest
9908 * misfit.
9909 */
9910 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9911 return false;
9912 break;
9913
9914 case group_smt_balance:
9915 /*
9916 * Check if we have spare CPUs on either SMT group to
9917 * choose has spare or fully busy handling.
9918 */
9919 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
9920 goto has_spare;
9921
9922 fallthrough;
9923
9924 case group_fully_busy:
9925 /*
9926 * Select the fully busy group with highest avg_load. In
9927 * theory, there is no need to pull task from such kind of
9928 * group because tasks have all compute capacity that they need
9929 * but we can still improve the overall throughput by reducing
9930 * contention when accessing shared HW resources.
9931 *
9932 * XXX for now avg_load is not computed and always 0 so we
9933 * select the 1st one, except if @sg is composed of SMT
9934 * siblings.
9935 */
9936
9937 if (sgs->avg_load < busiest->avg_load)
9938 return false;
9939
9940 if (sgs->avg_load == busiest->avg_load) {
9941 /*
9942 * SMT sched groups need more help than non-SMT groups.
9943 * If @sg happens to also be SMT, either choice is good.
9944 */
9945 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
9946 return false;
9947 }
9948
9949 break;
9950
9951 case group_has_spare:
9952 /*
9953 * Do not pick sg with SMT CPUs over sg with pure CPUs,
9954 * as we do not want to pull task off SMT core with one task
9955 * and make the core idle.
9956 */
9957 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
9958 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
9959 return false;
9960 else
9961 return true;
9962 }
9963 has_spare:
9964
9965 /*
9966 * Select not overloaded group with lowest number of idle cpus
9967 * and highest number of running tasks. We could also compare
9968 * the spare capacity which is more stable but it can end up
9969 * that the group has less spare capacity but finally more idle
9970 * CPUs which means less opportunity to pull tasks.
9971 */
9972 if (sgs->idle_cpus > busiest->idle_cpus)
9973 return false;
9974 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9975 (sgs->sum_nr_running <= busiest->sum_nr_running))
9976 return false;
9977
9978 break;
9979 }
9980
9981 /*
9982 * Candidate sg has no more than one task per CPU and has higher
9983 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9984 * throughput. Maximize throughput, power/energy consequences are not
9985 * considered.
9986 */
9987 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9988 (sgs->group_type <= group_fully_busy) &&
9989 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9990 return false;
9991
9992 return true;
9993 }
9994
9995 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9996 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9997 {
9998 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9999 return regular;
10000 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10001 return remote;
10002 return all;
10003 }
10004
fbq_classify_rq(struct rq * rq)10005 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10006 {
10007 if (rq->nr_running > rq->nr_numa_running)
10008 return regular;
10009 if (rq->nr_running > rq->nr_preferred_running)
10010 return remote;
10011 return all;
10012 }
10013 #else
fbq_classify_group(struct sg_lb_stats * sgs)10014 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10015 {
10016 return all;
10017 }
10018
fbq_classify_rq(struct rq * rq)10019 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10020 {
10021 return regular;
10022 }
10023 #endif /* CONFIG_NUMA_BALANCING */
10024
10025
10026 struct sg_lb_stats;
10027
10028 /*
10029 * task_running_on_cpu - return 1 if @p is running on @cpu.
10030 */
10031
task_running_on_cpu(int cpu,struct task_struct * p)10032 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10033 {
10034 /* Task has no contribution or is new */
10035 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10036 return 0;
10037
10038 if (task_on_rq_queued(p))
10039 return 1;
10040
10041 return 0;
10042 }
10043
10044 /**
10045 * idle_cpu_without - would a given CPU be idle without p ?
10046 * @cpu: the processor on which idleness is tested.
10047 * @p: task which should be ignored.
10048 *
10049 * Return: 1 if the CPU would be idle. 0 otherwise.
10050 */
idle_cpu_without(int cpu,struct task_struct * p)10051 static int idle_cpu_without(int cpu, struct task_struct *p)
10052 {
10053 struct rq *rq = cpu_rq(cpu);
10054
10055 if (rq->curr != rq->idle && rq->curr != p)
10056 return 0;
10057
10058 /*
10059 * rq->nr_running can't be used but an updated version without the
10060 * impact of p on cpu must be used instead. The updated nr_running
10061 * be computed and tested before calling idle_cpu_without().
10062 */
10063
10064 #ifdef CONFIG_SMP
10065 if (rq->ttwu_pending)
10066 return 0;
10067 #endif
10068
10069 return 1;
10070 }
10071
10072 /*
10073 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10074 * @sd: The sched_domain level to look for idlest group.
10075 * @group: sched_group whose statistics are to be updated.
10076 * @sgs: variable to hold the statistics for this group.
10077 * @p: The task for which we look for the idlest group/CPU.
10078 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10079 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10080 struct sched_group *group,
10081 struct sg_lb_stats *sgs,
10082 struct task_struct *p)
10083 {
10084 int i, nr_running;
10085
10086 memset(sgs, 0, sizeof(*sgs));
10087
10088 /* Assume that task can't fit any CPU of the group */
10089 if (sd->flags & SD_ASYM_CPUCAPACITY)
10090 sgs->group_misfit_task_load = 1;
10091
10092 for_each_cpu(i, sched_group_span(group)) {
10093 struct rq *rq = cpu_rq(i);
10094 unsigned int local;
10095
10096 sgs->group_load += cpu_load_without(rq, p);
10097 sgs->group_util += cpu_util_without(i, p);
10098 sgs->group_runnable += cpu_runnable_without(rq, p);
10099 local = task_running_on_cpu(i, p);
10100 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10101
10102 nr_running = rq->nr_running - local;
10103 sgs->sum_nr_running += nr_running;
10104
10105 /*
10106 * No need to call idle_cpu_without() if nr_running is not 0
10107 */
10108 if (!nr_running && idle_cpu_without(i, p))
10109 sgs->idle_cpus++;
10110
10111 /* Check if task fits in the CPU */
10112 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10113 sgs->group_misfit_task_load &&
10114 task_fits_cpu(p, i))
10115 sgs->group_misfit_task_load = 0;
10116
10117 }
10118
10119 sgs->group_capacity = group->sgc->capacity;
10120
10121 sgs->group_weight = group->group_weight;
10122
10123 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10124
10125 /*
10126 * Computing avg_load makes sense only when group is fully busy or
10127 * overloaded
10128 */
10129 if (sgs->group_type == group_fully_busy ||
10130 sgs->group_type == group_overloaded)
10131 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10132 sgs->group_capacity;
10133 }
10134
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10135 static bool update_pick_idlest(struct sched_group *idlest,
10136 struct sg_lb_stats *idlest_sgs,
10137 struct sched_group *group,
10138 struct sg_lb_stats *sgs)
10139 {
10140 if (sgs->group_type < idlest_sgs->group_type)
10141 return true;
10142
10143 if (sgs->group_type > idlest_sgs->group_type)
10144 return false;
10145
10146 /*
10147 * The candidate and the current idlest group are the same type of
10148 * group. Let check which one is the idlest according to the type.
10149 */
10150
10151 switch (sgs->group_type) {
10152 case group_overloaded:
10153 case group_fully_busy:
10154 /* Select the group with lowest avg_load. */
10155 if (idlest_sgs->avg_load <= sgs->avg_load)
10156 return false;
10157 break;
10158
10159 case group_imbalanced:
10160 case group_asym_packing:
10161 case group_smt_balance:
10162 /* Those types are not used in the slow wakeup path */
10163 return false;
10164
10165 case group_misfit_task:
10166 /* Select group with the highest max capacity */
10167 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10168 return false;
10169 break;
10170
10171 case group_has_spare:
10172 /* Select group with most idle CPUs */
10173 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10174 return false;
10175
10176 /* Select group with lowest group_util */
10177 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10178 idlest_sgs->group_util <= sgs->group_util)
10179 return false;
10180
10181 break;
10182 }
10183
10184 return true;
10185 }
10186
10187 /*
10188 * find_idlest_group() finds and returns the least busy CPU group within the
10189 * domain.
10190 *
10191 * Assumes p is allowed on at least one CPU in sd.
10192 */
10193 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10194 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10195 {
10196 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10197 struct sg_lb_stats local_sgs, tmp_sgs;
10198 struct sg_lb_stats *sgs;
10199 unsigned long imbalance;
10200 struct sg_lb_stats idlest_sgs = {
10201 .avg_load = UINT_MAX,
10202 .group_type = group_overloaded,
10203 };
10204
10205 do {
10206 int local_group;
10207
10208 /* Skip over this group if it has no CPUs allowed */
10209 if (!cpumask_intersects(sched_group_span(group),
10210 p->cpus_ptr))
10211 continue;
10212
10213 /* Skip over this group if no cookie matched */
10214 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10215 continue;
10216
10217 local_group = cpumask_test_cpu(this_cpu,
10218 sched_group_span(group));
10219
10220 if (local_group) {
10221 sgs = &local_sgs;
10222 local = group;
10223 } else {
10224 sgs = &tmp_sgs;
10225 }
10226
10227 update_sg_wakeup_stats(sd, group, sgs, p);
10228
10229 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10230 idlest = group;
10231 idlest_sgs = *sgs;
10232 }
10233
10234 } while (group = group->next, group != sd->groups);
10235
10236
10237 /* There is no idlest group to push tasks to */
10238 if (!idlest)
10239 return NULL;
10240
10241 /* The local group has been skipped because of CPU affinity */
10242 if (!local)
10243 return idlest;
10244
10245 /*
10246 * If the local group is idler than the selected idlest group
10247 * don't try and push the task.
10248 */
10249 if (local_sgs.group_type < idlest_sgs.group_type)
10250 return NULL;
10251
10252 /*
10253 * If the local group is busier than the selected idlest group
10254 * try and push the task.
10255 */
10256 if (local_sgs.group_type > idlest_sgs.group_type)
10257 return idlest;
10258
10259 switch (local_sgs.group_type) {
10260 case group_overloaded:
10261 case group_fully_busy:
10262
10263 /* Calculate allowed imbalance based on load */
10264 imbalance = scale_load_down(NICE_0_LOAD) *
10265 (sd->imbalance_pct-100) / 100;
10266
10267 /*
10268 * When comparing groups across NUMA domains, it's possible for
10269 * the local domain to be very lightly loaded relative to the
10270 * remote domains but "imbalance" skews the comparison making
10271 * remote CPUs look much more favourable. When considering
10272 * cross-domain, add imbalance to the load on the remote node
10273 * and consider staying local.
10274 */
10275
10276 if ((sd->flags & SD_NUMA) &&
10277 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10278 return NULL;
10279
10280 /*
10281 * If the local group is less loaded than the selected
10282 * idlest group don't try and push any tasks.
10283 */
10284 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10285 return NULL;
10286
10287 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10288 return NULL;
10289 break;
10290
10291 case group_imbalanced:
10292 case group_asym_packing:
10293 case group_smt_balance:
10294 /* Those type are not used in the slow wakeup path */
10295 return NULL;
10296
10297 case group_misfit_task:
10298 /* Select group with the highest max capacity */
10299 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10300 return NULL;
10301 break;
10302
10303 case group_has_spare:
10304 #ifdef CONFIG_NUMA
10305 if (sd->flags & SD_NUMA) {
10306 int imb_numa_nr = sd->imb_numa_nr;
10307 #ifdef CONFIG_NUMA_BALANCING
10308 int idlest_cpu;
10309 /*
10310 * If there is spare capacity at NUMA, try to select
10311 * the preferred node
10312 */
10313 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10314 return NULL;
10315
10316 idlest_cpu = cpumask_first(sched_group_span(idlest));
10317 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10318 return idlest;
10319 #endif /* CONFIG_NUMA_BALANCING */
10320 /*
10321 * Otherwise, keep the task close to the wakeup source
10322 * and improve locality if the number of running tasks
10323 * would remain below threshold where an imbalance is
10324 * allowed while accounting for the possibility the
10325 * task is pinned to a subset of CPUs. If there is a
10326 * real need of migration, periodic load balance will
10327 * take care of it.
10328 */
10329 if (p->nr_cpus_allowed != NR_CPUS) {
10330 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10331
10332 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10333 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10334 }
10335
10336 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10337 if (!adjust_numa_imbalance(imbalance,
10338 local_sgs.sum_nr_running + 1,
10339 imb_numa_nr)) {
10340 return NULL;
10341 }
10342 }
10343 #endif /* CONFIG_NUMA */
10344
10345 /*
10346 * Select group with highest number of idle CPUs. We could also
10347 * compare the utilization which is more stable but it can end
10348 * up that the group has less spare capacity but finally more
10349 * idle CPUs which means more opportunity to run task.
10350 */
10351 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10352 return NULL;
10353 break;
10354 }
10355
10356 return idlest;
10357 }
10358
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10359 static void update_idle_cpu_scan(struct lb_env *env,
10360 unsigned long sum_util)
10361 {
10362 struct sched_domain_shared *sd_share;
10363 int llc_weight, pct;
10364 u64 x, y, tmp;
10365 /*
10366 * Update the number of CPUs to scan in LLC domain, which could
10367 * be used as a hint in select_idle_cpu(). The update of sd_share
10368 * could be expensive because it is within a shared cache line.
10369 * So the write of this hint only occurs during periodic load
10370 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10371 * can fire way more frequently than the former.
10372 */
10373 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10374 return;
10375
10376 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10377 if (env->sd->span_weight != llc_weight)
10378 return;
10379
10380 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10381 if (!sd_share)
10382 return;
10383
10384 /*
10385 * The number of CPUs to search drops as sum_util increases, when
10386 * sum_util hits 85% or above, the scan stops.
10387 * The reason to choose 85% as the threshold is because this is the
10388 * imbalance_pct(117) when a LLC sched group is overloaded.
10389 *
10390 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10391 * and y'= y / SCHED_CAPACITY_SCALE
10392 *
10393 * x is the ratio of sum_util compared to the CPU capacity:
10394 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10395 * y' is the ratio of CPUs to be scanned in the LLC domain,
10396 * and the number of CPUs to scan is calculated by:
10397 *
10398 * nr_scan = llc_weight * y' [2]
10399 *
10400 * When x hits the threshold of overloaded, AKA, when
10401 * x = 100 / pct, y drops to 0. According to [1],
10402 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10403 *
10404 * Scale x by SCHED_CAPACITY_SCALE:
10405 * x' = sum_util / llc_weight; [3]
10406 *
10407 * and finally [1] becomes:
10408 * y = SCHED_CAPACITY_SCALE -
10409 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10410 *
10411 */
10412 /* equation [3] */
10413 x = sum_util;
10414 do_div(x, llc_weight);
10415
10416 /* equation [4] */
10417 pct = env->sd->imbalance_pct;
10418 tmp = x * x * pct * pct;
10419 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10420 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10421 y = SCHED_CAPACITY_SCALE - tmp;
10422
10423 /* equation [2] */
10424 y *= llc_weight;
10425 do_div(y, SCHED_CAPACITY_SCALE);
10426 if ((int)y != sd_share->nr_idle_scan)
10427 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10428 }
10429
10430 /**
10431 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10432 * @env: The load balancing environment.
10433 * @sds: variable to hold the statistics for this sched_domain.
10434 */
10435
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10436 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10437 {
10438 struct sched_group *sg = env->sd->groups;
10439 struct sg_lb_stats *local = &sds->local_stat;
10440 struct sg_lb_stats tmp_sgs;
10441 unsigned long sum_util = 0;
10442 int sg_status = 0;
10443
10444 do {
10445 struct sg_lb_stats *sgs = &tmp_sgs;
10446 int local_group;
10447
10448 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10449 if (local_group) {
10450 sds->local = sg;
10451 sgs = local;
10452
10453 if (env->idle != CPU_NEWLY_IDLE ||
10454 time_after_eq(jiffies, sg->sgc->next_update))
10455 update_group_capacity(env->sd, env->dst_cpu);
10456 }
10457
10458 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10459
10460 if (local_group)
10461 goto next_group;
10462
10463
10464 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10465 sds->busiest = sg;
10466 sds->busiest_stat = *sgs;
10467 }
10468
10469 next_group:
10470 /* Now, start updating sd_lb_stats */
10471 sds->total_load += sgs->group_load;
10472 sds->total_capacity += sgs->group_capacity;
10473
10474 sum_util += sgs->group_util;
10475 sg = sg->next;
10476 } while (sg != env->sd->groups);
10477
10478 /*
10479 * Indicate that the child domain of the busiest group prefers tasks
10480 * go to a child's sibling domains first. NB the flags of a sched group
10481 * are those of the child domain.
10482 */
10483 if (sds->busiest)
10484 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10485
10486
10487 if (env->sd->flags & SD_NUMA)
10488 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10489
10490 if (!env->sd->parent) {
10491 struct root_domain *rd = env->dst_rq->rd;
10492
10493 /* update overload indicator if we are at root domain */
10494 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10495
10496 /* Update over-utilization (tipping point, U >= 0) indicator */
10497 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10498 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10499 } else if (sg_status & SG_OVERUTILIZED) {
10500 struct root_domain *rd = env->dst_rq->rd;
10501
10502 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10503 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10504 }
10505
10506 update_idle_cpu_scan(env, sum_util);
10507 }
10508
10509 /**
10510 * calculate_imbalance - Calculate the amount of imbalance present within the
10511 * groups of a given sched_domain during load balance.
10512 * @env: load balance environment
10513 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10514 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10515 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10516 {
10517 struct sg_lb_stats *local, *busiest;
10518
10519 local = &sds->local_stat;
10520 busiest = &sds->busiest_stat;
10521
10522 if (busiest->group_type == group_misfit_task) {
10523 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10524 /* Set imbalance to allow misfit tasks to be balanced. */
10525 env->migration_type = migrate_misfit;
10526 env->imbalance = 1;
10527 } else {
10528 /*
10529 * Set load imbalance to allow moving task from cpu
10530 * with reduced capacity.
10531 */
10532 env->migration_type = migrate_load;
10533 env->imbalance = busiest->group_misfit_task_load;
10534 }
10535 return;
10536 }
10537
10538 if (busiest->group_type == group_asym_packing) {
10539 /*
10540 * In case of asym capacity, we will try to migrate all load to
10541 * the preferred CPU.
10542 */
10543 env->migration_type = migrate_task;
10544 env->imbalance = busiest->sum_h_nr_running;
10545 return;
10546 }
10547
10548 if (busiest->group_type == group_smt_balance) {
10549 /* Reduce number of tasks sharing CPU capacity */
10550 env->migration_type = migrate_task;
10551 env->imbalance = 1;
10552 return;
10553 }
10554
10555 if (busiest->group_type == group_imbalanced) {
10556 /*
10557 * In the group_imb case we cannot rely on group-wide averages
10558 * to ensure CPU-load equilibrium, try to move any task to fix
10559 * the imbalance. The next load balance will take care of
10560 * balancing back the system.
10561 */
10562 env->migration_type = migrate_task;
10563 env->imbalance = 1;
10564 return;
10565 }
10566
10567 /*
10568 * Try to use spare capacity of local group without overloading it or
10569 * emptying busiest.
10570 */
10571 if (local->group_type == group_has_spare) {
10572 if ((busiest->group_type > group_fully_busy) &&
10573 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10574 /*
10575 * If busiest is overloaded, try to fill spare
10576 * capacity. This might end up creating spare capacity
10577 * in busiest or busiest still being overloaded but
10578 * there is no simple way to directly compute the
10579 * amount of load to migrate in order to balance the
10580 * system.
10581 */
10582 env->migration_type = migrate_util;
10583 env->imbalance = max(local->group_capacity, local->group_util) -
10584 local->group_util;
10585
10586 /*
10587 * In some cases, the group's utilization is max or even
10588 * higher than capacity because of migrations but the
10589 * local CPU is (newly) idle. There is at least one
10590 * waiting task in this overloaded busiest group. Let's
10591 * try to pull it.
10592 */
10593 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10594 env->migration_type = migrate_task;
10595 env->imbalance = 1;
10596 }
10597
10598 return;
10599 }
10600
10601 if (busiest->group_weight == 1 || sds->prefer_sibling) {
10602 /*
10603 * When prefer sibling, evenly spread running tasks on
10604 * groups.
10605 */
10606 env->migration_type = migrate_task;
10607 env->imbalance = sibling_imbalance(env, sds, busiest, local);
10608 } else {
10609
10610 /*
10611 * If there is no overload, we just want to even the number of
10612 * idle cpus.
10613 */
10614 env->migration_type = migrate_task;
10615 env->imbalance = max_t(long, 0,
10616 (local->idle_cpus - busiest->idle_cpus));
10617 }
10618
10619 #ifdef CONFIG_NUMA
10620 /* Consider allowing a small imbalance between NUMA groups */
10621 if (env->sd->flags & SD_NUMA) {
10622 env->imbalance = adjust_numa_imbalance(env->imbalance,
10623 local->sum_nr_running + 1,
10624 env->sd->imb_numa_nr);
10625 }
10626 #endif
10627
10628 /* Number of tasks to move to restore balance */
10629 env->imbalance >>= 1;
10630
10631 return;
10632 }
10633
10634 /*
10635 * Local is fully busy but has to take more load to relieve the
10636 * busiest group
10637 */
10638 if (local->group_type < group_overloaded) {
10639 /*
10640 * Local will become overloaded so the avg_load metrics are
10641 * finally needed.
10642 */
10643
10644 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10645 local->group_capacity;
10646
10647 /*
10648 * If the local group is more loaded than the selected
10649 * busiest group don't try to pull any tasks.
10650 */
10651 if (local->avg_load >= busiest->avg_load) {
10652 env->imbalance = 0;
10653 return;
10654 }
10655
10656 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10657 sds->total_capacity;
10658
10659 /*
10660 * If the local group is more loaded than the average system
10661 * load, don't try to pull any tasks.
10662 */
10663 if (local->avg_load >= sds->avg_load) {
10664 env->imbalance = 0;
10665 return;
10666 }
10667
10668 }
10669
10670 /*
10671 * Both group are or will become overloaded and we're trying to get all
10672 * the CPUs to the average_load, so we don't want to push ourselves
10673 * above the average load, nor do we wish to reduce the max loaded CPU
10674 * below the average load. At the same time, we also don't want to
10675 * reduce the group load below the group capacity. Thus we look for
10676 * the minimum possible imbalance.
10677 */
10678 env->migration_type = migrate_load;
10679 env->imbalance = min(
10680 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10681 (sds->avg_load - local->avg_load) * local->group_capacity
10682 ) / SCHED_CAPACITY_SCALE;
10683 }
10684
10685 /******* find_busiest_group() helpers end here *********************/
10686
10687 /*
10688 * Decision matrix according to the local and busiest group type:
10689 *
10690 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10691 * has_spare nr_idle balanced N/A N/A balanced balanced
10692 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
10693 * misfit_task force N/A N/A N/A N/A N/A
10694 * asym_packing force force N/A N/A force force
10695 * imbalanced force force N/A N/A force force
10696 * overloaded force force N/A N/A force avg_load
10697 *
10698 * N/A : Not Applicable because already filtered while updating
10699 * statistics.
10700 * balanced : The system is balanced for these 2 groups.
10701 * force : Calculate the imbalance as load migration is probably needed.
10702 * avg_load : Only if imbalance is significant enough.
10703 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
10704 * different in groups.
10705 */
10706
10707 /**
10708 * find_busiest_group - Returns the busiest group within the sched_domain
10709 * if there is an imbalance.
10710 * @env: The load balancing environment.
10711 *
10712 * Also calculates the amount of runnable load which should be moved
10713 * to restore balance.
10714 *
10715 * Return: - The busiest group if imbalance exists.
10716 */
find_busiest_group(struct lb_env * env)10717 static struct sched_group *find_busiest_group(struct lb_env *env)
10718 {
10719 struct sg_lb_stats *local, *busiest;
10720 struct sd_lb_stats sds;
10721
10722 init_sd_lb_stats(&sds);
10723
10724 /*
10725 * Compute the various statistics relevant for load balancing at
10726 * this level.
10727 */
10728 update_sd_lb_stats(env, &sds);
10729
10730 /* There is no busy sibling group to pull tasks from */
10731 if (!sds.busiest)
10732 goto out_balanced;
10733
10734 busiest = &sds.busiest_stat;
10735
10736 /* Misfit tasks should be dealt with regardless of the avg load */
10737 if (busiest->group_type == group_misfit_task)
10738 goto force_balance;
10739
10740 if (sched_energy_enabled()) {
10741 struct root_domain *rd = env->dst_rq->rd;
10742
10743 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10744 goto out_balanced;
10745 }
10746
10747 /* ASYM feature bypasses nice load balance check */
10748 if (busiest->group_type == group_asym_packing)
10749 goto force_balance;
10750
10751 /*
10752 * If the busiest group is imbalanced the below checks don't
10753 * work because they assume all things are equal, which typically
10754 * isn't true due to cpus_ptr constraints and the like.
10755 */
10756 if (busiest->group_type == group_imbalanced)
10757 goto force_balance;
10758
10759 local = &sds.local_stat;
10760 /*
10761 * If the local group is busier than the selected busiest group
10762 * don't try and pull any tasks.
10763 */
10764 if (local->group_type > busiest->group_type)
10765 goto out_balanced;
10766
10767 /*
10768 * When groups are overloaded, use the avg_load to ensure fairness
10769 * between tasks.
10770 */
10771 if (local->group_type == group_overloaded) {
10772 /*
10773 * If the local group is more loaded than the selected
10774 * busiest group don't try to pull any tasks.
10775 */
10776 if (local->avg_load >= busiest->avg_load)
10777 goto out_balanced;
10778
10779 /* XXX broken for overlapping NUMA groups */
10780 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10781 sds.total_capacity;
10782
10783 /*
10784 * Don't pull any tasks if this group is already above the
10785 * domain average load.
10786 */
10787 if (local->avg_load >= sds.avg_load)
10788 goto out_balanced;
10789
10790 /*
10791 * If the busiest group is more loaded, use imbalance_pct to be
10792 * conservative.
10793 */
10794 if (100 * busiest->avg_load <=
10795 env->sd->imbalance_pct * local->avg_load)
10796 goto out_balanced;
10797 }
10798
10799 /*
10800 * Try to move all excess tasks to a sibling domain of the busiest
10801 * group's child domain.
10802 */
10803 if (sds.prefer_sibling && local->group_type == group_has_spare &&
10804 sibling_imbalance(env, &sds, busiest, local) > 1)
10805 goto force_balance;
10806
10807 if (busiest->group_type != group_overloaded) {
10808 if (env->idle == CPU_NOT_IDLE) {
10809 /*
10810 * If the busiest group is not overloaded (and as a
10811 * result the local one too) but this CPU is already
10812 * busy, let another idle CPU try to pull task.
10813 */
10814 goto out_balanced;
10815 }
10816
10817 if (busiest->group_type == group_smt_balance &&
10818 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10819 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
10820 goto force_balance;
10821 }
10822
10823 if (busiest->group_weight > 1 &&
10824 local->idle_cpus <= (busiest->idle_cpus + 1)) {
10825 /*
10826 * If the busiest group is not overloaded
10827 * and there is no imbalance between this and busiest
10828 * group wrt idle CPUs, it is balanced. The imbalance
10829 * becomes significant if the diff is greater than 1
10830 * otherwise we might end up to just move the imbalance
10831 * on another group. Of course this applies only if
10832 * there is more than 1 CPU per group.
10833 */
10834 goto out_balanced;
10835 }
10836
10837 if (busiest->sum_h_nr_running == 1) {
10838 /*
10839 * busiest doesn't have any tasks waiting to run
10840 */
10841 goto out_balanced;
10842 }
10843 }
10844
10845 force_balance:
10846 /* Looks like there is an imbalance. Compute it */
10847 calculate_imbalance(env, &sds);
10848 return env->imbalance ? sds.busiest : NULL;
10849
10850 out_balanced:
10851 env->imbalance = 0;
10852 return NULL;
10853 }
10854
10855 /*
10856 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10857 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10858 static struct rq *find_busiest_queue(struct lb_env *env,
10859 struct sched_group *group)
10860 {
10861 struct rq *busiest = NULL, *rq;
10862 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10863 unsigned int busiest_nr = 0;
10864 int i;
10865
10866 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10867 unsigned long capacity, load, util;
10868 unsigned int nr_running;
10869 enum fbq_type rt;
10870
10871 rq = cpu_rq(i);
10872 rt = fbq_classify_rq(rq);
10873
10874 /*
10875 * We classify groups/runqueues into three groups:
10876 * - regular: there are !numa tasks
10877 * - remote: there are numa tasks that run on the 'wrong' node
10878 * - all: there is no distinction
10879 *
10880 * In order to avoid migrating ideally placed numa tasks,
10881 * ignore those when there's better options.
10882 *
10883 * If we ignore the actual busiest queue to migrate another
10884 * task, the next balance pass can still reduce the busiest
10885 * queue by moving tasks around inside the node.
10886 *
10887 * If we cannot move enough load due to this classification
10888 * the next pass will adjust the group classification and
10889 * allow migration of more tasks.
10890 *
10891 * Both cases only affect the total convergence complexity.
10892 */
10893 if (rt > env->fbq_type)
10894 continue;
10895
10896 nr_running = rq->cfs.h_nr_running;
10897 if (!nr_running)
10898 continue;
10899
10900 capacity = capacity_of(i);
10901
10902 /*
10903 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10904 * eventually lead to active_balancing high->low capacity.
10905 * Higher per-CPU capacity is considered better than balancing
10906 * average load.
10907 */
10908 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10909 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10910 nr_running == 1)
10911 continue;
10912
10913 /*
10914 * Make sure we only pull tasks from a CPU of lower priority
10915 * when balancing between SMT siblings.
10916 *
10917 * If balancing between cores, let lower priority CPUs help
10918 * SMT cores with more than one busy sibling.
10919 */
10920 if ((env->sd->flags & SD_ASYM_PACKING) &&
10921 sched_use_asym_prio(env->sd, i) &&
10922 sched_asym_prefer(i, env->dst_cpu) &&
10923 nr_running == 1)
10924 continue;
10925
10926 switch (env->migration_type) {
10927 case migrate_load:
10928 /*
10929 * When comparing with load imbalance, use cpu_load()
10930 * which is not scaled with the CPU capacity.
10931 */
10932 load = cpu_load(rq);
10933
10934 if (nr_running == 1 && load > env->imbalance &&
10935 !check_cpu_capacity(rq, env->sd))
10936 break;
10937
10938 /*
10939 * For the load comparisons with the other CPUs,
10940 * consider the cpu_load() scaled with the CPU
10941 * capacity, so that the load can be moved away
10942 * from the CPU that is potentially running at a
10943 * lower capacity.
10944 *
10945 * Thus we're looking for max(load_i / capacity_i),
10946 * crosswise multiplication to rid ourselves of the
10947 * division works out to:
10948 * load_i * capacity_j > load_j * capacity_i;
10949 * where j is our previous maximum.
10950 */
10951 if (load * busiest_capacity > busiest_load * capacity) {
10952 busiest_load = load;
10953 busiest_capacity = capacity;
10954 busiest = rq;
10955 }
10956 break;
10957
10958 case migrate_util:
10959 util = cpu_util_cfs_boost(i);
10960
10961 /*
10962 * Don't try to pull utilization from a CPU with one
10963 * running task. Whatever its utilization, we will fail
10964 * detach the task.
10965 */
10966 if (nr_running <= 1)
10967 continue;
10968
10969 if (busiest_util < util) {
10970 busiest_util = util;
10971 busiest = rq;
10972 }
10973 break;
10974
10975 case migrate_task:
10976 if (busiest_nr < nr_running) {
10977 busiest_nr = nr_running;
10978 busiest = rq;
10979 }
10980 break;
10981
10982 case migrate_misfit:
10983 /*
10984 * For ASYM_CPUCAPACITY domains with misfit tasks we
10985 * simply seek the "biggest" misfit task.
10986 */
10987 if (rq->misfit_task_load > busiest_load) {
10988 busiest_load = rq->misfit_task_load;
10989 busiest = rq;
10990 }
10991
10992 break;
10993
10994 }
10995 }
10996
10997 return busiest;
10998 }
10999
11000 /*
11001 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11002 * so long as it is large enough.
11003 */
11004 #define MAX_PINNED_INTERVAL 512
11005
11006 static inline bool
asym_active_balance(struct lb_env * env)11007 asym_active_balance(struct lb_env *env)
11008 {
11009 /*
11010 * ASYM_PACKING needs to force migrate tasks from busy but lower
11011 * priority CPUs in order to pack all tasks in the highest priority
11012 * CPUs. When done between cores, do it only if the whole core if the
11013 * whole core is idle.
11014 *
11015 * If @env::src_cpu is an SMT core with busy siblings, let
11016 * the lower priority @env::dst_cpu help it. Do not follow
11017 * CPU priority.
11018 */
11019 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11020 sched_use_asym_prio(env->sd, env->dst_cpu) &&
11021 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11022 !sched_use_asym_prio(env->sd, env->src_cpu));
11023 }
11024
11025 static inline bool
imbalanced_active_balance(struct lb_env * env)11026 imbalanced_active_balance(struct lb_env *env)
11027 {
11028 struct sched_domain *sd = env->sd;
11029
11030 /*
11031 * The imbalanced case includes the case of pinned tasks preventing a fair
11032 * distribution of the load on the system but also the even distribution of the
11033 * threads on a system with spare capacity
11034 */
11035 if ((env->migration_type == migrate_task) &&
11036 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11037 return 1;
11038
11039 return 0;
11040 }
11041
need_active_balance(struct lb_env * env)11042 static int need_active_balance(struct lb_env *env)
11043 {
11044 struct sched_domain *sd = env->sd;
11045
11046 if (asym_active_balance(env))
11047 return 1;
11048
11049 if (imbalanced_active_balance(env))
11050 return 1;
11051
11052 /*
11053 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11054 * It's worth migrating the task if the src_cpu's capacity is reduced
11055 * because of other sched_class or IRQs if more capacity stays
11056 * available on dst_cpu.
11057 */
11058 if ((env->idle != CPU_NOT_IDLE) &&
11059 (env->src_rq->cfs.h_nr_running == 1)) {
11060 if ((check_cpu_capacity(env->src_rq, sd)) &&
11061 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11062 return 1;
11063 }
11064
11065 if (env->migration_type == migrate_misfit)
11066 return 1;
11067
11068 return 0;
11069 }
11070
11071 static int active_load_balance_cpu_stop(void *data);
11072
should_we_balance(struct lb_env * env)11073 static int should_we_balance(struct lb_env *env)
11074 {
11075 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11076 struct sched_group *sg = env->sd->groups;
11077 int cpu, idle_smt = -1;
11078
11079 /*
11080 * Ensure the balancing environment is consistent; can happen
11081 * when the softirq triggers 'during' hotplug.
11082 */
11083 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11084 return 0;
11085
11086 /*
11087 * In the newly idle case, we will allow all the CPUs
11088 * to do the newly idle load balance.
11089 *
11090 * However, we bail out if we already have tasks or a wakeup pending,
11091 * to optimize wakeup latency.
11092 */
11093 if (env->idle == CPU_NEWLY_IDLE) {
11094 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11095 return 0;
11096 return 1;
11097 }
11098
11099 cpumask_copy(swb_cpus, group_balance_mask(sg));
11100 /* Try to find first idle CPU */
11101 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11102 if (!idle_cpu(cpu))
11103 continue;
11104
11105 /*
11106 * Don't balance to idle SMT in busy core right away when
11107 * balancing cores, but remember the first idle SMT CPU for
11108 * later consideration. Find CPU on an idle core first.
11109 */
11110 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11111 if (idle_smt == -1)
11112 idle_smt = cpu;
11113 /*
11114 * If the core is not idle, and first SMT sibling which is
11115 * idle has been found, then its not needed to check other
11116 * SMT siblings for idleness:
11117 */
11118 #ifdef CONFIG_SCHED_SMT
11119 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11120 #endif
11121 continue;
11122 }
11123
11124 /*
11125 * Are we the first idle core in a non-SMT domain or higher,
11126 * or the first idle CPU in a SMT domain?
11127 */
11128 return cpu == env->dst_cpu;
11129 }
11130
11131 /* Are we the first idle CPU with busy siblings? */
11132 if (idle_smt != -1)
11133 return idle_smt == env->dst_cpu;
11134
11135 /* Are we the first CPU of this group ? */
11136 return group_balance_cpu(sg) == env->dst_cpu;
11137 }
11138
11139 /*
11140 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11141 * tasks if there is an imbalance.
11142 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11143 static int load_balance(int this_cpu, struct rq *this_rq,
11144 struct sched_domain *sd, enum cpu_idle_type idle,
11145 int *continue_balancing)
11146 {
11147 int ld_moved, cur_ld_moved, active_balance = 0;
11148 struct sched_domain *sd_parent = sd->parent;
11149 struct sched_group *group;
11150 struct rq *busiest;
11151 struct rq_flags rf;
11152 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11153 struct lb_env env = {
11154 .sd = sd,
11155 .dst_cpu = this_cpu,
11156 .dst_rq = this_rq,
11157 .dst_grpmask = group_balance_mask(sd->groups),
11158 .idle = idle,
11159 .loop_break = SCHED_NR_MIGRATE_BREAK,
11160 .cpus = cpus,
11161 .fbq_type = all,
11162 .tasks = LIST_HEAD_INIT(env.tasks),
11163 };
11164
11165 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11166
11167 schedstat_inc(sd->lb_count[idle]);
11168
11169 redo:
11170 if (!should_we_balance(&env)) {
11171 *continue_balancing = 0;
11172 goto out_balanced;
11173 }
11174
11175 group = find_busiest_group(&env);
11176 if (!group) {
11177 schedstat_inc(sd->lb_nobusyg[idle]);
11178 goto out_balanced;
11179 }
11180
11181 busiest = find_busiest_queue(&env, group);
11182 if (!busiest) {
11183 schedstat_inc(sd->lb_nobusyq[idle]);
11184 goto out_balanced;
11185 }
11186
11187 WARN_ON_ONCE(busiest == env.dst_rq);
11188
11189 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11190
11191 env.src_cpu = busiest->cpu;
11192 env.src_rq = busiest;
11193
11194 ld_moved = 0;
11195 /* Clear this flag as soon as we find a pullable task */
11196 env.flags |= LBF_ALL_PINNED;
11197 if (busiest->nr_running > 1) {
11198 /*
11199 * Attempt to move tasks. If find_busiest_group has found
11200 * an imbalance but busiest->nr_running <= 1, the group is
11201 * still unbalanced. ld_moved simply stays zero, so it is
11202 * correctly treated as an imbalance.
11203 */
11204 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11205
11206 more_balance:
11207 rq_lock_irqsave(busiest, &rf);
11208 update_rq_clock(busiest);
11209
11210 /*
11211 * cur_ld_moved - load moved in current iteration
11212 * ld_moved - cumulative load moved across iterations
11213 */
11214 cur_ld_moved = detach_tasks(&env);
11215
11216 /*
11217 * We've detached some tasks from busiest_rq. Every
11218 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11219 * unlock busiest->lock, and we are able to be sure
11220 * that nobody can manipulate the tasks in parallel.
11221 * See task_rq_lock() family for the details.
11222 */
11223
11224 rq_unlock(busiest, &rf);
11225
11226 if (cur_ld_moved) {
11227 attach_tasks(&env);
11228 ld_moved += cur_ld_moved;
11229 }
11230
11231 local_irq_restore(rf.flags);
11232
11233 if (env.flags & LBF_NEED_BREAK) {
11234 env.flags &= ~LBF_NEED_BREAK;
11235 /* Stop if we tried all running tasks */
11236 if (env.loop < busiest->nr_running)
11237 goto more_balance;
11238 }
11239
11240 /*
11241 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11242 * us and move them to an alternate dst_cpu in our sched_group
11243 * where they can run. The upper limit on how many times we
11244 * iterate on same src_cpu is dependent on number of CPUs in our
11245 * sched_group.
11246 *
11247 * This changes load balance semantics a bit on who can move
11248 * load to a given_cpu. In addition to the given_cpu itself
11249 * (or a ilb_cpu acting on its behalf where given_cpu is
11250 * nohz-idle), we now have balance_cpu in a position to move
11251 * load to given_cpu. In rare situations, this may cause
11252 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11253 * _independently_ and at _same_ time to move some load to
11254 * given_cpu) causing excess load to be moved to given_cpu.
11255 * This however should not happen so much in practice and
11256 * moreover subsequent load balance cycles should correct the
11257 * excess load moved.
11258 */
11259 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11260
11261 /* Prevent to re-select dst_cpu via env's CPUs */
11262 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11263
11264 env.dst_rq = cpu_rq(env.new_dst_cpu);
11265 env.dst_cpu = env.new_dst_cpu;
11266 env.flags &= ~LBF_DST_PINNED;
11267 env.loop = 0;
11268 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11269
11270 /*
11271 * Go back to "more_balance" rather than "redo" since we
11272 * need to continue with same src_cpu.
11273 */
11274 goto more_balance;
11275 }
11276
11277 /*
11278 * We failed to reach balance because of affinity.
11279 */
11280 if (sd_parent) {
11281 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11282
11283 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11284 *group_imbalance = 1;
11285 }
11286
11287 /* All tasks on this runqueue were pinned by CPU affinity */
11288 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11289 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11290 /*
11291 * Attempting to continue load balancing at the current
11292 * sched_domain level only makes sense if there are
11293 * active CPUs remaining as possible busiest CPUs to
11294 * pull load from which are not contained within the
11295 * destination group that is receiving any migrated
11296 * load.
11297 */
11298 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11299 env.loop = 0;
11300 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11301 goto redo;
11302 }
11303 goto out_all_pinned;
11304 }
11305 }
11306
11307 if (!ld_moved) {
11308 schedstat_inc(sd->lb_failed[idle]);
11309 /*
11310 * Increment the failure counter only on periodic balance.
11311 * We do not want newidle balance, which can be very
11312 * frequent, pollute the failure counter causing
11313 * excessive cache_hot migrations and active balances.
11314 */
11315 if (idle != CPU_NEWLY_IDLE)
11316 sd->nr_balance_failed++;
11317
11318 if (need_active_balance(&env)) {
11319 unsigned long flags;
11320
11321 raw_spin_rq_lock_irqsave(busiest, flags);
11322
11323 /*
11324 * Don't kick the active_load_balance_cpu_stop,
11325 * if the curr task on busiest CPU can't be
11326 * moved to this_cpu:
11327 */
11328 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11329 raw_spin_rq_unlock_irqrestore(busiest, flags);
11330 goto out_one_pinned;
11331 }
11332
11333 /* Record that we found at least one task that could run on this_cpu */
11334 env.flags &= ~LBF_ALL_PINNED;
11335
11336 /*
11337 * ->active_balance synchronizes accesses to
11338 * ->active_balance_work. Once set, it's cleared
11339 * only after active load balance is finished.
11340 */
11341 if (!busiest->active_balance) {
11342 busiest->active_balance = 1;
11343 busiest->push_cpu = this_cpu;
11344 active_balance = 1;
11345 }
11346
11347 preempt_disable();
11348 raw_spin_rq_unlock_irqrestore(busiest, flags);
11349 if (active_balance) {
11350 stop_one_cpu_nowait(cpu_of(busiest),
11351 active_load_balance_cpu_stop, busiest,
11352 &busiest->active_balance_work);
11353 }
11354 preempt_enable();
11355 }
11356 } else {
11357 sd->nr_balance_failed = 0;
11358 }
11359
11360 if (likely(!active_balance) || need_active_balance(&env)) {
11361 /* We were unbalanced, so reset the balancing interval */
11362 sd->balance_interval = sd->min_interval;
11363 }
11364
11365 goto out;
11366
11367 out_balanced:
11368 /*
11369 * We reach balance although we may have faced some affinity
11370 * constraints. Clear the imbalance flag only if other tasks got
11371 * a chance to move and fix the imbalance.
11372 */
11373 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11374 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11375
11376 if (*group_imbalance)
11377 *group_imbalance = 0;
11378 }
11379
11380 out_all_pinned:
11381 /*
11382 * We reach balance because all tasks are pinned at this level so
11383 * we can't migrate them. Let the imbalance flag set so parent level
11384 * can try to migrate them.
11385 */
11386 schedstat_inc(sd->lb_balanced[idle]);
11387
11388 sd->nr_balance_failed = 0;
11389
11390 out_one_pinned:
11391 ld_moved = 0;
11392
11393 /*
11394 * newidle_balance() disregards balance intervals, so we could
11395 * repeatedly reach this code, which would lead to balance_interval
11396 * skyrocketing in a short amount of time. Skip the balance_interval
11397 * increase logic to avoid that.
11398 */
11399 if (env.idle == CPU_NEWLY_IDLE)
11400 goto out;
11401
11402 /* tune up the balancing interval */
11403 if ((env.flags & LBF_ALL_PINNED &&
11404 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11405 sd->balance_interval < sd->max_interval)
11406 sd->balance_interval *= 2;
11407 out:
11408 return ld_moved;
11409 }
11410
11411 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11412 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11413 {
11414 unsigned long interval = sd->balance_interval;
11415
11416 if (cpu_busy)
11417 interval *= sd->busy_factor;
11418
11419 /* scale ms to jiffies */
11420 interval = msecs_to_jiffies(interval);
11421
11422 /*
11423 * Reduce likelihood of busy balancing at higher domains racing with
11424 * balancing at lower domains by preventing their balancing periods
11425 * from being multiples of each other.
11426 */
11427 if (cpu_busy)
11428 interval -= 1;
11429
11430 interval = clamp(interval, 1UL, max_load_balance_interval);
11431
11432 return interval;
11433 }
11434
11435 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11436 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11437 {
11438 unsigned long interval, next;
11439
11440 /* used by idle balance, so cpu_busy = 0 */
11441 interval = get_sd_balance_interval(sd, 0);
11442 next = sd->last_balance + interval;
11443
11444 if (time_after(*next_balance, next))
11445 *next_balance = next;
11446 }
11447
11448 /*
11449 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11450 * running tasks off the busiest CPU onto idle CPUs. It requires at
11451 * least 1 task to be running on each physical CPU where possible, and
11452 * avoids physical / logical imbalances.
11453 */
active_load_balance_cpu_stop(void * data)11454 static int active_load_balance_cpu_stop(void *data)
11455 {
11456 struct rq *busiest_rq = data;
11457 int busiest_cpu = cpu_of(busiest_rq);
11458 int target_cpu = busiest_rq->push_cpu;
11459 struct rq *target_rq = cpu_rq(target_cpu);
11460 struct sched_domain *sd;
11461 struct task_struct *p = NULL;
11462 struct rq_flags rf;
11463
11464 rq_lock_irq(busiest_rq, &rf);
11465 /*
11466 * Between queueing the stop-work and running it is a hole in which
11467 * CPUs can become inactive. We should not move tasks from or to
11468 * inactive CPUs.
11469 */
11470 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11471 goto out_unlock;
11472
11473 /* Make sure the requested CPU hasn't gone down in the meantime: */
11474 if (unlikely(busiest_cpu != smp_processor_id() ||
11475 !busiest_rq->active_balance))
11476 goto out_unlock;
11477
11478 /* Is there any task to move? */
11479 if (busiest_rq->nr_running <= 1)
11480 goto out_unlock;
11481
11482 /*
11483 * This condition is "impossible", if it occurs
11484 * we need to fix it. Originally reported by
11485 * Bjorn Helgaas on a 128-CPU setup.
11486 */
11487 WARN_ON_ONCE(busiest_rq == target_rq);
11488
11489 /* Search for an sd spanning us and the target CPU. */
11490 rcu_read_lock();
11491 for_each_domain(target_cpu, sd) {
11492 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11493 break;
11494 }
11495
11496 if (likely(sd)) {
11497 struct lb_env env = {
11498 .sd = sd,
11499 .dst_cpu = target_cpu,
11500 .dst_rq = target_rq,
11501 .src_cpu = busiest_rq->cpu,
11502 .src_rq = busiest_rq,
11503 .idle = CPU_IDLE,
11504 .flags = LBF_ACTIVE_LB,
11505 };
11506
11507 schedstat_inc(sd->alb_count);
11508 update_rq_clock(busiest_rq);
11509
11510 p = detach_one_task(&env);
11511 if (p) {
11512 schedstat_inc(sd->alb_pushed);
11513 /* Active balancing done, reset the failure counter. */
11514 sd->nr_balance_failed = 0;
11515 } else {
11516 schedstat_inc(sd->alb_failed);
11517 }
11518 }
11519 rcu_read_unlock();
11520 out_unlock:
11521 busiest_rq->active_balance = 0;
11522 rq_unlock(busiest_rq, &rf);
11523
11524 if (p)
11525 attach_one_task(target_rq, p);
11526
11527 local_irq_enable();
11528
11529 return 0;
11530 }
11531
11532 static DEFINE_SPINLOCK(balancing);
11533
11534 /*
11535 * Scale the max load_balance interval with the number of CPUs in the system.
11536 * This trades load-balance latency on larger machines for less cross talk.
11537 */
update_max_interval(void)11538 void update_max_interval(void)
11539 {
11540 max_load_balance_interval = HZ*num_online_cpus()/10;
11541 }
11542
update_newidle_cost(struct sched_domain * sd,u64 cost)11543 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11544 {
11545 if (cost > sd->max_newidle_lb_cost) {
11546 /*
11547 * Track max cost of a domain to make sure to not delay the
11548 * next wakeup on the CPU.
11549 */
11550 sd->max_newidle_lb_cost = cost;
11551 sd->last_decay_max_lb_cost = jiffies;
11552 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11553 /*
11554 * Decay the newidle max times by ~1% per second to ensure that
11555 * it is not outdated and the current max cost is actually
11556 * shorter.
11557 */
11558 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11559 sd->last_decay_max_lb_cost = jiffies;
11560
11561 return true;
11562 }
11563
11564 return false;
11565 }
11566
11567 /*
11568 * It checks each scheduling domain to see if it is due to be balanced,
11569 * and initiates a balancing operation if so.
11570 *
11571 * Balancing parameters are set up in init_sched_domains.
11572 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11573 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11574 {
11575 int continue_balancing = 1;
11576 int cpu = rq->cpu;
11577 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11578 unsigned long interval;
11579 struct sched_domain *sd;
11580 /* Earliest time when we have to do rebalance again */
11581 unsigned long next_balance = jiffies + 60*HZ;
11582 int update_next_balance = 0;
11583 int need_serialize, need_decay = 0;
11584 u64 max_cost = 0;
11585
11586 rcu_read_lock();
11587 for_each_domain(cpu, sd) {
11588 /*
11589 * Decay the newidle max times here because this is a regular
11590 * visit to all the domains.
11591 */
11592 need_decay = update_newidle_cost(sd, 0);
11593 max_cost += sd->max_newidle_lb_cost;
11594
11595 /*
11596 * Stop the load balance at this level. There is another
11597 * CPU in our sched group which is doing load balancing more
11598 * actively.
11599 */
11600 if (!continue_balancing) {
11601 if (need_decay)
11602 continue;
11603 break;
11604 }
11605
11606 interval = get_sd_balance_interval(sd, busy);
11607
11608 need_serialize = sd->flags & SD_SERIALIZE;
11609 if (need_serialize) {
11610 if (!spin_trylock(&balancing))
11611 goto out;
11612 }
11613
11614 if (time_after_eq(jiffies, sd->last_balance + interval)) {
11615 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11616 /*
11617 * The LBF_DST_PINNED logic could have changed
11618 * env->dst_cpu, so we can't know our idle
11619 * state even if we migrated tasks. Update it.
11620 */
11621 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11622 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11623 }
11624 sd->last_balance = jiffies;
11625 interval = get_sd_balance_interval(sd, busy);
11626 }
11627 if (need_serialize)
11628 spin_unlock(&balancing);
11629 out:
11630 if (time_after(next_balance, sd->last_balance + interval)) {
11631 next_balance = sd->last_balance + interval;
11632 update_next_balance = 1;
11633 }
11634 }
11635 if (need_decay) {
11636 /*
11637 * Ensure the rq-wide value also decays but keep it at a
11638 * reasonable floor to avoid funnies with rq->avg_idle.
11639 */
11640 rq->max_idle_balance_cost =
11641 max((u64)sysctl_sched_migration_cost, max_cost);
11642 }
11643 rcu_read_unlock();
11644
11645 /*
11646 * next_balance will be updated only when there is a need.
11647 * When the cpu is attached to null domain for ex, it will not be
11648 * updated.
11649 */
11650 if (likely(update_next_balance))
11651 rq->next_balance = next_balance;
11652
11653 }
11654
on_null_domain(struct rq * rq)11655 static inline int on_null_domain(struct rq *rq)
11656 {
11657 return unlikely(!rcu_dereference_sched(rq->sd));
11658 }
11659
11660 #ifdef CONFIG_NO_HZ_COMMON
11661 /*
11662 * idle load balancing details
11663 * - When one of the busy CPUs notice that there may be an idle rebalancing
11664 * needed, they will kick the idle load balancer, which then does idle
11665 * load balancing for all the idle CPUs.
11666 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11667 * anywhere yet.
11668 */
11669
find_new_ilb(void)11670 static inline int find_new_ilb(void)
11671 {
11672 int ilb;
11673 const struct cpumask *hk_mask;
11674
11675 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11676
11677 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11678
11679 if (ilb == smp_processor_id())
11680 continue;
11681
11682 if (idle_cpu(ilb))
11683 return ilb;
11684 }
11685
11686 return nr_cpu_ids;
11687 }
11688
11689 /*
11690 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11691 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11692 */
kick_ilb(unsigned int flags)11693 static void kick_ilb(unsigned int flags)
11694 {
11695 int ilb_cpu;
11696
11697 /*
11698 * Increase nohz.next_balance only when if full ilb is triggered but
11699 * not if we only update stats.
11700 */
11701 if (flags & NOHZ_BALANCE_KICK)
11702 nohz.next_balance = jiffies+1;
11703
11704 ilb_cpu = find_new_ilb();
11705
11706 if (ilb_cpu >= nr_cpu_ids)
11707 return;
11708
11709 /*
11710 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11711 * the first flag owns it; cleared by nohz_csd_func().
11712 */
11713 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11714 if (flags & NOHZ_KICK_MASK)
11715 return;
11716
11717 /*
11718 * This way we generate an IPI on the target CPU which
11719 * is idle. And the softirq performing nohz idle load balance
11720 * will be run before returning from the IPI.
11721 */
11722 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11723 }
11724
11725 /*
11726 * Current decision point for kicking the idle load balancer in the presence
11727 * of idle CPUs in the system.
11728 */
nohz_balancer_kick(struct rq * rq)11729 static void nohz_balancer_kick(struct rq *rq)
11730 {
11731 unsigned long now = jiffies;
11732 struct sched_domain_shared *sds;
11733 struct sched_domain *sd;
11734 int nr_busy, i, cpu = rq->cpu;
11735 unsigned int flags = 0;
11736
11737 if (unlikely(rq->idle_balance))
11738 return;
11739
11740 /*
11741 * We may be recently in ticked or tickless idle mode. At the first
11742 * busy tick after returning from idle, we will update the busy stats.
11743 */
11744 nohz_balance_exit_idle(rq);
11745
11746 /*
11747 * None are in tickless mode and hence no need for NOHZ idle load
11748 * balancing.
11749 */
11750 if (likely(!atomic_read(&nohz.nr_cpus)))
11751 return;
11752
11753 if (READ_ONCE(nohz.has_blocked) &&
11754 time_after(now, READ_ONCE(nohz.next_blocked)))
11755 flags = NOHZ_STATS_KICK;
11756
11757 if (time_before(now, nohz.next_balance))
11758 goto out;
11759
11760 if (rq->nr_running >= 2) {
11761 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11762 goto out;
11763 }
11764
11765 rcu_read_lock();
11766
11767 sd = rcu_dereference(rq->sd);
11768 if (sd) {
11769 /*
11770 * If there's a CFS task and the current CPU has reduced
11771 * capacity; kick the ILB to see if there's a better CPU to run
11772 * on.
11773 */
11774 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11775 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11776 goto unlock;
11777 }
11778 }
11779
11780 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11781 if (sd) {
11782 /*
11783 * When ASYM_PACKING; see if there's a more preferred CPU
11784 * currently idle; in which case, kick the ILB to move tasks
11785 * around.
11786 *
11787 * When balancing betwen cores, all the SMT siblings of the
11788 * preferred CPU must be idle.
11789 */
11790 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11791 if (sched_use_asym_prio(sd, i) &&
11792 sched_asym_prefer(i, cpu)) {
11793 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11794 goto unlock;
11795 }
11796 }
11797 }
11798
11799 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11800 if (sd) {
11801 /*
11802 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11803 * to run the misfit task on.
11804 */
11805 if (check_misfit_status(rq, sd)) {
11806 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11807 goto unlock;
11808 }
11809
11810 /*
11811 * For asymmetric systems, we do not want to nicely balance
11812 * cache use, instead we want to embrace asymmetry and only
11813 * ensure tasks have enough CPU capacity.
11814 *
11815 * Skip the LLC logic because it's not relevant in that case.
11816 */
11817 goto unlock;
11818 }
11819
11820 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11821 if (sds) {
11822 /*
11823 * If there is an imbalance between LLC domains (IOW we could
11824 * increase the overall cache use), we need some less-loaded LLC
11825 * domain to pull some load. Likewise, we may need to spread
11826 * load within the current LLC domain (e.g. packed SMT cores but
11827 * other CPUs are idle). We can't really know from here how busy
11828 * the others are - so just get a nohz balance going if it looks
11829 * like this LLC domain has tasks we could move.
11830 */
11831 nr_busy = atomic_read(&sds->nr_busy_cpus);
11832 if (nr_busy > 1) {
11833 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11834 goto unlock;
11835 }
11836 }
11837 unlock:
11838 rcu_read_unlock();
11839 out:
11840 if (READ_ONCE(nohz.needs_update))
11841 flags |= NOHZ_NEXT_KICK;
11842
11843 if (flags)
11844 kick_ilb(flags);
11845 }
11846
set_cpu_sd_state_busy(int cpu)11847 static void set_cpu_sd_state_busy(int cpu)
11848 {
11849 struct sched_domain *sd;
11850
11851 rcu_read_lock();
11852 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11853
11854 if (!sd || !sd->nohz_idle)
11855 goto unlock;
11856 sd->nohz_idle = 0;
11857
11858 atomic_inc(&sd->shared->nr_busy_cpus);
11859 unlock:
11860 rcu_read_unlock();
11861 }
11862
nohz_balance_exit_idle(struct rq * rq)11863 void nohz_balance_exit_idle(struct rq *rq)
11864 {
11865 SCHED_WARN_ON(rq != this_rq());
11866
11867 if (likely(!rq->nohz_tick_stopped))
11868 return;
11869
11870 rq->nohz_tick_stopped = 0;
11871 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11872 atomic_dec(&nohz.nr_cpus);
11873
11874 set_cpu_sd_state_busy(rq->cpu);
11875 }
11876
set_cpu_sd_state_idle(int cpu)11877 static void set_cpu_sd_state_idle(int cpu)
11878 {
11879 struct sched_domain *sd;
11880
11881 rcu_read_lock();
11882 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11883
11884 if (!sd || sd->nohz_idle)
11885 goto unlock;
11886 sd->nohz_idle = 1;
11887
11888 atomic_dec(&sd->shared->nr_busy_cpus);
11889 unlock:
11890 rcu_read_unlock();
11891 }
11892
11893 /*
11894 * This routine will record that the CPU is going idle with tick stopped.
11895 * This info will be used in performing idle load balancing in the future.
11896 */
nohz_balance_enter_idle(int cpu)11897 void nohz_balance_enter_idle(int cpu)
11898 {
11899 struct rq *rq = cpu_rq(cpu);
11900
11901 SCHED_WARN_ON(cpu != smp_processor_id());
11902
11903 /* If this CPU is going down, then nothing needs to be done: */
11904 if (!cpu_active(cpu))
11905 return;
11906
11907 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
11908 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11909 return;
11910
11911 /*
11912 * Can be set safely without rq->lock held
11913 * If a clear happens, it will have evaluated last additions because
11914 * rq->lock is held during the check and the clear
11915 */
11916 rq->has_blocked_load = 1;
11917
11918 /*
11919 * The tick is still stopped but load could have been added in the
11920 * meantime. We set the nohz.has_blocked flag to trig a check of the
11921 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11922 * of nohz.has_blocked can only happen after checking the new load
11923 */
11924 if (rq->nohz_tick_stopped)
11925 goto out;
11926
11927 /* If we're a completely isolated CPU, we don't play: */
11928 if (on_null_domain(rq))
11929 return;
11930
11931 rq->nohz_tick_stopped = 1;
11932
11933 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11934 atomic_inc(&nohz.nr_cpus);
11935
11936 /*
11937 * Ensures that if nohz_idle_balance() fails to observe our
11938 * @idle_cpus_mask store, it must observe the @has_blocked
11939 * and @needs_update stores.
11940 */
11941 smp_mb__after_atomic();
11942
11943 set_cpu_sd_state_idle(cpu);
11944
11945 WRITE_ONCE(nohz.needs_update, 1);
11946 out:
11947 /*
11948 * Each time a cpu enter idle, we assume that it has blocked load and
11949 * enable the periodic update of the load of idle cpus
11950 */
11951 WRITE_ONCE(nohz.has_blocked, 1);
11952 }
11953
update_nohz_stats(struct rq * rq)11954 static bool update_nohz_stats(struct rq *rq)
11955 {
11956 unsigned int cpu = rq->cpu;
11957
11958 if (!rq->has_blocked_load)
11959 return false;
11960
11961 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11962 return false;
11963
11964 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11965 return true;
11966
11967 update_blocked_averages(cpu);
11968
11969 return rq->has_blocked_load;
11970 }
11971
11972 /*
11973 * Internal function that runs load balance for all idle cpus. The load balance
11974 * can be a simple update of blocked load or a complete load balance with
11975 * tasks movement depending of flags.
11976 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)11977 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11978 {
11979 /* Earliest time when we have to do rebalance again */
11980 unsigned long now = jiffies;
11981 unsigned long next_balance = now + 60*HZ;
11982 bool has_blocked_load = false;
11983 int update_next_balance = 0;
11984 int this_cpu = this_rq->cpu;
11985 int balance_cpu;
11986 struct rq *rq;
11987
11988 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11989
11990 /*
11991 * We assume there will be no idle load after this update and clear
11992 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11993 * set the has_blocked flag and trigger another update of idle load.
11994 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11995 * setting the flag, we are sure to not clear the state and not
11996 * check the load of an idle cpu.
11997 *
11998 * Same applies to idle_cpus_mask vs needs_update.
11999 */
12000 if (flags & NOHZ_STATS_KICK)
12001 WRITE_ONCE(nohz.has_blocked, 0);
12002 if (flags & NOHZ_NEXT_KICK)
12003 WRITE_ONCE(nohz.needs_update, 0);
12004
12005 /*
12006 * Ensures that if we miss the CPU, we must see the has_blocked
12007 * store from nohz_balance_enter_idle().
12008 */
12009 smp_mb();
12010
12011 /*
12012 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12013 * chance for other idle cpu to pull load.
12014 */
12015 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12016 if (!idle_cpu(balance_cpu))
12017 continue;
12018
12019 /*
12020 * If this CPU gets work to do, stop the load balancing
12021 * work being done for other CPUs. Next load
12022 * balancing owner will pick it up.
12023 */
12024 if (need_resched()) {
12025 if (flags & NOHZ_STATS_KICK)
12026 has_blocked_load = true;
12027 if (flags & NOHZ_NEXT_KICK)
12028 WRITE_ONCE(nohz.needs_update, 1);
12029 goto abort;
12030 }
12031
12032 rq = cpu_rq(balance_cpu);
12033
12034 if (flags & NOHZ_STATS_KICK)
12035 has_blocked_load |= update_nohz_stats(rq);
12036
12037 /*
12038 * If time for next balance is due,
12039 * do the balance.
12040 */
12041 if (time_after_eq(jiffies, rq->next_balance)) {
12042 struct rq_flags rf;
12043
12044 rq_lock_irqsave(rq, &rf);
12045 update_rq_clock(rq);
12046 rq_unlock_irqrestore(rq, &rf);
12047
12048 if (flags & NOHZ_BALANCE_KICK)
12049 rebalance_domains(rq, CPU_IDLE);
12050 }
12051
12052 if (time_after(next_balance, rq->next_balance)) {
12053 next_balance = rq->next_balance;
12054 update_next_balance = 1;
12055 }
12056 }
12057
12058 /*
12059 * next_balance will be updated only when there is a need.
12060 * When the CPU is attached to null domain for ex, it will not be
12061 * updated.
12062 */
12063 if (likely(update_next_balance))
12064 nohz.next_balance = next_balance;
12065
12066 if (flags & NOHZ_STATS_KICK)
12067 WRITE_ONCE(nohz.next_blocked,
12068 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12069
12070 abort:
12071 /* There is still blocked load, enable periodic update */
12072 if (has_blocked_load)
12073 WRITE_ONCE(nohz.has_blocked, 1);
12074 }
12075
12076 /*
12077 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12078 * rebalancing for all the cpus for whom scheduler ticks are stopped.
12079 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12080 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12081 {
12082 unsigned int flags = this_rq->nohz_idle_balance;
12083
12084 if (!flags)
12085 return false;
12086
12087 this_rq->nohz_idle_balance = 0;
12088
12089 if (idle != CPU_IDLE)
12090 return false;
12091
12092 _nohz_idle_balance(this_rq, flags);
12093
12094 return true;
12095 }
12096
12097 /*
12098 * Check if we need to run the ILB for updating blocked load before entering
12099 * idle state.
12100 */
nohz_run_idle_balance(int cpu)12101 void nohz_run_idle_balance(int cpu)
12102 {
12103 unsigned int flags;
12104
12105 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12106
12107 /*
12108 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12109 * (ie NOHZ_STATS_KICK set) and will do the same.
12110 */
12111 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12112 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12113 }
12114
nohz_newidle_balance(struct rq * this_rq)12115 static void nohz_newidle_balance(struct rq *this_rq)
12116 {
12117 int this_cpu = this_rq->cpu;
12118
12119 /*
12120 * This CPU doesn't want to be disturbed by scheduler
12121 * housekeeping
12122 */
12123 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12124 return;
12125
12126 /* Will wake up very soon. No time for doing anything else*/
12127 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12128 return;
12129
12130 /* Don't need to update blocked load of idle CPUs*/
12131 if (!READ_ONCE(nohz.has_blocked) ||
12132 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12133 return;
12134
12135 /*
12136 * Set the need to trigger ILB in order to update blocked load
12137 * before entering idle state.
12138 */
12139 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12140 }
12141
12142 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12143 static inline void nohz_balancer_kick(struct rq *rq) { }
12144
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12145 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12146 {
12147 return false;
12148 }
12149
nohz_newidle_balance(struct rq * this_rq)12150 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12151 #endif /* CONFIG_NO_HZ_COMMON */
12152
12153 /*
12154 * newidle_balance is called by schedule() if this_cpu is about to become
12155 * idle. Attempts to pull tasks from other CPUs.
12156 *
12157 * Returns:
12158 * < 0 - we released the lock and there are !fair tasks present
12159 * 0 - failed, no new tasks
12160 * > 0 - success, new (fair) tasks present
12161 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)12162 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12163 {
12164 unsigned long next_balance = jiffies + HZ;
12165 int this_cpu = this_rq->cpu;
12166 u64 t0, t1, curr_cost = 0;
12167 struct sched_domain *sd;
12168 int pulled_task = 0;
12169
12170 update_misfit_status(NULL, this_rq);
12171
12172 /*
12173 * There is a task waiting to run. No need to search for one.
12174 * Return 0; the task will be enqueued when switching to idle.
12175 */
12176 if (this_rq->ttwu_pending)
12177 return 0;
12178
12179 /*
12180 * We must set idle_stamp _before_ calling idle_balance(), such that we
12181 * measure the duration of idle_balance() as idle time.
12182 */
12183 this_rq->idle_stamp = rq_clock(this_rq);
12184
12185 /*
12186 * Do not pull tasks towards !active CPUs...
12187 */
12188 if (!cpu_active(this_cpu))
12189 return 0;
12190
12191 /*
12192 * This is OK, because current is on_cpu, which avoids it being picked
12193 * for load-balance and preemption/IRQs are still disabled avoiding
12194 * further scheduler activity on it and we're being very careful to
12195 * re-start the picking loop.
12196 */
12197 rq_unpin_lock(this_rq, rf);
12198
12199 rcu_read_lock();
12200 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12201
12202 if (!READ_ONCE(this_rq->rd->overload) ||
12203 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12204
12205 if (sd)
12206 update_next_balance(sd, &next_balance);
12207 rcu_read_unlock();
12208
12209 goto out;
12210 }
12211 rcu_read_unlock();
12212
12213 raw_spin_rq_unlock(this_rq);
12214
12215 t0 = sched_clock_cpu(this_cpu);
12216 update_blocked_averages(this_cpu);
12217
12218 rcu_read_lock();
12219 for_each_domain(this_cpu, sd) {
12220 int continue_balancing = 1;
12221 u64 domain_cost;
12222
12223 update_next_balance(sd, &next_balance);
12224
12225 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12226 break;
12227
12228 if (sd->flags & SD_BALANCE_NEWIDLE) {
12229
12230 pulled_task = load_balance(this_cpu, this_rq,
12231 sd, CPU_NEWLY_IDLE,
12232 &continue_balancing);
12233
12234 t1 = sched_clock_cpu(this_cpu);
12235 domain_cost = t1 - t0;
12236 update_newidle_cost(sd, domain_cost);
12237
12238 curr_cost += domain_cost;
12239 t0 = t1;
12240 }
12241
12242 /*
12243 * Stop searching for tasks to pull if there are
12244 * now runnable tasks on this rq.
12245 */
12246 if (pulled_task || this_rq->nr_running > 0 ||
12247 this_rq->ttwu_pending)
12248 break;
12249 }
12250 rcu_read_unlock();
12251
12252 raw_spin_rq_lock(this_rq);
12253
12254 if (curr_cost > this_rq->max_idle_balance_cost)
12255 this_rq->max_idle_balance_cost = curr_cost;
12256
12257 /*
12258 * While browsing the domains, we released the rq lock, a task could
12259 * have been enqueued in the meantime. Since we're not going idle,
12260 * pretend we pulled a task.
12261 */
12262 if (this_rq->cfs.h_nr_running && !pulled_task)
12263 pulled_task = 1;
12264
12265 /* Is there a task of a high priority class? */
12266 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12267 pulled_task = -1;
12268
12269 out:
12270 /* Move the next balance forward */
12271 if (time_after(this_rq->next_balance, next_balance))
12272 this_rq->next_balance = next_balance;
12273
12274 if (pulled_task)
12275 this_rq->idle_stamp = 0;
12276 else
12277 nohz_newidle_balance(this_rq);
12278
12279 rq_repin_lock(this_rq, rf);
12280
12281 return pulled_task;
12282 }
12283
12284 /*
12285 * run_rebalance_domains is triggered when needed from the scheduler tick.
12286 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12287 */
run_rebalance_domains(struct softirq_action * h)12288 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12289 {
12290 struct rq *this_rq = this_rq();
12291 enum cpu_idle_type idle = this_rq->idle_balance ?
12292 CPU_IDLE : CPU_NOT_IDLE;
12293
12294 /*
12295 * If this CPU has a pending nohz_balance_kick, then do the
12296 * balancing on behalf of the other idle CPUs whose ticks are
12297 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12298 * give the idle CPUs a chance to load balance. Else we may
12299 * load balance only within the local sched_domain hierarchy
12300 * and abort nohz_idle_balance altogether if we pull some load.
12301 */
12302 if (nohz_idle_balance(this_rq, idle))
12303 return;
12304
12305 /* normal load balance */
12306 update_blocked_averages(this_rq->cpu);
12307 rebalance_domains(this_rq, idle);
12308 }
12309
12310 /*
12311 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12312 */
trigger_load_balance(struct rq * rq)12313 void trigger_load_balance(struct rq *rq)
12314 {
12315 /*
12316 * Don't need to rebalance while attached to NULL domain or
12317 * runqueue CPU is not active
12318 */
12319 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12320 return;
12321
12322 if (time_after_eq(jiffies, rq->next_balance))
12323 raise_softirq(SCHED_SOFTIRQ);
12324
12325 nohz_balancer_kick(rq);
12326 }
12327
rq_online_fair(struct rq * rq)12328 static void rq_online_fair(struct rq *rq)
12329 {
12330 update_sysctl();
12331
12332 update_runtime_enabled(rq);
12333 }
12334
rq_offline_fair(struct rq * rq)12335 static void rq_offline_fair(struct rq *rq)
12336 {
12337 update_sysctl();
12338
12339 /* Ensure any throttled groups are reachable by pick_next_task */
12340 unthrottle_offline_cfs_rqs(rq);
12341 }
12342
12343 #endif /* CONFIG_SMP */
12344
12345 #ifdef CONFIG_SCHED_CORE
12346 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12347 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12348 {
12349 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12350 u64 slice = se->slice;
12351
12352 return (rtime * min_nr_tasks > slice);
12353 }
12354
12355 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12356 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12357 {
12358 if (!sched_core_enabled(rq))
12359 return;
12360
12361 /*
12362 * If runqueue has only one task which used up its slice and
12363 * if the sibling is forced idle, then trigger schedule to
12364 * give forced idle task a chance.
12365 *
12366 * sched_slice() considers only this active rq and it gets the
12367 * whole slice. But during force idle, we have siblings acting
12368 * like a single runqueue and hence we need to consider runnable
12369 * tasks on this CPU and the forced idle CPU. Ideally, we should
12370 * go through the forced idle rq, but that would be a perf hit.
12371 * We can assume that the forced idle CPU has at least
12372 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12373 * if we need to give up the CPU.
12374 */
12375 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12376 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12377 resched_curr(rq);
12378 }
12379
12380 /*
12381 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12382 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12383 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12384 bool forceidle)
12385 {
12386 for_each_sched_entity(se) {
12387 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12388
12389 if (forceidle) {
12390 if (cfs_rq->forceidle_seq == fi_seq)
12391 break;
12392 cfs_rq->forceidle_seq = fi_seq;
12393 }
12394
12395 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12396 }
12397 }
12398
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)12399 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12400 {
12401 struct sched_entity *se = &p->se;
12402
12403 if (p->sched_class != &fair_sched_class)
12404 return;
12405
12406 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12407 }
12408
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)12409 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12410 bool in_fi)
12411 {
12412 struct rq *rq = task_rq(a);
12413 const struct sched_entity *sea = &a->se;
12414 const struct sched_entity *seb = &b->se;
12415 struct cfs_rq *cfs_rqa;
12416 struct cfs_rq *cfs_rqb;
12417 s64 delta;
12418
12419 SCHED_WARN_ON(task_rq(b)->core != rq->core);
12420
12421 #ifdef CONFIG_FAIR_GROUP_SCHED
12422 /*
12423 * Find an se in the hierarchy for tasks a and b, such that the se's
12424 * are immediate siblings.
12425 */
12426 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12427 int sea_depth = sea->depth;
12428 int seb_depth = seb->depth;
12429
12430 if (sea_depth >= seb_depth)
12431 sea = parent_entity(sea);
12432 if (sea_depth <= seb_depth)
12433 seb = parent_entity(seb);
12434 }
12435
12436 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12437 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12438
12439 cfs_rqa = sea->cfs_rq;
12440 cfs_rqb = seb->cfs_rq;
12441 #else
12442 cfs_rqa = &task_rq(a)->cfs;
12443 cfs_rqb = &task_rq(b)->cfs;
12444 #endif
12445
12446 /*
12447 * Find delta after normalizing se's vruntime with its cfs_rq's
12448 * min_vruntime_fi, which would have been updated in prior calls
12449 * to se_fi_update().
12450 */
12451 delta = (s64)(sea->vruntime - seb->vruntime) +
12452 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12453
12454 return delta > 0;
12455 }
12456
task_is_throttled_fair(struct task_struct * p,int cpu)12457 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12458 {
12459 struct cfs_rq *cfs_rq;
12460
12461 #ifdef CONFIG_FAIR_GROUP_SCHED
12462 cfs_rq = task_group(p)->cfs_rq[cpu];
12463 #else
12464 cfs_rq = &cpu_rq(cpu)->cfs;
12465 #endif
12466 return throttled_hierarchy(cfs_rq);
12467 }
12468 #else
task_tick_core(struct rq * rq,struct task_struct * curr)12469 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12470 #endif
12471
12472 /*
12473 * scheduler tick hitting a task of our scheduling class.
12474 *
12475 * NOTE: This function can be called remotely by the tick offload that
12476 * goes along full dynticks. Therefore no local assumption can be made
12477 * and everything must be accessed through the @rq and @curr passed in
12478 * parameters.
12479 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)12480 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12481 {
12482 struct cfs_rq *cfs_rq;
12483 struct sched_entity *se = &curr->se;
12484
12485 for_each_sched_entity(se) {
12486 cfs_rq = cfs_rq_of(se);
12487 entity_tick(cfs_rq, se, queued);
12488 }
12489
12490 if (static_branch_unlikely(&sched_numa_balancing))
12491 task_tick_numa(rq, curr);
12492
12493 update_misfit_status(curr, rq);
12494 update_overutilized_status(task_rq(curr));
12495
12496 task_tick_core(rq, curr);
12497 }
12498
12499 /*
12500 * called on fork with the child task as argument from the parent's context
12501 * - child not yet on the tasklist
12502 * - preemption disabled
12503 */
task_fork_fair(struct task_struct * p)12504 static void task_fork_fair(struct task_struct *p)
12505 {
12506 struct sched_entity *se = &p->se, *curr;
12507 struct cfs_rq *cfs_rq;
12508 struct rq *rq = this_rq();
12509 struct rq_flags rf;
12510
12511 rq_lock(rq, &rf);
12512 update_rq_clock(rq);
12513
12514 cfs_rq = task_cfs_rq(current);
12515 curr = cfs_rq->curr;
12516 if (curr)
12517 update_curr(cfs_rq);
12518 place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12519 rq_unlock(rq, &rf);
12520 }
12521
12522 /*
12523 * Priority of the task has changed. Check to see if we preempt
12524 * the current task.
12525 */
12526 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12527 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12528 {
12529 if (!task_on_rq_queued(p))
12530 return;
12531
12532 if (rq->cfs.nr_running == 1)
12533 return;
12534
12535 /*
12536 * Reschedule if we are currently running on this runqueue and
12537 * our priority decreased, or if we are not currently running on
12538 * this runqueue and our priority is higher than the current's
12539 */
12540 if (task_current(rq, p)) {
12541 if (p->prio > oldprio)
12542 resched_curr(rq);
12543 } else
12544 check_preempt_curr(rq, p, 0);
12545 }
12546
12547 #ifdef CONFIG_FAIR_GROUP_SCHED
12548 /*
12549 * Propagate the changes of the sched_entity across the tg tree to make it
12550 * visible to the root
12551 */
propagate_entity_cfs_rq(struct sched_entity * se)12552 static void propagate_entity_cfs_rq(struct sched_entity *se)
12553 {
12554 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12555
12556 if (cfs_rq_throttled(cfs_rq))
12557 return;
12558
12559 if (!throttled_hierarchy(cfs_rq))
12560 list_add_leaf_cfs_rq(cfs_rq);
12561
12562 /* Start to propagate at parent */
12563 se = se->parent;
12564
12565 for_each_sched_entity(se) {
12566 cfs_rq = cfs_rq_of(se);
12567
12568 update_load_avg(cfs_rq, se, UPDATE_TG);
12569
12570 if (cfs_rq_throttled(cfs_rq))
12571 break;
12572
12573 if (!throttled_hierarchy(cfs_rq))
12574 list_add_leaf_cfs_rq(cfs_rq);
12575 }
12576 }
12577 #else
propagate_entity_cfs_rq(struct sched_entity * se)12578 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12579 #endif
12580
detach_entity_cfs_rq(struct sched_entity * se)12581 static void detach_entity_cfs_rq(struct sched_entity *se)
12582 {
12583 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12584
12585 #ifdef CONFIG_SMP
12586 /*
12587 * In case the task sched_avg hasn't been attached:
12588 * - A forked task which hasn't been woken up by wake_up_new_task().
12589 * - A task which has been woken up by try_to_wake_up() but is
12590 * waiting for actually being woken up by sched_ttwu_pending().
12591 */
12592 if (!se->avg.last_update_time)
12593 return;
12594 #endif
12595
12596 /* Catch up with the cfs_rq and remove our load when we leave */
12597 update_load_avg(cfs_rq, se, 0);
12598 detach_entity_load_avg(cfs_rq, se);
12599 update_tg_load_avg(cfs_rq);
12600 propagate_entity_cfs_rq(se);
12601 }
12602
attach_entity_cfs_rq(struct sched_entity * se)12603 static void attach_entity_cfs_rq(struct sched_entity *se)
12604 {
12605 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12606
12607 /* Synchronize entity with its cfs_rq */
12608 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12609 attach_entity_load_avg(cfs_rq, se);
12610 update_tg_load_avg(cfs_rq);
12611 propagate_entity_cfs_rq(se);
12612 }
12613
detach_task_cfs_rq(struct task_struct * p)12614 static void detach_task_cfs_rq(struct task_struct *p)
12615 {
12616 struct sched_entity *se = &p->se;
12617
12618 detach_entity_cfs_rq(se);
12619 }
12620
attach_task_cfs_rq(struct task_struct * p)12621 static void attach_task_cfs_rq(struct task_struct *p)
12622 {
12623 struct sched_entity *se = &p->se;
12624
12625 attach_entity_cfs_rq(se);
12626 }
12627
switched_from_fair(struct rq * rq,struct task_struct * p)12628 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12629 {
12630 detach_task_cfs_rq(p);
12631 }
12632
switched_to_fair(struct rq * rq,struct task_struct * p)12633 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12634 {
12635 attach_task_cfs_rq(p);
12636
12637 if (task_on_rq_queued(p)) {
12638 /*
12639 * We were most likely switched from sched_rt, so
12640 * kick off the schedule if running, otherwise just see
12641 * if we can still preempt the current task.
12642 */
12643 if (task_current(rq, p))
12644 resched_curr(rq);
12645 else
12646 check_preempt_curr(rq, p, 0);
12647 }
12648 }
12649
12650 /* Account for a task changing its policy or group.
12651 *
12652 * This routine is mostly called to set cfs_rq->curr field when a task
12653 * migrates between groups/classes.
12654 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12655 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12656 {
12657 struct sched_entity *se = &p->se;
12658
12659 #ifdef CONFIG_SMP
12660 if (task_on_rq_queued(p)) {
12661 /*
12662 * Move the next running task to the front of the list, so our
12663 * cfs_tasks list becomes MRU one.
12664 */
12665 list_move(&se->group_node, &rq->cfs_tasks);
12666 }
12667 #endif
12668
12669 for_each_sched_entity(se) {
12670 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12671
12672 set_next_entity(cfs_rq, se);
12673 /* ensure bandwidth has been allocated on our new cfs_rq */
12674 account_cfs_rq_runtime(cfs_rq, 0);
12675 }
12676 }
12677
init_cfs_rq(struct cfs_rq * cfs_rq)12678 void init_cfs_rq(struct cfs_rq *cfs_rq)
12679 {
12680 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12681 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12682 #ifdef CONFIG_SMP
12683 raw_spin_lock_init(&cfs_rq->removed.lock);
12684 #endif
12685 }
12686
12687 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12688 static void task_change_group_fair(struct task_struct *p)
12689 {
12690 /*
12691 * We couldn't detach or attach a forked task which
12692 * hasn't been woken up by wake_up_new_task().
12693 */
12694 if (READ_ONCE(p->__state) == TASK_NEW)
12695 return;
12696
12697 detach_task_cfs_rq(p);
12698
12699 #ifdef CONFIG_SMP
12700 /* Tell se's cfs_rq has been changed -- migrated */
12701 p->se.avg.last_update_time = 0;
12702 #endif
12703 set_task_rq(p, task_cpu(p));
12704 attach_task_cfs_rq(p);
12705 }
12706
free_fair_sched_group(struct task_group * tg)12707 void free_fair_sched_group(struct task_group *tg)
12708 {
12709 int i;
12710
12711 for_each_possible_cpu(i) {
12712 if (tg->cfs_rq)
12713 kfree(tg->cfs_rq[i]);
12714 if (tg->se)
12715 kfree(tg->se[i]);
12716 }
12717
12718 kfree(tg->cfs_rq);
12719 kfree(tg->se);
12720 }
12721
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12722 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12723 {
12724 struct sched_entity *se;
12725 struct cfs_rq *cfs_rq;
12726 int i;
12727
12728 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12729 if (!tg->cfs_rq)
12730 goto err;
12731 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12732 if (!tg->se)
12733 goto err;
12734
12735 tg->shares = NICE_0_LOAD;
12736
12737 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12738
12739 for_each_possible_cpu(i) {
12740 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12741 GFP_KERNEL, cpu_to_node(i));
12742 if (!cfs_rq)
12743 goto err;
12744
12745 se = kzalloc_node(sizeof(struct sched_entity_stats),
12746 GFP_KERNEL, cpu_to_node(i));
12747 if (!se)
12748 goto err_free_rq;
12749
12750 init_cfs_rq(cfs_rq);
12751 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12752 init_entity_runnable_average(se);
12753 }
12754
12755 return 1;
12756
12757 err_free_rq:
12758 kfree(cfs_rq);
12759 err:
12760 return 0;
12761 }
12762
online_fair_sched_group(struct task_group * tg)12763 void online_fair_sched_group(struct task_group *tg)
12764 {
12765 struct sched_entity *se;
12766 struct rq_flags rf;
12767 struct rq *rq;
12768 int i;
12769
12770 for_each_possible_cpu(i) {
12771 rq = cpu_rq(i);
12772 se = tg->se[i];
12773 rq_lock_irq(rq, &rf);
12774 update_rq_clock(rq);
12775 attach_entity_cfs_rq(se);
12776 sync_throttle(tg, i);
12777 rq_unlock_irq(rq, &rf);
12778 }
12779 }
12780
unregister_fair_sched_group(struct task_group * tg)12781 void unregister_fair_sched_group(struct task_group *tg)
12782 {
12783 unsigned long flags;
12784 struct rq *rq;
12785 int cpu;
12786
12787 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12788
12789 for_each_possible_cpu(cpu) {
12790 if (tg->se[cpu])
12791 remove_entity_load_avg(tg->se[cpu]);
12792
12793 /*
12794 * Only empty task groups can be destroyed; so we can speculatively
12795 * check on_list without danger of it being re-added.
12796 */
12797 if (!tg->cfs_rq[cpu]->on_list)
12798 continue;
12799
12800 rq = cpu_rq(cpu);
12801
12802 raw_spin_rq_lock_irqsave(rq, flags);
12803 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12804 raw_spin_rq_unlock_irqrestore(rq, flags);
12805 }
12806 }
12807
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12808 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12809 struct sched_entity *se, int cpu,
12810 struct sched_entity *parent)
12811 {
12812 struct rq *rq = cpu_rq(cpu);
12813
12814 cfs_rq->tg = tg;
12815 cfs_rq->rq = rq;
12816 init_cfs_rq_runtime(cfs_rq);
12817
12818 tg->cfs_rq[cpu] = cfs_rq;
12819 tg->se[cpu] = se;
12820
12821 /* se could be NULL for root_task_group */
12822 if (!se)
12823 return;
12824
12825 if (!parent) {
12826 se->cfs_rq = &rq->cfs;
12827 se->depth = 0;
12828 } else {
12829 se->cfs_rq = parent->my_q;
12830 se->depth = parent->depth + 1;
12831 }
12832
12833 se->my_q = cfs_rq;
12834 /* guarantee group entities always have weight */
12835 update_load_set(&se->load, NICE_0_LOAD);
12836 se->parent = parent;
12837 }
12838
12839 static DEFINE_MUTEX(shares_mutex);
12840
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12841 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12842 {
12843 int i;
12844
12845 lockdep_assert_held(&shares_mutex);
12846
12847 /*
12848 * We can't change the weight of the root cgroup.
12849 */
12850 if (!tg->se[0])
12851 return -EINVAL;
12852
12853 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12854
12855 if (tg->shares == shares)
12856 return 0;
12857
12858 tg->shares = shares;
12859 for_each_possible_cpu(i) {
12860 struct rq *rq = cpu_rq(i);
12861 struct sched_entity *se = tg->se[i];
12862 struct rq_flags rf;
12863
12864 /* Propagate contribution to hierarchy */
12865 rq_lock_irqsave(rq, &rf);
12866 update_rq_clock(rq);
12867 for_each_sched_entity(se) {
12868 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12869 update_cfs_group(se);
12870 }
12871 rq_unlock_irqrestore(rq, &rf);
12872 }
12873
12874 return 0;
12875 }
12876
sched_group_set_shares(struct task_group * tg,unsigned long shares)12877 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12878 {
12879 int ret;
12880
12881 mutex_lock(&shares_mutex);
12882 if (tg_is_idle(tg))
12883 ret = -EINVAL;
12884 else
12885 ret = __sched_group_set_shares(tg, shares);
12886 mutex_unlock(&shares_mutex);
12887
12888 return ret;
12889 }
12890
sched_group_set_idle(struct task_group * tg,long idle)12891 int sched_group_set_idle(struct task_group *tg, long idle)
12892 {
12893 int i;
12894
12895 if (tg == &root_task_group)
12896 return -EINVAL;
12897
12898 if (idle < 0 || idle > 1)
12899 return -EINVAL;
12900
12901 mutex_lock(&shares_mutex);
12902
12903 if (tg->idle == idle) {
12904 mutex_unlock(&shares_mutex);
12905 return 0;
12906 }
12907
12908 tg->idle = idle;
12909
12910 for_each_possible_cpu(i) {
12911 struct rq *rq = cpu_rq(i);
12912 struct sched_entity *se = tg->se[i];
12913 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12914 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12915 long idle_task_delta;
12916 struct rq_flags rf;
12917
12918 rq_lock_irqsave(rq, &rf);
12919
12920 grp_cfs_rq->idle = idle;
12921 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12922 goto next_cpu;
12923
12924 if (se->on_rq) {
12925 parent_cfs_rq = cfs_rq_of(se);
12926 if (cfs_rq_is_idle(grp_cfs_rq))
12927 parent_cfs_rq->idle_nr_running++;
12928 else
12929 parent_cfs_rq->idle_nr_running--;
12930 }
12931
12932 idle_task_delta = grp_cfs_rq->h_nr_running -
12933 grp_cfs_rq->idle_h_nr_running;
12934 if (!cfs_rq_is_idle(grp_cfs_rq))
12935 idle_task_delta *= -1;
12936
12937 for_each_sched_entity(se) {
12938 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12939
12940 if (!se->on_rq)
12941 break;
12942
12943 cfs_rq->idle_h_nr_running += idle_task_delta;
12944
12945 /* Already accounted at parent level and above. */
12946 if (cfs_rq_is_idle(cfs_rq))
12947 break;
12948 }
12949
12950 next_cpu:
12951 rq_unlock_irqrestore(rq, &rf);
12952 }
12953
12954 /* Idle groups have minimum weight. */
12955 if (tg_is_idle(tg))
12956 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12957 else
12958 __sched_group_set_shares(tg, NICE_0_LOAD);
12959
12960 mutex_unlock(&shares_mutex);
12961 return 0;
12962 }
12963
12964 #else /* CONFIG_FAIR_GROUP_SCHED */
12965
free_fair_sched_group(struct task_group * tg)12966 void free_fair_sched_group(struct task_group *tg) { }
12967
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12968 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12969 {
12970 return 1;
12971 }
12972
online_fair_sched_group(struct task_group * tg)12973 void online_fair_sched_group(struct task_group *tg) { }
12974
unregister_fair_sched_group(struct task_group * tg)12975 void unregister_fair_sched_group(struct task_group *tg) { }
12976
12977 #endif /* CONFIG_FAIR_GROUP_SCHED */
12978
12979
get_rr_interval_fair(struct rq * rq,struct task_struct * task)12980 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12981 {
12982 struct sched_entity *se = &task->se;
12983 unsigned int rr_interval = 0;
12984
12985 /*
12986 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12987 * idle runqueue:
12988 */
12989 if (rq->cfs.load.weight)
12990 rr_interval = NS_TO_JIFFIES(se->slice);
12991
12992 return rr_interval;
12993 }
12994
12995 /*
12996 * All the scheduling class methods:
12997 */
12998 DEFINE_SCHED_CLASS(fair) = {
12999
13000 .enqueue_task = enqueue_task_fair,
13001 .dequeue_task = dequeue_task_fair,
13002 .yield_task = yield_task_fair,
13003 .yield_to_task = yield_to_task_fair,
13004
13005 .check_preempt_curr = check_preempt_wakeup,
13006
13007 .pick_next_task = __pick_next_task_fair,
13008 .put_prev_task = put_prev_task_fair,
13009 .set_next_task = set_next_task_fair,
13010
13011 #ifdef CONFIG_SMP
13012 .balance = balance_fair,
13013 .pick_task = pick_task_fair,
13014 .select_task_rq = select_task_rq_fair,
13015 .migrate_task_rq = migrate_task_rq_fair,
13016
13017 .rq_online = rq_online_fair,
13018 .rq_offline = rq_offline_fair,
13019
13020 .task_dead = task_dead_fair,
13021 .set_cpus_allowed = set_cpus_allowed_common,
13022 #endif
13023
13024 .task_tick = task_tick_fair,
13025 .task_fork = task_fork_fair,
13026
13027 .prio_changed = prio_changed_fair,
13028 .switched_from = switched_from_fair,
13029 .switched_to = switched_to_fair,
13030
13031 .get_rr_interval = get_rr_interval_fair,
13032
13033 .update_curr = update_curr_fair,
13034
13035 #ifdef CONFIG_FAIR_GROUP_SCHED
13036 .task_change_group = task_change_group_fair,
13037 #endif
13038
13039 #ifdef CONFIG_SCHED_CORE
13040 .task_is_throttled = task_is_throttled_fair,
13041 #endif
13042
13043 #ifdef CONFIG_UCLAMP_TASK
13044 .uclamp_enabled = 1,
13045 #endif
13046 };
13047
13048 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13049 void print_cfs_stats(struct seq_file *m, int cpu)
13050 {
13051 struct cfs_rq *cfs_rq, *pos;
13052
13053 rcu_read_lock();
13054 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13055 print_cfs_rq(m, cpu, cfs_rq);
13056 rcu_read_unlock();
13057 }
13058
13059 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13060 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13061 {
13062 int node;
13063 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13064 struct numa_group *ng;
13065
13066 rcu_read_lock();
13067 ng = rcu_dereference(p->numa_group);
13068 for_each_online_node(node) {
13069 if (p->numa_faults) {
13070 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13071 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13072 }
13073 if (ng) {
13074 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13075 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13076 }
13077 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13078 }
13079 rcu_read_unlock();
13080 }
13081 #endif /* CONFIG_NUMA_BALANCING */
13082 #endif /* CONFIG_SCHED_DEBUG */
13083
init_sched_fair_class(void)13084 __init void init_sched_fair_class(void)
13085 {
13086 #ifdef CONFIG_SMP
13087 int i;
13088
13089 for_each_possible_cpu(i) {
13090 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13091 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13092 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13093 GFP_KERNEL, cpu_to_node(i));
13094
13095 #ifdef CONFIG_CFS_BANDWIDTH
13096 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13097 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13098 #endif
13099 }
13100
13101 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13102
13103 #ifdef CONFIG_NO_HZ_COMMON
13104 nohz.next_balance = jiffies;
13105 nohz.next_blocked = jiffies;
13106 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13107 #endif
13108 #endif /* SMP */
13109
13110 }
13111