1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25
26 #include "../../lib/kstrtox.h"
27
28 /* If kernel subsystem is allowing eBPF programs to call this function,
29 * inside its own verifier_ops->get_func_proto() callback it should return
30 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
31 *
32 * Different map implementations will rely on rcu in map methods
33 * lookup/update/delete, therefore eBPF programs must run under rcu lock
34 * if program is allowed to access maps, so check rcu_read_lock_held() or
35 * rcu_read_lock_trace_held() in all three functions.
36 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
38 {
39 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
40 !rcu_read_lock_bh_held());
41 return (unsigned long) map->ops->map_lookup_elem(map, key);
42 }
43
44 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
45 .func = bpf_map_lookup_elem,
46 .gpl_only = false,
47 .pkt_access = true,
48 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
49 .arg1_type = ARG_CONST_MAP_PTR,
50 .arg2_type = ARG_PTR_TO_MAP_KEY,
51 };
52
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)53 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
54 void *, value, u64, flags)
55 {
56 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
57 !rcu_read_lock_bh_held());
58 return map->ops->map_update_elem(map, key, value, flags);
59 }
60
61 const struct bpf_func_proto bpf_map_update_elem_proto = {
62 .func = bpf_map_update_elem,
63 .gpl_only = false,
64 .pkt_access = true,
65 .ret_type = RET_INTEGER,
66 .arg1_type = ARG_CONST_MAP_PTR,
67 .arg2_type = ARG_PTR_TO_MAP_KEY,
68 .arg3_type = ARG_PTR_TO_MAP_VALUE,
69 .arg4_type = ARG_ANYTHING,
70 };
71
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)72 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
73 {
74 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
75 !rcu_read_lock_bh_held());
76 return map->ops->map_delete_elem(map, key);
77 }
78
79 const struct bpf_func_proto bpf_map_delete_elem_proto = {
80 .func = bpf_map_delete_elem,
81 .gpl_only = false,
82 .pkt_access = true,
83 .ret_type = RET_INTEGER,
84 .arg1_type = ARG_CONST_MAP_PTR,
85 .arg2_type = ARG_PTR_TO_MAP_KEY,
86 };
87
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)88 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
89 {
90 return map->ops->map_push_elem(map, value, flags);
91 }
92
93 const struct bpf_func_proto bpf_map_push_elem_proto = {
94 .func = bpf_map_push_elem,
95 .gpl_only = false,
96 .pkt_access = true,
97 .ret_type = RET_INTEGER,
98 .arg1_type = ARG_CONST_MAP_PTR,
99 .arg2_type = ARG_PTR_TO_MAP_VALUE,
100 .arg3_type = ARG_ANYTHING,
101 };
102
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)103 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
104 {
105 return map->ops->map_pop_elem(map, value);
106 }
107
108 const struct bpf_func_proto bpf_map_pop_elem_proto = {
109 .func = bpf_map_pop_elem,
110 .gpl_only = false,
111 .ret_type = RET_INTEGER,
112 .arg1_type = ARG_CONST_MAP_PTR,
113 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
114 };
115
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)116 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
117 {
118 return map->ops->map_peek_elem(map, value);
119 }
120
121 const struct bpf_func_proto bpf_map_peek_elem_proto = {
122 .func = bpf_map_peek_elem,
123 .gpl_only = false,
124 .ret_type = RET_INTEGER,
125 .arg1_type = ARG_CONST_MAP_PTR,
126 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
127 };
128
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)129 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
130 {
131 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
132 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
133 }
134
135 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
136 .func = bpf_map_lookup_percpu_elem,
137 .gpl_only = false,
138 .pkt_access = true,
139 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
140 .arg1_type = ARG_CONST_MAP_PTR,
141 .arg2_type = ARG_PTR_TO_MAP_KEY,
142 .arg3_type = ARG_ANYTHING,
143 };
144
145 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
146 .func = bpf_user_rnd_u32,
147 .gpl_only = false,
148 .ret_type = RET_INTEGER,
149 };
150
BPF_CALL_0(bpf_get_smp_processor_id)151 BPF_CALL_0(bpf_get_smp_processor_id)
152 {
153 return smp_processor_id();
154 }
155
156 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
157 .func = bpf_get_smp_processor_id,
158 .gpl_only = false,
159 .ret_type = RET_INTEGER,
160 };
161
BPF_CALL_0(bpf_get_numa_node_id)162 BPF_CALL_0(bpf_get_numa_node_id)
163 {
164 return numa_node_id();
165 }
166
167 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
168 .func = bpf_get_numa_node_id,
169 .gpl_only = false,
170 .ret_type = RET_INTEGER,
171 };
172
BPF_CALL_0(bpf_ktime_get_ns)173 BPF_CALL_0(bpf_ktime_get_ns)
174 {
175 /* NMI safe access to clock monotonic */
176 return ktime_get_mono_fast_ns();
177 }
178
179 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
180 .func = bpf_ktime_get_ns,
181 .gpl_only = false,
182 .ret_type = RET_INTEGER,
183 };
184
BPF_CALL_0(bpf_ktime_get_boot_ns)185 BPF_CALL_0(bpf_ktime_get_boot_ns)
186 {
187 /* NMI safe access to clock boottime */
188 return ktime_get_boot_fast_ns();
189 }
190
191 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
192 .func = bpf_ktime_get_boot_ns,
193 .gpl_only = false,
194 .ret_type = RET_INTEGER,
195 };
196
BPF_CALL_0(bpf_ktime_get_coarse_ns)197 BPF_CALL_0(bpf_ktime_get_coarse_ns)
198 {
199 return ktime_get_coarse_ns();
200 }
201
202 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
203 .func = bpf_ktime_get_coarse_ns,
204 .gpl_only = false,
205 .ret_type = RET_INTEGER,
206 };
207
BPF_CALL_0(bpf_ktime_get_tai_ns)208 BPF_CALL_0(bpf_ktime_get_tai_ns)
209 {
210 /* NMI safe access to clock tai */
211 return ktime_get_tai_fast_ns();
212 }
213
214 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
215 .func = bpf_ktime_get_tai_ns,
216 .gpl_only = false,
217 .ret_type = RET_INTEGER,
218 };
219
BPF_CALL_0(bpf_get_current_pid_tgid)220 BPF_CALL_0(bpf_get_current_pid_tgid)
221 {
222 struct task_struct *task = current;
223
224 if (unlikely(!task))
225 return -EINVAL;
226
227 return (u64) task->tgid << 32 | task->pid;
228 }
229
230 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
231 .func = bpf_get_current_pid_tgid,
232 .gpl_only = false,
233 .ret_type = RET_INTEGER,
234 };
235
BPF_CALL_0(bpf_get_current_uid_gid)236 BPF_CALL_0(bpf_get_current_uid_gid)
237 {
238 struct task_struct *task = current;
239 kuid_t uid;
240 kgid_t gid;
241
242 if (unlikely(!task))
243 return -EINVAL;
244
245 current_uid_gid(&uid, &gid);
246 return (u64) from_kgid(&init_user_ns, gid) << 32 |
247 from_kuid(&init_user_ns, uid);
248 }
249
250 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
251 .func = bpf_get_current_uid_gid,
252 .gpl_only = false,
253 .ret_type = RET_INTEGER,
254 };
255
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)256 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
257 {
258 struct task_struct *task = current;
259
260 if (unlikely(!task))
261 goto err_clear;
262
263 /* Verifier guarantees that size > 0 */
264 strscpy_pad(buf, task->comm, size);
265 return 0;
266 err_clear:
267 memset(buf, 0, size);
268 return -EINVAL;
269 }
270
271 const struct bpf_func_proto bpf_get_current_comm_proto = {
272 .func = bpf_get_current_comm,
273 .gpl_only = false,
274 .ret_type = RET_INTEGER,
275 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
276 .arg2_type = ARG_CONST_SIZE,
277 };
278
279 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
280
__bpf_spin_lock(struct bpf_spin_lock * lock)281 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
282 {
283 arch_spinlock_t *l = (void *)lock;
284 union {
285 __u32 val;
286 arch_spinlock_t lock;
287 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
288
289 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
290 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
291 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
292 preempt_disable();
293 arch_spin_lock(l);
294 }
295
__bpf_spin_unlock(struct bpf_spin_lock * lock)296 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
297 {
298 arch_spinlock_t *l = (void *)lock;
299
300 arch_spin_unlock(l);
301 preempt_enable();
302 }
303
304 #else
305
__bpf_spin_lock(struct bpf_spin_lock * lock)306 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
307 {
308 atomic_t *l = (void *)lock;
309
310 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
311 do {
312 atomic_cond_read_relaxed(l, !VAL);
313 } while (atomic_xchg(l, 1));
314 }
315
__bpf_spin_unlock(struct bpf_spin_lock * lock)316 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
317 {
318 atomic_t *l = (void *)lock;
319
320 atomic_set_release(l, 0);
321 }
322
323 #endif
324
325 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
326
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)327 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
328 {
329 unsigned long flags;
330
331 local_irq_save(flags);
332 __bpf_spin_lock(lock);
333 __this_cpu_write(irqsave_flags, flags);
334 }
335
BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)336 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
337 {
338 __bpf_spin_lock_irqsave(lock);
339 return 0;
340 }
341
342 const struct bpf_func_proto bpf_spin_lock_proto = {
343 .func = bpf_spin_lock,
344 .gpl_only = false,
345 .ret_type = RET_VOID,
346 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
347 .arg1_btf_id = BPF_PTR_POISON,
348 };
349
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)350 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
351 {
352 unsigned long flags;
353
354 flags = __this_cpu_read(irqsave_flags);
355 __bpf_spin_unlock(lock);
356 local_irq_restore(flags);
357 }
358
BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)359 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
360 {
361 __bpf_spin_unlock_irqrestore(lock);
362 return 0;
363 }
364
365 const struct bpf_func_proto bpf_spin_unlock_proto = {
366 .func = bpf_spin_unlock,
367 .gpl_only = false,
368 .ret_type = RET_VOID,
369 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
370 .arg1_btf_id = BPF_PTR_POISON,
371 };
372
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)373 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
374 bool lock_src)
375 {
376 struct bpf_spin_lock *lock;
377
378 if (lock_src)
379 lock = src + map->record->spin_lock_off;
380 else
381 lock = dst + map->record->spin_lock_off;
382 preempt_disable();
383 __bpf_spin_lock_irqsave(lock);
384 copy_map_value(map, dst, src);
385 __bpf_spin_unlock_irqrestore(lock);
386 preempt_enable();
387 }
388
BPF_CALL_0(bpf_jiffies64)389 BPF_CALL_0(bpf_jiffies64)
390 {
391 return get_jiffies_64();
392 }
393
394 const struct bpf_func_proto bpf_jiffies64_proto = {
395 .func = bpf_jiffies64,
396 .gpl_only = false,
397 .ret_type = RET_INTEGER,
398 };
399
400 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)401 BPF_CALL_0(bpf_get_current_cgroup_id)
402 {
403 struct cgroup *cgrp;
404 u64 cgrp_id;
405
406 rcu_read_lock();
407 cgrp = task_dfl_cgroup(current);
408 cgrp_id = cgroup_id(cgrp);
409 rcu_read_unlock();
410
411 return cgrp_id;
412 }
413
414 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
415 .func = bpf_get_current_cgroup_id,
416 .gpl_only = false,
417 .ret_type = RET_INTEGER,
418 };
419
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)420 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
421 {
422 struct cgroup *cgrp;
423 struct cgroup *ancestor;
424 u64 cgrp_id;
425
426 rcu_read_lock();
427 cgrp = task_dfl_cgroup(current);
428 ancestor = cgroup_ancestor(cgrp, ancestor_level);
429 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
430 rcu_read_unlock();
431
432 return cgrp_id;
433 }
434
435 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
436 .func = bpf_get_current_ancestor_cgroup_id,
437 .gpl_only = false,
438 .ret_type = RET_INTEGER,
439 .arg1_type = ARG_ANYTHING,
440 };
441 #endif /* CONFIG_CGROUPS */
442
443 #define BPF_STRTOX_BASE_MASK 0x1F
444
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)445 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
446 unsigned long long *res, bool *is_negative)
447 {
448 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
449 const char *cur_buf = buf;
450 size_t cur_len = buf_len;
451 unsigned int consumed;
452 size_t val_len;
453 char str[64];
454
455 if (!buf || !buf_len || !res || !is_negative)
456 return -EINVAL;
457
458 if (base != 0 && base != 8 && base != 10 && base != 16)
459 return -EINVAL;
460
461 if (flags & ~BPF_STRTOX_BASE_MASK)
462 return -EINVAL;
463
464 while (cur_buf < buf + buf_len && isspace(*cur_buf))
465 ++cur_buf;
466
467 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
468 if (*is_negative)
469 ++cur_buf;
470
471 consumed = cur_buf - buf;
472 cur_len -= consumed;
473 if (!cur_len)
474 return -EINVAL;
475
476 cur_len = min(cur_len, sizeof(str) - 1);
477 memcpy(str, cur_buf, cur_len);
478 str[cur_len] = '\0';
479 cur_buf = str;
480
481 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
482 val_len = _parse_integer(cur_buf, base, res);
483
484 if (val_len & KSTRTOX_OVERFLOW)
485 return -ERANGE;
486
487 if (val_len == 0)
488 return -EINVAL;
489
490 cur_buf += val_len;
491 consumed += cur_buf - str;
492
493 return consumed;
494 }
495
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)496 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
497 long long *res)
498 {
499 unsigned long long _res;
500 bool is_negative;
501 int err;
502
503 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
504 if (err < 0)
505 return err;
506 if (is_negative) {
507 if ((long long)-_res > 0)
508 return -ERANGE;
509 *res = -_res;
510 } else {
511 if ((long long)_res < 0)
512 return -ERANGE;
513 *res = _res;
514 }
515 return err;
516 }
517
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,long *,res)518 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
519 long *, res)
520 {
521 long long _res;
522 int err;
523
524 err = __bpf_strtoll(buf, buf_len, flags, &_res);
525 if (err < 0)
526 return err;
527 if (_res != (long)_res)
528 return -ERANGE;
529 *res = _res;
530 return err;
531 }
532
533 const struct bpf_func_proto bpf_strtol_proto = {
534 .func = bpf_strtol,
535 .gpl_only = false,
536 .ret_type = RET_INTEGER,
537 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
538 .arg2_type = ARG_CONST_SIZE,
539 .arg3_type = ARG_ANYTHING,
540 .arg4_type = ARG_PTR_TO_LONG,
541 };
542
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,unsigned long *,res)543 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
544 unsigned long *, res)
545 {
546 unsigned long long _res;
547 bool is_negative;
548 int err;
549
550 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
551 if (err < 0)
552 return err;
553 if (is_negative)
554 return -EINVAL;
555 if (_res != (unsigned long)_res)
556 return -ERANGE;
557 *res = _res;
558 return err;
559 }
560
561 const struct bpf_func_proto bpf_strtoul_proto = {
562 .func = bpf_strtoul,
563 .gpl_only = false,
564 .ret_type = RET_INTEGER,
565 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
566 .arg2_type = ARG_CONST_SIZE,
567 .arg3_type = ARG_ANYTHING,
568 .arg4_type = ARG_PTR_TO_LONG,
569 };
570
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)571 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
572 {
573 return strncmp(s1, s2, s1_sz);
574 }
575
576 static const struct bpf_func_proto bpf_strncmp_proto = {
577 .func = bpf_strncmp,
578 .gpl_only = false,
579 .ret_type = RET_INTEGER,
580 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
581 .arg2_type = ARG_CONST_SIZE,
582 .arg3_type = ARG_PTR_TO_CONST_STR,
583 };
584
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)585 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
586 struct bpf_pidns_info *, nsdata, u32, size)
587 {
588 struct task_struct *task = current;
589 struct pid_namespace *pidns;
590 int err = -EINVAL;
591
592 if (unlikely(size != sizeof(struct bpf_pidns_info)))
593 goto clear;
594
595 if (unlikely((u64)(dev_t)dev != dev))
596 goto clear;
597
598 if (unlikely(!task))
599 goto clear;
600
601 pidns = task_active_pid_ns(task);
602 if (unlikely(!pidns)) {
603 err = -ENOENT;
604 goto clear;
605 }
606
607 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
608 goto clear;
609
610 nsdata->pid = task_pid_nr_ns(task, pidns);
611 nsdata->tgid = task_tgid_nr_ns(task, pidns);
612 return 0;
613 clear:
614 memset((void *)nsdata, 0, (size_t) size);
615 return err;
616 }
617
618 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
619 .func = bpf_get_ns_current_pid_tgid,
620 .gpl_only = false,
621 .ret_type = RET_INTEGER,
622 .arg1_type = ARG_ANYTHING,
623 .arg2_type = ARG_ANYTHING,
624 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
625 .arg4_type = ARG_CONST_SIZE,
626 };
627
628 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
629 .func = bpf_get_raw_cpu_id,
630 .gpl_only = false,
631 .ret_type = RET_INTEGER,
632 };
633
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)634 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
635 u64, flags, void *, data, u64, size)
636 {
637 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
638 return -EINVAL;
639
640 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
641 }
642
643 const struct bpf_func_proto bpf_event_output_data_proto = {
644 .func = bpf_event_output_data,
645 .gpl_only = true,
646 .ret_type = RET_INTEGER,
647 .arg1_type = ARG_PTR_TO_CTX,
648 .arg2_type = ARG_CONST_MAP_PTR,
649 .arg3_type = ARG_ANYTHING,
650 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
651 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
652 };
653
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)654 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
655 const void __user *, user_ptr)
656 {
657 int ret = copy_from_user(dst, user_ptr, size);
658
659 if (unlikely(ret)) {
660 memset(dst, 0, size);
661 ret = -EFAULT;
662 }
663
664 return ret;
665 }
666
667 const struct bpf_func_proto bpf_copy_from_user_proto = {
668 .func = bpf_copy_from_user,
669 .gpl_only = false,
670 .might_sleep = true,
671 .ret_type = RET_INTEGER,
672 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
673 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
674 .arg3_type = ARG_ANYTHING,
675 };
676
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)677 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
678 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
679 {
680 int ret;
681
682 /* flags is not used yet */
683 if (unlikely(flags))
684 return -EINVAL;
685
686 if (unlikely(!size))
687 return 0;
688
689 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
690 if (ret == size)
691 return 0;
692
693 memset(dst, 0, size);
694 /* Return -EFAULT for partial read */
695 return ret < 0 ? ret : -EFAULT;
696 }
697
698 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
699 .func = bpf_copy_from_user_task,
700 .gpl_only = true,
701 .might_sleep = true,
702 .ret_type = RET_INTEGER,
703 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
704 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
705 .arg3_type = ARG_ANYTHING,
706 .arg4_type = ARG_PTR_TO_BTF_ID,
707 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
708 .arg5_type = ARG_ANYTHING
709 };
710
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)711 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
712 {
713 if (cpu >= nr_cpu_ids)
714 return (unsigned long)NULL;
715
716 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
717 }
718
719 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
720 .func = bpf_per_cpu_ptr,
721 .gpl_only = false,
722 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
723 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
724 .arg2_type = ARG_ANYTHING,
725 };
726
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)727 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
728 {
729 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
730 }
731
732 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
733 .func = bpf_this_cpu_ptr,
734 .gpl_only = false,
735 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
736 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
737 };
738
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)739 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
740 size_t bufsz)
741 {
742 void __user *user_ptr = (__force void __user *)unsafe_ptr;
743
744 buf[0] = 0;
745
746 switch (fmt_ptype) {
747 case 's':
748 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
749 if ((unsigned long)unsafe_ptr < TASK_SIZE)
750 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
751 fallthrough;
752 #endif
753 case 'k':
754 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
755 case 'u':
756 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
757 }
758
759 return -EINVAL;
760 }
761
762 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
763 * arguments representation.
764 */
765 #define MAX_BPRINTF_BIN_ARGS 512
766
767 /* Support executing three nested bprintf helper calls on a given CPU */
768 #define MAX_BPRINTF_NEST_LEVEL 3
769 struct bpf_bprintf_buffers {
770 char bin_args[MAX_BPRINTF_BIN_ARGS];
771 char buf[MAX_BPRINTF_BUF];
772 };
773
774 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
775 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
776
try_get_buffers(struct bpf_bprintf_buffers ** bufs)777 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
778 {
779 int nest_level;
780
781 preempt_disable();
782 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
783 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
784 this_cpu_dec(bpf_bprintf_nest_level);
785 preempt_enable();
786 return -EBUSY;
787 }
788 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
789
790 return 0;
791 }
792
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)793 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
794 {
795 if (!data->bin_args && !data->buf)
796 return;
797 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
798 return;
799 this_cpu_dec(bpf_bprintf_nest_level);
800 preempt_enable();
801 }
802
803 /*
804 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
805 *
806 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
807 *
808 * This can be used in two ways:
809 * - Format string verification only: when data->get_bin_args is false
810 * - Arguments preparation: in addition to the above verification, it writes in
811 * data->bin_args a binary representation of arguments usable by bstr_printf
812 * where pointers from BPF have been sanitized.
813 *
814 * In argument preparation mode, if 0 is returned, safe temporary buffers are
815 * allocated and bpf_bprintf_cleanup should be called to free them after use.
816 */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)817 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
818 u32 num_args, struct bpf_bprintf_data *data)
819 {
820 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
821 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
822 struct bpf_bprintf_buffers *buffers = NULL;
823 size_t sizeof_cur_arg, sizeof_cur_ip;
824 int err, i, num_spec = 0;
825 u64 cur_arg;
826 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
827
828 fmt_end = strnchr(fmt, fmt_size, 0);
829 if (!fmt_end)
830 return -EINVAL;
831 fmt_size = fmt_end - fmt;
832
833 if (get_buffers && try_get_buffers(&buffers))
834 return -EBUSY;
835
836 if (data->get_bin_args) {
837 if (num_args)
838 tmp_buf = buffers->bin_args;
839 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
840 data->bin_args = (u32 *)tmp_buf;
841 }
842
843 if (data->get_buf)
844 data->buf = buffers->buf;
845
846 for (i = 0; i < fmt_size; i++) {
847 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
848 err = -EINVAL;
849 goto out;
850 }
851
852 if (fmt[i] != '%')
853 continue;
854
855 if (fmt[i + 1] == '%') {
856 i++;
857 continue;
858 }
859
860 if (num_spec >= num_args) {
861 err = -EINVAL;
862 goto out;
863 }
864
865 /* The string is zero-terminated so if fmt[i] != 0, we can
866 * always access fmt[i + 1], in the worst case it will be a 0
867 */
868 i++;
869
870 /* skip optional "[0 +-][num]" width formatting field */
871 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
872 fmt[i] == ' ')
873 i++;
874 if (fmt[i] >= '1' && fmt[i] <= '9') {
875 i++;
876 while (fmt[i] >= '0' && fmt[i] <= '9')
877 i++;
878 }
879
880 if (fmt[i] == 'p') {
881 sizeof_cur_arg = sizeof(long);
882
883 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
884 fmt[i + 2] == 's') {
885 fmt_ptype = fmt[i + 1];
886 i += 2;
887 goto fmt_str;
888 }
889
890 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
891 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
892 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
893 fmt[i + 1] == 'S') {
894 /* just kernel pointers */
895 if (tmp_buf)
896 cur_arg = raw_args[num_spec];
897 i++;
898 goto nocopy_fmt;
899 }
900
901 if (fmt[i + 1] == 'B') {
902 if (tmp_buf) {
903 err = snprintf(tmp_buf,
904 (tmp_buf_end - tmp_buf),
905 "%pB",
906 (void *)(long)raw_args[num_spec]);
907 tmp_buf += (err + 1);
908 }
909
910 i++;
911 num_spec++;
912 continue;
913 }
914
915 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
916 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
917 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
918 err = -EINVAL;
919 goto out;
920 }
921
922 i += 2;
923 if (!tmp_buf)
924 goto nocopy_fmt;
925
926 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
927 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
928 err = -ENOSPC;
929 goto out;
930 }
931
932 unsafe_ptr = (char *)(long)raw_args[num_spec];
933 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
934 sizeof_cur_ip);
935 if (err < 0)
936 memset(cur_ip, 0, sizeof_cur_ip);
937
938 /* hack: bstr_printf expects IP addresses to be
939 * pre-formatted as strings, ironically, the easiest way
940 * to do that is to call snprintf.
941 */
942 ip_spec[2] = fmt[i - 1];
943 ip_spec[3] = fmt[i];
944 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
945 ip_spec, &cur_ip);
946
947 tmp_buf += err + 1;
948 num_spec++;
949
950 continue;
951 } else if (fmt[i] == 's') {
952 fmt_ptype = fmt[i];
953 fmt_str:
954 if (fmt[i + 1] != 0 &&
955 !isspace(fmt[i + 1]) &&
956 !ispunct(fmt[i + 1])) {
957 err = -EINVAL;
958 goto out;
959 }
960
961 if (!tmp_buf)
962 goto nocopy_fmt;
963
964 if (tmp_buf_end == tmp_buf) {
965 err = -ENOSPC;
966 goto out;
967 }
968
969 unsafe_ptr = (char *)(long)raw_args[num_spec];
970 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
971 fmt_ptype,
972 tmp_buf_end - tmp_buf);
973 if (err < 0) {
974 tmp_buf[0] = '\0';
975 err = 1;
976 }
977
978 tmp_buf += err;
979 num_spec++;
980
981 continue;
982 } else if (fmt[i] == 'c') {
983 if (!tmp_buf)
984 goto nocopy_fmt;
985
986 if (tmp_buf_end == tmp_buf) {
987 err = -ENOSPC;
988 goto out;
989 }
990
991 *tmp_buf = raw_args[num_spec];
992 tmp_buf++;
993 num_spec++;
994
995 continue;
996 }
997
998 sizeof_cur_arg = sizeof(int);
999
1000 if (fmt[i] == 'l') {
1001 sizeof_cur_arg = sizeof(long);
1002 i++;
1003 }
1004 if (fmt[i] == 'l') {
1005 sizeof_cur_arg = sizeof(long long);
1006 i++;
1007 }
1008
1009 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1010 fmt[i] != 'x' && fmt[i] != 'X') {
1011 err = -EINVAL;
1012 goto out;
1013 }
1014
1015 if (tmp_buf)
1016 cur_arg = raw_args[num_spec];
1017 nocopy_fmt:
1018 if (tmp_buf) {
1019 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1020 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1021 err = -ENOSPC;
1022 goto out;
1023 }
1024
1025 if (sizeof_cur_arg == 8) {
1026 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1027 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1028 } else {
1029 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1030 }
1031 tmp_buf += sizeof_cur_arg;
1032 }
1033 num_spec++;
1034 }
1035
1036 err = 0;
1037 out:
1038 if (err)
1039 bpf_bprintf_cleanup(data);
1040 return err;
1041 }
1042
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1043 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1044 const void *, args, u32, data_len)
1045 {
1046 struct bpf_bprintf_data data = {
1047 .get_bin_args = true,
1048 };
1049 int err, num_args;
1050
1051 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1052 (data_len && !args))
1053 return -EINVAL;
1054 num_args = data_len / 8;
1055
1056 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1057 * can safely give an unbounded size.
1058 */
1059 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1060 if (err < 0)
1061 return err;
1062
1063 err = bstr_printf(str, str_size, fmt, data.bin_args);
1064
1065 bpf_bprintf_cleanup(&data);
1066
1067 return err + 1;
1068 }
1069
1070 const struct bpf_func_proto bpf_snprintf_proto = {
1071 .func = bpf_snprintf,
1072 .gpl_only = true,
1073 .ret_type = RET_INTEGER,
1074 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1075 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1076 .arg3_type = ARG_PTR_TO_CONST_STR,
1077 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1078 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1079 };
1080
1081 /* BPF map elements can contain 'struct bpf_timer'.
1082 * Such map owns all of its BPF timers.
1083 * 'struct bpf_timer' is allocated as part of map element allocation
1084 * and it's zero initialized.
1085 * That space is used to keep 'struct bpf_timer_kern'.
1086 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1087 * remembers 'struct bpf_map *' pointer it's part of.
1088 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1089 * bpf_timer_start() arms the timer.
1090 * If user space reference to a map goes to zero at this point
1091 * ops->map_release_uref callback is responsible for cancelling the timers,
1092 * freeing their memory, and decrementing prog's refcnts.
1093 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1094 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1095 * freeing the timers when inner map is replaced or deleted by user space.
1096 */
1097 struct bpf_hrtimer {
1098 struct hrtimer timer;
1099 struct bpf_map *map;
1100 struct bpf_prog *prog;
1101 void __rcu *callback_fn;
1102 void *value;
1103 struct rcu_head rcu;
1104 };
1105
1106 /* the actual struct hidden inside uapi struct bpf_timer */
1107 struct bpf_timer_kern {
1108 struct bpf_hrtimer *timer;
1109 /* bpf_spin_lock is used here instead of spinlock_t to make
1110 * sure that it always fits into space reserved by struct bpf_timer
1111 * regardless of LOCKDEP and spinlock debug flags.
1112 */
1113 struct bpf_spin_lock lock;
1114 } __attribute__((aligned(8)));
1115
1116 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1117
bpf_timer_cb(struct hrtimer * hrtimer)1118 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1119 {
1120 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1121 struct bpf_map *map = t->map;
1122 void *value = t->value;
1123 bpf_callback_t callback_fn;
1124 void *key;
1125 u32 idx;
1126
1127 BTF_TYPE_EMIT(struct bpf_timer);
1128 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1129 if (!callback_fn)
1130 goto out;
1131
1132 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1133 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1134 * Remember the timer this callback is servicing to prevent
1135 * deadlock if callback_fn() calls bpf_timer_cancel() or
1136 * bpf_map_delete_elem() on the same timer.
1137 */
1138 this_cpu_write(hrtimer_running, t);
1139 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1140 struct bpf_array *array = container_of(map, struct bpf_array, map);
1141
1142 /* compute the key */
1143 idx = ((char *)value - array->value) / array->elem_size;
1144 key = &idx;
1145 } else { /* hash or lru */
1146 key = value - round_up(map->key_size, 8);
1147 }
1148
1149 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1150 /* The verifier checked that return value is zero. */
1151
1152 this_cpu_write(hrtimer_running, NULL);
1153 out:
1154 return HRTIMER_NORESTART;
1155 }
1156
BPF_CALL_3(bpf_timer_init,struct bpf_timer_kern *,timer,struct bpf_map *,map,u64,flags)1157 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1158 u64, flags)
1159 {
1160 clockid_t clockid = flags & (MAX_CLOCKS - 1);
1161 struct bpf_hrtimer *t;
1162 int ret = 0;
1163
1164 BUILD_BUG_ON(MAX_CLOCKS != 16);
1165 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1166 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1167
1168 if (in_nmi())
1169 return -EOPNOTSUPP;
1170
1171 if (flags >= MAX_CLOCKS ||
1172 /* similar to timerfd except _ALARM variants are not supported */
1173 (clockid != CLOCK_MONOTONIC &&
1174 clockid != CLOCK_REALTIME &&
1175 clockid != CLOCK_BOOTTIME))
1176 return -EINVAL;
1177 __bpf_spin_lock_irqsave(&timer->lock);
1178 t = timer->timer;
1179 if (t) {
1180 ret = -EBUSY;
1181 goto out;
1182 }
1183 /* allocate hrtimer via map_kmalloc to use memcg accounting */
1184 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1185 if (!t) {
1186 ret = -ENOMEM;
1187 goto out;
1188 }
1189 t->value = (void *)timer - map->record->timer_off;
1190 t->map = map;
1191 t->prog = NULL;
1192 rcu_assign_pointer(t->callback_fn, NULL);
1193 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1194 t->timer.function = bpf_timer_cb;
1195 WRITE_ONCE(timer->timer, t);
1196 /* Guarantee the order between timer->timer and map->usercnt. So
1197 * when there are concurrent uref release and bpf timer init, either
1198 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1199 * timer or atomic64_read() below returns a zero usercnt.
1200 */
1201 smp_mb();
1202 if (!atomic64_read(&map->usercnt)) {
1203 /* maps with timers must be either held by user space
1204 * or pinned in bpffs.
1205 */
1206 WRITE_ONCE(timer->timer, NULL);
1207 kfree(t);
1208 ret = -EPERM;
1209 }
1210 out:
1211 __bpf_spin_unlock_irqrestore(&timer->lock);
1212 return ret;
1213 }
1214
1215 static const struct bpf_func_proto bpf_timer_init_proto = {
1216 .func = bpf_timer_init,
1217 .gpl_only = true,
1218 .ret_type = RET_INTEGER,
1219 .arg1_type = ARG_PTR_TO_TIMER,
1220 .arg2_type = ARG_CONST_MAP_PTR,
1221 .arg3_type = ARG_ANYTHING,
1222 };
1223
BPF_CALL_3(bpf_timer_set_callback,struct bpf_timer_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1224 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1225 struct bpf_prog_aux *, aux)
1226 {
1227 struct bpf_prog *prev, *prog = aux->prog;
1228 struct bpf_hrtimer *t;
1229 int ret = 0;
1230
1231 if (in_nmi())
1232 return -EOPNOTSUPP;
1233 __bpf_spin_lock_irqsave(&timer->lock);
1234 t = timer->timer;
1235 if (!t) {
1236 ret = -EINVAL;
1237 goto out;
1238 }
1239 if (!atomic64_read(&t->map->usercnt)) {
1240 /* maps with timers must be either held by user space
1241 * or pinned in bpffs. Otherwise timer might still be
1242 * running even when bpf prog is detached and user space
1243 * is gone, since map_release_uref won't ever be called.
1244 */
1245 ret = -EPERM;
1246 goto out;
1247 }
1248 prev = t->prog;
1249 if (prev != prog) {
1250 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1251 * can pick different callback_fn-s within the same prog.
1252 */
1253 prog = bpf_prog_inc_not_zero(prog);
1254 if (IS_ERR(prog)) {
1255 ret = PTR_ERR(prog);
1256 goto out;
1257 }
1258 if (prev)
1259 /* Drop prev prog refcnt when swapping with new prog */
1260 bpf_prog_put(prev);
1261 t->prog = prog;
1262 }
1263 rcu_assign_pointer(t->callback_fn, callback_fn);
1264 out:
1265 __bpf_spin_unlock_irqrestore(&timer->lock);
1266 return ret;
1267 }
1268
1269 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1270 .func = bpf_timer_set_callback,
1271 .gpl_only = true,
1272 .ret_type = RET_INTEGER,
1273 .arg1_type = ARG_PTR_TO_TIMER,
1274 .arg2_type = ARG_PTR_TO_FUNC,
1275 };
1276
BPF_CALL_3(bpf_timer_start,struct bpf_timer_kern *,timer,u64,nsecs,u64,flags)1277 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1278 {
1279 struct bpf_hrtimer *t;
1280 int ret = 0;
1281 enum hrtimer_mode mode;
1282
1283 if (in_nmi())
1284 return -EOPNOTSUPP;
1285 if (flags > BPF_F_TIMER_ABS)
1286 return -EINVAL;
1287 __bpf_spin_lock_irqsave(&timer->lock);
1288 t = timer->timer;
1289 if (!t || !t->prog) {
1290 ret = -EINVAL;
1291 goto out;
1292 }
1293
1294 if (flags & BPF_F_TIMER_ABS)
1295 mode = HRTIMER_MODE_ABS_SOFT;
1296 else
1297 mode = HRTIMER_MODE_REL_SOFT;
1298
1299 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1300 out:
1301 __bpf_spin_unlock_irqrestore(&timer->lock);
1302 return ret;
1303 }
1304
1305 static const struct bpf_func_proto bpf_timer_start_proto = {
1306 .func = bpf_timer_start,
1307 .gpl_only = true,
1308 .ret_type = RET_INTEGER,
1309 .arg1_type = ARG_PTR_TO_TIMER,
1310 .arg2_type = ARG_ANYTHING,
1311 .arg3_type = ARG_ANYTHING,
1312 };
1313
drop_prog_refcnt(struct bpf_hrtimer * t)1314 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1315 {
1316 struct bpf_prog *prog = t->prog;
1317
1318 if (prog) {
1319 bpf_prog_put(prog);
1320 t->prog = NULL;
1321 rcu_assign_pointer(t->callback_fn, NULL);
1322 }
1323 }
1324
BPF_CALL_1(bpf_timer_cancel,struct bpf_timer_kern *,timer)1325 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1326 {
1327 struct bpf_hrtimer *t;
1328 int ret = 0;
1329
1330 if (in_nmi())
1331 return -EOPNOTSUPP;
1332 rcu_read_lock();
1333 __bpf_spin_lock_irqsave(&timer->lock);
1334 t = timer->timer;
1335 if (!t) {
1336 ret = -EINVAL;
1337 goto out;
1338 }
1339 if (this_cpu_read(hrtimer_running) == t) {
1340 /* If bpf callback_fn is trying to bpf_timer_cancel()
1341 * its own timer the hrtimer_cancel() will deadlock
1342 * since it waits for callback_fn to finish
1343 */
1344 ret = -EDEADLK;
1345 goto out;
1346 }
1347 drop_prog_refcnt(t);
1348 out:
1349 __bpf_spin_unlock_irqrestore(&timer->lock);
1350 /* Cancel the timer and wait for associated callback to finish
1351 * if it was running.
1352 */
1353 ret = ret ?: hrtimer_cancel(&t->timer);
1354 rcu_read_unlock();
1355 return ret;
1356 }
1357
1358 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1359 .func = bpf_timer_cancel,
1360 .gpl_only = true,
1361 .ret_type = RET_INTEGER,
1362 .arg1_type = ARG_PTR_TO_TIMER,
1363 };
1364
1365 /* This function is called by map_delete/update_elem for individual element and
1366 * by ops->map_release_uref when the user space reference to a map reaches zero.
1367 */
bpf_timer_cancel_and_free(void * val)1368 void bpf_timer_cancel_and_free(void *val)
1369 {
1370 struct bpf_timer_kern *timer = val;
1371 struct bpf_hrtimer *t;
1372
1373 /* Performance optimization: read timer->timer without lock first. */
1374 if (!READ_ONCE(timer->timer))
1375 return;
1376
1377 __bpf_spin_lock_irqsave(&timer->lock);
1378 /* re-read it under lock */
1379 t = timer->timer;
1380 if (!t)
1381 goto out;
1382 drop_prog_refcnt(t);
1383 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1384 * this timer, since it won't be initialized.
1385 */
1386 WRITE_ONCE(timer->timer, NULL);
1387 out:
1388 __bpf_spin_unlock_irqrestore(&timer->lock);
1389 if (!t)
1390 return;
1391 /* Cancel the timer and wait for callback to complete if it was running.
1392 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1393 * right after for both preallocated and non-preallocated maps.
1394 * The timer->timer = NULL was already done and no code path can
1395 * see address 't' anymore.
1396 *
1397 * Check that bpf_map_delete/update_elem() wasn't called from timer
1398 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1399 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1400 * return -1). Though callback_fn is still running on this cpu it's
1401 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1402 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1403 * since timer->timer = NULL was already done. The timer will be
1404 * effectively cancelled because bpf_timer_cb() will return
1405 * HRTIMER_NORESTART.
1406 */
1407 if (this_cpu_read(hrtimer_running) != t)
1408 hrtimer_cancel(&t->timer);
1409 kfree_rcu(t, rcu);
1410 }
1411
BPF_CALL_2(bpf_kptr_xchg,void *,map_value,void *,ptr)1412 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1413 {
1414 unsigned long *kptr = map_value;
1415
1416 return xchg(kptr, (unsigned long)ptr);
1417 }
1418
1419 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1420 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1421 * denote type that verifier will determine.
1422 */
1423 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1424 .func = bpf_kptr_xchg,
1425 .gpl_only = false,
1426 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1427 .ret_btf_id = BPF_PTR_POISON,
1428 .arg1_type = ARG_PTR_TO_KPTR,
1429 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1430 .arg2_btf_id = BPF_PTR_POISON,
1431 };
1432
1433 /* Since the upper 8 bits of dynptr->size is reserved, the
1434 * maximum supported size is 2^24 - 1.
1435 */
1436 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1437 #define DYNPTR_TYPE_SHIFT 28
1438 #define DYNPTR_SIZE_MASK 0xFFFFFF
1439 #define DYNPTR_RDONLY_BIT BIT(31)
1440
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1441 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1442 {
1443 return ptr->size & DYNPTR_RDONLY_BIT;
1444 }
1445
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1446 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1447 {
1448 ptr->size |= DYNPTR_RDONLY_BIT;
1449 }
1450
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1451 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1452 {
1453 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1454 }
1455
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1456 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1457 {
1458 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1459 }
1460
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1461 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1462 {
1463 return ptr->size & DYNPTR_SIZE_MASK;
1464 }
1465
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1466 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1467 {
1468 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1469
1470 ptr->size = new_size | metadata;
1471 }
1472
bpf_dynptr_check_size(u32 size)1473 int bpf_dynptr_check_size(u32 size)
1474 {
1475 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1476 }
1477
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1478 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1479 enum bpf_dynptr_type type, u32 offset, u32 size)
1480 {
1481 ptr->data = data;
1482 ptr->offset = offset;
1483 ptr->size = size;
1484 bpf_dynptr_set_type(ptr, type);
1485 }
1486
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1487 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1488 {
1489 memset(ptr, 0, sizeof(*ptr));
1490 }
1491
bpf_dynptr_check_off_len(const struct bpf_dynptr_kern * ptr,u32 offset,u32 len)1492 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1493 {
1494 u32 size = __bpf_dynptr_size(ptr);
1495
1496 if (len > size || offset > size - len)
1497 return -E2BIG;
1498
1499 return 0;
1500 }
1501
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1502 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1503 {
1504 int err;
1505
1506 BTF_TYPE_EMIT(struct bpf_dynptr);
1507
1508 err = bpf_dynptr_check_size(size);
1509 if (err)
1510 goto error;
1511
1512 /* flags is currently unsupported */
1513 if (flags) {
1514 err = -EINVAL;
1515 goto error;
1516 }
1517
1518 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1519
1520 return 0;
1521
1522 error:
1523 bpf_dynptr_set_null(ptr);
1524 return err;
1525 }
1526
1527 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1528 .func = bpf_dynptr_from_mem,
1529 .gpl_only = false,
1530 .ret_type = RET_INTEGER,
1531 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1532 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1533 .arg3_type = ARG_ANYTHING,
1534 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1535 };
1536
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1537 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1538 u32, offset, u64, flags)
1539 {
1540 enum bpf_dynptr_type type;
1541 int err;
1542
1543 if (!src->data || flags)
1544 return -EINVAL;
1545
1546 err = bpf_dynptr_check_off_len(src, offset, len);
1547 if (err)
1548 return err;
1549
1550 type = bpf_dynptr_get_type(src);
1551
1552 switch (type) {
1553 case BPF_DYNPTR_TYPE_LOCAL:
1554 case BPF_DYNPTR_TYPE_RINGBUF:
1555 /* Source and destination may possibly overlap, hence use memmove to
1556 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1557 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1558 */
1559 memmove(dst, src->data + src->offset + offset, len);
1560 return 0;
1561 case BPF_DYNPTR_TYPE_SKB:
1562 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1563 case BPF_DYNPTR_TYPE_XDP:
1564 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1565 default:
1566 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1567 return -EFAULT;
1568 }
1569 }
1570
1571 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1572 .func = bpf_dynptr_read,
1573 .gpl_only = false,
1574 .ret_type = RET_INTEGER,
1575 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1576 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1577 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1578 .arg4_type = ARG_ANYTHING,
1579 .arg5_type = ARG_ANYTHING,
1580 };
1581
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1582 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1583 u32, len, u64, flags)
1584 {
1585 enum bpf_dynptr_type type;
1586 int err;
1587
1588 if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1589 return -EINVAL;
1590
1591 err = bpf_dynptr_check_off_len(dst, offset, len);
1592 if (err)
1593 return err;
1594
1595 type = bpf_dynptr_get_type(dst);
1596
1597 switch (type) {
1598 case BPF_DYNPTR_TYPE_LOCAL:
1599 case BPF_DYNPTR_TYPE_RINGBUF:
1600 if (flags)
1601 return -EINVAL;
1602 /* Source and destination may possibly overlap, hence use memmove to
1603 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1604 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1605 */
1606 memmove(dst->data + dst->offset + offset, src, len);
1607 return 0;
1608 case BPF_DYNPTR_TYPE_SKB:
1609 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1610 flags);
1611 case BPF_DYNPTR_TYPE_XDP:
1612 if (flags)
1613 return -EINVAL;
1614 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1615 default:
1616 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1617 return -EFAULT;
1618 }
1619 }
1620
1621 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1622 .func = bpf_dynptr_write,
1623 .gpl_only = false,
1624 .ret_type = RET_INTEGER,
1625 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1626 .arg2_type = ARG_ANYTHING,
1627 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1628 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1629 .arg5_type = ARG_ANYTHING,
1630 };
1631
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1632 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1633 {
1634 enum bpf_dynptr_type type;
1635 int err;
1636
1637 if (!ptr->data)
1638 return 0;
1639
1640 err = bpf_dynptr_check_off_len(ptr, offset, len);
1641 if (err)
1642 return 0;
1643
1644 if (__bpf_dynptr_is_rdonly(ptr))
1645 return 0;
1646
1647 type = bpf_dynptr_get_type(ptr);
1648
1649 switch (type) {
1650 case BPF_DYNPTR_TYPE_LOCAL:
1651 case BPF_DYNPTR_TYPE_RINGBUF:
1652 return (unsigned long)(ptr->data + ptr->offset + offset);
1653 case BPF_DYNPTR_TYPE_SKB:
1654 case BPF_DYNPTR_TYPE_XDP:
1655 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1656 return 0;
1657 default:
1658 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1659 return 0;
1660 }
1661 }
1662
1663 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1664 .func = bpf_dynptr_data,
1665 .gpl_only = false,
1666 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1667 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1668 .arg2_type = ARG_ANYTHING,
1669 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1670 };
1671
1672 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1673 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1674 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1675 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1676 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1677 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1678 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1679
1680 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)1681 bpf_base_func_proto(enum bpf_func_id func_id)
1682 {
1683 switch (func_id) {
1684 case BPF_FUNC_map_lookup_elem:
1685 return &bpf_map_lookup_elem_proto;
1686 case BPF_FUNC_map_update_elem:
1687 return &bpf_map_update_elem_proto;
1688 case BPF_FUNC_map_delete_elem:
1689 return &bpf_map_delete_elem_proto;
1690 case BPF_FUNC_map_push_elem:
1691 return &bpf_map_push_elem_proto;
1692 case BPF_FUNC_map_pop_elem:
1693 return &bpf_map_pop_elem_proto;
1694 case BPF_FUNC_map_peek_elem:
1695 return &bpf_map_peek_elem_proto;
1696 case BPF_FUNC_map_lookup_percpu_elem:
1697 return &bpf_map_lookup_percpu_elem_proto;
1698 case BPF_FUNC_get_prandom_u32:
1699 return &bpf_get_prandom_u32_proto;
1700 case BPF_FUNC_get_smp_processor_id:
1701 return &bpf_get_raw_smp_processor_id_proto;
1702 case BPF_FUNC_get_numa_node_id:
1703 return &bpf_get_numa_node_id_proto;
1704 case BPF_FUNC_tail_call:
1705 return &bpf_tail_call_proto;
1706 case BPF_FUNC_ktime_get_ns:
1707 return &bpf_ktime_get_ns_proto;
1708 case BPF_FUNC_ktime_get_boot_ns:
1709 return &bpf_ktime_get_boot_ns_proto;
1710 case BPF_FUNC_ktime_get_tai_ns:
1711 return &bpf_ktime_get_tai_ns_proto;
1712 case BPF_FUNC_ringbuf_output:
1713 return &bpf_ringbuf_output_proto;
1714 case BPF_FUNC_ringbuf_reserve:
1715 return &bpf_ringbuf_reserve_proto;
1716 case BPF_FUNC_ringbuf_submit:
1717 return &bpf_ringbuf_submit_proto;
1718 case BPF_FUNC_ringbuf_discard:
1719 return &bpf_ringbuf_discard_proto;
1720 case BPF_FUNC_ringbuf_query:
1721 return &bpf_ringbuf_query_proto;
1722 case BPF_FUNC_strncmp:
1723 return &bpf_strncmp_proto;
1724 case BPF_FUNC_strtol:
1725 return &bpf_strtol_proto;
1726 case BPF_FUNC_strtoul:
1727 return &bpf_strtoul_proto;
1728 default:
1729 break;
1730 }
1731
1732 if (!bpf_capable())
1733 return NULL;
1734
1735 switch (func_id) {
1736 case BPF_FUNC_spin_lock:
1737 return &bpf_spin_lock_proto;
1738 case BPF_FUNC_spin_unlock:
1739 return &bpf_spin_unlock_proto;
1740 case BPF_FUNC_jiffies64:
1741 return &bpf_jiffies64_proto;
1742 case BPF_FUNC_per_cpu_ptr:
1743 return &bpf_per_cpu_ptr_proto;
1744 case BPF_FUNC_this_cpu_ptr:
1745 return &bpf_this_cpu_ptr_proto;
1746 case BPF_FUNC_timer_init:
1747 return &bpf_timer_init_proto;
1748 case BPF_FUNC_timer_set_callback:
1749 return &bpf_timer_set_callback_proto;
1750 case BPF_FUNC_timer_start:
1751 return &bpf_timer_start_proto;
1752 case BPF_FUNC_timer_cancel:
1753 return &bpf_timer_cancel_proto;
1754 case BPF_FUNC_kptr_xchg:
1755 return &bpf_kptr_xchg_proto;
1756 case BPF_FUNC_for_each_map_elem:
1757 return &bpf_for_each_map_elem_proto;
1758 case BPF_FUNC_loop:
1759 return &bpf_loop_proto;
1760 case BPF_FUNC_user_ringbuf_drain:
1761 return &bpf_user_ringbuf_drain_proto;
1762 case BPF_FUNC_ringbuf_reserve_dynptr:
1763 return &bpf_ringbuf_reserve_dynptr_proto;
1764 case BPF_FUNC_ringbuf_submit_dynptr:
1765 return &bpf_ringbuf_submit_dynptr_proto;
1766 case BPF_FUNC_ringbuf_discard_dynptr:
1767 return &bpf_ringbuf_discard_dynptr_proto;
1768 case BPF_FUNC_dynptr_from_mem:
1769 return &bpf_dynptr_from_mem_proto;
1770 case BPF_FUNC_dynptr_read:
1771 return &bpf_dynptr_read_proto;
1772 case BPF_FUNC_dynptr_write:
1773 return &bpf_dynptr_write_proto;
1774 case BPF_FUNC_dynptr_data:
1775 return &bpf_dynptr_data_proto;
1776 #ifdef CONFIG_CGROUPS
1777 case BPF_FUNC_cgrp_storage_get:
1778 return &bpf_cgrp_storage_get_proto;
1779 case BPF_FUNC_cgrp_storage_delete:
1780 return &bpf_cgrp_storage_delete_proto;
1781 case BPF_FUNC_get_current_cgroup_id:
1782 return &bpf_get_current_cgroup_id_proto;
1783 case BPF_FUNC_get_current_ancestor_cgroup_id:
1784 return &bpf_get_current_ancestor_cgroup_id_proto;
1785 #endif
1786 default:
1787 break;
1788 }
1789
1790 if (!perfmon_capable())
1791 return NULL;
1792
1793 switch (func_id) {
1794 case BPF_FUNC_trace_printk:
1795 return bpf_get_trace_printk_proto();
1796 case BPF_FUNC_get_current_task:
1797 return &bpf_get_current_task_proto;
1798 case BPF_FUNC_get_current_task_btf:
1799 return &bpf_get_current_task_btf_proto;
1800 case BPF_FUNC_probe_read_user:
1801 return &bpf_probe_read_user_proto;
1802 case BPF_FUNC_probe_read_kernel:
1803 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1804 NULL : &bpf_probe_read_kernel_proto;
1805 case BPF_FUNC_probe_read_user_str:
1806 return &bpf_probe_read_user_str_proto;
1807 case BPF_FUNC_probe_read_kernel_str:
1808 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1809 NULL : &bpf_probe_read_kernel_str_proto;
1810 case BPF_FUNC_snprintf_btf:
1811 return &bpf_snprintf_btf_proto;
1812 case BPF_FUNC_snprintf:
1813 return &bpf_snprintf_proto;
1814 case BPF_FUNC_task_pt_regs:
1815 return &bpf_task_pt_regs_proto;
1816 case BPF_FUNC_trace_vprintk:
1817 return bpf_get_trace_vprintk_proto();
1818 default:
1819 return NULL;
1820 }
1821 }
1822
1823 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec);
1824
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)1825 void bpf_list_head_free(const struct btf_field *field, void *list_head,
1826 struct bpf_spin_lock *spin_lock)
1827 {
1828 struct list_head *head = list_head, *orig_head = list_head;
1829
1830 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
1831 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
1832
1833 /* Do the actual list draining outside the lock to not hold the lock for
1834 * too long, and also prevent deadlocks if tracing programs end up
1835 * executing on entry/exit of functions called inside the critical
1836 * section, and end up doing map ops that call bpf_list_head_free for
1837 * the same map value again.
1838 */
1839 __bpf_spin_lock_irqsave(spin_lock);
1840 if (!head->next || list_empty(head))
1841 goto unlock;
1842 head = head->next;
1843 unlock:
1844 INIT_LIST_HEAD(orig_head);
1845 __bpf_spin_unlock_irqrestore(spin_lock);
1846
1847 while (head != orig_head) {
1848 void *obj = head;
1849
1850 obj -= field->graph_root.node_offset;
1851 head = head->next;
1852 /* The contained type can also have resources, including a
1853 * bpf_list_head which needs to be freed.
1854 */
1855 migrate_disable();
1856 __bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1857 migrate_enable();
1858 }
1859 }
1860
1861 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
1862 * 'rb_node *', so field name of rb_node within containing struct is not
1863 * needed.
1864 *
1865 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
1866 * graph_root.node_offset, it's not necessary to know field name
1867 * or type of node struct
1868 */
1869 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
1870 for (pos = rb_first_postorder(root); \
1871 pos && ({ n = rb_next_postorder(pos); 1; }); \
1872 pos = n)
1873
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)1874 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
1875 struct bpf_spin_lock *spin_lock)
1876 {
1877 struct rb_root_cached orig_root, *root = rb_root;
1878 struct rb_node *pos, *n;
1879 void *obj;
1880
1881 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
1882 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
1883
1884 __bpf_spin_lock_irqsave(spin_lock);
1885 orig_root = *root;
1886 *root = RB_ROOT_CACHED;
1887 __bpf_spin_unlock_irqrestore(spin_lock);
1888
1889 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
1890 obj = pos;
1891 obj -= field->graph_root.node_offset;
1892
1893
1894 migrate_disable();
1895 __bpf_obj_drop_impl(obj, field->graph_root.value_rec);
1896 migrate_enable();
1897 }
1898 }
1899
1900 __diag_push();
1901 __diag_ignore_all("-Wmissing-prototypes",
1902 "Global functions as their definitions will be in vmlinux BTF");
1903
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)1904 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
1905 {
1906 struct btf_struct_meta *meta = meta__ign;
1907 u64 size = local_type_id__k;
1908 void *p;
1909
1910 p = bpf_mem_alloc(&bpf_global_ma, size);
1911 if (!p)
1912 return NULL;
1913 if (meta)
1914 bpf_obj_init(meta->record, p);
1915 return p;
1916 }
1917
1918 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec)1919 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec)
1920 {
1921 if (rec && rec->refcount_off >= 0 &&
1922 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
1923 /* Object is refcounted and refcount_dec didn't result in 0
1924 * refcount. Return without freeing the object
1925 */
1926 return;
1927 }
1928
1929 if (rec)
1930 bpf_obj_free_fields(rec, p);
1931
1932 if (rec && rec->refcount_off >= 0)
1933 bpf_mem_free_rcu(&bpf_global_ma, p);
1934 else
1935 bpf_mem_free(&bpf_global_ma, p);
1936 }
1937
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)1938 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
1939 {
1940 struct btf_struct_meta *meta = meta__ign;
1941 void *p = p__alloc;
1942
1943 __bpf_obj_drop_impl(p, meta ? meta->record : NULL);
1944 }
1945
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)1946 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
1947 {
1948 struct btf_struct_meta *meta = meta__ign;
1949 struct bpf_refcount *ref;
1950
1951 /* Could just cast directly to refcount_t *, but need some code using
1952 * bpf_refcount type so that it is emitted in vmlinux BTF
1953 */
1954 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
1955 if (!refcount_inc_not_zero((refcount_t *)ref))
1956 return NULL;
1957
1958 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
1959 * in verifier.c
1960 */
1961 return (void *)p__refcounted_kptr;
1962 }
1963
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)1964 static int __bpf_list_add(struct bpf_list_node_kern *node,
1965 struct bpf_list_head *head,
1966 bool tail, struct btf_record *rec, u64 off)
1967 {
1968 struct list_head *n = &node->list_head, *h = (void *)head;
1969
1970 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
1971 * called on its fields, so init here
1972 */
1973 if (unlikely(!h->next))
1974 INIT_LIST_HEAD(h);
1975
1976 /* node->owner != NULL implies !list_empty(n), no need to separately
1977 * check the latter
1978 */
1979 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
1980 /* Only called from BPF prog, no need to migrate_disable */
1981 __bpf_obj_drop_impl((void *)n - off, rec);
1982 return -EINVAL;
1983 }
1984
1985 tail ? list_add_tail(n, h) : list_add(n, h);
1986 WRITE_ONCE(node->owner, head);
1987
1988 return 0;
1989 }
1990
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)1991 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
1992 struct bpf_list_node *node,
1993 void *meta__ign, u64 off)
1994 {
1995 struct bpf_list_node_kern *n = (void *)node;
1996 struct btf_struct_meta *meta = meta__ign;
1997
1998 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
1999 }
2000
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2001 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2002 struct bpf_list_node *node,
2003 void *meta__ign, u64 off)
2004 {
2005 struct bpf_list_node_kern *n = (void *)node;
2006 struct btf_struct_meta *meta = meta__ign;
2007
2008 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2009 }
2010
__bpf_list_del(struct bpf_list_head * head,bool tail)2011 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2012 {
2013 struct list_head *n, *h = (void *)head;
2014 struct bpf_list_node_kern *node;
2015
2016 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2017 * called on its fields, so init here
2018 */
2019 if (unlikely(!h->next))
2020 INIT_LIST_HEAD(h);
2021 if (list_empty(h))
2022 return NULL;
2023
2024 n = tail ? h->prev : h->next;
2025 node = container_of(n, struct bpf_list_node_kern, list_head);
2026 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2027 return NULL;
2028
2029 list_del_init(n);
2030 WRITE_ONCE(node->owner, NULL);
2031 return (struct bpf_list_node *)n;
2032 }
2033
bpf_list_pop_front(struct bpf_list_head * head)2034 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2035 {
2036 return __bpf_list_del(head, false);
2037 }
2038
bpf_list_pop_back(struct bpf_list_head * head)2039 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2040 {
2041 return __bpf_list_del(head, true);
2042 }
2043
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2044 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2045 struct bpf_rb_node *node)
2046 {
2047 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2048 struct rb_root_cached *r = (struct rb_root_cached *)root;
2049 struct rb_node *n = &node_internal->rb_node;
2050
2051 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2052 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2053 */
2054 if (READ_ONCE(node_internal->owner) != root)
2055 return NULL;
2056
2057 rb_erase_cached(n, r);
2058 RB_CLEAR_NODE(n);
2059 WRITE_ONCE(node_internal->owner, NULL);
2060 return (struct bpf_rb_node *)n;
2061 }
2062
2063 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2064 * program
2065 */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2066 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2067 struct bpf_rb_node_kern *node,
2068 void *less, struct btf_record *rec, u64 off)
2069 {
2070 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2071 struct rb_node *parent = NULL, *n = &node->rb_node;
2072 bpf_callback_t cb = (bpf_callback_t)less;
2073 bool leftmost = true;
2074
2075 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2076 * check the latter
2077 */
2078 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2079 /* Only called from BPF prog, no need to migrate_disable */
2080 __bpf_obj_drop_impl((void *)n - off, rec);
2081 return -EINVAL;
2082 }
2083
2084 while (*link) {
2085 parent = *link;
2086 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2087 link = &parent->rb_left;
2088 } else {
2089 link = &parent->rb_right;
2090 leftmost = false;
2091 }
2092 }
2093
2094 rb_link_node(n, parent, link);
2095 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2096 WRITE_ONCE(node->owner, root);
2097 return 0;
2098 }
2099
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2100 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2101 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2102 void *meta__ign, u64 off)
2103 {
2104 struct btf_struct_meta *meta = meta__ign;
2105 struct bpf_rb_node_kern *n = (void *)node;
2106
2107 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2108 }
2109
bpf_rbtree_first(struct bpf_rb_root * root)2110 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2111 {
2112 struct rb_root_cached *r = (struct rb_root_cached *)root;
2113
2114 return (struct bpf_rb_node *)rb_first_cached(r);
2115 }
2116
2117 /**
2118 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2119 * kfunc which is not stored in a map as a kptr, must be released by calling
2120 * bpf_task_release().
2121 * @p: The task on which a reference is being acquired.
2122 */
bpf_task_acquire(struct task_struct * p)2123 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2124 {
2125 if (refcount_inc_not_zero(&p->rcu_users))
2126 return p;
2127 return NULL;
2128 }
2129
2130 /**
2131 * bpf_task_release - Release the reference acquired on a task.
2132 * @p: The task on which a reference is being released.
2133 */
bpf_task_release(struct task_struct * p)2134 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2135 {
2136 put_task_struct_rcu_user(p);
2137 }
2138
2139 #ifdef CONFIG_CGROUPS
2140 /**
2141 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2142 * this kfunc which is not stored in a map as a kptr, must be released by
2143 * calling bpf_cgroup_release().
2144 * @cgrp: The cgroup on which a reference is being acquired.
2145 */
bpf_cgroup_acquire(struct cgroup * cgrp)2146 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2147 {
2148 return cgroup_tryget(cgrp) ? cgrp : NULL;
2149 }
2150
2151 /**
2152 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2153 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2154 * not be freed until the current grace period has ended, even if its refcount
2155 * drops to 0.
2156 * @cgrp: The cgroup on which a reference is being released.
2157 */
bpf_cgroup_release(struct cgroup * cgrp)2158 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2159 {
2160 cgroup_put(cgrp);
2161 }
2162
2163 /**
2164 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2165 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2166 * map, must be released by calling bpf_cgroup_release().
2167 * @cgrp: The cgroup for which we're performing a lookup.
2168 * @level: The level of ancestor to look up.
2169 */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2170 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2171 {
2172 struct cgroup *ancestor;
2173
2174 if (level > cgrp->level || level < 0)
2175 return NULL;
2176
2177 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2178 ancestor = cgrp->ancestors[level];
2179 if (!cgroup_tryget(ancestor))
2180 return NULL;
2181 return ancestor;
2182 }
2183
2184 /**
2185 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2186 * kfunc which is not subsequently stored in a map, must be released by calling
2187 * bpf_cgroup_release().
2188 * @cgid: cgroup id.
2189 */
bpf_cgroup_from_id(u64 cgid)2190 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2191 {
2192 struct cgroup *cgrp;
2193
2194 cgrp = cgroup_get_from_id(cgid);
2195 if (IS_ERR(cgrp))
2196 return NULL;
2197 return cgrp;
2198 }
2199
2200 /**
2201 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2202 * task's membership of cgroup ancestry.
2203 * @task: the task to be tested
2204 * @ancestor: possible ancestor of @task's cgroup
2205 *
2206 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2207 * It follows all the same rules as cgroup_is_descendant, and only applies
2208 * to the default hierarchy.
2209 */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2210 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2211 struct cgroup *ancestor)
2212 {
2213 long ret;
2214
2215 rcu_read_lock();
2216 ret = task_under_cgroup_hierarchy(task, ancestor);
2217 rcu_read_unlock();
2218 return ret;
2219 }
2220 #endif /* CONFIG_CGROUPS */
2221
2222 /**
2223 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2224 * in the root pid namespace idr. If a task is returned, it must either be
2225 * stored in a map, or released with bpf_task_release().
2226 * @pid: The pid of the task being looked up.
2227 */
bpf_task_from_pid(s32 pid)2228 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2229 {
2230 struct task_struct *p;
2231
2232 rcu_read_lock();
2233 p = find_task_by_pid_ns(pid, &init_pid_ns);
2234 if (p)
2235 p = bpf_task_acquire(p);
2236 rcu_read_unlock();
2237
2238 return p;
2239 }
2240
2241 /**
2242 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2243 * @ptr: The dynptr whose data slice to retrieve
2244 * @offset: Offset into the dynptr
2245 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2246 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2247 * length of the requested slice. This must be a constant.
2248 *
2249 * For non-skb and non-xdp type dynptrs, there is no difference between
2250 * bpf_dynptr_slice and bpf_dynptr_data.
2251 *
2252 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2253 *
2254 * If the intention is to write to the data slice, please use
2255 * bpf_dynptr_slice_rdwr.
2256 *
2257 * The user must check that the returned pointer is not null before using it.
2258 *
2259 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2260 * does not change the underlying packet data pointers, so a call to
2261 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2262 * the bpf program.
2263 *
2264 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2265 * data slice (can be either direct pointer to the data or a pointer to the user
2266 * provided buffer, with its contents containing the data, if unable to obtain
2267 * direct pointer)
2268 */
bpf_dynptr_slice(const struct bpf_dynptr_kern * ptr,u32 offset,void * buffer__opt,u32 buffer__szk)2269 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
2270 void *buffer__opt, u32 buffer__szk)
2271 {
2272 enum bpf_dynptr_type type;
2273 u32 len = buffer__szk;
2274 int err;
2275
2276 if (!ptr->data)
2277 return NULL;
2278
2279 err = bpf_dynptr_check_off_len(ptr, offset, len);
2280 if (err)
2281 return NULL;
2282
2283 type = bpf_dynptr_get_type(ptr);
2284
2285 switch (type) {
2286 case BPF_DYNPTR_TYPE_LOCAL:
2287 case BPF_DYNPTR_TYPE_RINGBUF:
2288 return ptr->data + ptr->offset + offset;
2289 case BPF_DYNPTR_TYPE_SKB:
2290 if (buffer__opt)
2291 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2292 else
2293 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2294 case BPF_DYNPTR_TYPE_XDP:
2295 {
2296 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2297 if (!IS_ERR_OR_NULL(xdp_ptr))
2298 return xdp_ptr;
2299
2300 if (!buffer__opt)
2301 return NULL;
2302 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2303 return buffer__opt;
2304 }
2305 default:
2306 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2307 return NULL;
2308 }
2309 }
2310
2311 /**
2312 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2313 * @ptr: The dynptr whose data slice to retrieve
2314 * @offset: Offset into the dynptr
2315 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2316 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2317 * length of the requested slice. This must be a constant.
2318 *
2319 * For non-skb and non-xdp type dynptrs, there is no difference between
2320 * bpf_dynptr_slice and bpf_dynptr_data.
2321 *
2322 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2323 *
2324 * The returned pointer is writable and may point to either directly the dynptr
2325 * data at the requested offset or to the buffer if unable to obtain a direct
2326 * data pointer to (example: the requested slice is to the paged area of an skb
2327 * packet). In the case where the returned pointer is to the buffer, the user
2328 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2329 * usually looks something like this pattern:
2330 *
2331 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2332 * if (!eth)
2333 * return TC_ACT_SHOT;
2334 *
2335 * // mutate eth header //
2336 *
2337 * if (eth == buffer)
2338 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2339 *
2340 * Please note that, as in the example above, the user must check that the
2341 * returned pointer is not null before using it.
2342 *
2343 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2344 * does not change the underlying packet data pointers, so a call to
2345 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2346 * the bpf program.
2347 *
2348 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2349 * data slice (can be either direct pointer to the data or a pointer to the user
2350 * provided buffer, with its contents containing the data, if unable to obtain
2351 * direct pointer)
2352 */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern * ptr,u32 offset,void * buffer__opt,u32 buffer__szk)2353 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset,
2354 void *buffer__opt, u32 buffer__szk)
2355 {
2356 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2357 return NULL;
2358
2359 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2360 *
2361 * For skb-type dynptrs, it is safe to write into the returned pointer
2362 * if the bpf program allows skb data writes. There are two possiblities
2363 * that may occur when calling bpf_dynptr_slice_rdwr:
2364 *
2365 * 1) The requested slice is in the head of the skb. In this case, the
2366 * returned pointer is directly to skb data, and if the skb is cloned, the
2367 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2368 * The pointer can be directly written into.
2369 *
2370 * 2) Some portion of the requested slice is in the paged buffer area.
2371 * In this case, the requested data will be copied out into the buffer
2372 * and the returned pointer will be a pointer to the buffer. The skb
2373 * will not be pulled. To persist the write, the user will need to call
2374 * bpf_dynptr_write(), which will pull the skb and commit the write.
2375 *
2376 * Similarly for xdp programs, if the requested slice is not across xdp
2377 * fragments, then a direct pointer will be returned, otherwise the data
2378 * will be copied out into the buffer and the user will need to call
2379 * bpf_dynptr_write() to commit changes.
2380 */
2381 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk);
2382 }
2383
bpf_dynptr_adjust(struct bpf_dynptr_kern * ptr,u32 start,u32 end)2384 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end)
2385 {
2386 u32 size;
2387
2388 if (!ptr->data || start > end)
2389 return -EINVAL;
2390
2391 size = __bpf_dynptr_size(ptr);
2392
2393 if (start > size || end > size)
2394 return -ERANGE;
2395
2396 ptr->offset += start;
2397 bpf_dynptr_set_size(ptr, end - start);
2398
2399 return 0;
2400 }
2401
bpf_dynptr_is_null(struct bpf_dynptr_kern * ptr)2402 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr)
2403 {
2404 return !ptr->data;
2405 }
2406
bpf_dynptr_is_rdonly(struct bpf_dynptr_kern * ptr)2407 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
2408 {
2409 if (!ptr->data)
2410 return false;
2411
2412 return __bpf_dynptr_is_rdonly(ptr);
2413 }
2414
bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)2415 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
2416 {
2417 if (!ptr->data)
2418 return -EINVAL;
2419
2420 return __bpf_dynptr_size(ptr);
2421 }
2422
bpf_dynptr_clone(struct bpf_dynptr_kern * ptr,struct bpf_dynptr_kern * clone__uninit)2423 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr,
2424 struct bpf_dynptr_kern *clone__uninit)
2425 {
2426 if (!ptr->data) {
2427 bpf_dynptr_set_null(clone__uninit);
2428 return -EINVAL;
2429 }
2430
2431 *clone__uninit = *ptr;
2432
2433 return 0;
2434 }
2435
bpf_cast_to_kern_ctx(void * obj)2436 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2437 {
2438 return obj;
2439 }
2440
bpf_rdonly_cast(void * obj__ign,u32 btf_id__k)2441 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k)
2442 {
2443 return obj__ign;
2444 }
2445
bpf_rcu_read_lock(void)2446 __bpf_kfunc void bpf_rcu_read_lock(void)
2447 {
2448 rcu_read_lock();
2449 }
2450
bpf_rcu_read_unlock(void)2451 __bpf_kfunc void bpf_rcu_read_unlock(void)
2452 {
2453 rcu_read_unlock();
2454 }
2455
2456 __diag_pop();
2457
2458 BTF_SET8_START(generic_btf_ids)
2459 #ifdef CONFIG_KEXEC_CORE
2460 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
2461 #endif
2462 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
2463 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
2464 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL)
2465 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
2466 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
2467 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
2468 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
2469 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2470 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
2471 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
2472 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
2473 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
2474
2475 #ifdef CONFIG_CGROUPS
2476 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2477 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
2478 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
2479 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
2480 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
2481 #endif
2482 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
2483 BTF_SET8_END(generic_btf_ids)
2484
2485 static const struct btf_kfunc_id_set generic_kfunc_set = {
2486 .owner = THIS_MODULE,
2487 .set = &generic_btf_ids,
2488 };
2489
2490
2491 BTF_ID_LIST(generic_dtor_ids)
2492 BTF_ID(struct, task_struct)
2493 BTF_ID(func, bpf_task_release)
2494 #ifdef CONFIG_CGROUPS
2495 BTF_ID(struct, cgroup)
2496 BTF_ID(func, bpf_cgroup_release)
2497 #endif
2498
2499 BTF_SET8_START(common_btf_ids)
2500 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
2501 BTF_ID_FLAGS(func, bpf_rdonly_cast)
2502 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
2503 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
2504 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
2505 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
2506 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
2507 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
2508 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
2509 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
2510 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
2511 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
2512 BTF_ID_FLAGS(func, bpf_dynptr_size)
2513 BTF_ID_FLAGS(func, bpf_dynptr_clone)
2514 BTF_SET8_END(common_btf_ids)
2515
2516 static const struct btf_kfunc_id_set common_kfunc_set = {
2517 .owner = THIS_MODULE,
2518 .set = &common_btf_ids,
2519 };
2520
kfunc_init(void)2521 static int __init kfunc_init(void)
2522 {
2523 int ret;
2524 const struct btf_id_dtor_kfunc generic_dtors[] = {
2525 {
2526 .btf_id = generic_dtor_ids[0],
2527 .kfunc_btf_id = generic_dtor_ids[1]
2528 },
2529 #ifdef CONFIG_CGROUPS
2530 {
2531 .btf_id = generic_dtor_ids[2],
2532 .kfunc_btf_id = generic_dtor_ids[3]
2533 },
2534 #endif
2535 };
2536
2537 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
2538 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
2539 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
2540 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
2541 ARRAY_SIZE(generic_dtors),
2542 THIS_MODULE);
2543 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
2544 }
2545
2546 late_initcall(kfunc_init);
2547