1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/transaction.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 sizeof(transaction_t),
42 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (!transaction_cache) {
46 pr_emerg("JBD2: failed to create transaction cache\n");
47 return -ENOMEM;
48 }
49 return 0;
50 }
51
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 kmem_cache_destroy(transaction_cache);
55 transaction_cache = NULL;
56 }
57
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 return;
62 kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66 * Base amount of descriptor blocks we reserve for each transaction.
67 */
jbd2_descriptor_blocks_per_trans(journal_t * journal)68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70 int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71 int tags_per_block;
72
73 /* Subtract UUID */
74 tag_space -= 16;
75 if (jbd2_journal_has_csum_v2or3(journal))
76 tag_space -= sizeof(struct jbd2_journal_block_tail);
77 /* Commit code leaves a slack space of 16 bytes at the end of block */
78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79 /*
80 * Revoke descriptors are accounted separately so we need to reserve
81 * space for commit block and normal transaction descriptor blocks.
82 */
83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84 tags_per_block);
85 }
86
87 /*
88 * jbd2_get_transaction: obtain a new transaction_t object.
89 *
90 * Simply initialise a new transaction. Initialize it in
91 * RUNNING state and add it to the current journal (which should not
92 * have an existing running transaction: we only make a new transaction
93 * once we have started to commit the old one).
94 *
95 * Preconditions:
96 * The journal MUST be locked. We don't perform atomic mallocs on the
97 * new transaction and we can't block without protecting against other
98 * processes trying to touch the journal while it is in transition.
99 *
100 */
101
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)102 static void jbd2_get_transaction(journal_t *journal,
103 transaction_t *transaction)
104 {
105 transaction->t_journal = journal;
106 transaction->t_state = T_RUNNING;
107 transaction->t_start_time = ktime_get();
108 transaction->t_tid = journal->j_transaction_sequence++;
109 transaction->t_expires = jiffies + journal->j_commit_interval;
110 atomic_set(&transaction->t_updates, 0);
111 atomic_set(&transaction->t_outstanding_credits,
112 jbd2_descriptor_blocks_per_trans(journal) +
113 atomic_read(&journal->j_reserved_credits));
114 atomic_set(&transaction->t_outstanding_revokes, 0);
115 atomic_set(&transaction->t_handle_count, 0);
116 INIT_LIST_HEAD(&transaction->t_inode_list);
117 INIT_LIST_HEAD(&transaction->t_private_list);
118
119 /* Set up the commit timer for the new transaction. */
120 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
121 add_timer(&journal->j_commit_timer);
122
123 J_ASSERT(journal->j_running_transaction == NULL);
124 journal->j_running_transaction = transaction;
125 transaction->t_max_wait = 0;
126 transaction->t_start = jiffies;
127 transaction->t_requested = 0;
128 }
129
130 /*
131 * Handle management.
132 *
133 * A handle_t is an object which represents a single atomic update to a
134 * filesystem, and which tracks all of the modifications which form part
135 * of that one update.
136 */
137
138 /*
139 * Update transaction's maximum wait time, if debugging is enabled.
140 *
141 * t_max_wait is carefully updated here with use of atomic compare exchange.
142 * Note that there could be multiplre threads trying to do this simultaneously
143 * hence using cmpxchg to avoid any use of locks in this case.
144 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
145 */
update_t_max_wait(transaction_t * transaction,unsigned long ts)146 static inline void update_t_max_wait(transaction_t *transaction,
147 unsigned long ts)
148 {
149 unsigned long oldts, newts;
150
151 if (time_after(transaction->t_start, ts)) {
152 newts = jbd2_time_diff(ts, transaction->t_start);
153 oldts = READ_ONCE(transaction->t_max_wait);
154 while (oldts < newts)
155 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
156 }
157 }
158
159 /*
160 * Wait until running transaction passes to T_FLUSH state and new transaction
161 * can thus be started. Also starts the commit if needed. The function expects
162 * running transaction to exist and releases j_state_lock.
163 */
wait_transaction_locked(journal_t * journal)164 static void wait_transaction_locked(journal_t *journal)
165 __releases(journal->j_state_lock)
166 {
167 DEFINE_WAIT(wait);
168 int need_to_start;
169 tid_t tid = journal->j_running_transaction->t_tid;
170
171 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
172 TASK_UNINTERRUPTIBLE);
173 need_to_start = !tid_geq(journal->j_commit_request, tid);
174 read_unlock(&journal->j_state_lock);
175 if (need_to_start)
176 jbd2_log_start_commit(journal, tid);
177 jbd2_might_wait_for_commit(journal);
178 schedule();
179 finish_wait(&journal->j_wait_transaction_locked, &wait);
180 }
181
182 /*
183 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
184 * state and new transaction can thus be started. The function releases
185 * j_state_lock.
186 */
wait_transaction_switching(journal_t * journal)187 static void wait_transaction_switching(journal_t *journal)
188 __releases(journal->j_state_lock)
189 {
190 DEFINE_WAIT(wait);
191
192 if (WARN_ON(!journal->j_running_transaction ||
193 journal->j_running_transaction->t_state != T_SWITCH)) {
194 read_unlock(&journal->j_state_lock);
195 return;
196 }
197 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
198 TASK_UNINTERRUPTIBLE);
199 read_unlock(&journal->j_state_lock);
200 /*
201 * We don't call jbd2_might_wait_for_commit() here as there's no
202 * waiting for outstanding handles happening anymore in T_SWITCH state
203 * and handling of reserved handles actually relies on that for
204 * correctness.
205 */
206 schedule();
207 finish_wait(&journal->j_wait_transaction_locked, &wait);
208 }
209
sub_reserved_credits(journal_t * journal,int blocks)210 static void sub_reserved_credits(journal_t *journal, int blocks)
211 {
212 atomic_sub(blocks, &journal->j_reserved_credits);
213 wake_up(&journal->j_wait_reserved);
214 }
215
216 /*
217 * Wait until we can add credits for handle to the running transaction. Called
218 * with j_state_lock held for reading. Returns 0 if handle joined the running
219 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
220 * caller must retry.
221 *
222 * Note: because j_state_lock may be dropped depending on the return
223 * value, we need to fake out sparse so ti doesn't complain about a
224 * locking imbalance. Callers of add_transaction_credits will need to
225 * make a similar accomodation.
226 */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)227 static int add_transaction_credits(journal_t *journal, int blocks,
228 int rsv_blocks)
229 __must_hold(&journal->j_state_lock)
230 {
231 transaction_t *t = journal->j_running_transaction;
232 int needed;
233 int total = blocks + rsv_blocks;
234
235 /*
236 * If the current transaction is locked down for commit, wait
237 * for the lock to be released.
238 */
239 if (t->t_state != T_RUNNING) {
240 WARN_ON_ONCE(t->t_state >= T_FLUSH);
241 wait_transaction_locked(journal);
242 __acquire(&journal->j_state_lock); /* fake out sparse */
243 return 1;
244 }
245
246 /*
247 * If there is not enough space left in the log to write all
248 * potential buffers requested by this operation, we need to
249 * stall pending a log checkpoint to free some more log space.
250 */
251 needed = atomic_add_return(total, &t->t_outstanding_credits);
252 if (needed > journal->j_max_transaction_buffers) {
253 /*
254 * If the current transaction is already too large,
255 * then start to commit it: we can then go back and
256 * attach this handle to a new transaction.
257 */
258 atomic_sub(total, &t->t_outstanding_credits);
259
260 /*
261 * Is the number of reserved credits in the current transaction too
262 * big to fit this handle? Wait until reserved credits are freed.
263 */
264 if (atomic_read(&journal->j_reserved_credits) + total >
265 journal->j_max_transaction_buffers) {
266 read_unlock(&journal->j_state_lock);
267 jbd2_might_wait_for_commit(journal);
268 wait_event(journal->j_wait_reserved,
269 atomic_read(&journal->j_reserved_credits) + total <=
270 journal->j_max_transaction_buffers);
271 __acquire(&journal->j_state_lock); /* fake out sparse */
272 return 1;
273 }
274
275 wait_transaction_locked(journal);
276 __acquire(&journal->j_state_lock); /* fake out sparse */
277 return 1;
278 }
279
280 /*
281 * The commit code assumes that it can get enough log space
282 * without forcing a checkpoint. This is *critical* for
283 * correctness: a checkpoint of a buffer which is also
284 * associated with a committing transaction creates a deadlock,
285 * so commit simply cannot force through checkpoints.
286 *
287 * We must therefore ensure the necessary space in the journal
288 * *before* starting to dirty potentially checkpointed buffers
289 * in the new transaction.
290 */
291 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
292 atomic_sub(total, &t->t_outstanding_credits);
293 read_unlock(&journal->j_state_lock);
294 jbd2_might_wait_for_commit(journal);
295 write_lock(&journal->j_state_lock);
296 if (jbd2_log_space_left(journal) <
297 journal->j_max_transaction_buffers)
298 __jbd2_log_wait_for_space(journal);
299 write_unlock(&journal->j_state_lock);
300 __acquire(&journal->j_state_lock); /* fake out sparse */
301 return 1;
302 }
303
304 /* No reservation? We are done... */
305 if (!rsv_blocks)
306 return 0;
307
308 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
309 /* We allow at most half of a transaction to be reserved */
310 if (needed > journal->j_max_transaction_buffers / 2) {
311 sub_reserved_credits(journal, rsv_blocks);
312 atomic_sub(total, &t->t_outstanding_credits);
313 read_unlock(&journal->j_state_lock);
314 jbd2_might_wait_for_commit(journal);
315 wait_event(journal->j_wait_reserved,
316 atomic_read(&journal->j_reserved_credits) + rsv_blocks
317 <= journal->j_max_transaction_buffers / 2);
318 __acquire(&journal->j_state_lock); /* fake out sparse */
319 return 1;
320 }
321 return 0;
322 }
323
324 /*
325 * start_this_handle: Given a handle, deal with any locking or stalling
326 * needed to make sure that there is enough journal space for the handle
327 * to begin. Attach the handle to a transaction and set up the
328 * transaction's buffer credits.
329 */
330
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)331 static int start_this_handle(journal_t *journal, handle_t *handle,
332 gfp_t gfp_mask)
333 {
334 transaction_t *transaction, *new_transaction = NULL;
335 int blocks = handle->h_total_credits;
336 int rsv_blocks = 0;
337 unsigned long ts = jiffies;
338
339 if (handle->h_rsv_handle)
340 rsv_blocks = handle->h_rsv_handle->h_total_credits;
341
342 /*
343 * Limit the number of reserved credits to 1/2 of maximum transaction
344 * size and limit the number of total credits to not exceed maximum
345 * transaction size per operation.
346 */
347 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
348 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
349 printk(KERN_ERR "JBD2: %s wants too many credits "
350 "credits:%d rsv_credits:%d max:%d\n",
351 current->comm, blocks, rsv_blocks,
352 journal->j_max_transaction_buffers);
353 WARN_ON(1);
354 return -ENOSPC;
355 }
356
357 alloc_transaction:
358 /*
359 * This check is racy but it is just an optimization of allocating new
360 * transaction early if there are high chances we'll need it. If we
361 * guess wrong, we'll retry or free unused transaction.
362 */
363 if (!data_race(journal->j_running_transaction)) {
364 /*
365 * If __GFP_FS is not present, then we may be being called from
366 * inside the fs writeback layer, so we MUST NOT fail.
367 */
368 if ((gfp_mask & __GFP_FS) == 0)
369 gfp_mask |= __GFP_NOFAIL;
370 new_transaction = kmem_cache_zalloc(transaction_cache,
371 gfp_mask);
372 if (!new_transaction)
373 return -ENOMEM;
374 }
375
376 jbd2_debug(3, "New handle %p going live.\n", handle);
377
378 /*
379 * We need to hold j_state_lock until t_updates has been incremented,
380 * for proper journal barrier handling
381 */
382 repeat:
383 read_lock(&journal->j_state_lock);
384 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
385 if (is_journal_aborted(journal) ||
386 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
387 read_unlock(&journal->j_state_lock);
388 jbd2_journal_free_transaction(new_transaction);
389 return -EROFS;
390 }
391
392 /*
393 * Wait on the journal's transaction barrier if necessary. Specifically
394 * we allow reserved handles to proceed because otherwise commit could
395 * deadlock on page writeback not being able to complete.
396 */
397 if (!handle->h_reserved && journal->j_barrier_count) {
398 read_unlock(&journal->j_state_lock);
399 wait_event(journal->j_wait_transaction_locked,
400 journal->j_barrier_count == 0);
401 goto repeat;
402 }
403
404 if (!journal->j_running_transaction) {
405 read_unlock(&journal->j_state_lock);
406 if (!new_transaction)
407 goto alloc_transaction;
408 write_lock(&journal->j_state_lock);
409 if (!journal->j_running_transaction &&
410 (handle->h_reserved || !journal->j_barrier_count)) {
411 jbd2_get_transaction(journal, new_transaction);
412 new_transaction = NULL;
413 }
414 write_unlock(&journal->j_state_lock);
415 goto repeat;
416 }
417
418 transaction = journal->j_running_transaction;
419
420 if (!handle->h_reserved) {
421 /* We may have dropped j_state_lock - restart in that case */
422 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
423 /*
424 * add_transaction_credits releases
425 * j_state_lock on a non-zero return
426 */
427 __release(&journal->j_state_lock);
428 goto repeat;
429 }
430 } else {
431 /*
432 * We have handle reserved so we are allowed to join T_LOCKED
433 * transaction and we don't have to check for transaction size
434 * and journal space. But we still have to wait while running
435 * transaction is being switched to a committing one as it
436 * won't wait for any handles anymore.
437 */
438 if (transaction->t_state == T_SWITCH) {
439 wait_transaction_switching(journal);
440 goto repeat;
441 }
442 sub_reserved_credits(journal, blocks);
443 handle->h_reserved = 0;
444 }
445
446 /* OK, account for the buffers that this operation expects to
447 * use and add the handle to the running transaction.
448 */
449 update_t_max_wait(transaction, ts);
450 handle->h_transaction = transaction;
451 handle->h_requested_credits = blocks;
452 handle->h_revoke_credits_requested = handle->h_revoke_credits;
453 handle->h_start_jiffies = jiffies;
454 atomic_inc(&transaction->t_updates);
455 atomic_inc(&transaction->t_handle_count);
456 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
457 handle, blocks,
458 atomic_read(&transaction->t_outstanding_credits),
459 jbd2_log_space_left(journal));
460 read_unlock(&journal->j_state_lock);
461 current->journal_info = handle;
462
463 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
464 jbd2_journal_free_transaction(new_transaction);
465 /*
466 * Ensure that no allocations done while the transaction is open are
467 * going to recurse back to the fs layer.
468 */
469 handle->saved_alloc_context = memalloc_nofs_save();
470 return 0;
471 }
472
473 /* Allocate a new handle. This should probably be in a slab... */
new_handle(int nblocks)474 static handle_t *new_handle(int nblocks)
475 {
476 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
477 if (!handle)
478 return NULL;
479 handle->h_total_credits = nblocks;
480 handle->h_ref = 1;
481
482 return handle;
483 }
484
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,int revoke_records,gfp_t gfp_mask,unsigned int type,unsigned int line_no)485 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
486 int revoke_records, gfp_t gfp_mask,
487 unsigned int type, unsigned int line_no)
488 {
489 handle_t *handle = journal_current_handle();
490 int err;
491
492 if (!journal)
493 return ERR_PTR(-EROFS);
494
495 if (handle) {
496 J_ASSERT(handle->h_transaction->t_journal == journal);
497 handle->h_ref++;
498 return handle;
499 }
500
501 nblocks += DIV_ROUND_UP(revoke_records,
502 journal->j_revoke_records_per_block);
503 handle = new_handle(nblocks);
504 if (!handle)
505 return ERR_PTR(-ENOMEM);
506 if (rsv_blocks) {
507 handle_t *rsv_handle;
508
509 rsv_handle = new_handle(rsv_blocks);
510 if (!rsv_handle) {
511 jbd2_free_handle(handle);
512 return ERR_PTR(-ENOMEM);
513 }
514 rsv_handle->h_reserved = 1;
515 rsv_handle->h_journal = journal;
516 handle->h_rsv_handle = rsv_handle;
517 }
518 handle->h_revoke_credits = revoke_records;
519
520 err = start_this_handle(journal, handle, gfp_mask);
521 if (err < 0) {
522 if (handle->h_rsv_handle)
523 jbd2_free_handle(handle->h_rsv_handle);
524 jbd2_free_handle(handle);
525 return ERR_PTR(err);
526 }
527 handle->h_type = type;
528 handle->h_line_no = line_no;
529 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
530 handle->h_transaction->t_tid, type,
531 line_no, nblocks);
532
533 return handle;
534 }
535 EXPORT_SYMBOL(jbd2__journal_start);
536
537
538 /**
539 * jbd2_journal_start() - Obtain a new handle.
540 * @journal: Journal to start transaction on.
541 * @nblocks: number of block buffer we might modify
542 *
543 * We make sure that the transaction can guarantee at least nblocks of
544 * modified buffers in the log. We block until the log can guarantee
545 * that much space. Additionally, if rsv_blocks > 0, we also create another
546 * handle with rsv_blocks reserved blocks in the journal. This handle is
547 * stored in h_rsv_handle. It is not attached to any particular transaction
548 * and thus doesn't block transaction commit. If the caller uses this reserved
549 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
550 * on the parent handle will dispose the reserved one. Reserved handle has to
551 * be converted to a normal handle using jbd2_journal_start_reserved() before
552 * it can be used.
553 *
554 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
555 * on failure.
556 */
jbd2_journal_start(journal_t * journal,int nblocks)557 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
558 {
559 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
560 }
561 EXPORT_SYMBOL(jbd2_journal_start);
562
__jbd2_journal_unreserve_handle(handle_t * handle,transaction_t * t)563 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
564 {
565 journal_t *journal = handle->h_journal;
566
567 WARN_ON(!handle->h_reserved);
568 sub_reserved_credits(journal, handle->h_total_credits);
569 if (t)
570 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
571 }
572
jbd2_journal_free_reserved(handle_t * handle)573 void jbd2_journal_free_reserved(handle_t *handle)
574 {
575 journal_t *journal = handle->h_journal;
576
577 /* Get j_state_lock to pin running transaction if it exists */
578 read_lock(&journal->j_state_lock);
579 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
580 read_unlock(&journal->j_state_lock);
581 jbd2_free_handle(handle);
582 }
583 EXPORT_SYMBOL(jbd2_journal_free_reserved);
584
585 /**
586 * jbd2_journal_start_reserved() - start reserved handle
587 * @handle: handle to start
588 * @type: for handle statistics
589 * @line_no: for handle statistics
590 *
591 * Start handle that has been previously reserved with jbd2_journal_reserve().
592 * This attaches @handle to the running transaction (or creates one if there's
593 * not transaction running). Unlike jbd2_journal_start() this function cannot
594 * block on journal commit, checkpointing, or similar stuff. It can block on
595 * memory allocation or frozen journal though.
596 *
597 * Return 0 on success, non-zero on error - handle is freed in that case.
598 */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)599 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
600 unsigned int line_no)
601 {
602 journal_t *journal = handle->h_journal;
603 int ret = -EIO;
604
605 if (WARN_ON(!handle->h_reserved)) {
606 /* Someone passed in normal handle? Just stop it. */
607 jbd2_journal_stop(handle);
608 return ret;
609 }
610 /*
611 * Usefulness of mixing of reserved and unreserved handles is
612 * questionable. So far nobody seems to need it so just error out.
613 */
614 if (WARN_ON(current->journal_info)) {
615 jbd2_journal_free_reserved(handle);
616 return ret;
617 }
618
619 handle->h_journal = NULL;
620 /*
621 * GFP_NOFS is here because callers are likely from writeback or
622 * similarly constrained call sites
623 */
624 ret = start_this_handle(journal, handle, GFP_NOFS);
625 if (ret < 0) {
626 handle->h_journal = journal;
627 jbd2_journal_free_reserved(handle);
628 return ret;
629 }
630 handle->h_type = type;
631 handle->h_line_no = line_no;
632 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
633 handle->h_transaction->t_tid, type,
634 line_no, handle->h_total_credits);
635 return 0;
636 }
637 EXPORT_SYMBOL(jbd2_journal_start_reserved);
638
639 /**
640 * jbd2_journal_extend() - extend buffer credits.
641 * @handle: handle to 'extend'
642 * @nblocks: nr blocks to try to extend by.
643 * @revoke_records: number of revoke records to try to extend by.
644 *
645 * Some transactions, such as large extends and truncates, can be done
646 * atomically all at once or in several stages. The operation requests
647 * a credit for a number of buffer modifications in advance, but can
648 * extend its credit if it needs more.
649 *
650 * jbd2_journal_extend tries to give the running handle more buffer credits.
651 * It does not guarantee that allocation - this is a best-effort only.
652 * The calling process MUST be able to deal cleanly with a failure to
653 * extend here.
654 *
655 * Return 0 on success, non-zero on failure.
656 *
657 * return code < 0 implies an error
658 * return code > 0 implies normal transaction-full status.
659 */
jbd2_journal_extend(handle_t * handle,int nblocks,int revoke_records)660 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
661 {
662 transaction_t *transaction = handle->h_transaction;
663 journal_t *journal;
664 int result;
665 int wanted;
666
667 if (is_handle_aborted(handle))
668 return -EROFS;
669 journal = transaction->t_journal;
670
671 result = 1;
672
673 read_lock(&journal->j_state_lock);
674
675 /* Don't extend a locked-down transaction! */
676 if (transaction->t_state != T_RUNNING) {
677 jbd2_debug(3, "denied handle %p %d blocks: "
678 "transaction not running\n", handle, nblocks);
679 goto error_out;
680 }
681
682 nblocks += DIV_ROUND_UP(
683 handle->h_revoke_credits_requested + revoke_records,
684 journal->j_revoke_records_per_block) -
685 DIV_ROUND_UP(
686 handle->h_revoke_credits_requested,
687 journal->j_revoke_records_per_block);
688 wanted = atomic_add_return(nblocks,
689 &transaction->t_outstanding_credits);
690
691 if (wanted > journal->j_max_transaction_buffers) {
692 jbd2_debug(3, "denied handle %p %d blocks: "
693 "transaction too large\n", handle, nblocks);
694 atomic_sub(nblocks, &transaction->t_outstanding_credits);
695 goto error_out;
696 }
697
698 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
699 transaction->t_tid,
700 handle->h_type, handle->h_line_no,
701 handle->h_total_credits,
702 nblocks);
703
704 handle->h_total_credits += nblocks;
705 handle->h_requested_credits += nblocks;
706 handle->h_revoke_credits += revoke_records;
707 handle->h_revoke_credits_requested += revoke_records;
708 result = 0;
709
710 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
711 error_out:
712 read_unlock(&journal->j_state_lock);
713 return result;
714 }
715
stop_this_handle(handle_t * handle)716 static void stop_this_handle(handle_t *handle)
717 {
718 transaction_t *transaction = handle->h_transaction;
719 journal_t *journal = transaction->t_journal;
720 int revokes;
721
722 J_ASSERT(journal_current_handle() == handle);
723 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
724 current->journal_info = NULL;
725 /*
726 * Subtract necessary revoke descriptor blocks from handle credits. We
727 * take care to account only for revoke descriptor blocks the
728 * transaction will really need as large sequences of transactions with
729 * small numbers of revokes are relatively common.
730 */
731 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
732 if (revokes) {
733 int t_revokes, revoke_descriptors;
734 int rr_per_blk = journal->j_revoke_records_per_block;
735
736 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
737 > handle->h_total_credits);
738 t_revokes = atomic_add_return(revokes,
739 &transaction->t_outstanding_revokes);
740 revoke_descriptors =
741 DIV_ROUND_UP(t_revokes, rr_per_blk) -
742 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
743 handle->h_total_credits -= revoke_descriptors;
744 }
745 atomic_sub(handle->h_total_credits,
746 &transaction->t_outstanding_credits);
747 if (handle->h_rsv_handle)
748 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
749 transaction);
750 if (atomic_dec_and_test(&transaction->t_updates))
751 wake_up(&journal->j_wait_updates);
752
753 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
754 /*
755 * Scope of the GFP_NOFS context is over here and so we can restore the
756 * original alloc context.
757 */
758 memalloc_nofs_restore(handle->saved_alloc_context);
759 }
760
761 /**
762 * jbd2__journal_restart() - restart a handle .
763 * @handle: handle to restart
764 * @nblocks: nr credits requested
765 * @revoke_records: number of revoke record credits requested
766 * @gfp_mask: memory allocation flags (for start_this_handle)
767 *
768 * Restart a handle for a multi-transaction filesystem
769 * operation.
770 *
771 * If the jbd2_journal_extend() call above fails to grant new buffer credits
772 * to a running handle, a call to jbd2_journal_restart will commit the
773 * handle's transaction so far and reattach the handle to a new
774 * transaction capable of guaranteeing the requested number of
775 * credits. We preserve reserved handle if there's any attached to the
776 * passed in handle.
777 */
jbd2__journal_restart(handle_t * handle,int nblocks,int revoke_records,gfp_t gfp_mask)778 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
779 gfp_t gfp_mask)
780 {
781 transaction_t *transaction = handle->h_transaction;
782 journal_t *journal;
783 tid_t tid;
784 int need_to_start;
785 int ret;
786
787 /* If we've had an abort of any type, don't even think about
788 * actually doing the restart! */
789 if (is_handle_aborted(handle))
790 return 0;
791 journal = transaction->t_journal;
792 tid = transaction->t_tid;
793
794 /*
795 * First unlink the handle from its current transaction, and start the
796 * commit on that.
797 */
798 jbd2_debug(2, "restarting handle %p\n", handle);
799 stop_this_handle(handle);
800 handle->h_transaction = NULL;
801
802 /*
803 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
804 * get rid of pointless j_state_lock traffic like this.
805 */
806 read_lock(&journal->j_state_lock);
807 need_to_start = !tid_geq(journal->j_commit_request, tid);
808 read_unlock(&journal->j_state_lock);
809 if (need_to_start)
810 jbd2_log_start_commit(journal, tid);
811 handle->h_total_credits = nblocks +
812 DIV_ROUND_UP(revoke_records,
813 journal->j_revoke_records_per_block);
814 handle->h_revoke_credits = revoke_records;
815 ret = start_this_handle(journal, handle, gfp_mask);
816 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
817 ret ? 0 : handle->h_transaction->t_tid,
818 handle->h_type, handle->h_line_no,
819 handle->h_total_credits);
820 return ret;
821 }
822 EXPORT_SYMBOL(jbd2__journal_restart);
823
824
jbd2_journal_restart(handle_t * handle,int nblocks)825 int jbd2_journal_restart(handle_t *handle, int nblocks)
826 {
827 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
828 }
829 EXPORT_SYMBOL(jbd2_journal_restart);
830
831 /*
832 * Waits for any outstanding t_updates to finish.
833 * This is called with write j_state_lock held.
834 */
jbd2_journal_wait_updates(journal_t * journal)835 void jbd2_journal_wait_updates(journal_t *journal)
836 {
837 DEFINE_WAIT(wait);
838
839 while (1) {
840 /*
841 * Note that the running transaction can get freed under us if
842 * this transaction is getting committed in
843 * jbd2_journal_commit_transaction() ->
844 * jbd2_journal_free_transaction(). This can only happen when we
845 * release j_state_lock -> schedule() -> acquire j_state_lock.
846 * Hence we should everytime retrieve new j_running_transaction
847 * value (after j_state_lock release acquire cycle), else it may
848 * lead to use-after-free of old freed transaction.
849 */
850 transaction_t *transaction = journal->j_running_transaction;
851
852 if (!transaction)
853 break;
854
855 prepare_to_wait(&journal->j_wait_updates, &wait,
856 TASK_UNINTERRUPTIBLE);
857 if (!atomic_read(&transaction->t_updates)) {
858 finish_wait(&journal->j_wait_updates, &wait);
859 break;
860 }
861 write_unlock(&journal->j_state_lock);
862 schedule();
863 finish_wait(&journal->j_wait_updates, &wait);
864 write_lock(&journal->j_state_lock);
865 }
866 }
867
868 /**
869 * jbd2_journal_lock_updates () - establish a transaction barrier.
870 * @journal: Journal to establish a barrier on.
871 *
872 * This locks out any further updates from being started, and blocks
873 * until all existing updates have completed, returning only once the
874 * journal is in a quiescent state with no updates running.
875 *
876 * The journal lock should not be held on entry.
877 */
jbd2_journal_lock_updates(journal_t * journal)878 void jbd2_journal_lock_updates(journal_t *journal)
879 {
880 jbd2_might_wait_for_commit(journal);
881
882 write_lock(&journal->j_state_lock);
883 ++journal->j_barrier_count;
884
885 /* Wait until there are no reserved handles */
886 if (atomic_read(&journal->j_reserved_credits)) {
887 write_unlock(&journal->j_state_lock);
888 wait_event(journal->j_wait_reserved,
889 atomic_read(&journal->j_reserved_credits) == 0);
890 write_lock(&journal->j_state_lock);
891 }
892
893 /* Wait until there are no running t_updates */
894 jbd2_journal_wait_updates(journal);
895
896 write_unlock(&journal->j_state_lock);
897
898 /*
899 * We have now established a barrier against other normal updates, but
900 * we also need to barrier against other jbd2_journal_lock_updates() calls
901 * to make sure that we serialise special journal-locked operations
902 * too.
903 */
904 mutex_lock(&journal->j_barrier);
905 }
906
907 /**
908 * jbd2_journal_unlock_updates () - release barrier
909 * @journal: Journal to release the barrier on.
910 *
911 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
912 *
913 * Should be called without the journal lock held.
914 */
jbd2_journal_unlock_updates(journal_t * journal)915 void jbd2_journal_unlock_updates (journal_t *journal)
916 {
917 J_ASSERT(journal->j_barrier_count != 0);
918
919 mutex_unlock(&journal->j_barrier);
920 write_lock(&journal->j_state_lock);
921 --journal->j_barrier_count;
922 write_unlock(&journal->j_state_lock);
923 wake_up_all(&journal->j_wait_transaction_locked);
924 }
925
warn_dirty_buffer(struct buffer_head * bh)926 static void warn_dirty_buffer(struct buffer_head *bh)
927 {
928 printk(KERN_WARNING
929 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
930 "There's a risk of filesystem corruption in case of system "
931 "crash.\n",
932 bh->b_bdev, (unsigned long long)bh->b_blocknr);
933 }
934
935 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)936 static void jbd2_freeze_jh_data(struct journal_head *jh)
937 {
938 char *source;
939 struct buffer_head *bh = jh2bh(jh);
940
941 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
942 source = kmap_local_folio(bh->b_folio, bh_offset(bh));
943 /* Fire data frozen trigger just before we copy the data */
944 jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers);
945 memcpy(jh->b_frozen_data, source, bh->b_size);
946 kunmap_local(source);
947
948 /*
949 * Now that the frozen data is saved off, we need to store any matching
950 * triggers.
951 */
952 jh->b_frozen_triggers = jh->b_triggers;
953 }
954
955 /*
956 * If the buffer is already part of the current transaction, then there
957 * is nothing we need to do. If it is already part of a prior
958 * transaction which we are still committing to disk, then we need to
959 * make sure that we do not overwrite the old copy: we do copy-out to
960 * preserve the copy going to disk. We also account the buffer against
961 * the handle's metadata buffer credits (unless the buffer is already
962 * part of the transaction, that is).
963 *
964 */
965 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)966 do_get_write_access(handle_t *handle, struct journal_head *jh,
967 int force_copy)
968 {
969 struct buffer_head *bh;
970 transaction_t *transaction = handle->h_transaction;
971 journal_t *journal;
972 int error;
973 char *frozen_buffer = NULL;
974 unsigned long start_lock, time_lock;
975
976 journal = transaction->t_journal;
977
978 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
979
980 JBUFFER_TRACE(jh, "entry");
981 repeat:
982 bh = jh2bh(jh);
983
984 /* @@@ Need to check for errors here at some point. */
985
986 start_lock = jiffies;
987 lock_buffer(bh);
988 spin_lock(&jh->b_state_lock);
989
990 /* If it takes too long to lock the buffer, trace it */
991 time_lock = jbd2_time_diff(start_lock, jiffies);
992 if (time_lock > HZ/10)
993 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
994 jiffies_to_msecs(time_lock));
995
996 /* We now hold the buffer lock so it is safe to query the buffer
997 * state. Is the buffer dirty?
998 *
999 * If so, there are two possibilities. The buffer may be
1000 * non-journaled, and undergoing a quite legitimate writeback.
1001 * Otherwise, it is journaled, and we don't expect dirty buffers
1002 * in that state (the buffers should be marked JBD_Dirty
1003 * instead.) So either the IO is being done under our own
1004 * control and this is a bug, or it's a third party IO such as
1005 * dump(8) (which may leave the buffer scheduled for read ---
1006 * ie. locked but not dirty) or tune2fs (which may actually have
1007 * the buffer dirtied, ugh.) */
1008
1009 if (buffer_dirty(bh) && jh->b_transaction) {
1010 warn_dirty_buffer(bh);
1011 /*
1012 * We need to clean the dirty flag and we must do it under the
1013 * buffer lock to be sure we don't race with running write-out.
1014 */
1015 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1016 clear_buffer_dirty(bh);
1017 /*
1018 * The buffer is going to be added to BJ_Reserved list now and
1019 * nothing guarantees jbd2_journal_dirty_metadata() will be
1020 * ever called for it. So we need to set jbddirty bit here to
1021 * make sure the buffer is dirtied and written out when the
1022 * journaling machinery is done with it.
1023 */
1024 set_buffer_jbddirty(bh);
1025 }
1026
1027 error = -EROFS;
1028 if (is_handle_aborted(handle)) {
1029 spin_unlock(&jh->b_state_lock);
1030 unlock_buffer(bh);
1031 goto out;
1032 }
1033 error = 0;
1034
1035 /*
1036 * The buffer is already part of this transaction if b_transaction or
1037 * b_next_transaction points to it
1038 */
1039 if (jh->b_transaction == transaction ||
1040 jh->b_next_transaction == transaction) {
1041 unlock_buffer(bh);
1042 goto done;
1043 }
1044
1045 /*
1046 * this is the first time this transaction is touching this buffer,
1047 * reset the modified flag
1048 */
1049 jh->b_modified = 0;
1050
1051 /*
1052 * If the buffer is not journaled right now, we need to make sure it
1053 * doesn't get written to disk before the caller actually commits the
1054 * new data
1055 */
1056 if (!jh->b_transaction) {
1057 JBUFFER_TRACE(jh, "no transaction");
1058 J_ASSERT_JH(jh, !jh->b_next_transaction);
1059 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1060 /*
1061 * Make sure all stores to jh (b_modified, b_frozen_data) are
1062 * visible before attaching it to the running transaction.
1063 * Paired with barrier in jbd2_write_access_granted()
1064 */
1065 smp_wmb();
1066 spin_lock(&journal->j_list_lock);
1067 if (test_clear_buffer_dirty(bh)) {
1068 /*
1069 * Execute buffer dirty clearing and jh->b_transaction
1070 * assignment under journal->j_list_lock locked to
1071 * prevent bh being removed from checkpoint list if
1072 * the buffer is in an intermediate state (not dirty
1073 * and jh->b_transaction is NULL).
1074 */
1075 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1076 set_buffer_jbddirty(bh);
1077 }
1078 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1079 spin_unlock(&journal->j_list_lock);
1080 unlock_buffer(bh);
1081 goto done;
1082 }
1083 unlock_buffer(bh);
1084
1085 /*
1086 * If there is already a copy-out version of this buffer, then we don't
1087 * need to make another one
1088 */
1089 if (jh->b_frozen_data) {
1090 JBUFFER_TRACE(jh, "has frozen data");
1091 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1092 goto attach_next;
1093 }
1094
1095 JBUFFER_TRACE(jh, "owned by older transaction");
1096 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1097 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1098
1099 /*
1100 * There is one case we have to be very careful about. If the
1101 * committing transaction is currently writing this buffer out to disk
1102 * and has NOT made a copy-out, then we cannot modify the buffer
1103 * contents at all right now. The essence of copy-out is that it is
1104 * the extra copy, not the primary copy, which gets journaled. If the
1105 * primary copy is already going to disk then we cannot do copy-out
1106 * here.
1107 */
1108 if (buffer_shadow(bh)) {
1109 JBUFFER_TRACE(jh, "on shadow: sleep");
1110 spin_unlock(&jh->b_state_lock);
1111 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1112 goto repeat;
1113 }
1114
1115 /*
1116 * Only do the copy if the currently-owning transaction still needs it.
1117 * If buffer isn't on BJ_Metadata list, the committing transaction is
1118 * past that stage (here we use the fact that BH_Shadow is set under
1119 * bh_state lock together with refiling to BJ_Shadow list and at this
1120 * point we know the buffer doesn't have BH_Shadow set).
1121 *
1122 * Subtle point, though: if this is a get_undo_access, then we will be
1123 * relying on the frozen_data to contain the new value of the
1124 * committed_data record after the transaction, so we HAVE to force the
1125 * frozen_data copy in that case.
1126 */
1127 if (jh->b_jlist == BJ_Metadata || force_copy) {
1128 JBUFFER_TRACE(jh, "generate frozen data");
1129 if (!frozen_buffer) {
1130 JBUFFER_TRACE(jh, "allocate memory for buffer");
1131 spin_unlock(&jh->b_state_lock);
1132 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1133 GFP_NOFS | __GFP_NOFAIL);
1134 goto repeat;
1135 }
1136 jh->b_frozen_data = frozen_buffer;
1137 frozen_buffer = NULL;
1138 jbd2_freeze_jh_data(jh);
1139 }
1140 attach_next:
1141 /*
1142 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1143 * before attaching it to the running transaction. Paired with barrier
1144 * in jbd2_write_access_granted()
1145 */
1146 smp_wmb();
1147 jh->b_next_transaction = transaction;
1148
1149 done:
1150 spin_unlock(&jh->b_state_lock);
1151
1152 /*
1153 * If we are about to journal a buffer, then any revoke pending on it is
1154 * no longer valid
1155 */
1156 jbd2_journal_cancel_revoke(handle, jh);
1157
1158 out:
1159 if (unlikely(frozen_buffer)) /* It's usually NULL */
1160 jbd2_free(frozen_buffer, bh->b_size);
1161
1162 JBUFFER_TRACE(jh, "exit");
1163 return error;
1164 }
1165
1166 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1167 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1168 bool undo)
1169 {
1170 struct journal_head *jh;
1171 bool ret = false;
1172
1173 /* Dirty buffers require special handling... */
1174 if (buffer_dirty(bh))
1175 return false;
1176
1177 /*
1178 * RCU protects us from dereferencing freed pages. So the checks we do
1179 * are guaranteed not to oops. However the jh slab object can get freed
1180 * & reallocated while we work with it. So we have to be careful. When
1181 * we see jh attached to the running transaction, we know it must stay
1182 * so until the transaction is committed. Thus jh won't be freed and
1183 * will be attached to the same bh while we run. However it can
1184 * happen jh gets freed, reallocated, and attached to the transaction
1185 * just after we get pointer to it from bh. So we have to be careful
1186 * and recheck jh still belongs to our bh before we return success.
1187 */
1188 rcu_read_lock();
1189 if (!buffer_jbd(bh))
1190 goto out;
1191 /* This should be bh2jh() but that doesn't work with inline functions */
1192 jh = READ_ONCE(bh->b_private);
1193 if (!jh)
1194 goto out;
1195 /* For undo access buffer must have data copied */
1196 if (undo && !jh->b_committed_data)
1197 goto out;
1198 if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1199 READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1200 goto out;
1201 /*
1202 * There are two reasons for the barrier here:
1203 * 1) Make sure to fetch b_bh after we did previous checks so that we
1204 * detect when jh went through free, realloc, attach to transaction
1205 * while we were checking. Paired with implicit barrier in that path.
1206 * 2) So that access to bh done after jbd2_write_access_granted()
1207 * doesn't get reordered and see inconsistent state of concurrent
1208 * do_get_write_access().
1209 */
1210 smp_mb();
1211 if (unlikely(jh->b_bh != bh))
1212 goto out;
1213 ret = true;
1214 out:
1215 rcu_read_unlock();
1216 return ret;
1217 }
1218
1219 /**
1220 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1221 * for metadata (not data) update.
1222 * @handle: transaction to add buffer modifications to
1223 * @bh: bh to be used for metadata writes
1224 *
1225 * Returns: error code or 0 on success.
1226 *
1227 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1228 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1229 */
1230
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1231 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1232 {
1233 struct journal_head *jh;
1234 int rc;
1235
1236 if (is_handle_aborted(handle))
1237 return -EROFS;
1238
1239 if (jbd2_write_access_granted(handle, bh, false))
1240 return 0;
1241
1242 jh = jbd2_journal_add_journal_head(bh);
1243 /* We do not want to get caught playing with fields which the
1244 * log thread also manipulates. Make sure that the buffer
1245 * completes any outstanding IO before proceeding. */
1246 rc = do_get_write_access(handle, jh, 0);
1247 jbd2_journal_put_journal_head(jh);
1248 return rc;
1249 }
1250
1251
1252 /*
1253 * When the user wants to journal a newly created buffer_head
1254 * (ie. getblk() returned a new buffer and we are going to populate it
1255 * manually rather than reading off disk), then we need to keep the
1256 * buffer_head locked until it has been completely filled with new
1257 * data. In this case, we should be able to make the assertion that
1258 * the bh is not already part of an existing transaction.
1259 *
1260 * The buffer should already be locked by the caller by this point.
1261 * There is no lock ranking violation: it was a newly created,
1262 * unlocked buffer beforehand. */
1263
1264 /**
1265 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1266 * @handle: transaction to new buffer to
1267 * @bh: new buffer.
1268 *
1269 * Call this if you create a new bh.
1270 */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1271 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1272 {
1273 transaction_t *transaction = handle->h_transaction;
1274 journal_t *journal;
1275 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1276 int err;
1277
1278 jbd2_debug(5, "journal_head %p\n", jh);
1279 err = -EROFS;
1280 if (is_handle_aborted(handle))
1281 goto out;
1282 journal = transaction->t_journal;
1283 err = 0;
1284
1285 JBUFFER_TRACE(jh, "entry");
1286 /*
1287 * The buffer may already belong to this transaction due to pre-zeroing
1288 * in the filesystem's new_block code. It may also be on the previous,
1289 * committing transaction's lists, but it HAS to be in Forget state in
1290 * that case: the transaction must have deleted the buffer for it to be
1291 * reused here.
1292 */
1293 spin_lock(&jh->b_state_lock);
1294 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1295 jh->b_transaction == NULL ||
1296 (jh->b_transaction == journal->j_committing_transaction &&
1297 jh->b_jlist == BJ_Forget)));
1298
1299 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1300 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1301
1302 if (jh->b_transaction == NULL) {
1303 /*
1304 * Previous jbd2_journal_forget() could have left the buffer
1305 * with jbddirty bit set because it was being committed. When
1306 * the commit finished, we've filed the buffer for
1307 * checkpointing and marked it dirty. Now we are reallocating
1308 * the buffer so the transaction freeing it must have
1309 * committed and so it's safe to clear the dirty bit.
1310 */
1311 clear_buffer_dirty(jh2bh(jh));
1312 /* first access by this transaction */
1313 jh->b_modified = 0;
1314
1315 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1316 spin_lock(&journal->j_list_lock);
1317 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1318 spin_unlock(&journal->j_list_lock);
1319 } else if (jh->b_transaction == journal->j_committing_transaction) {
1320 /* first access by this transaction */
1321 jh->b_modified = 0;
1322
1323 JBUFFER_TRACE(jh, "set next transaction");
1324 spin_lock(&journal->j_list_lock);
1325 jh->b_next_transaction = transaction;
1326 spin_unlock(&journal->j_list_lock);
1327 }
1328 spin_unlock(&jh->b_state_lock);
1329
1330 /*
1331 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1332 * blocks which contain freed but then revoked metadata. We need
1333 * to cancel the revoke in case we end up freeing it yet again
1334 * and the reallocating as data - this would cause a second revoke,
1335 * which hits an assertion error.
1336 */
1337 JBUFFER_TRACE(jh, "cancelling revoke");
1338 jbd2_journal_cancel_revoke(handle, jh);
1339 out:
1340 jbd2_journal_put_journal_head(jh);
1341 return err;
1342 }
1343
1344 /**
1345 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1346 * non-rewindable consequences
1347 * @handle: transaction
1348 * @bh: buffer to undo
1349 *
1350 * Sometimes there is a need to distinguish between metadata which has
1351 * been committed to disk and that which has not. The ext3fs code uses
1352 * this for freeing and allocating space, we have to make sure that we
1353 * do not reuse freed space until the deallocation has been committed,
1354 * since if we overwrote that space we would make the delete
1355 * un-rewindable in case of a crash.
1356 *
1357 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1358 * buffer for parts of non-rewindable operations such as delete
1359 * operations on the bitmaps. The journaling code must keep a copy of
1360 * the buffer's contents prior to the undo_access call until such time
1361 * as we know that the buffer has definitely been committed to disk.
1362 *
1363 * We never need to know which transaction the committed data is part
1364 * of, buffers touched here are guaranteed to be dirtied later and so
1365 * will be committed to a new transaction in due course, at which point
1366 * we can discard the old committed data pointer.
1367 *
1368 * Returns error number or 0 on success.
1369 */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1370 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1371 {
1372 int err;
1373 struct journal_head *jh;
1374 char *committed_data = NULL;
1375
1376 if (is_handle_aborted(handle))
1377 return -EROFS;
1378
1379 if (jbd2_write_access_granted(handle, bh, true))
1380 return 0;
1381
1382 jh = jbd2_journal_add_journal_head(bh);
1383 JBUFFER_TRACE(jh, "entry");
1384
1385 /*
1386 * Do this first --- it can drop the journal lock, so we want to
1387 * make sure that obtaining the committed_data is done
1388 * atomically wrt. completion of any outstanding commits.
1389 */
1390 err = do_get_write_access(handle, jh, 1);
1391 if (err)
1392 goto out;
1393
1394 repeat:
1395 if (!jh->b_committed_data)
1396 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1397 GFP_NOFS|__GFP_NOFAIL);
1398
1399 spin_lock(&jh->b_state_lock);
1400 if (!jh->b_committed_data) {
1401 /* Copy out the current buffer contents into the
1402 * preserved, committed copy. */
1403 JBUFFER_TRACE(jh, "generate b_committed data");
1404 if (!committed_data) {
1405 spin_unlock(&jh->b_state_lock);
1406 goto repeat;
1407 }
1408
1409 jh->b_committed_data = committed_data;
1410 committed_data = NULL;
1411 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1412 }
1413 spin_unlock(&jh->b_state_lock);
1414 out:
1415 jbd2_journal_put_journal_head(jh);
1416 if (unlikely(committed_data))
1417 jbd2_free(committed_data, bh->b_size);
1418 return err;
1419 }
1420
1421 /**
1422 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1423 * @bh: buffer to trigger on
1424 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1425 *
1426 * Set any triggers on this journal_head. This is always safe, because
1427 * triggers for a committing buffer will be saved off, and triggers for
1428 * a running transaction will match the buffer in that transaction.
1429 *
1430 * Call with NULL to clear the triggers.
1431 */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1432 void jbd2_journal_set_triggers(struct buffer_head *bh,
1433 struct jbd2_buffer_trigger_type *type)
1434 {
1435 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1436
1437 if (WARN_ON_ONCE(!jh))
1438 return;
1439 jh->b_triggers = type;
1440 jbd2_journal_put_journal_head(jh);
1441 }
1442
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1443 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1444 struct jbd2_buffer_trigger_type *triggers)
1445 {
1446 struct buffer_head *bh = jh2bh(jh);
1447
1448 if (!triggers || !triggers->t_frozen)
1449 return;
1450
1451 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1452 }
1453
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1454 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1455 struct jbd2_buffer_trigger_type *triggers)
1456 {
1457 if (!triggers || !triggers->t_abort)
1458 return;
1459
1460 triggers->t_abort(triggers, jh2bh(jh));
1461 }
1462
1463 /**
1464 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1465 * @handle: transaction to add buffer to.
1466 * @bh: buffer to mark
1467 *
1468 * mark dirty metadata which needs to be journaled as part of the current
1469 * transaction.
1470 *
1471 * The buffer must have previously had jbd2_journal_get_write_access()
1472 * called so that it has a valid journal_head attached to the buffer
1473 * head.
1474 *
1475 * The buffer is placed on the transaction's metadata list and is marked
1476 * as belonging to the transaction.
1477 *
1478 * Returns error number or 0 on success.
1479 *
1480 * Special care needs to be taken if the buffer already belongs to the
1481 * current committing transaction (in which case we should have frozen
1482 * data present for that commit). In that case, we don't relink the
1483 * buffer: that only gets done when the old transaction finally
1484 * completes its commit.
1485 */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1486 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1487 {
1488 transaction_t *transaction = handle->h_transaction;
1489 journal_t *journal;
1490 struct journal_head *jh;
1491 int ret = 0;
1492
1493 if (!buffer_jbd(bh))
1494 return -EUCLEAN;
1495
1496 /*
1497 * We don't grab jh reference here since the buffer must be part
1498 * of the running transaction.
1499 */
1500 jh = bh2jh(bh);
1501 jbd2_debug(5, "journal_head %p\n", jh);
1502 JBUFFER_TRACE(jh, "entry");
1503
1504 /*
1505 * This and the following assertions are unreliable since we may see jh
1506 * in inconsistent state unless we grab bh_state lock. But this is
1507 * crucial to catch bugs so let's do a reliable check until the
1508 * lockless handling is fully proven.
1509 */
1510 if (data_race(jh->b_transaction != transaction &&
1511 jh->b_next_transaction != transaction)) {
1512 spin_lock(&jh->b_state_lock);
1513 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1514 jh->b_next_transaction == transaction);
1515 spin_unlock(&jh->b_state_lock);
1516 }
1517 if (jh->b_modified == 1) {
1518 /* If it's in our transaction it must be in BJ_Metadata list. */
1519 if (data_race(jh->b_transaction == transaction &&
1520 jh->b_jlist != BJ_Metadata)) {
1521 spin_lock(&jh->b_state_lock);
1522 if (jh->b_transaction == transaction &&
1523 jh->b_jlist != BJ_Metadata)
1524 pr_err("JBD2: assertion failure: h_type=%u "
1525 "h_line_no=%u block_no=%llu jlist=%u\n",
1526 handle->h_type, handle->h_line_no,
1527 (unsigned long long) bh->b_blocknr,
1528 jh->b_jlist);
1529 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1530 jh->b_jlist == BJ_Metadata);
1531 spin_unlock(&jh->b_state_lock);
1532 }
1533 goto out;
1534 }
1535
1536 journal = transaction->t_journal;
1537 spin_lock(&jh->b_state_lock);
1538
1539 if (is_handle_aborted(handle)) {
1540 /*
1541 * Check journal aborting with @jh->b_state_lock locked,
1542 * since 'jh->b_transaction' could be replaced with
1543 * 'jh->b_next_transaction' during old transaction
1544 * committing if journal aborted, which may fail
1545 * assertion on 'jh->b_frozen_data == NULL'.
1546 */
1547 ret = -EROFS;
1548 goto out_unlock_bh;
1549 }
1550
1551 if (jh->b_modified == 0) {
1552 /*
1553 * This buffer's got modified and becoming part
1554 * of the transaction. This needs to be done
1555 * once a transaction -bzzz
1556 */
1557 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1558 ret = -ENOSPC;
1559 goto out_unlock_bh;
1560 }
1561 jh->b_modified = 1;
1562 handle->h_total_credits--;
1563 }
1564
1565 /*
1566 * fastpath, to avoid expensive locking. If this buffer is already
1567 * on the running transaction's metadata list there is nothing to do.
1568 * Nobody can take it off again because there is a handle open.
1569 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1570 * result in this test being false, so we go in and take the locks.
1571 */
1572 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1573 JBUFFER_TRACE(jh, "fastpath");
1574 if (unlikely(jh->b_transaction !=
1575 journal->j_running_transaction)) {
1576 printk(KERN_ERR "JBD2: %s: "
1577 "jh->b_transaction (%llu, %p, %u) != "
1578 "journal->j_running_transaction (%p, %u)\n",
1579 journal->j_devname,
1580 (unsigned long long) bh->b_blocknr,
1581 jh->b_transaction,
1582 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1583 journal->j_running_transaction,
1584 journal->j_running_transaction ?
1585 journal->j_running_transaction->t_tid : 0);
1586 ret = -EINVAL;
1587 }
1588 goto out_unlock_bh;
1589 }
1590
1591 set_buffer_jbddirty(bh);
1592
1593 /*
1594 * Metadata already on the current transaction list doesn't
1595 * need to be filed. Metadata on another transaction's list must
1596 * be committing, and will be refiled once the commit completes:
1597 * leave it alone for now.
1598 */
1599 if (jh->b_transaction != transaction) {
1600 JBUFFER_TRACE(jh, "already on other transaction");
1601 if (unlikely(((jh->b_transaction !=
1602 journal->j_committing_transaction)) ||
1603 (jh->b_next_transaction != transaction))) {
1604 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1605 "bad jh for block %llu: "
1606 "transaction (%p, %u), "
1607 "jh->b_transaction (%p, %u), "
1608 "jh->b_next_transaction (%p, %u), jlist %u\n",
1609 journal->j_devname,
1610 (unsigned long long) bh->b_blocknr,
1611 transaction, transaction->t_tid,
1612 jh->b_transaction,
1613 jh->b_transaction ?
1614 jh->b_transaction->t_tid : 0,
1615 jh->b_next_transaction,
1616 jh->b_next_transaction ?
1617 jh->b_next_transaction->t_tid : 0,
1618 jh->b_jlist);
1619 WARN_ON(1);
1620 ret = -EINVAL;
1621 }
1622 /* And this case is illegal: we can't reuse another
1623 * transaction's data buffer, ever. */
1624 goto out_unlock_bh;
1625 }
1626
1627 /* That test should have eliminated the following case: */
1628 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1629
1630 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1631 spin_lock(&journal->j_list_lock);
1632 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1633 spin_unlock(&journal->j_list_lock);
1634 out_unlock_bh:
1635 spin_unlock(&jh->b_state_lock);
1636 out:
1637 JBUFFER_TRACE(jh, "exit");
1638 return ret;
1639 }
1640
1641 /**
1642 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1643 * @handle: transaction handle
1644 * @bh: bh to 'forget'
1645 *
1646 * We can only do the bforget if there are no commits pending against the
1647 * buffer. If the buffer is dirty in the current running transaction we
1648 * can safely unlink it.
1649 *
1650 * bh may not be a journalled buffer at all - it may be a non-JBD
1651 * buffer which came off the hashtable. Check for this.
1652 *
1653 * Decrements bh->b_count by one.
1654 *
1655 * Allow this call even if the handle has aborted --- it may be part of
1656 * the caller's cleanup after an abort.
1657 */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1658 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1659 {
1660 transaction_t *transaction = handle->h_transaction;
1661 journal_t *journal;
1662 struct journal_head *jh;
1663 int drop_reserve = 0;
1664 int err = 0;
1665 int was_modified = 0;
1666
1667 if (is_handle_aborted(handle))
1668 return -EROFS;
1669 journal = transaction->t_journal;
1670
1671 BUFFER_TRACE(bh, "entry");
1672
1673 jh = jbd2_journal_grab_journal_head(bh);
1674 if (!jh) {
1675 __bforget(bh);
1676 return 0;
1677 }
1678
1679 spin_lock(&jh->b_state_lock);
1680
1681 /* Critical error: attempting to delete a bitmap buffer, maybe?
1682 * Don't do any jbd operations, and return an error. */
1683 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1684 "inconsistent data on disk")) {
1685 err = -EIO;
1686 goto drop;
1687 }
1688
1689 /* keep track of whether or not this transaction modified us */
1690 was_modified = jh->b_modified;
1691
1692 /*
1693 * The buffer's going from the transaction, we must drop
1694 * all references -bzzz
1695 */
1696 jh->b_modified = 0;
1697
1698 if (jh->b_transaction == transaction) {
1699 J_ASSERT_JH(jh, !jh->b_frozen_data);
1700
1701 /* If we are forgetting a buffer which is already part
1702 * of this transaction, then we can just drop it from
1703 * the transaction immediately. */
1704 clear_buffer_dirty(bh);
1705 clear_buffer_jbddirty(bh);
1706
1707 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1708
1709 /*
1710 * we only want to drop a reference if this transaction
1711 * modified the buffer
1712 */
1713 if (was_modified)
1714 drop_reserve = 1;
1715
1716 /*
1717 * We are no longer going to journal this buffer.
1718 * However, the commit of this transaction is still
1719 * important to the buffer: the delete that we are now
1720 * processing might obsolete an old log entry, so by
1721 * committing, we can satisfy the buffer's checkpoint.
1722 *
1723 * So, if we have a checkpoint on the buffer, we should
1724 * now refile the buffer on our BJ_Forget list so that
1725 * we know to remove the checkpoint after we commit.
1726 */
1727
1728 spin_lock(&journal->j_list_lock);
1729 if (jh->b_cp_transaction) {
1730 __jbd2_journal_temp_unlink_buffer(jh);
1731 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1732 } else {
1733 __jbd2_journal_unfile_buffer(jh);
1734 jbd2_journal_put_journal_head(jh);
1735 }
1736 spin_unlock(&journal->j_list_lock);
1737 } else if (jh->b_transaction) {
1738 J_ASSERT_JH(jh, (jh->b_transaction ==
1739 journal->j_committing_transaction));
1740 /* However, if the buffer is still owned by a prior
1741 * (committing) transaction, we can't drop it yet... */
1742 JBUFFER_TRACE(jh, "belongs to older transaction");
1743 /* ... but we CAN drop it from the new transaction through
1744 * marking the buffer as freed and set j_next_transaction to
1745 * the new transaction, so that not only the commit code
1746 * knows it should clear dirty bits when it is done with the
1747 * buffer, but also the buffer can be checkpointed only
1748 * after the new transaction commits. */
1749
1750 set_buffer_freed(bh);
1751
1752 if (!jh->b_next_transaction) {
1753 spin_lock(&journal->j_list_lock);
1754 jh->b_next_transaction = transaction;
1755 spin_unlock(&journal->j_list_lock);
1756 } else {
1757 J_ASSERT(jh->b_next_transaction == transaction);
1758
1759 /*
1760 * only drop a reference if this transaction modified
1761 * the buffer
1762 */
1763 if (was_modified)
1764 drop_reserve = 1;
1765 }
1766 } else {
1767 /*
1768 * Finally, if the buffer is not belongs to any
1769 * transaction, we can just drop it now if it has no
1770 * checkpoint.
1771 */
1772 spin_lock(&journal->j_list_lock);
1773 if (!jh->b_cp_transaction) {
1774 JBUFFER_TRACE(jh, "belongs to none transaction");
1775 spin_unlock(&journal->j_list_lock);
1776 goto drop;
1777 }
1778
1779 /*
1780 * Otherwise, if the buffer has been written to disk,
1781 * it is safe to remove the checkpoint and drop it.
1782 */
1783 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1784 spin_unlock(&journal->j_list_lock);
1785 goto drop;
1786 }
1787
1788 /*
1789 * The buffer is still not written to disk, we should
1790 * attach this buffer to current transaction so that the
1791 * buffer can be checkpointed only after the current
1792 * transaction commits.
1793 */
1794 clear_buffer_dirty(bh);
1795 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1796 spin_unlock(&journal->j_list_lock);
1797 }
1798 drop:
1799 __brelse(bh);
1800 spin_unlock(&jh->b_state_lock);
1801 jbd2_journal_put_journal_head(jh);
1802 if (drop_reserve) {
1803 /* no need to reserve log space for this block -bzzz */
1804 handle->h_total_credits++;
1805 }
1806 return err;
1807 }
1808
1809 /**
1810 * jbd2_journal_stop() - complete a transaction
1811 * @handle: transaction to complete.
1812 *
1813 * All done for a particular handle.
1814 *
1815 * There is not much action needed here. We just return any remaining
1816 * buffer credits to the transaction and remove the handle. The only
1817 * complication is that we need to start a commit operation if the
1818 * filesystem is marked for synchronous update.
1819 *
1820 * jbd2_journal_stop itself will not usually return an error, but it may
1821 * do so in unusual circumstances. In particular, expect it to
1822 * return -EIO if a jbd2_journal_abort has been executed since the
1823 * transaction began.
1824 */
jbd2_journal_stop(handle_t * handle)1825 int jbd2_journal_stop(handle_t *handle)
1826 {
1827 transaction_t *transaction = handle->h_transaction;
1828 journal_t *journal;
1829 int err = 0, wait_for_commit = 0;
1830 tid_t tid;
1831 pid_t pid;
1832
1833 if (--handle->h_ref > 0) {
1834 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1835 handle->h_ref);
1836 if (is_handle_aborted(handle))
1837 return -EIO;
1838 return 0;
1839 }
1840 if (!transaction) {
1841 /*
1842 * Handle is already detached from the transaction so there is
1843 * nothing to do other than free the handle.
1844 */
1845 memalloc_nofs_restore(handle->saved_alloc_context);
1846 goto free_and_exit;
1847 }
1848 journal = transaction->t_journal;
1849 tid = transaction->t_tid;
1850
1851 if (is_handle_aborted(handle))
1852 err = -EIO;
1853
1854 jbd2_debug(4, "Handle %p going down\n", handle);
1855 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1856 tid, handle->h_type, handle->h_line_no,
1857 jiffies - handle->h_start_jiffies,
1858 handle->h_sync, handle->h_requested_credits,
1859 (handle->h_requested_credits -
1860 handle->h_total_credits));
1861
1862 /*
1863 * Implement synchronous transaction batching. If the handle
1864 * was synchronous, don't force a commit immediately. Let's
1865 * yield and let another thread piggyback onto this
1866 * transaction. Keep doing that while new threads continue to
1867 * arrive. It doesn't cost much - we're about to run a commit
1868 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1869 * operations by 30x or more...
1870 *
1871 * We try and optimize the sleep time against what the
1872 * underlying disk can do, instead of having a static sleep
1873 * time. This is useful for the case where our storage is so
1874 * fast that it is more optimal to go ahead and force a flush
1875 * and wait for the transaction to be committed than it is to
1876 * wait for an arbitrary amount of time for new writers to
1877 * join the transaction. We achieve this by measuring how
1878 * long it takes to commit a transaction, and compare it with
1879 * how long this transaction has been running, and if run time
1880 * < commit time then we sleep for the delta and commit. This
1881 * greatly helps super fast disks that would see slowdowns as
1882 * more threads started doing fsyncs.
1883 *
1884 * But don't do this if this process was the most recent one
1885 * to perform a synchronous write. We do this to detect the
1886 * case where a single process is doing a stream of sync
1887 * writes. No point in waiting for joiners in that case.
1888 *
1889 * Setting max_batch_time to 0 disables this completely.
1890 */
1891 pid = current->pid;
1892 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1893 journal->j_max_batch_time) {
1894 u64 commit_time, trans_time;
1895
1896 journal->j_last_sync_writer = pid;
1897
1898 read_lock(&journal->j_state_lock);
1899 commit_time = journal->j_average_commit_time;
1900 read_unlock(&journal->j_state_lock);
1901
1902 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1903 transaction->t_start_time));
1904
1905 commit_time = max_t(u64, commit_time,
1906 1000*journal->j_min_batch_time);
1907 commit_time = min_t(u64, commit_time,
1908 1000*journal->j_max_batch_time);
1909
1910 if (trans_time < commit_time) {
1911 ktime_t expires = ktime_add_ns(ktime_get(),
1912 commit_time);
1913 set_current_state(TASK_UNINTERRUPTIBLE);
1914 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1915 }
1916 }
1917
1918 if (handle->h_sync)
1919 transaction->t_synchronous_commit = 1;
1920
1921 /*
1922 * If the handle is marked SYNC, we need to set another commit
1923 * going! We also want to force a commit if the transaction is too
1924 * old now.
1925 */
1926 if (handle->h_sync ||
1927 time_after_eq(jiffies, transaction->t_expires)) {
1928 /* Do this even for aborted journals: an abort still
1929 * completes the commit thread, it just doesn't write
1930 * anything to disk. */
1931
1932 jbd2_debug(2, "transaction too old, requesting commit for "
1933 "handle %p\n", handle);
1934 /* This is non-blocking */
1935 jbd2_log_start_commit(journal, tid);
1936
1937 /*
1938 * Special case: JBD2_SYNC synchronous updates require us
1939 * to wait for the commit to complete.
1940 */
1941 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1942 wait_for_commit = 1;
1943 }
1944
1945 /*
1946 * Once stop_this_handle() drops t_updates, the transaction could start
1947 * committing on us and eventually disappear. So we must not
1948 * dereference transaction pointer again after calling
1949 * stop_this_handle().
1950 */
1951 stop_this_handle(handle);
1952
1953 if (wait_for_commit)
1954 err = jbd2_log_wait_commit(journal, tid);
1955
1956 free_and_exit:
1957 if (handle->h_rsv_handle)
1958 jbd2_free_handle(handle->h_rsv_handle);
1959 jbd2_free_handle(handle);
1960 return err;
1961 }
1962
1963 /*
1964 *
1965 * List management code snippets: various functions for manipulating the
1966 * transaction buffer lists.
1967 *
1968 */
1969
1970 /*
1971 * Append a buffer to a transaction list, given the transaction's list head
1972 * pointer.
1973 *
1974 * j_list_lock is held.
1975 *
1976 * jh->b_state_lock is held.
1977 */
1978
1979 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1980 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1981 {
1982 if (!*list) {
1983 jh->b_tnext = jh->b_tprev = jh;
1984 *list = jh;
1985 } else {
1986 /* Insert at the tail of the list to preserve order */
1987 struct journal_head *first = *list, *last = first->b_tprev;
1988 jh->b_tprev = last;
1989 jh->b_tnext = first;
1990 last->b_tnext = first->b_tprev = jh;
1991 }
1992 }
1993
1994 /*
1995 * Remove a buffer from a transaction list, given the transaction's list
1996 * head pointer.
1997 *
1998 * Called with j_list_lock held, and the journal may not be locked.
1999 *
2000 * jh->b_state_lock is held.
2001 */
2002
2003 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)2004 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2005 {
2006 if (*list == jh) {
2007 *list = jh->b_tnext;
2008 if (*list == jh)
2009 *list = NULL;
2010 }
2011 jh->b_tprev->b_tnext = jh->b_tnext;
2012 jh->b_tnext->b_tprev = jh->b_tprev;
2013 }
2014
2015 /*
2016 * Remove a buffer from the appropriate transaction list.
2017 *
2018 * Note that this function can *change* the value of
2019 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2020 * t_reserved_list. If the caller is holding onto a copy of one of these
2021 * pointers, it could go bad. Generally the caller needs to re-read the
2022 * pointer from the transaction_t.
2023 *
2024 * Called under j_list_lock.
2025 */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)2026 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2027 {
2028 struct journal_head **list = NULL;
2029 transaction_t *transaction;
2030 struct buffer_head *bh = jh2bh(jh);
2031
2032 lockdep_assert_held(&jh->b_state_lock);
2033 transaction = jh->b_transaction;
2034 if (transaction)
2035 assert_spin_locked(&transaction->t_journal->j_list_lock);
2036
2037 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2038 if (jh->b_jlist != BJ_None)
2039 J_ASSERT_JH(jh, transaction != NULL);
2040
2041 switch (jh->b_jlist) {
2042 case BJ_None:
2043 return;
2044 case BJ_Metadata:
2045 transaction->t_nr_buffers--;
2046 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2047 list = &transaction->t_buffers;
2048 break;
2049 case BJ_Forget:
2050 list = &transaction->t_forget;
2051 break;
2052 case BJ_Shadow:
2053 list = &transaction->t_shadow_list;
2054 break;
2055 case BJ_Reserved:
2056 list = &transaction->t_reserved_list;
2057 break;
2058 }
2059
2060 __blist_del_buffer(list, jh);
2061 jh->b_jlist = BJ_None;
2062 if (transaction && is_journal_aborted(transaction->t_journal))
2063 clear_buffer_jbddirty(bh);
2064 else if (test_clear_buffer_jbddirty(bh))
2065 mark_buffer_dirty(bh); /* Expose it to the VM */
2066 }
2067
2068 /*
2069 * Remove buffer from all transactions. The caller is responsible for dropping
2070 * the jh reference that belonged to the transaction.
2071 *
2072 * Called with bh_state lock and j_list_lock
2073 */
__jbd2_journal_unfile_buffer(struct journal_head * jh)2074 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2075 {
2076 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2077 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2078
2079 __jbd2_journal_temp_unlink_buffer(jh);
2080 jh->b_transaction = NULL;
2081 }
2082
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)2083 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2084 {
2085 struct buffer_head *bh = jh2bh(jh);
2086
2087 /* Get reference so that buffer cannot be freed before we unlock it */
2088 get_bh(bh);
2089 spin_lock(&jh->b_state_lock);
2090 spin_lock(&journal->j_list_lock);
2091 __jbd2_journal_unfile_buffer(jh);
2092 spin_unlock(&journal->j_list_lock);
2093 spin_unlock(&jh->b_state_lock);
2094 jbd2_journal_put_journal_head(jh);
2095 __brelse(bh);
2096 }
2097
2098 /**
2099 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2100 * @journal: journal for operation
2101 * @folio: Folio to detach data from.
2102 *
2103 * For all the buffers on this page,
2104 * if they are fully written out ordered data, move them onto BUF_CLEAN
2105 * so try_to_free_buffers() can reap them.
2106 *
2107 * This function returns non-zero if we wish try_to_free_buffers()
2108 * to be called. We do this if the page is releasable by try_to_free_buffers().
2109 * We also do it if the page has locked or dirty buffers and the caller wants
2110 * us to perform sync or async writeout.
2111 *
2112 * This complicates JBD locking somewhat. We aren't protected by the
2113 * BKL here. We wish to remove the buffer from its committing or
2114 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2115 *
2116 * This may *change* the value of transaction_t->t_datalist, so anyone
2117 * who looks at t_datalist needs to lock against this function.
2118 *
2119 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2120 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
2121 * will come out of the lock with the buffer dirty, which makes it
2122 * ineligible for release here.
2123 *
2124 * Who else is affected by this? hmm... Really the only contender
2125 * is do_get_write_access() - it could be looking at the buffer while
2126 * journal_try_to_free_buffer() is changing its state. But that
2127 * cannot happen because we never reallocate freed data as metadata
2128 * while the data is part of a transaction. Yes?
2129 *
2130 * Return false on failure, true on success
2131 */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct folio * folio)2132 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2133 {
2134 struct buffer_head *head;
2135 struct buffer_head *bh;
2136 bool ret = false;
2137
2138 J_ASSERT(folio_test_locked(folio));
2139
2140 head = folio_buffers(folio);
2141 bh = head;
2142 do {
2143 struct journal_head *jh;
2144
2145 /*
2146 * We take our own ref against the journal_head here to avoid
2147 * having to add tons of locking around each instance of
2148 * jbd2_journal_put_journal_head().
2149 */
2150 jh = jbd2_journal_grab_journal_head(bh);
2151 if (!jh)
2152 continue;
2153
2154 spin_lock(&jh->b_state_lock);
2155 if (!jh->b_transaction && !jh->b_next_transaction) {
2156 spin_lock(&journal->j_list_lock);
2157 /* Remove written-back checkpointed metadata buffer */
2158 if (jh->b_cp_transaction != NULL)
2159 jbd2_journal_try_remove_checkpoint(jh);
2160 spin_unlock(&journal->j_list_lock);
2161 }
2162 spin_unlock(&jh->b_state_lock);
2163 jbd2_journal_put_journal_head(jh);
2164 if (buffer_jbd(bh))
2165 goto busy;
2166 } while ((bh = bh->b_this_page) != head);
2167
2168 ret = try_to_free_buffers(folio);
2169 busy:
2170 return ret;
2171 }
2172
2173 /*
2174 * This buffer is no longer needed. If it is on an older transaction's
2175 * checkpoint list we need to record it on this transaction's forget list
2176 * to pin this buffer (and hence its checkpointing transaction) down until
2177 * this transaction commits. If the buffer isn't on a checkpoint list, we
2178 * release it.
2179 * Returns non-zero if JBD no longer has an interest in the buffer.
2180 *
2181 * Called under j_list_lock.
2182 *
2183 * Called under jh->b_state_lock.
2184 */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2185 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2186 {
2187 int may_free = 1;
2188 struct buffer_head *bh = jh2bh(jh);
2189
2190 if (jh->b_cp_transaction) {
2191 JBUFFER_TRACE(jh, "on running+cp transaction");
2192 __jbd2_journal_temp_unlink_buffer(jh);
2193 /*
2194 * We don't want to write the buffer anymore, clear the
2195 * bit so that we don't confuse checks in
2196 * __journal_file_buffer
2197 */
2198 clear_buffer_dirty(bh);
2199 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2200 may_free = 0;
2201 } else {
2202 JBUFFER_TRACE(jh, "on running transaction");
2203 __jbd2_journal_unfile_buffer(jh);
2204 jbd2_journal_put_journal_head(jh);
2205 }
2206 return may_free;
2207 }
2208
2209 /*
2210 * jbd2_journal_invalidate_folio
2211 *
2212 * This code is tricky. It has a number of cases to deal with.
2213 *
2214 * There are two invariants which this code relies on:
2215 *
2216 * i_size must be updated on disk before we start calling invalidate_folio
2217 * on the data.
2218 *
2219 * This is done in ext3 by defining an ext3_setattr method which
2220 * updates i_size before truncate gets going. By maintaining this
2221 * invariant, we can be sure that it is safe to throw away any buffers
2222 * attached to the current transaction: once the transaction commits,
2223 * we know that the data will not be needed.
2224 *
2225 * Note however that we can *not* throw away data belonging to the
2226 * previous, committing transaction!
2227 *
2228 * Any disk blocks which *are* part of the previous, committing
2229 * transaction (and which therefore cannot be discarded immediately) are
2230 * not going to be reused in the new running transaction
2231 *
2232 * The bitmap committed_data images guarantee this: any block which is
2233 * allocated in one transaction and removed in the next will be marked
2234 * as in-use in the committed_data bitmap, so cannot be reused until
2235 * the next transaction to delete the block commits. This means that
2236 * leaving committing buffers dirty is quite safe: the disk blocks
2237 * cannot be reallocated to a different file and so buffer aliasing is
2238 * not possible.
2239 *
2240 *
2241 * The above applies mainly to ordered data mode. In writeback mode we
2242 * don't make guarantees about the order in which data hits disk --- in
2243 * particular we don't guarantee that new dirty data is flushed before
2244 * transaction commit --- so it is always safe just to discard data
2245 * immediately in that mode. --sct
2246 */
2247
2248 /*
2249 * The journal_unmap_buffer helper function returns zero if the buffer
2250 * concerned remains pinned as an anonymous buffer belonging to an older
2251 * transaction.
2252 *
2253 * We're outside-transaction here. Either or both of j_running_transaction
2254 * and j_committing_transaction may be NULL.
2255 */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2256 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2257 int partial_page)
2258 {
2259 transaction_t *transaction;
2260 struct journal_head *jh;
2261 int may_free = 1;
2262
2263 BUFFER_TRACE(bh, "entry");
2264
2265 /*
2266 * It is safe to proceed here without the j_list_lock because the
2267 * buffers cannot be stolen by try_to_free_buffers as long as we are
2268 * holding the page lock. --sct
2269 */
2270
2271 jh = jbd2_journal_grab_journal_head(bh);
2272 if (!jh)
2273 goto zap_buffer_unlocked;
2274
2275 /* OK, we have data buffer in journaled mode */
2276 write_lock(&journal->j_state_lock);
2277 spin_lock(&jh->b_state_lock);
2278 spin_lock(&journal->j_list_lock);
2279
2280 /*
2281 * We cannot remove the buffer from checkpoint lists until the
2282 * transaction adding inode to orphan list (let's call it T)
2283 * is committed. Otherwise if the transaction changing the
2284 * buffer would be cleaned from the journal before T is
2285 * committed, a crash will cause that the correct contents of
2286 * the buffer will be lost. On the other hand we have to
2287 * clear the buffer dirty bit at latest at the moment when the
2288 * transaction marking the buffer as freed in the filesystem
2289 * structures is committed because from that moment on the
2290 * block can be reallocated and used by a different page.
2291 * Since the block hasn't been freed yet but the inode has
2292 * already been added to orphan list, it is safe for us to add
2293 * the buffer to BJ_Forget list of the newest transaction.
2294 *
2295 * Also we have to clear buffer_mapped flag of a truncated buffer
2296 * because the buffer_head may be attached to the page straddling
2297 * i_size (can happen only when blocksize < pagesize) and thus the
2298 * buffer_head can be reused when the file is extended again. So we end
2299 * up keeping around invalidated buffers attached to transactions'
2300 * BJ_Forget list just to stop checkpointing code from cleaning up
2301 * the transaction this buffer was modified in.
2302 */
2303 transaction = jh->b_transaction;
2304 if (transaction == NULL) {
2305 /* First case: not on any transaction. If it
2306 * has no checkpoint link, then we can zap it:
2307 * it's a writeback-mode buffer so we don't care
2308 * if it hits disk safely. */
2309 if (!jh->b_cp_transaction) {
2310 JBUFFER_TRACE(jh, "not on any transaction: zap");
2311 goto zap_buffer;
2312 }
2313
2314 if (!buffer_dirty(bh)) {
2315 /* bdflush has written it. We can drop it now */
2316 __jbd2_journal_remove_checkpoint(jh);
2317 goto zap_buffer;
2318 }
2319
2320 /* OK, it must be in the journal but still not
2321 * written fully to disk: it's metadata or
2322 * journaled data... */
2323
2324 if (journal->j_running_transaction) {
2325 /* ... and once the current transaction has
2326 * committed, the buffer won't be needed any
2327 * longer. */
2328 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2329 may_free = __dispose_buffer(jh,
2330 journal->j_running_transaction);
2331 goto zap_buffer;
2332 } else {
2333 /* There is no currently-running transaction. So the
2334 * orphan record which we wrote for this file must have
2335 * passed into commit. We must attach this buffer to
2336 * the committing transaction, if it exists. */
2337 if (journal->j_committing_transaction) {
2338 JBUFFER_TRACE(jh, "give to committing trans");
2339 may_free = __dispose_buffer(jh,
2340 journal->j_committing_transaction);
2341 goto zap_buffer;
2342 } else {
2343 /* The orphan record's transaction has
2344 * committed. We can cleanse this buffer */
2345 clear_buffer_jbddirty(bh);
2346 __jbd2_journal_remove_checkpoint(jh);
2347 goto zap_buffer;
2348 }
2349 }
2350 } else if (transaction == journal->j_committing_transaction) {
2351 JBUFFER_TRACE(jh, "on committing transaction");
2352 /*
2353 * The buffer is committing, we simply cannot touch
2354 * it. If the page is straddling i_size we have to wait
2355 * for commit and try again.
2356 */
2357 if (partial_page) {
2358 spin_unlock(&journal->j_list_lock);
2359 spin_unlock(&jh->b_state_lock);
2360 write_unlock(&journal->j_state_lock);
2361 jbd2_journal_put_journal_head(jh);
2362 /* Already zapped buffer? Nothing to do... */
2363 if (!bh->b_bdev)
2364 return 0;
2365 return -EBUSY;
2366 }
2367 /*
2368 * OK, buffer won't be reachable after truncate. We just clear
2369 * b_modified to not confuse transaction credit accounting, and
2370 * set j_next_transaction to the running transaction (if there
2371 * is one) and mark buffer as freed so that commit code knows
2372 * it should clear dirty bits when it is done with the buffer.
2373 */
2374 set_buffer_freed(bh);
2375 if (journal->j_running_transaction && buffer_jbddirty(bh))
2376 jh->b_next_transaction = journal->j_running_transaction;
2377 jh->b_modified = 0;
2378 spin_unlock(&journal->j_list_lock);
2379 spin_unlock(&jh->b_state_lock);
2380 write_unlock(&journal->j_state_lock);
2381 jbd2_journal_put_journal_head(jh);
2382 return 0;
2383 } else {
2384 /* Good, the buffer belongs to the running transaction.
2385 * We are writing our own transaction's data, not any
2386 * previous one's, so it is safe to throw it away
2387 * (remember that we expect the filesystem to have set
2388 * i_size already for this truncate so recovery will not
2389 * expose the disk blocks we are discarding here.) */
2390 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2391 JBUFFER_TRACE(jh, "on running transaction");
2392 may_free = __dispose_buffer(jh, transaction);
2393 }
2394
2395 zap_buffer:
2396 /*
2397 * This is tricky. Although the buffer is truncated, it may be reused
2398 * if blocksize < pagesize and it is attached to the page straddling
2399 * EOF. Since the buffer might have been added to BJ_Forget list of the
2400 * running transaction, journal_get_write_access() won't clear
2401 * b_modified and credit accounting gets confused. So clear b_modified
2402 * here.
2403 */
2404 jh->b_modified = 0;
2405 spin_unlock(&journal->j_list_lock);
2406 spin_unlock(&jh->b_state_lock);
2407 write_unlock(&journal->j_state_lock);
2408 jbd2_journal_put_journal_head(jh);
2409 zap_buffer_unlocked:
2410 clear_buffer_dirty(bh);
2411 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2412 clear_buffer_mapped(bh);
2413 clear_buffer_req(bh);
2414 clear_buffer_new(bh);
2415 clear_buffer_delay(bh);
2416 clear_buffer_unwritten(bh);
2417 bh->b_bdev = NULL;
2418 return may_free;
2419 }
2420
2421 /**
2422 * jbd2_journal_invalidate_folio()
2423 * @journal: journal to use for flush...
2424 * @folio: folio to flush
2425 * @offset: start of the range to invalidate
2426 * @length: length of the range to invalidate
2427 *
2428 * Reap page buffers containing data after in the specified range in page.
2429 * Can return -EBUSY if buffers are part of the committing transaction and
2430 * the page is straddling i_size. Caller then has to wait for current commit
2431 * and try again.
2432 */
jbd2_journal_invalidate_folio(journal_t * journal,struct folio * folio,size_t offset,size_t length)2433 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2434 size_t offset, size_t length)
2435 {
2436 struct buffer_head *head, *bh, *next;
2437 unsigned int stop = offset + length;
2438 unsigned int curr_off = 0;
2439 int partial_page = (offset || length < folio_size(folio));
2440 int may_free = 1;
2441 int ret = 0;
2442
2443 if (!folio_test_locked(folio))
2444 BUG();
2445 head = folio_buffers(folio);
2446 if (!head)
2447 return 0;
2448
2449 BUG_ON(stop > folio_size(folio) || stop < length);
2450
2451 /* We will potentially be playing with lists other than just the
2452 * data lists (especially for journaled data mode), so be
2453 * cautious in our locking. */
2454
2455 bh = head;
2456 do {
2457 unsigned int next_off = curr_off + bh->b_size;
2458 next = bh->b_this_page;
2459
2460 if (next_off > stop)
2461 return 0;
2462
2463 if (offset <= curr_off) {
2464 /* This block is wholly outside the truncation point */
2465 lock_buffer(bh);
2466 ret = journal_unmap_buffer(journal, bh, partial_page);
2467 unlock_buffer(bh);
2468 if (ret < 0)
2469 return ret;
2470 may_free &= ret;
2471 }
2472 curr_off = next_off;
2473 bh = next;
2474
2475 } while (bh != head);
2476
2477 if (!partial_page) {
2478 if (may_free && try_to_free_buffers(folio))
2479 J_ASSERT(!folio_buffers(folio));
2480 }
2481 return 0;
2482 }
2483
2484 /*
2485 * File a buffer on the given transaction list.
2486 */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2487 void __jbd2_journal_file_buffer(struct journal_head *jh,
2488 transaction_t *transaction, int jlist)
2489 {
2490 struct journal_head **list = NULL;
2491 int was_dirty = 0;
2492 struct buffer_head *bh = jh2bh(jh);
2493
2494 lockdep_assert_held(&jh->b_state_lock);
2495 assert_spin_locked(&transaction->t_journal->j_list_lock);
2496
2497 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2498 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2499 jh->b_transaction == NULL);
2500
2501 if (jh->b_transaction && jh->b_jlist == jlist)
2502 return;
2503
2504 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2505 jlist == BJ_Shadow || jlist == BJ_Forget) {
2506 /*
2507 * For metadata buffers, we track dirty bit in buffer_jbddirty
2508 * instead of buffer_dirty. We should not see a dirty bit set
2509 * here because we clear it in do_get_write_access but e.g.
2510 * tune2fs can modify the sb and set the dirty bit at any time
2511 * so we try to gracefully handle that.
2512 */
2513 if (buffer_dirty(bh))
2514 warn_dirty_buffer(bh);
2515 if (test_clear_buffer_dirty(bh) ||
2516 test_clear_buffer_jbddirty(bh))
2517 was_dirty = 1;
2518 }
2519
2520 if (jh->b_transaction)
2521 __jbd2_journal_temp_unlink_buffer(jh);
2522 else
2523 jbd2_journal_grab_journal_head(bh);
2524 jh->b_transaction = transaction;
2525
2526 switch (jlist) {
2527 case BJ_None:
2528 J_ASSERT_JH(jh, !jh->b_committed_data);
2529 J_ASSERT_JH(jh, !jh->b_frozen_data);
2530 return;
2531 case BJ_Metadata:
2532 transaction->t_nr_buffers++;
2533 list = &transaction->t_buffers;
2534 break;
2535 case BJ_Forget:
2536 list = &transaction->t_forget;
2537 break;
2538 case BJ_Shadow:
2539 list = &transaction->t_shadow_list;
2540 break;
2541 case BJ_Reserved:
2542 list = &transaction->t_reserved_list;
2543 break;
2544 }
2545
2546 __blist_add_buffer(list, jh);
2547 jh->b_jlist = jlist;
2548
2549 if (was_dirty)
2550 set_buffer_jbddirty(bh);
2551 }
2552
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2553 void jbd2_journal_file_buffer(struct journal_head *jh,
2554 transaction_t *transaction, int jlist)
2555 {
2556 spin_lock(&jh->b_state_lock);
2557 spin_lock(&transaction->t_journal->j_list_lock);
2558 __jbd2_journal_file_buffer(jh, transaction, jlist);
2559 spin_unlock(&transaction->t_journal->j_list_lock);
2560 spin_unlock(&jh->b_state_lock);
2561 }
2562
2563 /*
2564 * Remove a buffer from its current buffer list in preparation for
2565 * dropping it from its current transaction entirely. If the buffer has
2566 * already started to be used by a subsequent transaction, refile the
2567 * buffer on that transaction's metadata list.
2568 *
2569 * Called under j_list_lock
2570 * Called under jh->b_state_lock
2571 *
2572 * When this function returns true, there's no next transaction to refile to
2573 * and the caller has to drop jh reference through
2574 * jbd2_journal_put_journal_head().
2575 */
__jbd2_journal_refile_buffer(struct journal_head * jh)2576 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2577 {
2578 int was_dirty, jlist;
2579 struct buffer_head *bh = jh2bh(jh);
2580
2581 lockdep_assert_held(&jh->b_state_lock);
2582 if (jh->b_transaction)
2583 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2584
2585 /* If the buffer is now unused, just drop it. */
2586 if (jh->b_next_transaction == NULL) {
2587 __jbd2_journal_unfile_buffer(jh);
2588 return true;
2589 }
2590
2591 /*
2592 * It has been modified by a later transaction: add it to the new
2593 * transaction's metadata list.
2594 */
2595
2596 was_dirty = test_clear_buffer_jbddirty(bh);
2597 __jbd2_journal_temp_unlink_buffer(jh);
2598
2599 /*
2600 * b_transaction must be set, otherwise the new b_transaction won't
2601 * be holding jh reference
2602 */
2603 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2604
2605 /*
2606 * We set b_transaction here because b_next_transaction will inherit
2607 * our jh reference and thus __jbd2_journal_file_buffer() must not
2608 * take a new one.
2609 */
2610 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2611 WRITE_ONCE(jh->b_next_transaction, NULL);
2612 if (buffer_freed(bh))
2613 jlist = BJ_Forget;
2614 else if (jh->b_modified)
2615 jlist = BJ_Metadata;
2616 else
2617 jlist = BJ_Reserved;
2618 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2619 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2620
2621 if (was_dirty)
2622 set_buffer_jbddirty(bh);
2623 return false;
2624 }
2625
2626 /*
2627 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2628 * bh reference so that we can safely unlock bh.
2629 *
2630 * The jh and bh may be freed by this call.
2631 */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2632 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2633 {
2634 bool drop;
2635
2636 spin_lock(&jh->b_state_lock);
2637 spin_lock(&journal->j_list_lock);
2638 drop = __jbd2_journal_refile_buffer(jh);
2639 spin_unlock(&jh->b_state_lock);
2640 spin_unlock(&journal->j_list_lock);
2641 if (drop)
2642 jbd2_journal_put_journal_head(jh);
2643 }
2644
2645 /*
2646 * File inode in the inode list of the handle's transaction
2647 */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags,loff_t start_byte,loff_t end_byte)2648 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2649 unsigned long flags, loff_t start_byte, loff_t end_byte)
2650 {
2651 transaction_t *transaction = handle->h_transaction;
2652 journal_t *journal;
2653
2654 if (is_handle_aborted(handle))
2655 return -EROFS;
2656 journal = transaction->t_journal;
2657
2658 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2659 transaction->t_tid);
2660
2661 spin_lock(&journal->j_list_lock);
2662 jinode->i_flags |= flags;
2663
2664 if (jinode->i_dirty_end) {
2665 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2666 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2667 } else {
2668 jinode->i_dirty_start = start_byte;
2669 jinode->i_dirty_end = end_byte;
2670 }
2671
2672 /* Is inode already attached where we need it? */
2673 if (jinode->i_transaction == transaction ||
2674 jinode->i_next_transaction == transaction)
2675 goto done;
2676
2677 /*
2678 * We only ever set this variable to 1 so the test is safe. Since
2679 * t_need_data_flush is likely to be set, we do the test to save some
2680 * cacheline bouncing
2681 */
2682 if (!transaction->t_need_data_flush)
2683 transaction->t_need_data_flush = 1;
2684 /* On some different transaction's list - should be
2685 * the committing one */
2686 if (jinode->i_transaction) {
2687 J_ASSERT(jinode->i_next_transaction == NULL);
2688 J_ASSERT(jinode->i_transaction ==
2689 journal->j_committing_transaction);
2690 jinode->i_next_transaction = transaction;
2691 goto done;
2692 }
2693 /* Not on any transaction list... */
2694 J_ASSERT(!jinode->i_next_transaction);
2695 jinode->i_transaction = transaction;
2696 list_add(&jinode->i_list, &transaction->t_inode_list);
2697 done:
2698 spin_unlock(&journal->j_list_lock);
2699
2700 return 0;
2701 }
2702
jbd2_journal_inode_ranged_write(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2703 int jbd2_journal_inode_ranged_write(handle_t *handle,
2704 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2705 {
2706 return jbd2_journal_file_inode(handle, jinode,
2707 JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2708 start_byte + length - 1);
2709 }
2710
jbd2_journal_inode_ranged_wait(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2711 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2712 loff_t start_byte, loff_t length)
2713 {
2714 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2715 start_byte, start_byte + length - 1);
2716 }
2717
2718 /*
2719 * File truncate and transaction commit interact with each other in a
2720 * non-trivial way. If a transaction writing data block A is
2721 * committing, we cannot discard the data by truncate until we have
2722 * written them. Otherwise if we crashed after the transaction with
2723 * write has committed but before the transaction with truncate has
2724 * committed, we could see stale data in block A. This function is a
2725 * helper to solve this problem. It starts writeout of the truncated
2726 * part in case it is in the committing transaction.
2727 *
2728 * Filesystem code must call this function when inode is journaled in
2729 * ordered mode before truncation happens and after the inode has been
2730 * placed on orphan list with the new inode size. The second condition
2731 * avoids the race that someone writes new data and we start
2732 * committing the transaction after this function has been called but
2733 * before a transaction for truncate is started (and furthermore it
2734 * allows us to optimize the case where the addition to orphan list
2735 * happens in the same transaction as write --- we don't have to write
2736 * any data in such case).
2737 */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2738 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2739 struct jbd2_inode *jinode,
2740 loff_t new_size)
2741 {
2742 transaction_t *inode_trans, *commit_trans;
2743 int ret = 0;
2744
2745 /* This is a quick check to avoid locking if not necessary */
2746 if (!jinode->i_transaction)
2747 goto out;
2748 /* Locks are here just to force reading of recent values, it is
2749 * enough that the transaction was not committing before we started
2750 * a transaction adding the inode to orphan list */
2751 read_lock(&journal->j_state_lock);
2752 commit_trans = journal->j_committing_transaction;
2753 read_unlock(&journal->j_state_lock);
2754 spin_lock(&journal->j_list_lock);
2755 inode_trans = jinode->i_transaction;
2756 spin_unlock(&journal->j_list_lock);
2757 if (inode_trans == commit_trans) {
2758 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2759 new_size, LLONG_MAX);
2760 if (ret)
2761 jbd2_journal_abort(journal, ret);
2762 }
2763 out:
2764 return ret;
2765 }
2766