1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98
99 /*
100 * Lock ordering
101 *
102 * page fault path:
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
105 *
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
109 * i_data_sem (rw)
110 *
111 * truncate:
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * page lock
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115 * i_data_sem (rw)
116 *
117 * direct IO:
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120 *
121 * writepages:
122 * transaction start -> page lock(s) -> i_data_sem (rw)
123 */
124
125 static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
130 };
131
132
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext2",
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148
149
150 static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
152 .name = "ext3",
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 bh_end_io_t *end_io)
165 {
166 /*
167 * buffer's verified bit is no longer valid after reading from
168 * disk again due to write out error, clear it to make sure we
169 * recheck the buffer contents.
170 */
171 clear_buffer_verified(bh);
172
173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 get_bh(bh);
175 submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 bh_end_io_t *end_io)
180 {
181 BUG_ON(!buffer_locked(bh));
182
183 if (ext4_buffer_uptodate(bh)) {
184 unlock_buffer(bh);
185 return;
186 }
187 __ext4_read_bh(bh, op_flags, end_io);
188 }
189
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 BUG_ON(!buffer_locked(bh));
193
194 if (ext4_buffer_uptodate(bh)) {
195 unlock_buffer(bh);
196 return 0;
197 }
198
199 __ext4_read_bh(bh, op_flags, end_io);
200
201 wait_on_buffer(bh);
202 if (buffer_uptodate(bh))
203 return 0;
204 return -EIO;
205 }
206
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 lock_buffer(bh);
210 if (!wait) {
211 ext4_read_bh_nowait(bh, op_flags, NULL);
212 return 0;
213 }
214 return ext4_read_bh(bh, op_flags, NULL);
215 }
216
217 /*
218 * This works like __bread_gfp() except it uses ERR_PTR for error
219 * returns. Currently with sb_bread it's impossible to distinguish
220 * between ENOMEM and EIO situations (since both result in a NULL
221 * return.
222 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 sector_t block,
225 blk_opf_t op_flags, gfp_t gfp)
226 {
227 struct buffer_head *bh;
228 int ret;
229
230 bh = sb_getblk_gfp(sb, block, gfp);
231 if (bh == NULL)
232 return ERR_PTR(-ENOMEM);
233 if (ext4_buffer_uptodate(bh))
234 return bh;
235
236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 if (ret) {
238 put_bh(bh);
239 return ERR_PTR(ret);
240 }
241 return bh;
242 }
243
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 blk_opf_t op_flags)
246 {
247 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
248 }
249
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)250 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
251 sector_t block)
252 {
253 return __ext4_sb_bread_gfp(sb, block, 0, 0);
254 }
255
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)256 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
257 {
258 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
259
260 if (likely(bh)) {
261 if (trylock_buffer(bh))
262 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
263 brelse(bh);
264 }
265 }
266
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)267 static int ext4_verify_csum_type(struct super_block *sb,
268 struct ext4_super_block *es)
269 {
270 if (!ext4_has_feature_metadata_csum(sb))
271 return 1;
272
273 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
274 }
275
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)276 __le32 ext4_superblock_csum(struct super_block *sb,
277 struct ext4_super_block *es)
278 {
279 struct ext4_sb_info *sbi = EXT4_SB(sb);
280 int offset = offsetof(struct ext4_super_block, s_checksum);
281 __u32 csum;
282
283 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
284
285 return cpu_to_le32(csum);
286 }
287
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)288 static int ext4_superblock_csum_verify(struct super_block *sb,
289 struct ext4_super_block *es)
290 {
291 if (!ext4_has_metadata_csum(sb))
292 return 1;
293
294 return es->s_checksum == ext4_superblock_csum(sb, es);
295 }
296
ext4_superblock_csum_set(struct super_block * sb)297 void ext4_superblock_csum_set(struct super_block *sb)
298 {
299 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
300
301 if (!ext4_has_metadata_csum(sb))
302 return;
303
304 es->s_checksum = ext4_superblock_csum(sb, es);
305 }
306
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)307 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
308 struct ext4_group_desc *bg)
309 {
310 return le32_to_cpu(bg->bg_block_bitmap_lo) |
311 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
312 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
313 }
314
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)315 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
316 struct ext4_group_desc *bg)
317 {
318 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
319 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
320 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
321 }
322
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)323 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
324 struct ext4_group_desc *bg)
325 {
326 return le32_to_cpu(bg->bg_inode_table_lo) |
327 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
328 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
329 }
330
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)331 __u32 ext4_free_group_clusters(struct super_block *sb,
332 struct ext4_group_desc *bg)
333 {
334 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
335 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
336 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
337 }
338
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)339 __u32 ext4_free_inodes_count(struct super_block *sb,
340 struct ext4_group_desc *bg)
341 {
342 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
343 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
344 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
345 }
346
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)347 __u32 ext4_used_dirs_count(struct super_block *sb,
348 struct ext4_group_desc *bg)
349 {
350 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
351 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
352 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
353 }
354
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)355 __u32 ext4_itable_unused_count(struct super_block *sb,
356 struct ext4_group_desc *bg)
357 {
358 return le16_to_cpu(bg->bg_itable_unused_lo) |
359 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
360 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
361 }
362
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)363 void ext4_block_bitmap_set(struct super_block *sb,
364 struct ext4_group_desc *bg, ext4_fsblk_t blk)
365 {
366 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
367 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
368 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
369 }
370
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)371 void ext4_inode_bitmap_set(struct super_block *sb,
372 struct ext4_group_desc *bg, ext4_fsblk_t blk)
373 {
374 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
375 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
376 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
377 }
378
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)379 void ext4_inode_table_set(struct super_block *sb,
380 struct ext4_group_desc *bg, ext4_fsblk_t blk)
381 {
382 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
383 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
384 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
385 }
386
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)387 void ext4_free_group_clusters_set(struct super_block *sb,
388 struct ext4_group_desc *bg, __u32 count)
389 {
390 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
391 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
392 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
393 }
394
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)395 void ext4_free_inodes_set(struct super_block *sb,
396 struct ext4_group_desc *bg, __u32 count)
397 {
398 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
399 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
400 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
401 }
402
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)403 void ext4_used_dirs_set(struct super_block *sb,
404 struct ext4_group_desc *bg, __u32 count)
405 {
406 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
407 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
408 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
409 }
410
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)411 void ext4_itable_unused_set(struct super_block *sb,
412 struct ext4_group_desc *bg, __u32 count)
413 {
414 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
415 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
416 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
417 }
418
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)419 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
420 {
421 now = clamp_val(now, 0, (1ull << 40) - 1);
422
423 *lo = cpu_to_le32(lower_32_bits(now));
424 *hi = upper_32_bits(now);
425 }
426
__ext4_get_tstamp(__le32 * lo,__u8 * hi)427 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
428 {
429 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
430 }
431 #define ext4_update_tstamp(es, tstamp) \
432 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
433 ktime_get_real_seconds())
434 #define ext4_get_tstamp(es, tstamp) \
435 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
436
437 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
438 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
439
440 /*
441 * The ext4_maybe_update_superblock() function checks and updates the
442 * superblock if needed.
443 *
444 * This function is designed to update the on-disk superblock only under
445 * certain conditions to prevent excessive disk writes and unnecessary
446 * waking of the disk from sleep. The superblock will be updated if:
447 * 1. More than an hour has passed since the last superblock update, and
448 * 2. More than 16MB have been written since the last superblock update.
449 *
450 * @sb: The superblock
451 */
ext4_maybe_update_superblock(struct super_block * sb)452 static void ext4_maybe_update_superblock(struct super_block *sb)
453 {
454 struct ext4_sb_info *sbi = EXT4_SB(sb);
455 struct ext4_super_block *es = sbi->s_es;
456 journal_t *journal = sbi->s_journal;
457 time64_t now;
458 __u64 last_update;
459 __u64 lifetime_write_kbytes;
460 __u64 diff_size;
461
462 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
463 !journal || (journal->j_flags & JBD2_UNMOUNT))
464 return;
465
466 now = ktime_get_real_seconds();
467 last_update = ext4_get_tstamp(es, s_wtime);
468
469 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
470 return;
471
472 lifetime_write_kbytes = sbi->s_kbytes_written +
473 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
474 sbi->s_sectors_written_start) >> 1);
475
476 /* Get the number of kilobytes not written to disk to account
477 * for statistics and compare with a multiple of 16 MB. This
478 * is used to determine when the next superblock commit should
479 * occur (i.e. not more often than once per 16MB if there was
480 * less written in an hour).
481 */
482 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
483
484 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
485 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
486 }
487
488 /*
489 * The del_gendisk() function uninitializes the disk-specific data
490 * structures, including the bdi structure, without telling anyone
491 * else. Once this happens, any attempt to call mark_buffer_dirty()
492 * (for example, by ext4_commit_super), will cause a kernel OOPS.
493 * This is a kludge to prevent these oops until we can put in a proper
494 * hook in del_gendisk() to inform the VFS and file system layers.
495 */
block_device_ejected(struct super_block * sb)496 static int block_device_ejected(struct super_block *sb)
497 {
498 struct inode *bd_inode = sb->s_bdev->bd_inode;
499 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
500
501 return bdi->dev == NULL;
502 }
503
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)504 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
505 {
506 struct super_block *sb = journal->j_private;
507 struct ext4_sb_info *sbi = EXT4_SB(sb);
508 int error = is_journal_aborted(journal);
509 struct ext4_journal_cb_entry *jce;
510
511 BUG_ON(txn->t_state == T_FINISHED);
512
513 ext4_process_freed_data(sb, txn->t_tid);
514 ext4_maybe_update_superblock(sb);
515
516 spin_lock(&sbi->s_md_lock);
517 while (!list_empty(&txn->t_private_list)) {
518 jce = list_entry(txn->t_private_list.next,
519 struct ext4_journal_cb_entry, jce_list);
520 list_del_init(&jce->jce_list);
521 spin_unlock(&sbi->s_md_lock);
522 jce->jce_func(sb, jce, error);
523 spin_lock(&sbi->s_md_lock);
524 }
525 spin_unlock(&sbi->s_md_lock);
526 }
527
528 /*
529 * This writepage callback for write_cache_pages()
530 * takes care of a few cases after page cleaning.
531 *
532 * write_cache_pages() already checks for dirty pages
533 * and calls clear_page_dirty_for_io(), which we want,
534 * to write protect the pages.
535 *
536 * However, we may have to redirty a page (see below.)
537 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)538 static int ext4_journalled_writepage_callback(struct folio *folio,
539 struct writeback_control *wbc,
540 void *data)
541 {
542 transaction_t *transaction = (transaction_t *) data;
543 struct buffer_head *bh, *head;
544 struct journal_head *jh;
545
546 bh = head = folio_buffers(folio);
547 do {
548 /*
549 * We have to redirty a page in these cases:
550 * 1) If buffer is dirty, it means the page was dirty because it
551 * contains a buffer that needs checkpointing. So the dirty bit
552 * needs to be preserved so that checkpointing writes the buffer
553 * properly.
554 * 2) If buffer is not part of the committing transaction
555 * (we may have just accidentally come across this buffer because
556 * inode range tracking is not exact) or if the currently running
557 * transaction already contains this buffer as well, dirty bit
558 * needs to be preserved so that the buffer gets writeprotected
559 * properly on running transaction's commit.
560 */
561 jh = bh2jh(bh);
562 if (buffer_dirty(bh) ||
563 (jh && (jh->b_transaction != transaction ||
564 jh->b_next_transaction))) {
565 folio_redirty_for_writepage(wbc, folio);
566 goto out;
567 }
568 } while ((bh = bh->b_this_page) != head);
569
570 out:
571 return AOP_WRITEPAGE_ACTIVATE;
572 }
573
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)574 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
575 {
576 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
577 struct writeback_control wbc = {
578 .sync_mode = WB_SYNC_ALL,
579 .nr_to_write = LONG_MAX,
580 .range_start = jinode->i_dirty_start,
581 .range_end = jinode->i_dirty_end,
582 };
583
584 return write_cache_pages(mapping, &wbc,
585 ext4_journalled_writepage_callback,
586 jinode->i_transaction);
587 }
588
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)589 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
590 {
591 int ret;
592
593 if (ext4_should_journal_data(jinode->i_vfs_inode))
594 ret = ext4_journalled_submit_inode_data_buffers(jinode);
595 else
596 ret = ext4_normal_submit_inode_data_buffers(jinode);
597 return ret;
598 }
599
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)600 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
601 {
602 int ret = 0;
603
604 if (!ext4_should_journal_data(jinode->i_vfs_inode))
605 ret = jbd2_journal_finish_inode_data_buffers(jinode);
606
607 return ret;
608 }
609
system_going_down(void)610 static bool system_going_down(void)
611 {
612 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
613 || system_state == SYSTEM_RESTART;
614 }
615
616 struct ext4_err_translation {
617 int code;
618 int errno;
619 };
620
621 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
622
623 static struct ext4_err_translation err_translation[] = {
624 EXT4_ERR_TRANSLATE(EIO),
625 EXT4_ERR_TRANSLATE(ENOMEM),
626 EXT4_ERR_TRANSLATE(EFSBADCRC),
627 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
628 EXT4_ERR_TRANSLATE(ENOSPC),
629 EXT4_ERR_TRANSLATE(ENOKEY),
630 EXT4_ERR_TRANSLATE(EROFS),
631 EXT4_ERR_TRANSLATE(EFBIG),
632 EXT4_ERR_TRANSLATE(EEXIST),
633 EXT4_ERR_TRANSLATE(ERANGE),
634 EXT4_ERR_TRANSLATE(EOVERFLOW),
635 EXT4_ERR_TRANSLATE(EBUSY),
636 EXT4_ERR_TRANSLATE(ENOTDIR),
637 EXT4_ERR_TRANSLATE(ENOTEMPTY),
638 EXT4_ERR_TRANSLATE(ESHUTDOWN),
639 EXT4_ERR_TRANSLATE(EFAULT),
640 };
641
ext4_errno_to_code(int errno)642 static int ext4_errno_to_code(int errno)
643 {
644 int i;
645
646 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
647 if (err_translation[i].errno == errno)
648 return err_translation[i].code;
649 return EXT4_ERR_UNKNOWN;
650 }
651
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)652 static void save_error_info(struct super_block *sb, int error,
653 __u32 ino, __u64 block,
654 const char *func, unsigned int line)
655 {
656 struct ext4_sb_info *sbi = EXT4_SB(sb);
657
658 /* We default to EFSCORRUPTED error... */
659 if (error == 0)
660 error = EFSCORRUPTED;
661
662 spin_lock(&sbi->s_error_lock);
663 sbi->s_add_error_count++;
664 sbi->s_last_error_code = error;
665 sbi->s_last_error_line = line;
666 sbi->s_last_error_ino = ino;
667 sbi->s_last_error_block = block;
668 sbi->s_last_error_func = func;
669 sbi->s_last_error_time = ktime_get_real_seconds();
670 if (!sbi->s_first_error_time) {
671 sbi->s_first_error_code = error;
672 sbi->s_first_error_line = line;
673 sbi->s_first_error_ino = ino;
674 sbi->s_first_error_block = block;
675 sbi->s_first_error_func = func;
676 sbi->s_first_error_time = sbi->s_last_error_time;
677 }
678 spin_unlock(&sbi->s_error_lock);
679 }
680
681 /* Deal with the reporting of failure conditions on a filesystem such as
682 * inconsistencies detected or read IO failures.
683 *
684 * On ext2, we can store the error state of the filesystem in the
685 * superblock. That is not possible on ext4, because we may have other
686 * write ordering constraints on the superblock which prevent us from
687 * writing it out straight away; and given that the journal is about to
688 * be aborted, we can't rely on the current, or future, transactions to
689 * write out the superblock safely.
690 *
691 * We'll just use the jbd2_journal_abort() error code to record an error in
692 * the journal instead. On recovery, the journal will complain about
693 * that error until we've noted it down and cleared it.
694 *
695 * If force_ro is set, we unconditionally force the filesystem into an
696 * ABORT|READONLY state, unless the error response on the fs has been set to
697 * panic in which case we take the easy way out and panic immediately. This is
698 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
699 * at a critical moment in log management.
700 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)701 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
702 __u32 ino, __u64 block,
703 const char *func, unsigned int line)
704 {
705 journal_t *journal = EXT4_SB(sb)->s_journal;
706 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
707
708 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
709 if (test_opt(sb, WARN_ON_ERROR))
710 WARN_ON_ONCE(1);
711
712 if (!continue_fs && !sb_rdonly(sb)) {
713 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
714 if (journal)
715 jbd2_journal_abort(journal, -EIO);
716 }
717
718 if (!bdev_read_only(sb->s_bdev)) {
719 save_error_info(sb, error, ino, block, func, line);
720 /*
721 * In case the fs should keep running, we need to writeout
722 * superblock through the journal. Due to lock ordering
723 * constraints, it may not be safe to do it right here so we
724 * defer superblock flushing to a workqueue.
725 */
726 if (continue_fs && journal)
727 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
728 else
729 ext4_commit_super(sb);
730 }
731
732 /*
733 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
734 * could panic during 'reboot -f' as the underlying device got already
735 * disabled.
736 */
737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
738 panic("EXT4-fs (device %s): panic forced after error\n",
739 sb->s_id);
740 }
741
742 if (sb_rdonly(sb) || continue_fs)
743 return;
744
745 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
746 /*
747 * Make sure updated value of ->s_mount_flags will be visible before
748 * ->s_flags update
749 */
750 smp_wmb();
751 sb->s_flags |= SB_RDONLY;
752 }
753
update_super_work(struct work_struct * work)754 static void update_super_work(struct work_struct *work)
755 {
756 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
757 s_sb_upd_work);
758 journal_t *journal = sbi->s_journal;
759 handle_t *handle;
760
761 /*
762 * If the journal is still running, we have to write out superblock
763 * through the journal to avoid collisions of other journalled sb
764 * updates.
765 *
766 * We use directly jbd2 functions here to avoid recursing back into
767 * ext4 error handling code during handling of previous errors.
768 */
769 if (!sb_rdonly(sbi->s_sb) && journal) {
770 struct buffer_head *sbh = sbi->s_sbh;
771 bool call_notify_err = false;
772
773 handle = jbd2_journal_start(journal, 1);
774 if (IS_ERR(handle))
775 goto write_directly;
776 if (jbd2_journal_get_write_access(handle, sbh)) {
777 jbd2_journal_stop(handle);
778 goto write_directly;
779 }
780
781 if (sbi->s_add_error_count > 0)
782 call_notify_err = true;
783
784 ext4_update_super(sbi->s_sb);
785 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
786 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
787 "superblock detected");
788 clear_buffer_write_io_error(sbh);
789 set_buffer_uptodate(sbh);
790 }
791
792 if (jbd2_journal_dirty_metadata(handle, sbh)) {
793 jbd2_journal_stop(handle);
794 goto write_directly;
795 }
796 jbd2_journal_stop(handle);
797
798 if (call_notify_err)
799 ext4_notify_error_sysfs(sbi);
800
801 return;
802 }
803 write_directly:
804 /*
805 * Write through journal failed. Write sb directly to get error info
806 * out and hope for the best.
807 */
808 ext4_commit_super(sbi->s_sb);
809 ext4_notify_error_sysfs(sbi);
810 }
811
812 #define ext4_error_ratelimit(sb) \
813 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
814 "EXT4-fs error")
815
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)816 void __ext4_error(struct super_block *sb, const char *function,
817 unsigned int line, bool force_ro, int error, __u64 block,
818 const char *fmt, ...)
819 {
820 struct va_format vaf;
821 va_list args;
822
823 if (unlikely(ext4_forced_shutdown(sb)))
824 return;
825
826 trace_ext4_error(sb, function, line);
827 if (ext4_error_ratelimit(sb)) {
828 va_start(args, fmt);
829 vaf.fmt = fmt;
830 vaf.va = &args;
831 printk(KERN_CRIT
832 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
833 sb->s_id, function, line, current->comm, &vaf);
834 va_end(args);
835 }
836 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
837
838 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
839 }
840
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)841 void __ext4_error_inode(struct inode *inode, const char *function,
842 unsigned int line, ext4_fsblk_t block, int error,
843 const char *fmt, ...)
844 {
845 va_list args;
846 struct va_format vaf;
847
848 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
849 return;
850
851 trace_ext4_error(inode->i_sb, function, line);
852 if (ext4_error_ratelimit(inode->i_sb)) {
853 va_start(args, fmt);
854 vaf.fmt = fmt;
855 vaf.va = &args;
856 if (block)
857 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
858 "inode #%lu: block %llu: comm %s: %pV\n",
859 inode->i_sb->s_id, function, line, inode->i_ino,
860 block, current->comm, &vaf);
861 else
862 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
863 "inode #%lu: comm %s: %pV\n",
864 inode->i_sb->s_id, function, line, inode->i_ino,
865 current->comm, &vaf);
866 va_end(args);
867 }
868 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
869
870 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
871 function, line);
872 }
873
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)874 void __ext4_error_file(struct file *file, const char *function,
875 unsigned int line, ext4_fsblk_t block,
876 const char *fmt, ...)
877 {
878 va_list args;
879 struct va_format vaf;
880 struct inode *inode = file_inode(file);
881 char pathname[80], *path;
882
883 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
884 return;
885
886 trace_ext4_error(inode->i_sb, function, line);
887 if (ext4_error_ratelimit(inode->i_sb)) {
888 path = file_path(file, pathname, sizeof(pathname));
889 if (IS_ERR(path))
890 path = "(unknown)";
891 va_start(args, fmt);
892 vaf.fmt = fmt;
893 vaf.va = &args;
894 if (block)
895 printk(KERN_CRIT
896 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
897 "block %llu: comm %s: path %s: %pV\n",
898 inode->i_sb->s_id, function, line, inode->i_ino,
899 block, current->comm, path, &vaf);
900 else
901 printk(KERN_CRIT
902 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
903 "comm %s: path %s: %pV\n",
904 inode->i_sb->s_id, function, line, inode->i_ino,
905 current->comm, path, &vaf);
906 va_end(args);
907 }
908 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
909
910 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
911 function, line);
912 }
913
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])914 const char *ext4_decode_error(struct super_block *sb, int errno,
915 char nbuf[16])
916 {
917 char *errstr = NULL;
918
919 switch (errno) {
920 case -EFSCORRUPTED:
921 errstr = "Corrupt filesystem";
922 break;
923 case -EFSBADCRC:
924 errstr = "Filesystem failed CRC";
925 break;
926 case -EIO:
927 errstr = "IO failure";
928 break;
929 case -ENOMEM:
930 errstr = "Out of memory";
931 break;
932 case -EROFS:
933 if (!sb || (EXT4_SB(sb)->s_journal &&
934 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
935 errstr = "Journal has aborted";
936 else
937 errstr = "Readonly filesystem";
938 break;
939 default:
940 /* If the caller passed in an extra buffer for unknown
941 * errors, textualise them now. Else we just return
942 * NULL. */
943 if (nbuf) {
944 /* Check for truncated error codes... */
945 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
946 errstr = nbuf;
947 }
948 break;
949 }
950
951 return errstr;
952 }
953
954 /* __ext4_std_error decodes expected errors from journaling functions
955 * automatically and invokes the appropriate error response. */
956
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)957 void __ext4_std_error(struct super_block *sb, const char *function,
958 unsigned int line, int errno)
959 {
960 char nbuf[16];
961 const char *errstr;
962
963 if (unlikely(ext4_forced_shutdown(sb)))
964 return;
965
966 /* Special case: if the error is EROFS, and we're not already
967 * inside a transaction, then there's really no point in logging
968 * an error. */
969 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
970 return;
971
972 if (ext4_error_ratelimit(sb)) {
973 errstr = ext4_decode_error(sb, errno, nbuf);
974 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
975 sb->s_id, function, line, errstr);
976 }
977 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
978
979 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
980 }
981
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)982 void __ext4_msg(struct super_block *sb,
983 const char *prefix, const char *fmt, ...)
984 {
985 struct va_format vaf;
986 va_list args;
987
988 if (sb) {
989 atomic_inc(&EXT4_SB(sb)->s_msg_count);
990 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
991 "EXT4-fs"))
992 return;
993 }
994
995 va_start(args, fmt);
996 vaf.fmt = fmt;
997 vaf.va = &args;
998 if (sb)
999 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1000 else
1001 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1002 va_end(args);
1003 }
1004
ext4_warning_ratelimit(struct super_block * sb)1005 static int ext4_warning_ratelimit(struct super_block *sb)
1006 {
1007 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1008 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1009 "EXT4-fs warning");
1010 }
1011
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1012 void __ext4_warning(struct super_block *sb, const char *function,
1013 unsigned int line, const char *fmt, ...)
1014 {
1015 struct va_format vaf;
1016 va_list args;
1017
1018 if (!ext4_warning_ratelimit(sb))
1019 return;
1020
1021 va_start(args, fmt);
1022 vaf.fmt = fmt;
1023 vaf.va = &args;
1024 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1025 sb->s_id, function, line, &vaf);
1026 va_end(args);
1027 }
1028
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1029 void __ext4_warning_inode(const struct inode *inode, const char *function,
1030 unsigned int line, const char *fmt, ...)
1031 {
1032 struct va_format vaf;
1033 va_list args;
1034
1035 if (!ext4_warning_ratelimit(inode->i_sb))
1036 return;
1037
1038 va_start(args, fmt);
1039 vaf.fmt = fmt;
1040 vaf.va = &args;
1041 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1042 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1043 function, line, inode->i_ino, current->comm, &vaf);
1044 va_end(args);
1045 }
1046
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1047 void __ext4_grp_locked_error(const char *function, unsigned int line,
1048 struct super_block *sb, ext4_group_t grp,
1049 unsigned long ino, ext4_fsblk_t block,
1050 const char *fmt, ...)
1051 __releases(bitlock)
1052 __acquires(bitlock)
1053 {
1054 struct va_format vaf;
1055 va_list args;
1056
1057 if (unlikely(ext4_forced_shutdown(sb)))
1058 return;
1059
1060 trace_ext4_error(sb, function, line);
1061 if (ext4_error_ratelimit(sb)) {
1062 va_start(args, fmt);
1063 vaf.fmt = fmt;
1064 vaf.va = &args;
1065 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1066 sb->s_id, function, line, grp);
1067 if (ino)
1068 printk(KERN_CONT "inode %lu: ", ino);
1069 if (block)
1070 printk(KERN_CONT "block %llu:",
1071 (unsigned long long) block);
1072 printk(KERN_CONT "%pV\n", &vaf);
1073 va_end(args);
1074 }
1075
1076 if (test_opt(sb, ERRORS_CONT)) {
1077 if (test_opt(sb, WARN_ON_ERROR))
1078 WARN_ON_ONCE(1);
1079 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1080 if (!bdev_read_only(sb->s_bdev)) {
1081 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1082 line);
1083 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1084 }
1085 return;
1086 }
1087 ext4_unlock_group(sb, grp);
1088 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1089 /*
1090 * We only get here in the ERRORS_RO case; relocking the group
1091 * may be dangerous, but nothing bad will happen since the
1092 * filesystem will have already been marked read/only and the
1093 * journal has been aborted. We return 1 as a hint to callers
1094 * who might what to use the return value from
1095 * ext4_grp_locked_error() to distinguish between the
1096 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1097 * aggressively from the ext4 function in question, with a
1098 * more appropriate error code.
1099 */
1100 ext4_lock_group(sb, grp);
1101 return;
1102 }
1103
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1104 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1105 ext4_group_t group,
1106 unsigned int flags)
1107 {
1108 struct ext4_sb_info *sbi = EXT4_SB(sb);
1109 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1110 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1111 int ret;
1112
1113 if (!grp || !gdp)
1114 return;
1115 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1116 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1117 &grp->bb_state);
1118 if (!ret)
1119 percpu_counter_sub(&sbi->s_freeclusters_counter,
1120 grp->bb_free);
1121 }
1122
1123 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1124 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1125 &grp->bb_state);
1126 if (!ret && gdp) {
1127 int count;
1128
1129 count = ext4_free_inodes_count(sb, gdp);
1130 percpu_counter_sub(&sbi->s_freeinodes_counter,
1131 count);
1132 }
1133 }
1134 }
1135
ext4_update_dynamic_rev(struct super_block * sb)1136 void ext4_update_dynamic_rev(struct super_block *sb)
1137 {
1138 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1139
1140 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1141 return;
1142
1143 ext4_warning(sb,
1144 "updating to rev %d because of new feature flag, "
1145 "running e2fsck is recommended",
1146 EXT4_DYNAMIC_REV);
1147
1148 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1149 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1150 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1151 /* leave es->s_feature_*compat flags alone */
1152 /* es->s_uuid will be set by e2fsck if empty */
1153
1154 /*
1155 * The rest of the superblock fields should be zero, and if not it
1156 * means they are likely already in use, so leave them alone. We
1157 * can leave it up to e2fsck to clean up any inconsistencies there.
1158 */
1159 }
1160
orphan_list_entry(struct list_head * l)1161 static inline struct inode *orphan_list_entry(struct list_head *l)
1162 {
1163 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1164 }
1165
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1166 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1167 {
1168 struct list_head *l;
1169
1170 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1171 le32_to_cpu(sbi->s_es->s_last_orphan));
1172
1173 printk(KERN_ERR "sb_info orphan list:\n");
1174 list_for_each(l, &sbi->s_orphan) {
1175 struct inode *inode = orphan_list_entry(l);
1176 printk(KERN_ERR " "
1177 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1178 inode->i_sb->s_id, inode->i_ino, inode,
1179 inode->i_mode, inode->i_nlink,
1180 NEXT_ORPHAN(inode));
1181 }
1182 }
1183
1184 #ifdef CONFIG_QUOTA
1185 static int ext4_quota_off(struct super_block *sb, int type);
1186
ext4_quotas_off(struct super_block * sb,int type)1187 static inline void ext4_quotas_off(struct super_block *sb, int type)
1188 {
1189 BUG_ON(type > EXT4_MAXQUOTAS);
1190
1191 /* Use our quota_off function to clear inode flags etc. */
1192 for (type--; type >= 0; type--)
1193 ext4_quota_off(sb, type);
1194 }
1195
1196 /*
1197 * This is a helper function which is used in the mount/remount
1198 * codepaths (which holds s_umount) to fetch the quota file name.
1199 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1200 static inline char *get_qf_name(struct super_block *sb,
1201 struct ext4_sb_info *sbi,
1202 int type)
1203 {
1204 return rcu_dereference_protected(sbi->s_qf_names[type],
1205 lockdep_is_held(&sb->s_umount));
1206 }
1207 #else
ext4_quotas_off(struct super_block * sb,int type)1208 static inline void ext4_quotas_off(struct super_block *sb, int type)
1209 {
1210 }
1211 #endif
1212
ext4_percpu_param_init(struct ext4_sb_info * sbi)1213 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1214 {
1215 ext4_fsblk_t block;
1216 int err;
1217
1218 block = ext4_count_free_clusters(sbi->s_sb);
1219 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1220 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1221 GFP_KERNEL);
1222 if (!err) {
1223 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1224 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1225 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1226 GFP_KERNEL);
1227 }
1228 if (!err)
1229 err = percpu_counter_init(&sbi->s_dirs_counter,
1230 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1231 if (!err)
1232 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1233 GFP_KERNEL);
1234 if (!err)
1235 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1236 GFP_KERNEL);
1237 if (!err)
1238 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1239
1240 if (err)
1241 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1242
1243 return err;
1244 }
1245
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1246 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1247 {
1248 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1249 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1250 percpu_counter_destroy(&sbi->s_dirs_counter);
1251 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1252 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1253 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1254 }
1255
ext4_group_desc_free(struct ext4_sb_info * sbi)1256 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1257 {
1258 struct buffer_head **group_desc;
1259 int i;
1260
1261 rcu_read_lock();
1262 group_desc = rcu_dereference(sbi->s_group_desc);
1263 for (i = 0; i < sbi->s_gdb_count; i++)
1264 brelse(group_desc[i]);
1265 kvfree(group_desc);
1266 rcu_read_unlock();
1267 }
1268
ext4_flex_groups_free(struct ext4_sb_info * sbi)1269 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1270 {
1271 struct flex_groups **flex_groups;
1272 int i;
1273
1274 rcu_read_lock();
1275 flex_groups = rcu_dereference(sbi->s_flex_groups);
1276 if (flex_groups) {
1277 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1278 kvfree(flex_groups[i]);
1279 kvfree(flex_groups);
1280 }
1281 rcu_read_unlock();
1282 }
1283
ext4_put_super(struct super_block * sb)1284 static void ext4_put_super(struct super_block *sb)
1285 {
1286 struct ext4_sb_info *sbi = EXT4_SB(sb);
1287 struct ext4_super_block *es = sbi->s_es;
1288 int aborted = 0;
1289 int err;
1290
1291 /*
1292 * Unregister sysfs before destroying jbd2 journal.
1293 * Since we could still access attr_journal_task attribute via sysfs
1294 * path which could have sbi->s_journal->j_task as NULL
1295 * Unregister sysfs before flush sbi->s_sb_upd_work.
1296 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1297 * read metadata verify failed then will queue error work.
1298 * update_super_work will call start_this_handle may trigger
1299 * BUG_ON.
1300 */
1301 ext4_unregister_sysfs(sb);
1302
1303 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1304 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1305 &sb->s_uuid);
1306
1307 ext4_unregister_li_request(sb);
1308 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1309
1310 flush_work(&sbi->s_sb_upd_work);
1311 destroy_workqueue(sbi->rsv_conversion_wq);
1312 ext4_release_orphan_info(sb);
1313
1314 if (sbi->s_journal) {
1315 aborted = is_journal_aborted(sbi->s_journal);
1316 err = jbd2_journal_destroy(sbi->s_journal);
1317 sbi->s_journal = NULL;
1318 if ((err < 0) && !aborted) {
1319 ext4_abort(sb, -err, "Couldn't clean up the journal");
1320 }
1321 }
1322
1323 ext4_es_unregister_shrinker(sbi);
1324 timer_shutdown_sync(&sbi->s_err_report);
1325 ext4_release_system_zone(sb);
1326 ext4_mb_release(sb);
1327 ext4_ext_release(sb);
1328
1329 if (!sb_rdonly(sb) && !aborted) {
1330 ext4_clear_feature_journal_needs_recovery(sb);
1331 ext4_clear_feature_orphan_present(sb);
1332 es->s_state = cpu_to_le16(sbi->s_mount_state);
1333 }
1334 if (!sb_rdonly(sb))
1335 ext4_commit_super(sb);
1336
1337 ext4_group_desc_free(sbi);
1338 ext4_flex_groups_free(sbi);
1339 ext4_percpu_param_destroy(sbi);
1340 #ifdef CONFIG_QUOTA
1341 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1342 kfree(get_qf_name(sb, sbi, i));
1343 #endif
1344
1345 /* Debugging code just in case the in-memory inode orphan list
1346 * isn't empty. The on-disk one can be non-empty if we've
1347 * detected an error and taken the fs readonly, but the
1348 * in-memory list had better be clean by this point. */
1349 if (!list_empty(&sbi->s_orphan))
1350 dump_orphan_list(sb, sbi);
1351 ASSERT(list_empty(&sbi->s_orphan));
1352
1353 sync_blockdev(sb->s_bdev);
1354 invalidate_bdev(sb->s_bdev);
1355 if (sbi->s_journal_bdev) {
1356 /*
1357 * Invalidate the journal device's buffers. We don't want them
1358 * floating about in memory - the physical journal device may
1359 * hotswapped, and it breaks the `ro-after' testing code.
1360 */
1361 sync_blockdev(sbi->s_journal_bdev);
1362 invalidate_bdev(sbi->s_journal_bdev);
1363 }
1364
1365 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1366 sbi->s_ea_inode_cache = NULL;
1367
1368 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1369 sbi->s_ea_block_cache = NULL;
1370
1371 ext4_stop_mmpd(sbi);
1372
1373 brelse(sbi->s_sbh);
1374 sb->s_fs_info = NULL;
1375 /*
1376 * Now that we are completely done shutting down the
1377 * superblock, we need to actually destroy the kobject.
1378 */
1379 kobject_put(&sbi->s_kobj);
1380 wait_for_completion(&sbi->s_kobj_unregister);
1381 if (sbi->s_chksum_driver)
1382 crypto_free_shash(sbi->s_chksum_driver);
1383 kfree(sbi->s_blockgroup_lock);
1384 fs_put_dax(sbi->s_daxdev, NULL);
1385 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1386 #if IS_ENABLED(CONFIG_UNICODE)
1387 utf8_unload(sb->s_encoding);
1388 #endif
1389 kfree(sbi);
1390 }
1391
1392 static struct kmem_cache *ext4_inode_cachep;
1393
1394 /*
1395 * Called inside transaction, so use GFP_NOFS
1396 */
ext4_alloc_inode(struct super_block * sb)1397 static struct inode *ext4_alloc_inode(struct super_block *sb)
1398 {
1399 struct ext4_inode_info *ei;
1400
1401 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1402 if (!ei)
1403 return NULL;
1404
1405 inode_set_iversion(&ei->vfs_inode, 1);
1406 ei->i_flags = 0;
1407 spin_lock_init(&ei->i_raw_lock);
1408 ei->i_prealloc_node = RB_ROOT;
1409 atomic_set(&ei->i_prealloc_active, 0);
1410 rwlock_init(&ei->i_prealloc_lock);
1411 ext4_es_init_tree(&ei->i_es_tree);
1412 rwlock_init(&ei->i_es_lock);
1413 INIT_LIST_HEAD(&ei->i_es_list);
1414 ei->i_es_all_nr = 0;
1415 ei->i_es_shk_nr = 0;
1416 ei->i_es_shrink_lblk = 0;
1417 ei->i_reserved_data_blocks = 0;
1418 spin_lock_init(&(ei->i_block_reservation_lock));
1419 ext4_init_pending_tree(&ei->i_pending_tree);
1420 #ifdef CONFIG_QUOTA
1421 ei->i_reserved_quota = 0;
1422 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1423 #endif
1424 ei->jinode = NULL;
1425 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1426 spin_lock_init(&ei->i_completed_io_lock);
1427 ei->i_sync_tid = 0;
1428 ei->i_datasync_tid = 0;
1429 atomic_set(&ei->i_unwritten, 0);
1430 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1431 ext4_fc_init_inode(&ei->vfs_inode);
1432 mutex_init(&ei->i_fc_lock);
1433 return &ei->vfs_inode;
1434 }
1435
ext4_drop_inode(struct inode * inode)1436 static int ext4_drop_inode(struct inode *inode)
1437 {
1438 int drop = generic_drop_inode(inode);
1439
1440 if (!drop)
1441 drop = fscrypt_drop_inode(inode);
1442
1443 trace_ext4_drop_inode(inode, drop);
1444 return drop;
1445 }
1446
ext4_free_in_core_inode(struct inode * inode)1447 static void ext4_free_in_core_inode(struct inode *inode)
1448 {
1449 fscrypt_free_inode(inode);
1450 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1451 pr_warn("%s: inode %ld still in fc list",
1452 __func__, inode->i_ino);
1453 }
1454 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1455 }
1456
ext4_destroy_inode(struct inode * inode)1457 static void ext4_destroy_inode(struct inode *inode)
1458 {
1459 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1460 ext4_msg(inode->i_sb, KERN_ERR,
1461 "Inode %lu (%p): orphan list check failed!",
1462 inode->i_ino, EXT4_I(inode));
1463 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1464 EXT4_I(inode), sizeof(struct ext4_inode_info),
1465 true);
1466 dump_stack();
1467 }
1468
1469 if (EXT4_I(inode)->i_reserved_data_blocks)
1470 ext4_msg(inode->i_sb, KERN_ERR,
1471 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1472 inode->i_ino, EXT4_I(inode),
1473 EXT4_I(inode)->i_reserved_data_blocks);
1474 }
1475
ext4_shutdown(struct super_block * sb)1476 static void ext4_shutdown(struct super_block *sb)
1477 {
1478 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1479 }
1480
init_once(void * foo)1481 static void init_once(void *foo)
1482 {
1483 struct ext4_inode_info *ei = foo;
1484
1485 INIT_LIST_HEAD(&ei->i_orphan);
1486 init_rwsem(&ei->xattr_sem);
1487 init_rwsem(&ei->i_data_sem);
1488 inode_init_once(&ei->vfs_inode);
1489 ext4_fc_init_inode(&ei->vfs_inode);
1490 }
1491
init_inodecache(void)1492 static int __init init_inodecache(void)
1493 {
1494 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1495 sizeof(struct ext4_inode_info), 0,
1496 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1497 SLAB_ACCOUNT),
1498 offsetof(struct ext4_inode_info, i_data),
1499 sizeof_field(struct ext4_inode_info, i_data),
1500 init_once);
1501 if (ext4_inode_cachep == NULL)
1502 return -ENOMEM;
1503 return 0;
1504 }
1505
destroy_inodecache(void)1506 static void destroy_inodecache(void)
1507 {
1508 /*
1509 * Make sure all delayed rcu free inodes are flushed before we
1510 * destroy cache.
1511 */
1512 rcu_barrier();
1513 kmem_cache_destroy(ext4_inode_cachep);
1514 }
1515
ext4_clear_inode(struct inode * inode)1516 void ext4_clear_inode(struct inode *inode)
1517 {
1518 ext4_fc_del(inode);
1519 invalidate_inode_buffers(inode);
1520 clear_inode(inode);
1521 ext4_discard_preallocations(inode, 0);
1522 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1523 dquot_drop(inode);
1524 if (EXT4_I(inode)->jinode) {
1525 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1526 EXT4_I(inode)->jinode);
1527 jbd2_free_inode(EXT4_I(inode)->jinode);
1528 EXT4_I(inode)->jinode = NULL;
1529 }
1530 fscrypt_put_encryption_info(inode);
1531 fsverity_cleanup_inode(inode);
1532 }
1533
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1534 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1535 u64 ino, u32 generation)
1536 {
1537 struct inode *inode;
1538
1539 /*
1540 * Currently we don't know the generation for parent directory, so
1541 * a generation of 0 means "accept any"
1542 */
1543 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1544 if (IS_ERR(inode))
1545 return ERR_CAST(inode);
1546 if (generation && inode->i_generation != generation) {
1547 iput(inode);
1548 return ERR_PTR(-ESTALE);
1549 }
1550
1551 return inode;
1552 }
1553
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1554 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1555 int fh_len, int fh_type)
1556 {
1557 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1558 ext4_nfs_get_inode);
1559 }
1560
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1561 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1562 int fh_len, int fh_type)
1563 {
1564 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1565 ext4_nfs_get_inode);
1566 }
1567
ext4_nfs_commit_metadata(struct inode * inode)1568 static int ext4_nfs_commit_metadata(struct inode *inode)
1569 {
1570 struct writeback_control wbc = {
1571 .sync_mode = WB_SYNC_ALL
1572 };
1573
1574 trace_ext4_nfs_commit_metadata(inode);
1575 return ext4_write_inode(inode, &wbc);
1576 }
1577
1578 #ifdef CONFIG_QUOTA
1579 static const char * const quotatypes[] = INITQFNAMES;
1580 #define QTYPE2NAME(t) (quotatypes[t])
1581
1582 static int ext4_write_dquot(struct dquot *dquot);
1583 static int ext4_acquire_dquot(struct dquot *dquot);
1584 static int ext4_release_dquot(struct dquot *dquot);
1585 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1586 static int ext4_write_info(struct super_block *sb, int type);
1587 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1588 const struct path *path);
1589 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1590 size_t len, loff_t off);
1591 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1592 const char *data, size_t len, loff_t off);
1593 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1594 unsigned int flags);
1595
ext4_get_dquots(struct inode * inode)1596 static struct dquot **ext4_get_dquots(struct inode *inode)
1597 {
1598 return EXT4_I(inode)->i_dquot;
1599 }
1600
1601 static const struct dquot_operations ext4_quota_operations = {
1602 .get_reserved_space = ext4_get_reserved_space,
1603 .write_dquot = ext4_write_dquot,
1604 .acquire_dquot = ext4_acquire_dquot,
1605 .release_dquot = ext4_release_dquot,
1606 .mark_dirty = ext4_mark_dquot_dirty,
1607 .write_info = ext4_write_info,
1608 .alloc_dquot = dquot_alloc,
1609 .destroy_dquot = dquot_destroy,
1610 .get_projid = ext4_get_projid,
1611 .get_inode_usage = ext4_get_inode_usage,
1612 .get_next_id = dquot_get_next_id,
1613 };
1614
1615 static const struct quotactl_ops ext4_qctl_operations = {
1616 .quota_on = ext4_quota_on,
1617 .quota_off = ext4_quota_off,
1618 .quota_sync = dquot_quota_sync,
1619 .get_state = dquot_get_state,
1620 .set_info = dquot_set_dqinfo,
1621 .get_dqblk = dquot_get_dqblk,
1622 .set_dqblk = dquot_set_dqblk,
1623 .get_nextdqblk = dquot_get_next_dqblk,
1624 };
1625 #endif
1626
1627 static const struct super_operations ext4_sops = {
1628 .alloc_inode = ext4_alloc_inode,
1629 .free_inode = ext4_free_in_core_inode,
1630 .destroy_inode = ext4_destroy_inode,
1631 .write_inode = ext4_write_inode,
1632 .dirty_inode = ext4_dirty_inode,
1633 .drop_inode = ext4_drop_inode,
1634 .evict_inode = ext4_evict_inode,
1635 .put_super = ext4_put_super,
1636 .sync_fs = ext4_sync_fs,
1637 .freeze_fs = ext4_freeze,
1638 .unfreeze_fs = ext4_unfreeze,
1639 .statfs = ext4_statfs,
1640 .show_options = ext4_show_options,
1641 .shutdown = ext4_shutdown,
1642 #ifdef CONFIG_QUOTA
1643 .quota_read = ext4_quota_read,
1644 .quota_write = ext4_quota_write,
1645 .get_dquots = ext4_get_dquots,
1646 #endif
1647 };
1648
1649 static const struct export_operations ext4_export_ops = {
1650 .fh_to_dentry = ext4_fh_to_dentry,
1651 .fh_to_parent = ext4_fh_to_parent,
1652 .get_parent = ext4_get_parent,
1653 .commit_metadata = ext4_nfs_commit_metadata,
1654 };
1655
1656 enum {
1657 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1658 Opt_resgid, Opt_resuid, Opt_sb,
1659 Opt_nouid32, Opt_debug, Opt_removed,
1660 Opt_user_xattr, Opt_acl,
1661 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1662 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1663 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1664 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1665 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1666 Opt_inlinecrypt,
1667 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1668 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1669 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1670 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1671 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1672 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1673 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1674 Opt_inode_readahead_blks, Opt_journal_ioprio,
1675 Opt_dioread_nolock, Opt_dioread_lock,
1676 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1677 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1678 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1679 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1680 #ifdef CONFIG_EXT4_DEBUG
1681 Opt_fc_debug_max_replay, Opt_fc_debug_force
1682 #endif
1683 };
1684
1685 static const struct constant_table ext4_param_errors[] = {
1686 {"continue", EXT4_MOUNT_ERRORS_CONT},
1687 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1688 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1689 {}
1690 };
1691
1692 static const struct constant_table ext4_param_data[] = {
1693 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1694 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1695 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1696 {}
1697 };
1698
1699 static const struct constant_table ext4_param_data_err[] = {
1700 {"abort", Opt_data_err_abort},
1701 {"ignore", Opt_data_err_ignore},
1702 {}
1703 };
1704
1705 static const struct constant_table ext4_param_jqfmt[] = {
1706 {"vfsold", QFMT_VFS_OLD},
1707 {"vfsv0", QFMT_VFS_V0},
1708 {"vfsv1", QFMT_VFS_V1},
1709 {}
1710 };
1711
1712 static const struct constant_table ext4_param_dax[] = {
1713 {"always", Opt_dax_always},
1714 {"inode", Opt_dax_inode},
1715 {"never", Opt_dax_never},
1716 {}
1717 };
1718
1719 /* String parameter that allows empty argument */
1720 #define fsparam_string_empty(NAME, OPT) \
1721 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1722
1723 /*
1724 * Mount option specification
1725 * We don't use fsparam_flag_no because of the way we set the
1726 * options and the way we show them in _ext4_show_options(). To
1727 * keep the changes to a minimum, let's keep the negative options
1728 * separate for now.
1729 */
1730 static const struct fs_parameter_spec ext4_param_specs[] = {
1731 fsparam_flag ("bsddf", Opt_bsd_df),
1732 fsparam_flag ("minixdf", Opt_minix_df),
1733 fsparam_flag ("grpid", Opt_grpid),
1734 fsparam_flag ("bsdgroups", Opt_grpid),
1735 fsparam_flag ("nogrpid", Opt_nogrpid),
1736 fsparam_flag ("sysvgroups", Opt_nogrpid),
1737 fsparam_u32 ("resgid", Opt_resgid),
1738 fsparam_u32 ("resuid", Opt_resuid),
1739 fsparam_u32 ("sb", Opt_sb),
1740 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1741 fsparam_flag ("nouid32", Opt_nouid32),
1742 fsparam_flag ("debug", Opt_debug),
1743 fsparam_flag ("oldalloc", Opt_removed),
1744 fsparam_flag ("orlov", Opt_removed),
1745 fsparam_flag ("user_xattr", Opt_user_xattr),
1746 fsparam_flag ("acl", Opt_acl),
1747 fsparam_flag ("norecovery", Opt_noload),
1748 fsparam_flag ("noload", Opt_noload),
1749 fsparam_flag ("bh", Opt_removed),
1750 fsparam_flag ("nobh", Opt_removed),
1751 fsparam_u32 ("commit", Opt_commit),
1752 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1753 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1754 fsparam_u32 ("journal_dev", Opt_journal_dev),
1755 fsparam_bdev ("journal_path", Opt_journal_path),
1756 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1757 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1758 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1759 fsparam_flag ("abort", Opt_abort),
1760 fsparam_enum ("data", Opt_data, ext4_param_data),
1761 fsparam_enum ("data_err", Opt_data_err,
1762 ext4_param_data_err),
1763 fsparam_string_empty
1764 ("usrjquota", Opt_usrjquota),
1765 fsparam_string_empty
1766 ("grpjquota", Opt_grpjquota),
1767 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1768 fsparam_flag ("grpquota", Opt_grpquota),
1769 fsparam_flag ("quota", Opt_quota),
1770 fsparam_flag ("noquota", Opt_noquota),
1771 fsparam_flag ("usrquota", Opt_usrquota),
1772 fsparam_flag ("prjquota", Opt_prjquota),
1773 fsparam_flag ("barrier", Opt_barrier),
1774 fsparam_u32 ("barrier", Opt_barrier),
1775 fsparam_flag ("nobarrier", Opt_nobarrier),
1776 fsparam_flag ("i_version", Opt_removed),
1777 fsparam_flag ("dax", Opt_dax),
1778 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1779 fsparam_u32 ("stripe", Opt_stripe),
1780 fsparam_flag ("delalloc", Opt_delalloc),
1781 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1782 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1783 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1784 fsparam_u32 ("debug_want_extra_isize",
1785 Opt_debug_want_extra_isize),
1786 fsparam_flag ("mblk_io_submit", Opt_removed),
1787 fsparam_flag ("nomblk_io_submit", Opt_removed),
1788 fsparam_flag ("block_validity", Opt_block_validity),
1789 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1790 fsparam_u32 ("inode_readahead_blks",
1791 Opt_inode_readahead_blks),
1792 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1793 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1794 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1795 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1796 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1797 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1798 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1799 fsparam_flag ("discard", Opt_discard),
1800 fsparam_flag ("nodiscard", Opt_nodiscard),
1801 fsparam_u32 ("init_itable", Opt_init_itable),
1802 fsparam_flag ("init_itable", Opt_init_itable),
1803 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1804 #ifdef CONFIG_EXT4_DEBUG
1805 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1806 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1807 #endif
1808 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1809 fsparam_flag ("test_dummy_encryption",
1810 Opt_test_dummy_encryption),
1811 fsparam_string ("test_dummy_encryption",
1812 Opt_test_dummy_encryption),
1813 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1814 fsparam_flag ("nombcache", Opt_nombcache),
1815 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1816 fsparam_flag ("prefetch_block_bitmaps",
1817 Opt_removed),
1818 fsparam_flag ("no_prefetch_block_bitmaps",
1819 Opt_no_prefetch_block_bitmaps),
1820 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1821 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1822 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1823 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1824 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1825 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1826 {}
1827 };
1828
1829 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1830
1831 #define MOPT_SET 0x0001
1832 #define MOPT_CLEAR 0x0002
1833 #define MOPT_NOSUPPORT 0x0004
1834 #define MOPT_EXPLICIT 0x0008
1835 #ifdef CONFIG_QUOTA
1836 #define MOPT_Q 0
1837 #define MOPT_QFMT 0x0010
1838 #else
1839 #define MOPT_Q MOPT_NOSUPPORT
1840 #define MOPT_QFMT MOPT_NOSUPPORT
1841 #endif
1842 #define MOPT_NO_EXT2 0x0020
1843 #define MOPT_NO_EXT3 0x0040
1844 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1845 #define MOPT_SKIP 0x0080
1846 #define MOPT_2 0x0100
1847
1848 static const struct mount_opts {
1849 int token;
1850 int mount_opt;
1851 int flags;
1852 } ext4_mount_opts[] = {
1853 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1854 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1855 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1856 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1857 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1858 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1859 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1860 MOPT_EXT4_ONLY | MOPT_SET},
1861 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1862 MOPT_EXT4_ONLY | MOPT_CLEAR},
1863 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1864 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1865 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1866 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1867 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1868 MOPT_EXT4_ONLY | MOPT_CLEAR},
1869 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1870 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1871 {Opt_commit, 0, MOPT_NO_EXT2},
1872 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1873 MOPT_EXT4_ONLY | MOPT_CLEAR},
1874 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1875 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1876 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1877 EXT4_MOUNT_JOURNAL_CHECKSUM),
1878 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1879 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1880 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1881 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1882 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1883 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1884 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1885 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1886 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1887 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1888 {Opt_journal_path, 0, MOPT_NO_EXT2},
1889 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1890 {Opt_data, 0, MOPT_NO_EXT2},
1891 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1892 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1893 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1894 #else
1895 {Opt_acl, 0, MOPT_NOSUPPORT},
1896 #endif
1897 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1898 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1899 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1900 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1901 MOPT_SET | MOPT_Q},
1902 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1903 MOPT_SET | MOPT_Q},
1904 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1905 MOPT_SET | MOPT_Q},
1906 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1907 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1908 MOPT_CLEAR | MOPT_Q},
1909 {Opt_usrjquota, 0, MOPT_Q},
1910 {Opt_grpjquota, 0, MOPT_Q},
1911 {Opt_jqfmt, 0, MOPT_QFMT},
1912 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1913 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1914 MOPT_SET},
1915 #ifdef CONFIG_EXT4_DEBUG
1916 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1917 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1918 #endif
1919 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1920 {Opt_err, 0, 0}
1921 };
1922
1923 #if IS_ENABLED(CONFIG_UNICODE)
1924 static const struct ext4_sb_encodings {
1925 __u16 magic;
1926 char *name;
1927 unsigned int version;
1928 } ext4_sb_encoding_map[] = {
1929 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1930 };
1931
1932 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1933 ext4_sb_read_encoding(const struct ext4_super_block *es)
1934 {
1935 __u16 magic = le16_to_cpu(es->s_encoding);
1936 int i;
1937
1938 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1939 if (magic == ext4_sb_encoding_map[i].magic)
1940 return &ext4_sb_encoding_map[i];
1941
1942 return NULL;
1943 }
1944 #endif
1945
1946 #define EXT4_SPEC_JQUOTA (1 << 0)
1947 #define EXT4_SPEC_JQFMT (1 << 1)
1948 #define EXT4_SPEC_DATAJ (1 << 2)
1949 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1950 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1951 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1952 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1953 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1954 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1955 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1956 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1957 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1958 #define EXT4_SPEC_s_stripe (1 << 13)
1959 #define EXT4_SPEC_s_resuid (1 << 14)
1960 #define EXT4_SPEC_s_resgid (1 << 15)
1961 #define EXT4_SPEC_s_commit_interval (1 << 16)
1962 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1963 #define EXT4_SPEC_s_sb_block (1 << 18)
1964 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1965
1966 struct ext4_fs_context {
1967 char *s_qf_names[EXT4_MAXQUOTAS];
1968 struct fscrypt_dummy_policy dummy_enc_policy;
1969 int s_jquota_fmt; /* Format of quota to use */
1970 #ifdef CONFIG_EXT4_DEBUG
1971 int s_fc_debug_max_replay;
1972 #endif
1973 unsigned short qname_spec;
1974 unsigned long vals_s_flags; /* Bits to set in s_flags */
1975 unsigned long mask_s_flags; /* Bits changed in s_flags */
1976 unsigned long journal_devnum;
1977 unsigned long s_commit_interval;
1978 unsigned long s_stripe;
1979 unsigned int s_inode_readahead_blks;
1980 unsigned int s_want_extra_isize;
1981 unsigned int s_li_wait_mult;
1982 unsigned int s_max_dir_size_kb;
1983 unsigned int journal_ioprio;
1984 unsigned int vals_s_mount_opt;
1985 unsigned int mask_s_mount_opt;
1986 unsigned int vals_s_mount_opt2;
1987 unsigned int mask_s_mount_opt2;
1988 unsigned int opt_flags; /* MOPT flags */
1989 unsigned int spec;
1990 u32 s_max_batch_time;
1991 u32 s_min_batch_time;
1992 kuid_t s_resuid;
1993 kgid_t s_resgid;
1994 ext4_fsblk_t s_sb_block;
1995 };
1996
ext4_fc_free(struct fs_context * fc)1997 static void ext4_fc_free(struct fs_context *fc)
1998 {
1999 struct ext4_fs_context *ctx = fc->fs_private;
2000 int i;
2001
2002 if (!ctx)
2003 return;
2004
2005 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2006 kfree(ctx->s_qf_names[i]);
2007
2008 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2009 kfree(ctx);
2010 }
2011
ext4_init_fs_context(struct fs_context * fc)2012 int ext4_init_fs_context(struct fs_context *fc)
2013 {
2014 struct ext4_fs_context *ctx;
2015
2016 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2017 if (!ctx)
2018 return -ENOMEM;
2019
2020 fc->fs_private = ctx;
2021 fc->ops = &ext4_context_ops;
2022
2023 return 0;
2024 }
2025
2026 #ifdef CONFIG_QUOTA
2027 /*
2028 * Note the name of the specified quota file.
2029 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2030 static int note_qf_name(struct fs_context *fc, int qtype,
2031 struct fs_parameter *param)
2032 {
2033 struct ext4_fs_context *ctx = fc->fs_private;
2034 char *qname;
2035
2036 if (param->size < 1) {
2037 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2038 return -EINVAL;
2039 }
2040 if (strchr(param->string, '/')) {
2041 ext4_msg(NULL, KERN_ERR,
2042 "quotafile must be on filesystem root");
2043 return -EINVAL;
2044 }
2045 if (ctx->s_qf_names[qtype]) {
2046 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2047 ext4_msg(NULL, KERN_ERR,
2048 "%s quota file already specified",
2049 QTYPE2NAME(qtype));
2050 return -EINVAL;
2051 }
2052 return 0;
2053 }
2054
2055 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2056 if (!qname) {
2057 ext4_msg(NULL, KERN_ERR,
2058 "Not enough memory for storing quotafile name");
2059 return -ENOMEM;
2060 }
2061 ctx->s_qf_names[qtype] = qname;
2062 ctx->qname_spec |= 1 << qtype;
2063 ctx->spec |= EXT4_SPEC_JQUOTA;
2064 return 0;
2065 }
2066
2067 /*
2068 * Clear the name of the specified quota file.
2069 */
unnote_qf_name(struct fs_context * fc,int qtype)2070 static int unnote_qf_name(struct fs_context *fc, int qtype)
2071 {
2072 struct ext4_fs_context *ctx = fc->fs_private;
2073
2074 if (ctx->s_qf_names[qtype])
2075 kfree(ctx->s_qf_names[qtype]);
2076
2077 ctx->s_qf_names[qtype] = NULL;
2078 ctx->qname_spec |= 1 << qtype;
2079 ctx->spec |= EXT4_SPEC_JQUOTA;
2080 return 0;
2081 }
2082 #endif
2083
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2084 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2085 struct ext4_fs_context *ctx)
2086 {
2087 int err;
2088
2089 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2090 ext4_msg(NULL, KERN_WARNING,
2091 "test_dummy_encryption option not supported");
2092 return -EINVAL;
2093 }
2094 err = fscrypt_parse_test_dummy_encryption(param,
2095 &ctx->dummy_enc_policy);
2096 if (err == -EINVAL) {
2097 ext4_msg(NULL, KERN_WARNING,
2098 "Value of option \"%s\" is unrecognized", param->key);
2099 } else if (err == -EEXIST) {
2100 ext4_msg(NULL, KERN_WARNING,
2101 "Conflicting test_dummy_encryption options");
2102 return -EINVAL;
2103 }
2104 return err;
2105 }
2106
2107 #define EXT4_SET_CTX(name) \
2108 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2109 unsigned long flag) \
2110 { \
2111 ctx->mask_s_##name |= flag; \
2112 ctx->vals_s_##name |= flag; \
2113 }
2114
2115 #define EXT4_CLEAR_CTX(name) \
2116 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2117 unsigned long flag) \
2118 { \
2119 ctx->mask_s_##name |= flag; \
2120 ctx->vals_s_##name &= ~flag; \
2121 }
2122
2123 #define EXT4_TEST_CTX(name) \
2124 static inline unsigned long \
2125 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2126 { \
2127 return (ctx->vals_s_##name & flag); \
2128 }
2129
2130 EXT4_SET_CTX(flags); /* set only */
2131 EXT4_SET_CTX(mount_opt);
2132 EXT4_CLEAR_CTX(mount_opt);
2133 EXT4_TEST_CTX(mount_opt);
2134 EXT4_SET_CTX(mount_opt2);
2135 EXT4_CLEAR_CTX(mount_opt2);
2136 EXT4_TEST_CTX(mount_opt2);
2137
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2138 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2139 {
2140 struct ext4_fs_context *ctx = fc->fs_private;
2141 struct fs_parse_result result;
2142 const struct mount_opts *m;
2143 int is_remount;
2144 kuid_t uid;
2145 kgid_t gid;
2146 int token;
2147
2148 token = fs_parse(fc, ext4_param_specs, param, &result);
2149 if (token < 0)
2150 return token;
2151 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2152
2153 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2154 if (token == m->token)
2155 break;
2156
2157 ctx->opt_flags |= m->flags;
2158
2159 if (m->flags & MOPT_EXPLICIT) {
2160 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2161 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2162 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2163 ctx_set_mount_opt2(ctx,
2164 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2165 } else
2166 return -EINVAL;
2167 }
2168
2169 if (m->flags & MOPT_NOSUPPORT) {
2170 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2171 param->key);
2172 return 0;
2173 }
2174
2175 switch (token) {
2176 #ifdef CONFIG_QUOTA
2177 case Opt_usrjquota:
2178 if (!*param->string)
2179 return unnote_qf_name(fc, USRQUOTA);
2180 else
2181 return note_qf_name(fc, USRQUOTA, param);
2182 case Opt_grpjquota:
2183 if (!*param->string)
2184 return unnote_qf_name(fc, GRPQUOTA);
2185 else
2186 return note_qf_name(fc, GRPQUOTA, param);
2187 #endif
2188 case Opt_sb:
2189 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2190 ext4_msg(NULL, KERN_WARNING,
2191 "Ignoring %s option on remount", param->key);
2192 } else {
2193 ctx->s_sb_block = result.uint_32;
2194 ctx->spec |= EXT4_SPEC_s_sb_block;
2195 }
2196 return 0;
2197 case Opt_removed:
2198 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2199 param->key);
2200 return 0;
2201 case Opt_inlinecrypt:
2202 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2203 ctx_set_flags(ctx, SB_INLINECRYPT);
2204 #else
2205 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2206 #endif
2207 return 0;
2208 case Opt_errors:
2209 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2210 ctx_set_mount_opt(ctx, result.uint_32);
2211 return 0;
2212 #ifdef CONFIG_QUOTA
2213 case Opt_jqfmt:
2214 ctx->s_jquota_fmt = result.uint_32;
2215 ctx->spec |= EXT4_SPEC_JQFMT;
2216 return 0;
2217 #endif
2218 case Opt_data:
2219 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2220 ctx_set_mount_opt(ctx, result.uint_32);
2221 ctx->spec |= EXT4_SPEC_DATAJ;
2222 return 0;
2223 case Opt_commit:
2224 if (result.uint_32 == 0)
2225 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2226 else if (result.uint_32 > INT_MAX / HZ) {
2227 ext4_msg(NULL, KERN_ERR,
2228 "Invalid commit interval %d, "
2229 "must be smaller than %d",
2230 result.uint_32, INT_MAX / HZ);
2231 return -EINVAL;
2232 }
2233 ctx->s_commit_interval = HZ * result.uint_32;
2234 ctx->spec |= EXT4_SPEC_s_commit_interval;
2235 return 0;
2236 case Opt_debug_want_extra_isize:
2237 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2238 ext4_msg(NULL, KERN_ERR,
2239 "Invalid want_extra_isize %d", result.uint_32);
2240 return -EINVAL;
2241 }
2242 ctx->s_want_extra_isize = result.uint_32;
2243 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2244 return 0;
2245 case Opt_max_batch_time:
2246 ctx->s_max_batch_time = result.uint_32;
2247 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2248 return 0;
2249 case Opt_min_batch_time:
2250 ctx->s_min_batch_time = result.uint_32;
2251 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2252 return 0;
2253 case Opt_inode_readahead_blks:
2254 if (result.uint_32 &&
2255 (result.uint_32 > (1 << 30) ||
2256 !is_power_of_2(result.uint_32))) {
2257 ext4_msg(NULL, KERN_ERR,
2258 "EXT4-fs: inode_readahead_blks must be "
2259 "0 or a power of 2 smaller than 2^31");
2260 return -EINVAL;
2261 }
2262 ctx->s_inode_readahead_blks = result.uint_32;
2263 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2264 return 0;
2265 case Opt_init_itable:
2266 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2267 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2268 if (param->type == fs_value_is_string)
2269 ctx->s_li_wait_mult = result.uint_32;
2270 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2271 return 0;
2272 case Opt_max_dir_size_kb:
2273 ctx->s_max_dir_size_kb = result.uint_32;
2274 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2275 return 0;
2276 #ifdef CONFIG_EXT4_DEBUG
2277 case Opt_fc_debug_max_replay:
2278 ctx->s_fc_debug_max_replay = result.uint_32;
2279 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2280 return 0;
2281 #endif
2282 case Opt_stripe:
2283 ctx->s_stripe = result.uint_32;
2284 ctx->spec |= EXT4_SPEC_s_stripe;
2285 return 0;
2286 case Opt_resuid:
2287 uid = make_kuid(current_user_ns(), result.uint_32);
2288 if (!uid_valid(uid)) {
2289 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2290 result.uint_32);
2291 return -EINVAL;
2292 }
2293 ctx->s_resuid = uid;
2294 ctx->spec |= EXT4_SPEC_s_resuid;
2295 return 0;
2296 case Opt_resgid:
2297 gid = make_kgid(current_user_ns(), result.uint_32);
2298 if (!gid_valid(gid)) {
2299 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2300 result.uint_32);
2301 return -EINVAL;
2302 }
2303 ctx->s_resgid = gid;
2304 ctx->spec |= EXT4_SPEC_s_resgid;
2305 return 0;
2306 case Opt_journal_dev:
2307 if (is_remount) {
2308 ext4_msg(NULL, KERN_ERR,
2309 "Cannot specify journal on remount");
2310 return -EINVAL;
2311 }
2312 ctx->journal_devnum = result.uint_32;
2313 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2314 return 0;
2315 case Opt_journal_path:
2316 {
2317 struct inode *journal_inode;
2318 struct path path;
2319 int error;
2320
2321 if (is_remount) {
2322 ext4_msg(NULL, KERN_ERR,
2323 "Cannot specify journal on remount");
2324 return -EINVAL;
2325 }
2326
2327 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2328 if (error) {
2329 ext4_msg(NULL, KERN_ERR, "error: could not find "
2330 "journal device path");
2331 return -EINVAL;
2332 }
2333
2334 journal_inode = d_inode(path.dentry);
2335 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2336 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2337 path_put(&path);
2338 return 0;
2339 }
2340 case Opt_journal_ioprio:
2341 if (result.uint_32 > 7) {
2342 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2343 " (must be 0-7)");
2344 return -EINVAL;
2345 }
2346 ctx->journal_ioprio =
2347 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2348 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2349 return 0;
2350 case Opt_test_dummy_encryption:
2351 return ext4_parse_test_dummy_encryption(param, ctx);
2352 case Opt_dax:
2353 case Opt_dax_type:
2354 #ifdef CONFIG_FS_DAX
2355 {
2356 int type = (token == Opt_dax) ?
2357 Opt_dax : result.uint_32;
2358
2359 switch (type) {
2360 case Opt_dax:
2361 case Opt_dax_always:
2362 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2363 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2364 break;
2365 case Opt_dax_never:
2366 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2367 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2368 break;
2369 case Opt_dax_inode:
2370 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2371 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2372 /* Strictly for printing options */
2373 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2374 break;
2375 }
2376 return 0;
2377 }
2378 #else
2379 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2380 return -EINVAL;
2381 #endif
2382 case Opt_data_err:
2383 if (result.uint_32 == Opt_data_err_abort)
2384 ctx_set_mount_opt(ctx, m->mount_opt);
2385 else if (result.uint_32 == Opt_data_err_ignore)
2386 ctx_clear_mount_opt(ctx, m->mount_opt);
2387 return 0;
2388 case Opt_mb_optimize_scan:
2389 if (result.int_32 == 1) {
2390 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2391 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2392 } else if (result.int_32 == 0) {
2393 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2394 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2395 } else {
2396 ext4_msg(NULL, KERN_WARNING,
2397 "mb_optimize_scan should be set to 0 or 1.");
2398 return -EINVAL;
2399 }
2400 return 0;
2401 }
2402
2403 /*
2404 * At this point we should only be getting options requiring MOPT_SET,
2405 * or MOPT_CLEAR. Anything else is a bug
2406 */
2407 if (m->token == Opt_err) {
2408 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2409 param->key);
2410 WARN_ON(1);
2411 return -EINVAL;
2412 }
2413
2414 else {
2415 unsigned int set = 0;
2416
2417 if ((param->type == fs_value_is_flag) ||
2418 result.uint_32 > 0)
2419 set = 1;
2420
2421 if (m->flags & MOPT_CLEAR)
2422 set = !set;
2423 else if (unlikely(!(m->flags & MOPT_SET))) {
2424 ext4_msg(NULL, KERN_WARNING,
2425 "buggy handling of option %s",
2426 param->key);
2427 WARN_ON(1);
2428 return -EINVAL;
2429 }
2430 if (m->flags & MOPT_2) {
2431 if (set != 0)
2432 ctx_set_mount_opt2(ctx, m->mount_opt);
2433 else
2434 ctx_clear_mount_opt2(ctx, m->mount_opt);
2435 } else {
2436 if (set != 0)
2437 ctx_set_mount_opt(ctx, m->mount_opt);
2438 else
2439 ctx_clear_mount_opt(ctx, m->mount_opt);
2440 }
2441 }
2442
2443 return 0;
2444 }
2445
parse_options(struct fs_context * fc,char * options)2446 static int parse_options(struct fs_context *fc, char *options)
2447 {
2448 struct fs_parameter param;
2449 int ret;
2450 char *key;
2451
2452 if (!options)
2453 return 0;
2454
2455 while ((key = strsep(&options, ",")) != NULL) {
2456 if (*key) {
2457 size_t v_len = 0;
2458 char *value = strchr(key, '=');
2459
2460 param.type = fs_value_is_flag;
2461 param.string = NULL;
2462
2463 if (value) {
2464 if (value == key)
2465 continue;
2466
2467 *value++ = 0;
2468 v_len = strlen(value);
2469 param.string = kmemdup_nul(value, v_len,
2470 GFP_KERNEL);
2471 if (!param.string)
2472 return -ENOMEM;
2473 param.type = fs_value_is_string;
2474 }
2475
2476 param.key = key;
2477 param.size = v_len;
2478
2479 ret = ext4_parse_param(fc, ¶m);
2480 if (param.string)
2481 kfree(param.string);
2482 if (ret < 0)
2483 return ret;
2484 }
2485 }
2486
2487 ret = ext4_validate_options(fc);
2488 if (ret < 0)
2489 return ret;
2490
2491 return 0;
2492 }
2493
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2494 static int parse_apply_sb_mount_options(struct super_block *sb,
2495 struct ext4_fs_context *m_ctx)
2496 {
2497 struct ext4_sb_info *sbi = EXT4_SB(sb);
2498 char *s_mount_opts = NULL;
2499 struct ext4_fs_context *s_ctx = NULL;
2500 struct fs_context *fc = NULL;
2501 int ret = -ENOMEM;
2502
2503 if (!sbi->s_es->s_mount_opts[0])
2504 return 0;
2505
2506 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2507 sizeof(sbi->s_es->s_mount_opts),
2508 GFP_KERNEL);
2509 if (!s_mount_opts)
2510 return ret;
2511
2512 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2513 if (!fc)
2514 goto out_free;
2515
2516 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2517 if (!s_ctx)
2518 goto out_free;
2519
2520 fc->fs_private = s_ctx;
2521 fc->s_fs_info = sbi;
2522
2523 ret = parse_options(fc, s_mount_opts);
2524 if (ret < 0)
2525 goto parse_failed;
2526
2527 ret = ext4_check_opt_consistency(fc, sb);
2528 if (ret < 0) {
2529 parse_failed:
2530 ext4_msg(sb, KERN_WARNING,
2531 "failed to parse options in superblock: %s",
2532 s_mount_opts);
2533 ret = 0;
2534 goto out_free;
2535 }
2536
2537 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2538 m_ctx->journal_devnum = s_ctx->journal_devnum;
2539 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2540 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2541
2542 ext4_apply_options(fc, sb);
2543 ret = 0;
2544
2545 out_free:
2546 if (fc) {
2547 ext4_fc_free(fc);
2548 kfree(fc);
2549 }
2550 kfree(s_mount_opts);
2551 return ret;
2552 }
2553
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2554 static void ext4_apply_quota_options(struct fs_context *fc,
2555 struct super_block *sb)
2556 {
2557 #ifdef CONFIG_QUOTA
2558 bool quota_feature = ext4_has_feature_quota(sb);
2559 struct ext4_fs_context *ctx = fc->fs_private;
2560 struct ext4_sb_info *sbi = EXT4_SB(sb);
2561 char *qname;
2562 int i;
2563
2564 if (quota_feature)
2565 return;
2566
2567 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2568 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2569 if (!(ctx->qname_spec & (1 << i)))
2570 continue;
2571
2572 qname = ctx->s_qf_names[i]; /* May be NULL */
2573 if (qname)
2574 set_opt(sb, QUOTA);
2575 ctx->s_qf_names[i] = NULL;
2576 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2577 lockdep_is_held(&sb->s_umount));
2578 if (qname)
2579 kfree_rcu_mightsleep(qname);
2580 }
2581 }
2582
2583 if (ctx->spec & EXT4_SPEC_JQFMT)
2584 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2585 #endif
2586 }
2587
2588 /*
2589 * Check quota settings consistency.
2590 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2591 static int ext4_check_quota_consistency(struct fs_context *fc,
2592 struct super_block *sb)
2593 {
2594 #ifdef CONFIG_QUOTA
2595 struct ext4_fs_context *ctx = fc->fs_private;
2596 struct ext4_sb_info *sbi = EXT4_SB(sb);
2597 bool quota_feature = ext4_has_feature_quota(sb);
2598 bool quota_loaded = sb_any_quota_loaded(sb);
2599 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2600 int quota_flags, i;
2601
2602 /*
2603 * We do the test below only for project quotas. 'usrquota' and
2604 * 'grpquota' mount options are allowed even without quota feature
2605 * to support legacy quotas in quota files.
2606 */
2607 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2608 !ext4_has_feature_project(sb)) {
2609 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2610 "Cannot enable project quota enforcement.");
2611 return -EINVAL;
2612 }
2613
2614 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2615 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2616 if (quota_loaded &&
2617 ctx->mask_s_mount_opt & quota_flags &&
2618 !ctx_test_mount_opt(ctx, quota_flags))
2619 goto err_quota_change;
2620
2621 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2622
2623 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2624 if (!(ctx->qname_spec & (1 << i)))
2625 continue;
2626
2627 if (quota_loaded &&
2628 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2629 goto err_jquota_change;
2630
2631 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2632 strcmp(get_qf_name(sb, sbi, i),
2633 ctx->s_qf_names[i]) != 0)
2634 goto err_jquota_specified;
2635 }
2636
2637 if (quota_feature) {
2638 ext4_msg(NULL, KERN_INFO,
2639 "Journaled quota options ignored when "
2640 "QUOTA feature is enabled");
2641 return 0;
2642 }
2643 }
2644
2645 if (ctx->spec & EXT4_SPEC_JQFMT) {
2646 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2647 goto err_jquota_change;
2648 if (quota_feature) {
2649 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2650 "ignored when QUOTA feature is enabled");
2651 return 0;
2652 }
2653 }
2654
2655 /* Make sure we don't mix old and new quota format */
2656 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2657 ctx->s_qf_names[USRQUOTA]);
2658 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2659 ctx->s_qf_names[GRPQUOTA]);
2660
2661 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2662 test_opt(sb, USRQUOTA));
2663
2664 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2665 test_opt(sb, GRPQUOTA));
2666
2667 if (usr_qf_name) {
2668 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2669 usrquota = false;
2670 }
2671 if (grp_qf_name) {
2672 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2673 grpquota = false;
2674 }
2675
2676 if (usr_qf_name || grp_qf_name) {
2677 if (usrquota || grpquota) {
2678 ext4_msg(NULL, KERN_ERR, "old and new quota "
2679 "format mixing");
2680 return -EINVAL;
2681 }
2682
2683 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2684 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2685 "not specified");
2686 return -EINVAL;
2687 }
2688 }
2689
2690 return 0;
2691
2692 err_quota_change:
2693 ext4_msg(NULL, KERN_ERR,
2694 "Cannot change quota options when quota turned on");
2695 return -EINVAL;
2696 err_jquota_change:
2697 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2698 "options when quota turned on");
2699 return -EINVAL;
2700 err_jquota_specified:
2701 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2702 QTYPE2NAME(i));
2703 return -EINVAL;
2704 #else
2705 return 0;
2706 #endif
2707 }
2708
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2709 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2710 struct super_block *sb)
2711 {
2712 const struct ext4_fs_context *ctx = fc->fs_private;
2713 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2714
2715 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2716 return 0;
2717
2718 if (!ext4_has_feature_encrypt(sb)) {
2719 ext4_msg(NULL, KERN_WARNING,
2720 "test_dummy_encryption requires encrypt feature");
2721 return -EINVAL;
2722 }
2723 /*
2724 * This mount option is just for testing, and it's not worthwhile to
2725 * implement the extra complexity (e.g. RCU protection) that would be
2726 * needed to allow it to be set or changed during remount. We do allow
2727 * it to be specified during remount, but only if there is no change.
2728 */
2729 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2730 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2731 &ctx->dummy_enc_policy))
2732 return 0;
2733 ext4_msg(NULL, KERN_WARNING,
2734 "Can't set or change test_dummy_encryption on remount");
2735 return -EINVAL;
2736 }
2737 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2738 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2739 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2740 &ctx->dummy_enc_policy))
2741 return 0;
2742 ext4_msg(NULL, KERN_WARNING,
2743 "Conflicting test_dummy_encryption options");
2744 return -EINVAL;
2745 }
2746 return 0;
2747 }
2748
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2749 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2750 struct super_block *sb)
2751 {
2752 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2753 /* if already set, it was already verified to be the same */
2754 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2755 return;
2756 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2757 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2758 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2759 }
2760
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2761 static int ext4_check_opt_consistency(struct fs_context *fc,
2762 struct super_block *sb)
2763 {
2764 struct ext4_fs_context *ctx = fc->fs_private;
2765 struct ext4_sb_info *sbi = fc->s_fs_info;
2766 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2767 int err;
2768
2769 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2770 ext4_msg(NULL, KERN_ERR,
2771 "Mount option(s) incompatible with ext2");
2772 return -EINVAL;
2773 }
2774 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2775 ext4_msg(NULL, KERN_ERR,
2776 "Mount option(s) incompatible with ext3");
2777 return -EINVAL;
2778 }
2779
2780 if (ctx->s_want_extra_isize >
2781 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2782 ext4_msg(NULL, KERN_ERR,
2783 "Invalid want_extra_isize %d",
2784 ctx->s_want_extra_isize);
2785 return -EINVAL;
2786 }
2787
2788 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2789 int blocksize =
2790 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2791 if (blocksize < PAGE_SIZE)
2792 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2793 "experimental mount option 'dioread_nolock' "
2794 "for blocksize < PAGE_SIZE");
2795 }
2796
2797 err = ext4_check_test_dummy_encryption(fc, sb);
2798 if (err)
2799 return err;
2800
2801 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2802 if (!sbi->s_journal) {
2803 ext4_msg(NULL, KERN_WARNING,
2804 "Remounting file system with no journal "
2805 "so ignoring journalled data option");
2806 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2807 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2808 test_opt(sb, DATA_FLAGS)) {
2809 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2810 "on remount");
2811 return -EINVAL;
2812 }
2813 }
2814
2815 if (is_remount) {
2816 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2817 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2818 ext4_msg(NULL, KERN_ERR, "can't mount with "
2819 "both data=journal and dax");
2820 return -EINVAL;
2821 }
2822
2823 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2824 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2825 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2826 fail_dax_change_remount:
2827 ext4_msg(NULL, KERN_ERR, "can't change "
2828 "dax mount option while remounting");
2829 return -EINVAL;
2830 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2831 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2832 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2833 goto fail_dax_change_remount;
2834 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2835 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2836 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2837 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2838 goto fail_dax_change_remount;
2839 }
2840 }
2841
2842 return ext4_check_quota_consistency(fc, sb);
2843 }
2844
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2845 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2846 {
2847 struct ext4_fs_context *ctx = fc->fs_private;
2848 struct ext4_sb_info *sbi = fc->s_fs_info;
2849
2850 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2851 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2852 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2853 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2854 sb->s_flags &= ~ctx->mask_s_flags;
2855 sb->s_flags |= ctx->vals_s_flags;
2856
2857 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2858 APPLY(s_commit_interval);
2859 APPLY(s_stripe);
2860 APPLY(s_max_batch_time);
2861 APPLY(s_min_batch_time);
2862 APPLY(s_want_extra_isize);
2863 APPLY(s_inode_readahead_blks);
2864 APPLY(s_max_dir_size_kb);
2865 APPLY(s_li_wait_mult);
2866 APPLY(s_resgid);
2867 APPLY(s_resuid);
2868
2869 #ifdef CONFIG_EXT4_DEBUG
2870 APPLY(s_fc_debug_max_replay);
2871 #endif
2872
2873 ext4_apply_quota_options(fc, sb);
2874 ext4_apply_test_dummy_encryption(ctx, sb);
2875 }
2876
2877
ext4_validate_options(struct fs_context * fc)2878 static int ext4_validate_options(struct fs_context *fc)
2879 {
2880 #ifdef CONFIG_QUOTA
2881 struct ext4_fs_context *ctx = fc->fs_private;
2882 char *usr_qf_name, *grp_qf_name;
2883
2884 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2885 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2886
2887 if (usr_qf_name || grp_qf_name) {
2888 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2889 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2890
2891 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2892 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2893
2894 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2895 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2896 ext4_msg(NULL, KERN_ERR, "old and new quota "
2897 "format mixing");
2898 return -EINVAL;
2899 }
2900 }
2901 #endif
2902 return 1;
2903 }
2904
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2905 static inline void ext4_show_quota_options(struct seq_file *seq,
2906 struct super_block *sb)
2907 {
2908 #if defined(CONFIG_QUOTA)
2909 struct ext4_sb_info *sbi = EXT4_SB(sb);
2910 char *usr_qf_name, *grp_qf_name;
2911
2912 if (sbi->s_jquota_fmt) {
2913 char *fmtname = "";
2914
2915 switch (sbi->s_jquota_fmt) {
2916 case QFMT_VFS_OLD:
2917 fmtname = "vfsold";
2918 break;
2919 case QFMT_VFS_V0:
2920 fmtname = "vfsv0";
2921 break;
2922 case QFMT_VFS_V1:
2923 fmtname = "vfsv1";
2924 break;
2925 }
2926 seq_printf(seq, ",jqfmt=%s", fmtname);
2927 }
2928
2929 rcu_read_lock();
2930 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2931 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2932 if (usr_qf_name)
2933 seq_show_option(seq, "usrjquota", usr_qf_name);
2934 if (grp_qf_name)
2935 seq_show_option(seq, "grpjquota", grp_qf_name);
2936 rcu_read_unlock();
2937 #endif
2938 }
2939
token2str(int token)2940 static const char *token2str(int token)
2941 {
2942 const struct fs_parameter_spec *spec;
2943
2944 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2945 if (spec->opt == token && !spec->type)
2946 break;
2947 return spec->name;
2948 }
2949
2950 /*
2951 * Show an option if
2952 * - it's set to a non-default value OR
2953 * - if the per-sb default is different from the global default
2954 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2955 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2956 int nodefs)
2957 {
2958 struct ext4_sb_info *sbi = EXT4_SB(sb);
2959 struct ext4_super_block *es = sbi->s_es;
2960 int def_errors;
2961 const struct mount_opts *m;
2962 char sep = nodefs ? '\n' : ',';
2963
2964 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2965 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2966
2967 if (sbi->s_sb_block != 1)
2968 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2969
2970 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2971 int want_set = m->flags & MOPT_SET;
2972 int opt_2 = m->flags & MOPT_2;
2973 unsigned int mount_opt, def_mount_opt;
2974
2975 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2976 m->flags & MOPT_SKIP)
2977 continue;
2978
2979 if (opt_2) {
2980 mount_opt = sbi->s_mount_opt2;
2981 def_mount_opt = sbi->s_def_mount_opt2;
2982 } else {
2983 mount_opt = sbi->s_mount_opt;
2984 def_mount_opt = sbi->s_def_mount_opt;
2985 }
2986 /* skip if same as the default */
2987 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2988 continue;
2989 /* select Opt_noFoo vs Opt_Foo */
2990 if ((want_set &&
2991 (mount_opt & m->mount_opt) != m->mount_opt) ||
2992 (!want_set && (mount_opt & m->mount_opt)))
2993 continue;
2994 SEQ_OPTS_PRINT("%s", token2str(m->token));
2995 }
2996
2997 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2998 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2999 SEQ_OPTS_PRINT("resuid=%u",
3000 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3001 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3002 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3003 SEQ_OPTS_PRINT("resgid=%u",
3004 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3005 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3006 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3007 SEQ_OPTS_PUTS("errors=remount-ro");
3008 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3009 SEQ_OPTS_PUTS("errors=continue");
3010 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3011 SEQ_OPTS_PUTS("errors=panic");
3012 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3013 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3014 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3015 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3016 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3017 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3018 if (nodefs || sbi->s_stripe)
3019 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3020 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3021 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3022 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3023 SEQ_OPTS_PUTS("data=journal");
3024 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3025 SEQ_OPTS_PUTS("data=ordered");
3026 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3027 SEQ_OPTS_PUTS("data=writeback");
3028 }
3029 if (nodefs ||
3030 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3031 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3032 sbi->s_inode_readahead_blks);
3033
3034 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3035 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3036 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3037 if (nodefs || sbi->s_max_dir_size_kb)
3038 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3039 if (test_opt(sb, DATA_ERR_ABORT))
3040 SEQ_OPTS_PUTS("data_err=abort");
3041
3042 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3043
3044 if (sb->s_flags & SB_INLINECRYPT)
3045 SEQ_OPTS_PUTS("inlinecrypt");
3046
3047 if (test_opt(sb, DAX_ALWAYS)) {
3048 if (IS_EXT2_SB(sb))
3049 SEQ_OPTS_PUTS("dax");
3050 else
3051 SEQ_OPTS_PUTS("dax=always");
3052 } else if (test_opt2(sb, DAX_NEVER)) {
3053 SEQ_OPTS_PUTS("dax=never");
3054 } else if (test_opt2(sb, DAX_INODE)) {
3055 SEQ_OPTS_PUTS("dax=inode");
3056 }
3057
3058 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3059 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3060 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3061 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3062 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3063 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3064 }
3065
3066 ext4_show_quota_options(seq, sb);
3067 return 0;
3068 }
3069
ext4_show_options(struct seq_file * seq,struct dentry * root)3070 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3071 {
3072 return _ext4_show_options(seq, root->d_sb, 0);
3073 }
3074
ext4_seq_options_show(struct seq_file * seq,void * offset)3075 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3076 {
3077 struct super_block *sb = seq->private;
3078 int rc;
3079
3080 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3081 rc = _ext4_show_options(seq, sb, 1);
3082 seq_puts(seq, "\n");
3083 return rc;
3084 }
3085
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3086 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3087 int read_only)
3088 {
3089 struct ext4_sb_info *sbi = EXT4_SB(sb);
3090 int err = 0;
3091
3092 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3093 ext4_msg(sb, KERN_ERR, "revision level too high, "
3094 "forcing read-only mode");
3095 err = -EROFS;
3096 goto done;
3097 }
3098 if (read_only)
3099 goto done;
3100 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3101 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3102 "running e2fsck is recommended");
3103 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3104 ext4_msg(sb, KERN_WARNING,
3105 "warning: mounting fs with errors, "
3106 "running e2fsck is recommended");
3107 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3108 le16_to_cpu(es->s_mnt_count) >=
3109 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3110 ext4_msg(sb, KERN_WARNING,
3111 "warning: maximal mount count reached, "
3112 "running e2fsck is recommended");
3113 else if (le32_to_cpu(es->s_checkinterval) &&
3114 (ext4_get_tstamp(es, s_lastcheck) +
3115 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3116 ext4_msg(sb, KERN_WARNING,
3117 "warning: checktime reached, "
3118 "running e2fsck is recommended");
3119 if (!sbi->s_journal)
3120 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3121 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3122 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3123 le16_add_cpu(&es->s_mnt_count, 1);
3124 ext4_update_tstamp(es, s_mtime);
3125 if (sbi->s_journal) {
3126 ext4_set_feature_journal_needs_recovery(sb);
3127 if (ext4_has_feature_orphan_file(sb))
3128 ext4_set_feature_orphan_present(sb);
3129 }
3130
3131 err = ext4_commit_super(sb);
3132 done:
3133 if (test_opt(sb, DEBUG))
3134 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3135 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3136 sb->s_blocksize,
3137 sbi->s_groups_count,
3138 EXT4_BLOCKS_PER_GROUP(sb),
3139 EXT4_INODES_PER_GROUP(sb),
3140 sbi->s_mount_opt, sbi->s_mount_opt2);
3141 return err;
3142 }
3143
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3144 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3145 {
3146 struct ext4_sb_info *sbi = EXT4_SB(sb);
3147 struct flex_groups **old_groups, **new_groups;
3148 int size, i, j;
3149
3150 if (!sbi->s_log_groups_per_flex)
3151 return 0;
3152
3153 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3154 if (size <= sbi->s_flex_groups_allocated)
3155 return 0;
3156
3157 new_groups = kvzalloc(roundup_pow_of_two(size *
3158 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3159 if (!new_groups) {
3160 ext4_msg(sb, KERN_ERR,
3161 "not enough memory for %d flex group pointers", size);
3162 return -ENOMEM;
3163 }
3164 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3165 new_groups[i] = kvzalloc(roundup_pow_of_two(
3166 sizeof(struct flex_groups)),
3167 GFP_KERNEL);
3168 if (!new_groups[i]) {
3169 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3170 kvfree(new_groups[j]);
3171 kvfree(new_groups);
3172 ext4_msg(sb, KERN_ERR,
3173 "not enough memory for %d flex groups", size);
3174 return -ENOMEM;
3175 }
3176 }
3177 rcu_read_lock();
3178 old_groups = rcu_dereference(sbi->s_flex_groups);
3179 if (old_groups)
3180 memcpy(new_groups, old_groups,
3181 (sbi->s_flex_groups_allocated *
3182 sizeof(struct flex_groups *)));
3183 rcu_read_unlock();
3184 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3185 sbi->s_flex_groups_allocated = size;
3186 if (old_groups)
3187 ext4_kvfree_array_rcu(old_groups);
3188 return 0;
3189 }
3190
ext4_fill_flex_info(struct super_block * sb)3191 static int ext4_fill_flex_info(struct super_block *sb)
3192 {
3193 struct ext4_sb_info *sbi = EXT4_SB(sb);
3194 struct ext4_group_desc *gdp = NULL;
3195 struct flex_groups *fg;
3196 ext4_group_t flex_group;
3197 int i, err;
3198
3199 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3200 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3201 sbi->s_log_groups_per_flex = 0;
3202 return 1;
3203 }
3204
3205 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3206 if (err)
3207 goto failed;
3208
3209 for (i = 0; i < sbi->s_groups_count; i++) {
3210 gdp = ext4_get_group_desc(sb, i, NULL);
3211
3212 flex_group = ext4_flex_group(sbi, i);
3213 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3214 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3215 atomic64_add(ext4_free_group_clusters(sb, gdp),
3216 &fg->free_clusters);
3217 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3218 }
3219
3220 return 1;
3221 failed:
3222 return 0;
3223 }
3224
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3225 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3226 struct ext4_group_desc *gdp)
3227 {
3228 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3229 __u16 crc = 0;
3230 __le32 le_group = cpu_to_le32(block_group);
3231 struct ext4_sb_info *sbi = EXT4_SB(sb);
3232
3233 if (ext4_has_metadata_csum(sbi->s_sb)) {
3234 /* Use new metadata_csum algorithm */
3235 __u32 csum32;
3236 __u16 dummy_csum = 0;
3237
3238 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3239 sizeof(le_group));
3240 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3241 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3242 sizeof(dummy_csum));
3243 offset += sizeof(dummy_csum);
3244 if (offset < sbi->s_desc_size)
3245 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3246 sbi->s_desc_size - offset);
3247
3248 crc = csum32 & 0xFFFF;
3249 goto out;
3250 }
3251
3252 /* old crc16 code */
3253 if (!ext4_has_feature_gdt_csum(sb))
3254 return 0;
3255
3256 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3257 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3258 crc = crc16(crc, (__u8 *)gdp, offset);
3259 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3260 /* for checksum of struct ext4_group_desc do the rest...*/
3261 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3262 crc = crc16(crc, (__u8 *)gdp + offset,
3263 sbi->s_desc_size - offset);
3264
3265 out:
3266 return cpu_to_le16(crc);
3267 }
3268
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3269 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3270 struct ext4_group_desc *gdp)
3271 {
3272 if (ext4_has_group_desc_csum(sb) &&
3273 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3274 return 0;
3275
3276 return 1;
3277 }
3278
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3279 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3280 struct ext4_group_desc *gdp)
3281 {
3282 if (!ext4_has_group_desc_csum(sb))
3283 return;
3284 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3285 }
3286
3287 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3288 static int ext4_check_descriptors(struct super_block *sb,
3289 ext4_fsblk_t sb_block,
3290 ext4_group_t *first_not_zeroed)
3291 {
3292 struct ext4_sb_info *sbi = EXT4_SB(sb);
3293 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3294 ext4_fsblk_t last_block;
3295 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3296 ext4_fsblk_t block_bitmap;
3297 ext4_fsblk_t inode_bitmap;
3298 ext4_fsblk_t inode_table;
3299 int flexbg_flag = 0;
3300 ext4_group_t i, grp = sbi->s_groups_count;
3301
3302 if (ext4_has_feature_flex_bg(sb))
3303 flexbg_flag = 1;
3304
3305 ext4_debug("Checking group descriptors");
3306
3307 for (i = 0; i < sbi->s_groups_count; i++) {
3308 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3309
3310 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3311 last_block = ext4_blocks_count(sbi->s_es) - 1;
3312 else
3313 last_block = first_block +
3314 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3315
3316 if ((grp == sbi->s_groups_count) &&
3317 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3318 grp = i;
3319
3320 block_bitmap = ext4_block_bitmap(sb, gdp);
3321 if (block_bitmap == sb_block) {
3322 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3323 "Block bitmap for group %u overlaps "
3324 "superblock", i);
3325 if (!sb_rdonly(sb))
3326 return 0;
3327 }
3328 if (block_bitmap >= sb_block + 1 &&
3329 block_bitmap <= last_bg_block) {
3330 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3331 "Block bitmap for group %u overlaps "
3332 "block group descriptors", i);
3333 if (!sb_rdonly(sb))
3334 return 0;
3335 }
3336 if (block_bitmap < first_block || block_bitmap > last_block) {
3337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3338 "Block bitmap for group %u not in group "
3339 "(block %llu)!", i, block_bitmap);
3340 return 0;
3341 }
3342 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3343 if (inode_bitmap == sb_block) {
3344 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3345 "Inode bitmap for group %u overlaps "
3346 "superblock", i);
3347 if (!sb_rdonly(sb))
3348 return 0;
3349 }
3350 if (inode_bitmap >= sb_block + 1 &&
3351 inode_bitmap <= last_bg_block) {
3352 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3353 "Inode bitmap for group %u overlaps "
3354 "block group descriptors", i);
3355 if (!sb_rdonly(sb))
3356 return 0;
3357 }
3358 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3360 "Inode bitmap for group %u not in group "
3361 "(block %llu)!", i, inode_bitmap);
3362 return 0;
3363 }
3364 inode_table = ext4_inode_table(sb, gdp);
3365 if (inode_table == sb_block) {
3366 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3367 "Inode table for group %u overlaps "
3368 "superblock", i);
3369 if (!sb_rdonly(sb))
3370 return 0;
3371 }
3372 if (inode_table >= sb_block + 1 &&
3373 inode_table <= last_bg_block) {
3374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3375 "Inode table for group %u overlaps "
3376 "block group descriptors", i);
3377 if (!sb_rdonly(sb))
3378 return 0;
3379 }
3380 if (inode_table < first_block ||
3381 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3382 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3383 "Inode table for group %u not in group "
3384 "(block %llu)!", i, inode_table);
3385 return 0;
3386 }
3387 ext4_lock_group(sb, i);
3388 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3389 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3390 "Checksum for group %u failed (%u!=%u)",
3391 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3392 gdp)), le16_to_cpu(gdp->bg_checksum));
3393 if (!sb_rdonly(sb)) {
3394 ext4_unlock_group(sb, i);
3395 return 0;
3396 }
3397 }
3398 ext4_unlock_group(sb, i);
3399 if (!flexbg_flag)
3400 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3401 }
3402 if (NULL != first_not_zeroed)
3403 *first_not_zeroed = grp;
3404 return 1;
3405 }
3406
3407 /*
3408 * Maximal extent format file size.
3409 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3410 * extent format containers, within a sector_t, and within i_blocks
3411 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3412 * so that won't be a limiting factor.
3413 *
3414 * However there is other limiting factor. We do store extents in the form
3415 * of starting block and length, hence the resulting length of the extent
3416 * covering maximum file size must fit into on-disk format containers as
3417 * well. Given that length is always by 1 unit bigger than max unit (because
3418 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3419 *
3420 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3421 */
ext4_max_size(int blkbits,int has_huge_files)3422 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3423 {
3424 loff_t res;
3425 loff_t upper_limit = MAX_LFS_FILESIZE;
3426
3427 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3428
3429 if (!has_huge_files) {
3430 upper_limit = (1LL << 32) - 1;
3431
3432 /* total blocks in file system block size */
3433 upper_limit >>= (blkbits - 9);
3434 upper_limit <<= blkbits;
3435 }
3436
3437 /*
3438 * 32-bit extent-start container, ee_block. We lower the maxbytes
3439 * by one fs block, so ee_len can cover the extent of maximum file
3440 * size
3441 */
3442 res = (1LL << 32) - 1;
3443 res <<= blkbits;
3444
3445 /* Sanity check against vm- & vfs- imposed limits */
3446 if (res > upper_limit)
3447 res = upper_limit;
3448
3449 return res;
3450 }
3451
3452 /*
3453 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3454 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3455 * We need to be 1 filesystem block less than the 2^48 sector limit.
3456 */
ext4_max_bitmap_size(int bits,int has_huge_files)3457 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3458 {
3459 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3460 int meta_blocks;
3461 unsigned int ppb = 1 << (bits - 2);
3462
3463 /*
3464 * This is calculated to be the largest file size for a dense, block
3465 * mapped file such that the file's total number of 512-byte sectors,
3466 * including data and all indirect blocks, does not exceed (2^48 - 1).
3467 *
3468 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3469 * number of 512-byte sectors of the file.
3470 */
3471 if (!has_huge_files) {
3472 /*
3473 * !has_huge_files or implies that the inode i_block field
3474 * represents total file blocks in 2^32 512-byte sectors ==
3475 * size of vfs inode i_blocks * 8
3476 */
3477 upper_limit = (1LL << 32) - 1;
3478
3479 /* total blocks in file system block size */
3480 upper_limit >>= (bits - 9);
3481
3482 } else {
3483 /*
3484 * We use 48 bit ext4_inode i_blocks
3485 * With EXT4_HUGE_FILE_FL set the i_blocks
3486 * represent total number of blocks in
3487 * file system block size
3488 */
3489 upper_limit = (1LL << 48) - 1;
3490
3491 }
3492
3493 /* Compute how many blocks we can address by block tree */
3494 res += ppb;
3495 res += ppb * ppb;
3496 res += ((loff_t)ppb) * ppb * ppb;
3497 /* Compute how many metadata blocks are needed */
3498 meta_blocks = 1;
3499 meta_blocks += 1 + ppb;
3500 meta_blocks += 1 + ppb + ppb * ppb;
3501 /* Does block tree limit file size? */
3502 if (res + meta_blocks <= upper_limit)
3503 goto check_lfs;
3504
3505 res = upper_limit;
3506 /* How many metadata blocks are needed for addressing upper_limit? */
3507 upper_limit -= EXT4_NDIR_BLOCKS;
3508 /* indirect blocks */
3509 meta_blocks = 1;
3510 upper_limit -= ppb;
3511 /* double indirect blocks */
3512 if (upper_limit < ppb * ppb) {
3513 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3514 res -= meta_blocks;
3515 goto check_lfs;
3516 }
3517 meta_blocks += 1 + ppb;
3518 upper_limit -= ppb * ppb;
3519 /* tripple indirect blocks for the rest */
3520 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3521 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3522 res -= meta_blocks;
3523 check_lfs:
3524 res <<= bits;
3525 if (res > MAX_LFS_FILESIZE)
3526 res = MAX_LFS_FILESIZE;
3527
3528 return res;
3529 }
3530
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3531 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3532 ext4_fsblk_t logical_sb_block, int nr)
3533 {
3534 struct ext4_sb_info *sbi = EXT4_SB(sb);
3535 ext4_group_t bg, first_meta_bg;
3536 int has_super = 0;
3537
3538 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3539
3540 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3541 return logical_sb_block + nr + 1;
3542 bg = sbi->s_desc_per_block * nr;
3543 if (ext4_bg_has_super(sb, bg))
3544 has_super = 1;
3545
3546 /*
3547 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3548 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3549 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3550 * compensate.
3551 */
3552 if (sb->s_blocksize == 1024 && nr == 0 &&
3553 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3554 has_super++;
3555
3556 return (has_super + ext4_group_first_block_no(sb, bg));
3557 }
3558
3559 /**
3560 * ext4_get_stripe_size: Get the stripe size.
3561 * @sbi: In memory super block info
3562 *
3563 * If we have specified it via mount option, then
3564 * use the mount option value. If the value specified at mount time is
3565 * greater than the blocks per group use the super block value.
3566 * If the super block value is greater than blocks per group return 0.
3567 * Allocator needs it be less than blocks per group.
3568 *
3569 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3570 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3571 {
3572 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3573 unsigned long stripe_width =
3574 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3575 int ret;
3576
3577 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3578 ret = sbi->s_stripe;
3579 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3580 ret = stripe_width;
3581 else if (stride && stride <= sbi->s_blocks_per_group)
3582 ret = stride;
3583 else
3584 ret = 0;
3585
3586 /*
3587 * If the stripe width is 1, this makes no sense and
3588 * we set it to 0 to turn off stripe handling code.
3589 */
3590 if (ret <= 1)
3591 ret = 0;
3592
3593 return ret;
3594 }
3595
3596 /*
3597 * Check whether this filesystem can be mounted based on
3598 * the features present and the RDONLY/RDWR mount requested.
3599 * Returns 1 if this filesystem can be mounted as requested,
3600 * 0 if it cannot be.
3601 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3602 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3603 {
3604 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3605 ext4_msg(sb, KERN_ERR,
3606 "Couldn't mount because of "
3607 "unsupported optional features (%x)",
3608 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3609 ~EXT4_FEATURE_INCOMPAT_SUPP));
3610 return 0;
3611 }
3612
3613 #if !IS_ENABLED(CONFIG_UNICODE)
3614 if (ext4_has_feature_casefold(sb)) {
3615 ext4_msg(sb, KERN_ERR,
3616 "Filesystem with casefold feature cannot be "
3617 "mounted without CONFIG_UNICODE");
3618 return 0;
3619 }
3620 #endif
3621
3622 if (readonly)
3623 return 1;
3624
3625 if (ext4_has_feature_readonly(sb)) {
3626 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3627 sb->s_flags |= SB_RDONLY;
3628 return 1;
3629 }
3630
3631 /* Check that feature set is OK for a read-write mount */
3632 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3633 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3634 "unsupported optional features (%x)",
3635 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3636 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3637 return 0;
3638 }
3639 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3640 ext4_msg(sb, KERN_ERR,
3641 "Can't support bigalloc feature without "
3642 "extents feature\n");
3643 return 0;
3644 }
3645
3646 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3647 if (!readonly && (ext4_has_feature_quota(sb) ||
3648 ext4_has_feature_project(sb))) {
3649 ext4_msg(sb, KERN_ERR,
3650 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3651 return 0;
3652 }
3653 #endif /* CONFIG_QUOTA */
3654 return 1;
3655 }
3656
3657 /*
3658 * This function is called once a day if we have errors logged
3659 * on the file system
3660 */
print_daily_error_info(struct timer_list * t)3661 static void print_daily_error_info(struct timer_list *t)
3662 {
3663 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3664 struct super_block *sb = sbi->s_sb;
3665 struct ext4_super_block *es = sbi->s_es;
3666
3667 if (es->s_error_count)
3668 /* fsck newer than v1.41.13 is needed to clean this condition. */
3669 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3670 le32_to_cpu(es->s_error_count));
3671 if (es->s_first_error_time) {
3672 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3673 sb->s_id,
3674 ext4_get_tstamp(es, s_first_error_time),
3675 (int) sizeof(es->s_first_error_func),
3676 es->s_first_error_func,
3677 le32_to_cpu(es->s_first_error_line));
3678 if (es->s_first_error_ino)
3679 printk(KERN_CONT ": inode %u",
3680 le32_to_cpu(es->s_first_error_ino));
3681 if (es->s_first_error_block)
3682 printk(KERN_CONT ": block %llu", (unsigned long long)
3683 le64_to_cpu(es->s_first_error_block));
3684 printk(KERN_CONT "\n");
3685 }
3686 if (es->s_last_error_time) {
3687 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3688 sb->s_id,
3689 ext4_get_tstamp(es, s_last_error_time),
3690 (int) sizeof(es->s_last_error_func),
3691 es->s_last_error_func,
3692 le32_to_cpu(es->s_last_error_line));
3693 if (es->s_last_error_ino)
3694 printk(KERN_CONT ": inode %u",
3695 le32_to_cpu(es->s_last_error_ino));
3696 if (es->s_last_error_block)
3697 printk(KERN_CONT ": block %llu", (unsigned long long)
3698 le64_to_cpu(es->s_last_error_block));
3699 printk(KERN_CONT "\n");
3700 }
3701 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3702 }
3703
3704 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3705 static int ext4_run_li_request(struct ext4_li_request *elr)
3706 {
3707 struct ext4_group_desc *gdp = NULL;
3708 struct super_block *sb = elr->lr_super;
3709 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3710 ext4_group_t group = elr->lr_next_group;
3711 unsigned int prefetch_ios = 0;
3712 int ret = 0;
3713 int nr = EXT4_SB(sb)->s_mb_prefetch;
3714 u64 start_time;
3715
3716 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3717 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3718 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3719 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3720 if (group >= elr->lr_next_group) {
3721 ret = 1;
3722 if (elr->lr_first_not_zeroed != ngroups &&
3723 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3724 elr->lr_next_group = elr->lr_first_not_zeroed;
3725 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3726 ret = 0;
3727 }
3728 }
3729 return ret;
3730 }
3731
3732 for (; group < ngroups; group++) {
3733 gdp = ext4_get_group_desc(sb, group, NULL);
3734 if (!gdp) {
3735 ret = 1;
3736 break;
3737 }
3738
3739 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3740 break;
3741 }
3742
3743 if (group >= ngroups)
3744 ret = 1;
3745
3746 if (!ret) {
3747 start_time = ktime_get_real_ns();
3748 ret = ext4_init_inode_table(sb, group,
3749 elr->lr_timeout ? 0 : 1);
3750 trace_ext4_lazy_itable_init(sb, group);
3751 if (elr->lr_timeout == 0) {
3752 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3753 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3754 }
3755 elr->lr_next_sched = jiffies + elr->lr_timeout;
3756 elr->lr_next_group = group + 1;
3757 }
3758 return ret;
3759 }
3760
3761 /*
3762 * Remove lr_request from the list_request and free the
3763 * request structure. Should be called with li_list_mtx held
3764 */
ext4_remove_li_request(struct ext4_li_request * elr)3765 static void ext4_remove_li_request(struct ext4_li_request *elr)
3766 {
3767 if (!elr)
3768 return;
3769
3770 list_del(&elr->lr_request);
3771 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3772 kfree(elr);
3773 }
3774
ext4_unregister_li_request(struct super_block * sb)3775 static void ext4_unregister_li_request(struct super_block *sb)
3776 {
3777 mutex_lock(&ext4_li_mtx);
3778 if (!ext4_li_info) {
3779 mutex_unlock(&ext4_li_mtx);
3780 return;
3781 }
3782
3783 mutex_lock(&ext4_li_info->li_list_mtx);
3784 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3785 mutex_unlock(&ext4_li_info->li_list_mtx);
3786 mutex_unlock(&ext4_li_mtx);
3787 }
3788
3789 static struct task_struct *ext4_lazyinit_task;
3790
3791 /*
3792 * This is the function where ext4lazyinit thread lives. It walks
3793 * through the request list searching for next scheduled filesystem.
3794 * When such a fs is found, run the lazy initialization request
3795 * (ext4_rn_li_request) and keep track of the time spend in this
3796 * function. Based on that time we compute next schedule time of
3797 * the request. When walking through the list is complete, compute
3798 * next waking time and put itself into sleep.
3799 */
ext4_lazyinit_thread(void * arg)3800 static int ext4_lazyinit_thread(void *arg)
3801 {
3802 struct ext4_lazy_init *eli = arg;
3803 struct list_head *pos, *n;
3804 struct ext4_li_request *elr;
3805 unsigned long next_wakeup, cur;
3806
3807 BUG_ON(NULL == eli);
3808 set_freezable();
3809
3810 cont_thread:
3811 while (true) {
3812 next_wakeup = MAX_JIFFY_OFFSET;
3813
3814 mutex_lock(&eli->li_list_mtx);
3815 if (list_empty(&eli->li_request_list)) {
3816 mutex_unlock(&eli->li_list_mtx);
3817 goto exit_thread;
3818 }
3819 list_for_each_safe(pos, n, &eli->li_request_list) {
3820 int err = 0;
3821 int progress = 0;
3822 elr = list_entry(pos, struct ext4_li_request,
3823 lr_request);
3824
3825 if (time_before(jiffies, elr->lr_next_sched)) {
3826 if (time_before(elr->lr_next_sched, next_wakeup))
3827 next_wakeup = elr->lr_next_sched;
3828 continue;
3829 }
3830 if (down_read_trylock(&elr->lr_super->s_umount)) {
3831 if (sb_start_write_trylock(elr->lr_super)) {
3832 progress = 1;
3833 /*
3834 * We hold sb->s_umount, sb can not
3835 * be removed from the list, it is
3836 * now safe to drop li_list_mtx
3837 */
3838 mutex_unlock(&eli->li_list_mtx);
3839 err = ext4_run_li_request(elr);
3840 sb_end_write(elr->lr_super);
3841 mutex_lock(&eli->li_list_mtx);
3842 n = pos->next;
3843 }
3844 up_read((&elr->lr_super->s_umount));
3845 }
3846 /* error, remove the lazy_init job */
3847 if (err) {
3848 ext4_remove_li_request(elr);
3849 continue;
3850 }
3851 if (!progress) {
3852 elr->lr_next_sched = jiffies +
3853 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3854 }
3855 if (time_before(elr->lr_next_sched, next_wakeup))
3856 next_wakeup = elr->lr_next_sched;
3857 }
3858 mutex_unlock(&eli->li_list_mtx);
3859
3860 try_to_freeze();
3861
3862 cur = jiffies;
3863 if ((time_after_eq(cur, next_wakeup)) ||
3864 (MAX_JIFFY_OFFSET == next_wakeup)) {
3865 cond_resched();
3866 continue;
3867 }
3868
3869 schedule_timeout_interruptible(next_wakeup - cur);
3870
3871 if (kthread_should_stop()) {
3872 ext4_clear_request_list();
3873 goto exit_thread;
3874 }
3875 }
3876
3877 exit_thread:
3878 /*
3879 * It looks like the request list is empty, but we need
3880 * to check it under the li_list_mtx lock, to prevent any
3881 * additions into it, and of course we should lock ext4_li_mtx
3882 * to atomically free the list and ext4_li_info, because at
3883 * this point another ext4 filesystem could be registering
3884 * new one.
3885 */
3886 mutex_lock(&ext4_li_mtx);
3887 mutex_lock(&eli->li_list_mtx);
3888 if (!list_empty(&eli->li_request_list)) {
3889 mutex_unlock(&eli->li_list_mtx);
3890 mutex_unlock(&ext4_li_mtx);
3891 goto cont_thread;
3892 }
3893 mutex_unlock(&eli->li_list_mtx);
3894 kfree(ext4_li_info);
3895 ext4_li_info = NULL;
3896 mutex_unlock(&ext4_li_mtx);
3897
3898 return 0;
3899 }
3900
ext4_clear_request_list(void)3901 static void ext4_clear_request_list(void)
3902 {
3903 struct list_head *pos, *n;
3904 struct ext4_li_request *elr;
3905
3906 mutex_lock(&ext4_li_info->li_list_mtx);
3907 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3908 elr = list_entry(pos, struct ext4_li_request,
3909 lr_request);
3910 ext4_remove_li_request(elr);
3911 }
3912 mutex_unlock(&ext4_li_info->li_list_mtx);
3913 }
3914
ext4_run_lazyinit_thread(void)3915 static int ext4_run_lazyinit_thread(void)
3916 {
3917 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3918 ext4_li_info, "ext4lazyinit");
3919 if (IS_ERR(ext4_lazyinit_task)) {
3920 int err = PTR_ERR(ext4_lazyinit_task);
3921 ext4_clear_request_list();
3922 kfree(ext4_li_info);
3923 ext4_li_info = NULL;
3924 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3925 "initialization thread\n",
3926 err);
3927 return err;
3928 }
3929 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3930 return 0;
3931 }
3932
3933 /*
3934 * Check whether it make sense to run itable init. thread or not.
3935 * If there is at least one uninitialized inode table, return
3936 * corresponding group number, else the loop goes through all
3937 * groups and return total number of groups.
3938 */
ext4_has_uninit_itable(struct super_block * sb)3939 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3940 {
3941 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3942 struct ext4_group_desc *gdp = NULL;
3943
3944 if (!ext4_has_group_desc_csum(sb))
3945 return ngroups;
3946
3947 for (group = 0; group < ngroups; group++) {
3948 gdp = ext4_get_group_desc(sb, group, NULL);
3949 if (!gdp)
3950 continue;
3951
3952 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3953 break;
3954 }
3955
3956 return group;
3957 }
3958
ext4_li_info_new(void)3959 static int ext4_li_info_new(void)
3960 {
3961 struct ext4_lazy_init *eli = NULL;
3962
3963 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3964 if (!eli)
3965 return -ENOMEM;
3966
3967 INIT_LIST_HEAD(&eli->li_request_list);
3968 mutex_init(&eli->li_list_mtx);
3969
3970 eli->li_state |= EXT4_LAZYINIT_QUIT;
3971
3972 ext4_li_info = eli;
3973
3974 return 0;
3975 }
3976
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3977 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3978 ext4_group_t start)
3979 {
3980 struct ext4_li_request *elr;
3981
3982 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3983 if (!elr)
3984 return NULL;
3985
3986 elr->lr_super = sb;
3987 elr->lr_first_not_zeroed = start;
3988 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3989 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3990 elr->lr_next_group = start;
3991 } else {
3992 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3993 }
3994
3995 /*
3996 * Randomize first schedule time of the request to
3997 * spread the inode table initialization requests
3998 * better.
3999 */
4000 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4001 return elr;
4002 }
4003
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)4004 int ext4_register_li_request(struct super_block *sb,
4005 ext4_group_t first_not_zeroed)
4006 {
4007 struct ext4_sb_info *sbi = EXT4_SB(sb);
4008 struct ext4_li_request *elr = NULL;
4009 ext4_group_t ngroups = sbi->s_groups_count;
4010 int ret = 0;
4011
4012 mutex_lock(&ext4_li_mtx);
4013 if (sbi->s_li_request != NULL) {
4014 /*
4015 * Reset timeout so it can be computed again, because
4016 * s_li_wait_mult might have changed.
4017 */
4018 sbi->s_li_request->lr_timeout = 0;
4019 goto out;
4020 }
4021
4022 if (sb_rdonly(sb) ||
4023 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4024 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4025 goto out;
4026
4027 elr = ext4_li_request_new(sb, first_not_zeroed);
4028 if (!elr) {
4029 ret = -ENOMEM;
4030 goto out;
4031 }
4032
4033 if (NULL == ext4_li_info) {
4034 ret = ext4_li_info_new();
4035 if (ret)
4036 goto out;
4037 }
4038
4039 mutex_lock(&ext4_li_info->li_list_mtx);
4040 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4041 mutex_unlock(&ext4_li_info->li_list_mtx);
4042
4043 sbi->s_li_request = elr;
4044 /*
4045 * set elr to NULL here since it has been inserted to
4046 * the request_list and the removal and free of it is
4047 * handled by ext4_clear_request_list from now on.
4048 */
4049 elr = NULL;
4050
4051 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4052 ret = ext4_run_lazyinit_thread();
4053 if (ret)
4054 goto out;
4055 }
4056 out:
4057 mutex_unlock(&ext4_li_mtx);
4058 if (ret)
4059 kfree(elr);
4060 return ret;
4061 }
4062
4063 /*
4064 * We do not need to lock anything since this is called on
4065 * module unload.
4066 */
ext4_destroy_lazyinit_thread(void)4067 static void ext4_destroy_lazyinit_thread(void)
4068 {
4069 /*
4070 * If thread exited earlier
4071 * there's nothing to be done.
4072 */
4073 if (!ext4_li_info || !ext4_lazyinit_task)
4074 return;
4075
4076 kthread_stop(ext4_lazyinit_task);
4077 }
4078
set_journal_csum_feature_set(struct super_block * sb)4079 static int set_journal_csum_feature_set(struct super_block *sb)
4080 {
4081 int ret = 1;
4082 int compat, incompat;
4083 struct ext4_sb_info *sbi = EXT4_SB(sb);
4084
4085 if (ext4_has_metadata_csum(sb)) {
4086 /* journal checksum v3 */
4087 compat = 0;
4088 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4089 } else {
4090 /* journal checksum v1 */
4091 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4092 incompat = 0;
4093 }
4094
4095 jbd2_journal_clear_features(sbi->s_journal,
4096 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4097 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4098 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4099 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4100 ret = jbd2_journal_set_features(sbi->s_journal,
4101 compat, 0,
4102 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4103 incompat);
4104 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4105 ret = jbd2_journal_set_features(sbi->s_journal,
4106 compat, 0,
4107 incompat);
4108 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4109 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4110 } else {
4111 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4112 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4113 }
4114
4115 return ret;
4116 }
4117
4118 /*
4119 * Note: calculating the overhead so we can be compatible with
4120 * historical BSD practice is quite difficult in the face of
4121 * clusters/bigalloc. This is because multiple metadata blocks from
4122 * different block group can end up in the same allocation cluster.
4123 * Calculating the exact overhead in the face of clustered allocation
4124 * requires either O(all block bitmaps) in memory or O(number of block
4125 * groups**2) in time. We will still calculate the superblock for
4126 * older file systems --- and if we come across with a bigalloc file
4127 * system with zero in s_overhead_clusters the estimate will be close to
4128 * correct especially for very large cluster sizes --- but for newer
4129 * file systems, it's better to calculate this figure once at mkfs
4130 * time, and store it in the superblock. If the superblock value is
4131 * present (even for non-bigalloc file systems), we will use it.
4132 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4133 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4134 char *buf)
4135 {
4136 struct ext4_sb_info *sbi = EXT4_SB(sb);
4137 struct ext4_group_desc *gdp;
4138 ext4_fsblk_t first_block, last_block, b;
4139 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4140 int s, j, count = 0;
4141 int has_super = ext4_bg_has_super(sb, grp);
4142
4143 if (!ext4_has_feature_bigalloc(sb))
4144 return (has_super + ext4_bg_num_gdb(sb, grp) +
4145 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4146 sbi->s_itb_per_group + 2);
4147
4148 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4149 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4150 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4151 for (i = 0; i < ngroups; i++) {
4152 gdp = ext4_get_group_desc(sb, i, NULL);
4153 b = ext4_block_bitmap(sb, gdp);
4154 if (b >= first_block && b <= last_block) {
4155 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4156 count++;
4157 }
4158 b = ext4_inode_bitmap(sb, gdp);
4159 if (b >= first_block && b <= last_block) {
4160 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4161 count++;
4162 }
4163 b = ext4_inode_table(sb, gdp);
4164 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4165 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4166 int c = EXT4_B2C(sbi, b - first_block);
4167 ext4_set_bit(c, buf);
4168 count++;
4169 }
4170 if (i != grp)
4171 continue;
4172 s = 0;
4173 if (ext4_bg_has_super(sb, grp)) {
4174 ext4_set_bit(s++, buf);
4175 count++;
4176 }
4177 j = ext4_bg_num_gdb(sb, grp);
4178 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4179 ext4_error(sb, "Invalid number of block group "
4180 "descriptor blocks: %d", j);
4181 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4182 }
4183 count += j;
4184 for (; j > 0; j--)
4185 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4186 }
4187 if (!count)
4188 return 0;
4189 return EXT4_CLUSTERS_PER_GROUP(sb) -
4190 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4191 }
4192
4193 /*
4194 * Compute the overhead and stash it in sbi->s_overhead
4195 */
ext4_calculate_overhead(struct super_block * sb)4196 int ext4_calculate_overhead(struct super_block *sb)
4197 {
4198 struct ext4_sb_info *sbi = EXT4_SB(sb);
4199 struct ext4_super_block *es = sbi->s_es;
4200 struct inode *j_inode;
4201 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4202 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4203 ext4_fsblk_t overhead = 0;
4204 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4205
4206 if (!buf)
4207 return -ENOMEM;
4208
4209 /*
4210 * Compute the overhead (FS structures). This is constant
4211 * for a given filesystem unless the number of block groups
4212 * changes so we cache the previous value until it does.
4213 */
4214
4215 /*
4216 * All of the blocks before first_data_block are overhead
4217 */
4218 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4219
4220 /*
4221 * Add the overhead found in each block group
4222 */
4223 for (i = 0; i < ngroups; i++) {
4224 int blks;
4225
4226 blks = count_overhead(sb, i, buf);
4227 overhead += blks;
4228 if (blks)
4229 memset(buf, 0, PAGE_SIZE);
4230 cond_resched();
4231 }
4232
4233 /*
4234 * Add the internal journal blocks whether the journal has been
4235 * loaded or not
4236 */
4237 if (sbi->s_journal && !sbi->s_journal_bdev)
4238 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4239 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4240 /* j_inum for internal journal is non-zero */
4241 j_inode = ext4_get_journal_inode(sb, j_inum);
4242 if (!IS_ERR(j_inode)) {
4243 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4244 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4245 iput(j_inode);
4246 } else {
4247 ext4_msg(sb, KERN_ERR, "can't get journal size");
4248 }
4249 }
4250 sbi->s_overhead = overhead;
4251 smp_wmb();
4252 free_page((unsigned long) buf);
4253 return 0;
4254 }
4255
ext4_set_resv_clusters(struct super_block * sb)4256 static void ext4_set_resv_clusters(struct super_block *sb)
4257 {
4258 ext4_fsblk_t resv_clusters;
4259 struct ext4_sb_info *sbi = EXT4_SB(sb);
4260
4261 /*
4262 * There's no need to reserve anything when we aren't using extents.
4263 * The space estimates are exact, there are no unwritten extents,
4264 * hole punching doesn't need new metadata... This is needed especially
4265 * to keep ext2/3 backward compatibility.
4266 */
4267 if (!ext4_has_feature_extents(sb))
4268 return;
4269 /*
4270 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4271 * This should cover the situations where we can not afford to run
4272 * out of space like for example punch hole, or converting
4273 * unwritten extents in delalloc path. In most cases such
4274 * allocation would require 1, or 2 blocks, higher numbers are
4275 * very rare.
4276 */
4277 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4278 sbi->s_cluster_bits);
4279
4280 do_div(resv_clusters, 50);
4281 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4282
4283 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4284 }
4285
ext4_quota_mode(struct super_block * sb)4286 static const char *ext4_quota_mode(struct super_block *sb)
4287 {
4288 #ifdef CONFIG_QUOTA
4289 if (!ext4_quota_capable(sb))
4290 return "none";
4291
4292 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4293 return "journalled";
4294 else
4295 return "writeback";
4296 #else
4297 return "disabled";
4298 #endif
4299 }
4300
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4301 static void ext4_setup_csum_trigger(struct super_block *sb,
4302 enum ext4_journal_trigger_type type,
4303 void (*trigger)(
4304 struct jbd2_buffer_trigger_type *type,
4305 struct buffer_head *bh,
4306 void *mapped_data,
4307 size_t size))
4308 {
4309 struct ext4_sb_info *sbi = EXT4_SB(sb);
4310
4311 sbi->s_journal_triggers[type].sb = sb;
4312 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4313 }
4314
ext4_free_sbi(struct ext4_sb_info * sbi)4315 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4316 {
4317 if (!sbi)
4318 return;
4319
4320 kfree(sbi->s_blockgroup_lock);
4321 fs_put_dax(sbi->s_daxdev, NULL);
4322 kfree(sbi);
4323 }
4324
ext4_alloc_sbi(struct super_block * sb)4325 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4326 {
4327 struct ext4_sb_info *sbi;
4328
4329 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4330 if (!sbi)
4331 return NULL;
4332
4333 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4334 NULL, NULL);
4335
4336 sbi->s_blockgroup_lock =
4337 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4338
4339 if (!sbi->s_blockgroup_lock)
4340 goto err_out;
4341
4342 sb->s_fs_info = sbi;
4343 sbi->s_sb = sb;
4344 return sbi;
4345 err_out:
4346 fs_put_dax(sbi->s_daxdev, NULL);
4347 kfree(sbi);
4348 return NULL;
4349 }
4350
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4351 static void ext4_set_def_opts(struct super_block *sb,
4352 struct ext4_super_block *es)
4353 {
4354 unsigned long def_mount_opts;
4355
4356 /* Set defaults before we parse the mount options */
4357 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4358 set_opt(sb, INIT_INODE_TABLE);
4359 if (def_mount_opts & EXT4_DEFM_DEBUG)
4360 set_opt(sb, DEBUG);
4361 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4362 set_opt(sb, GRPID);
4363 if (def_mount_opts & EXT4_DEFM_UID16)
4364 set_opt(sb, NO_UID32);
4365 /* xattr user namespace & acls are now defaulted on */
4366 set_opt(sb, XATTR_USER);
4367 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4368 set_opt(sb, POSIX_ACL);
4369 #endif
4370 if (ext4_has_feature_fast_commit(sb))
4371 set_opt2(sb, JOURNAL_FAST_COMMIT);
4372 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4373 if (ext4_has_metadata_csum(sb))
4374 set_opt(sb, JOURNAL_CHECKSUM);
4375
4376 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4377 set_opt(sb, JOURNAL_DATA);
4378 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4379 set_opt(sb, ORDERED_DATA);
4380 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4381 set_opt(sb, WRITEBACK_DATA);
4382
4383 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4384 set_opt(sb, ERRORS_PANIC);
4385 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4386 set_opt(sb, ERRORS_CONT);
4387 else
4388 set_opt(sb, ERRORS_RO);
4389 /* block_validity enabled by default; disable with noblock_validity */
4390 set_opt(sb, BLOCK_VALIDITY);
4391 if (def_mount_opts & EXT4_DEFM_DISCARD)
4392 set_opt(sb, DISCARD);
4393
4394 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4395 set_opt(sb, BARRIER);
4396
4397 /*
4398 * enable delayed allocation by default
4399 * Use -o nodelalloc to turn it off
4400 */
4401 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4402 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4403 set_opt(sb, DELALLOC);
4404
4405 if (sb->s_blocksize == PAGE_SIZE)
4406 set_opt(sb, DIOREAD_NOLOCK);
4407 }
4408
ext4_handle_clustersize(struct super_block * sb)4409 static int ext4_handle_clustersize(struct super_block *sb)
4410 {
4411 struct ext4_sb_info *sbi = EXT4_SB(sb);
4412 struct ext4_super_block *es = sbi->s_es;
4413 int clustersize;
4414
4415 /* Handle clustersize */
4416 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4417 if (ext4_has_feature_bigalloc(sb)) {
4418 if (clustersize < sb->s_blocksize) {
4419 ext4_msg(sb, KERN_ERR,
4420 "cluster size (%d) smaller than "
4421 "block size (%lu)", clustersize, sb->s_blocksize);
4422 return -EINVAL;
4423 }
4424 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4425 le32_to_cpu(es->s_log_block_size);
4426 sbi->s_clusters_per_group =
4427 le32_to_cpu(es->s_clusters_per_group);
4428 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4429 ext4_msg(sb, KERN_ERR,
4430 "#clusters per group too big: %lu",
4431 sbi->s_clusters_per_group);
4432 return -EINVAL;
4433 }
4434 if (sbi->s_blocks_per_group !=
4435 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4436 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4437 "clusters per group (%lu) inconsistent",
4438 sbi->s_blocks_per_group,
4439 sbi->s_clusters_per_group);
4440 return -EINVAL;
4441 }
4442 } else {
4443 if (clustersize != sb->s_blocksize) {
4444 ext4_msg(sb, KERN_ERR,
4445 "fragment/cluster size (%d) != "
4446 "block size (%lu)", clustersize, sb->s_blocksize);
4447 return -EINVAL;
4448 }
4449 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4450 ext4_msg(sb, KERN_ERR,
4451 "#blocks per group too big: %lu",
4452 sbi->s_blocks_per_group);
4453 return -EINVAL;
4454 }
4455 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4456 sbi->s_cluster_bits = 0;
4457 }
4458 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4459
4460 /* Do we have standard group size of clustersize * 8 blocks ? */
4461 if (sbi->s_blocks_per_group == clustersize << 3)
4462 set_opt2(sb, STD_GROUP_SIZE);
4463
4464 return 0;
4465 }
4466
ext4_fast_commit_init(struct super_block * sb)4467 static void ext4_fast_commit_init(struct super_block *sb)
4468 {
4469 struct ext4_sb_info *sbi = EXT4_SB(sb);
4470
4471 /* Initialize fast commit stuff */
4472 atomic_set(&sbi->s_fc_subtid, 0);
4473 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4474 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4475 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4476 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4477 sbi->s_fc_bytes = 0;
4478 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4479 sbi->s_fc_ineligible_tid = 0;
4480 spin_lock_init(&sbi->s_fc_lock);
4481 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4482 sbi->s_fc_replay_state.fc_regions = NULL;
4483 sbi->s_fc_replay_state.fc_regions_size = 0;
4484 sbi->s_fc_replay_state.fc_regions_used = 0;
4485 sbi->s_fc_replay_state.fc_regions_valid = 0;
4486 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4487 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4488 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4489 }
4490
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4491 static int ext4_inode_info_init(struct super_block *sb,
4492 struct ext4_super_block *es)
4493 {
4494 struct ext4_sb_info *sbi = EXT4_SB(sb);
4495
4496 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4497 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4498 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4499 } else {
4500 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4501 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4502 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4503 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4504 sbi->s_first_ino);
4505 return -EINVAL;
4506 }
4507 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4508 (!is_power_of_2(sbi->s_inode_size)) ||
4509 (sbi->s_inode_size > sb->s_blocksize)) {
4510 ext4_msg(sb, KERN_ERR,
4511 "unsupported inode size: %d",
4512 sbi->s_inode_size);
4513 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4514 return -EINVAL;
4515 }
4516 /*
4517 * i_atime_extra is the last extra field available for
4518 * [acm]times in struct ext4_inode. Checking for that
4519 * field should suffice to ensure we have extra space
4520 * for all three.
4521 */
4522 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4523 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4524 sb->s_time_gran = 1;
4525 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4526 } else {
4527 sb->s_time_gran = NSEC_PER_SEC;
4528 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4529 }
4530 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4531 }
4532
4533 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4534 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4535 EXT4_GOOD_OLD_INODE_SIZE;
4536 if (ext4_has_feature_extra_isize(sb)) {
4537 unsigned v, max = (sbi->s_inode_size -
4538 EXT4_GOOD_OLD_INODE_SIZE);
4539
4540 v = le16_to_cpu(es->s_want_extra_isize);
4541 if (v > max) {
4542 ext4_msg(sb, KERN_ERR,
4543 "bad s_want_extra_isize: %d", v);
4544 return -EINVAL;
4545 }
4546 if (sbi->s_want_extra_isize < v)
4547 sbi->s_want_extra_isize = v;
4548
4549 v = le16_to_cpu(es->s_min_extra_isize);
4550 if (v > max) {
4551 ext4_msg(sb, KERN_ERR,
4552 "bad s_min_extra_isize: %d", v);
4553 return -EINVAL;
4554 }
4555 if (sbi->s_want_extra_isize < v)
4556 sbi->s_want_extra_isize = v;
4557 }
4558 }
4559
4560 return 0;
4561 }
4562
4563 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4564 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4565 {
4566 const struct ext4_sb_encodings *encoding_info;
4567 struct unicode_map *encoding;
4568 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4569
4570 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4571 return 0;
4572
4573 encoding_info = ext4_sb_read_encoding(es);
4574 if (!encoding_info) {
4575 ext4_msg(sb, KERN_ERR,
4576 "Encoding requested by superblock is unknown");
4577 return -EINVAL;
4578 }
4579
4580 encoding = utf8_load(encoding_info->version);
4581 if (IS_ERR(encoding)) {
4582 ext4_msg(sb, KERN_ERR,
4583 "can't mount with superblock charset: %s-%u.%u.%u "
4584 "not supported by the kernel. flags: 0x%x.",
4585 encoding_info->name,
4586 unicode_major(encoding_info->version),
4587 unicode_minor(encoding_info->version),
4588 unicode_rev(encoding_info->version),
4589 encoding_flags);
4590 return -EINVAL;
4591 }
4592 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4593 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4594 unicode_major(encoding_info->version),
4595 unicode_minor(encoding_info->version),
4596 unicode_rev(encoding_info->version),
4597 encoding_flags);
4598
4599 sb->s_encoding = encoding;
4600 sb->s_encoding_flags = encoding_flags;
4601
4602 return 0;
4603 }
4604 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4605 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4606 {
4607 return 0;
4608 }
4609 #endif
4610
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4611 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4612 {
4613 struct ext4_sb_info *sbi = EXT4_SB(sb);
4614
4615 /* Warn if metadata_csum and gdt_csum are both set. */
4616 if (ext4_has_feature_metadata_csum(sb) &&
4617 ext4_has_feature_gdt_csum(sb))
4618 ext4_warning(sb, "metadata_csum and uninit_bg are "
4619 "redundant flags; please run fsck.");
4620
4621 /* Check for a known checksum algorithm */
4622 if (!ext4_verify_csum_type(sb, es)) {
4623 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4624 "unknown checksum algorithm.");
4625 return -EINVAL;
4626 }
4627 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4628 ext4_orphan_file_block_trigger);
4629
4630 /* Load the checksum driver */
4631 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4632 if (IS_ERR(sbi->s_chksum_driver)) {
4633 int ret = PTR_ERR(sbi->s_chksum_driver);
4634 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4635 sbi->s_chksum_driver = NULL;
4636 return ret;
4637 }
4638
4639 /* Check superblock checksum */
4640 if (!ext4_superblock_csum_verify(sb, es)) {
4641 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4642 "invalid superblock checksum. Run e2fsck?");
4643 return -EFSBADCRC;
4644 }
4645
4646 /* Precompute checksum seed for all metadata */
4647 if (ext4_has_feature_csum_seed(sb))
4648 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4649 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4650 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4651 sizeof(es->s_uuid));
4652 return 0;
4653 }
4654
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4655 static int ext4_check_feature_compatibility(struct super_block *sb,
4656 struct ext4_super_block *es,
4657 int silent)
4658 {
4659 struct ext4_sb_info *sbi = EXT4_SB(sb);
4660
4661 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4662 (ext4_has_compat_features(sb) ||
4663 ext4_has_ro_compat_features(sb) ||
4664 ext4_has_incompat_features(sb)))
4665 ext4_msg(sb, KERN_WARNING,
4666 "feature flags set on rev 0 fs, "
4667 "running e2fsck is recommended");
4668
4669 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4670 set_opt2(sb, HURD_COMPAT);
4671 if (ext4_has_feature_64bit(sb)) {
4672 ext4_msg(sb, KERN_ERR,
4673 "The Hurd can't support 64-bit file systems");
4674 return -EINVAL;
4675 }
4676
4677 /*
4678 * ea_inode feature uses l_i_version field which is not
4679 * available in HURD_COMPAT mode.
4680 */
4681 if (ext4_has_feature_ea_inode(sb)) {
4682 ext4_msg(sb, KERN_ERR,
4683 "ea_inode feature is not supported for Hurd");
4684 return -EINVAL;
4685 }
4686 }
4687
4688 if (IS_EXT2_SB(sb)) {
4689 if (ext2_feature_set_ok(sb))
4690 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4691 "using the ext4 subsystem");
4692 else {
4693 /*
4694 * If we're probing be silent, if this looks like
4695 * it's actually an ext[34] filesystem.
4696 */
4697 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4698 return -EINVAL;
4699 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4700 "to feature incompatibilities");
4701 return -EINVAL;
4702 }
4703 }
4704
4705 if (IS_EXT3_SB(sb)) {
4706 if (ext3_feature_set_ok(sb))
4707 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4708 "using the ext4 subsystem");
4709 else {
4710 /*
4711 * If we're probing be silent, if this looks like
4712 * it's actually an ext4 filesystem.
4713 */
4714 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4715 return -EINVAL;
4716 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4717 "to feature incompatibilities");
4718 return -EINVAL;
4719 }
4720 }
4721
4722 /*
4723 * Check feature flags regardless of the revision level, since we
4724 * previously didn't change the revision level when setting the flags,
4725 * so there is a chance incompat flags are set on a rev 0 filesystem.
4726 */
4727 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4728 return -EINVAL;
4729
4730 if (sbi->s_daxdev) {
4731 if (sb->s_blocksize == PAGE_SIZE)
4732 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4733 else
4734 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4735 }
4736
4737 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4738 if (ext4_has_feature_inline_data(sb)) {
4739 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4740 " that may contain inline data");
4741 return -EINVAL;
4742 }
4743 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4744 ext4_msg(sb, KERN_ERR,
4745 "DAX unsupported by block device.");
4746 return -EINVAL;
4747 }
4748 }
4749
4750 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4751 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4752 es->s_encryption_level);
4753 return -EINVAL;
4754 }
4755
4756 return 0;
4757 }
4758
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4759 static int ext4_check_geometry(struct super_block *sb,
4760 struct ext4_super_block *es)
4761 {
4762 struct ext4_sb_info *sbi = EXT4_SB(sb);
4763 __u64 blocks_count;
4764 int err;
4765
4766 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4767 ext4_msg(sb, KERN_ERR,
4768 "Number of reserved GDT blocks insanely large: %d",
4769 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4770 return -EINVAL;
4771 }
4772 /*
4773 * Test whether we have more sectors than will fit in sector_t,
4774 * and whether the max offset is addressable by the page cache.
4775 */
4776 err = generic_check_addressable(sb->s_blocksize_bits,
4777 ext4_blocks_count(es));
4778 if (err) {
4779 ext4_msg(sb, KERN_ERR, "filesystem"
4780 " too large to mount safely on this system");
4781 return err;
4782 }
4783
4784 /* check blocks count against device size */
4785 blocks_count = sb_bdev_nr_blocks(sb);
4786 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4787 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4788 "exceeds size of device (%llu blocks)",
4789 ext4_blocks_count(es), blocks_count);
4790 return -EINVAL;
4791 }
4792
4793 /*
4794 * It makes no sense for the first data block to be beyond the end
4795 * of the filesystem.
4796 */
4797 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4798 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4799 "block %u is beyond end of filesystem (%llu)",
4800 le32_to_cpu(es->s_first_data_block),
4801 ext4_blocks_count(es));
4802 return -EINVAL;
4803 }
4804 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4805 (sbi->s_cluster_ratio == 1)) {
4806 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4807 "block is 0 with a 1k block and cluster size");
4808 return -EINVAL;
4809 }
4810
4811 blocks_count = (ext4_blocks_count(es) -
4812 le32_to_cpu(es->s_first_data_block) +
4813 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4814 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4815 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4816 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4817 "(block count %llu, first data block %u, "
4818 "blocks per group %lu)", blocks_count,
4819 ext4_blocks_count(es),
4820 le32_to_cpu(es->s_first_data_block),
4821 EXT4_BLOCKS_PER_GROUP(sb));
4822 return -EINVAL;
4823 }
4824 sbi->s_groups_count = blocks_count;
4825 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4826 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4827 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4828 le32_to_cpu(es->s_inodes_count)) {
4829 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4830 le32_to_cpu(es->s_inodes_count),
4831 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4832 return -EINVAL;
4833 }
4834
4835 return 0;
4836 }
4837
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4838 static int ext4_group_desc_init(struct super_block *sb,
4839 struct ext4_super_block *es,
4840 ext4_fsblk_t logical_sb_block,
4841 ext4_group_t *first_not_zeroed)
4842 {
4843 struct ext4_sb_info *sbi = EXT4_SB(sb);
4844 unsigned int db_count;
4845 ext4_fsblk_t block;
4846 int i;
4847
4848 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4849 EXT4_DESC_PER_BLOCK(sb);
4850 if (ext4_has_feature_meta_bg(sb)) {
4851 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4852 ext4_msg(sb, KERN_WARNING,
4853 "first meta block group too large: %u "
4854 "(group descriptor block count %u)",
4855 le32_to_cpu(es->s_first_meta_bg), db_count);
4856 return -EINVAL;
4857 }
4858 }
4859 rcu_assign_pointer(sbi->s_group_desc,
4860 kvmalloc_array(db_count,
4861 sizeof(struct buffer_head *),
4862 GFP_KERNEL));
4863 if (sbi->s_group_desc == NULL) {
4864 ext4_msg(sb, KERN_ERR, "not enough memory");
4865 return -ENOMEM;
4866 }
4867
4868 bgl_lock_init(sbi->s_blockgroup_lock);
4869
4870 /* Pre-read the descriptors into the buffer cache */
4871 for (i = 0; i < db_count; i++) {
4872 block = descriptor_loc(sb, logical_sb_block, i);
4873 ext4_sb_breadahead_unmovable(sb, block);
4874 }
4875
4876 for (i = 0; i < db_count; i++) {
4877 struct buffer_head *bh;
4878
4879 block = descriptor_loc(sb, logical_sb_block, i);
4880 bh = ext4_sb_bread_unmovable(sb, block);
4881 if (IS_ERR(bh)) {
4882 ext4_msg(sb, KERN_ERR,
4883 "can't read group descriptor %d", i);
4884 sbi->s_gdb_count = i;
4885 return PTR_ERR(bh);
4886 }
4887 rcu_read_lock();
4888 rcu_dereference(sbi->s_group_desc)[i] = bh;
4889 rcu_read_unlock();
4890 }
4891 sbi->s_gdb_count = db_count;
4892 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4893 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4894 return -EFSCORRUPTED;
4895 }
4896
4897 return 0;
4898 }
4899
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4900 static int ext4_load_and_init_journal(struct super_block *sb,
4901 struct ext4_super_block *es,
4902 struct ext4_fs_context *ctx)
4903 {
4904 struct ext4_sb_info *sbi = EXT4_SB(sb);
4905 int err;
4906
4907 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4908 if (err)
4909 return err;
4910
4911 if (ext4_has_feature_64bit(sb) &&
4912 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4913 JBD2_FEATURE_INCOMPAT_64BIT)) {
4914 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4915 goto out;
4916 }
4917
4918 if (!set_journal_csum_feature_set(sb)) {
4919 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4920 "feature set");
4921 goto out;
4922 }
4923
4924 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4925 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4926 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4927 ext4_msg(sb, KERN_ERR,
4928 "Failed to set fast commit journal feature");
4929 goto out;
4930 }
4931
4932 /* We have now updated the journal if required, so we can
4933 * validate the data journaling mode. */
4934 switch (test_opt(sb, DATA_FLAGS)) {
4935 case 0:
4936 /* No mode set, assume a default based on the journal
4937 * capabilities: ORDERED_DATA if the journal can
4938 * cope, else JOURNAL_DATA
4939 */
4940 if (jbd2_journal_check_available_features
4941 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4942 set_opt(sb, ORDERED_DATA);
4943 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4944 } else {
4945 set_opt(sb, JOURNAL_DATA);
4946 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4947 }
4948 break;
4949
4950 case EXT4_MOUNT_ORDERED_DATA:
4951 case EXT4_MOUNT_WRITEBACK_DATA:
4952 if (!jbd2_journal_check_available_features
4953 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4954 ext4_msg(sb, KERN_ERR, "Journal does not support "
4955 "requested data journaling mode");
4956 goto out;
4957 }
4958 break;
4959 default:
4960 break;
4961 }
4962
4963 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4964 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4965 ext4_msg(sb, KERN_ERR, "can't mount with "
4966 "journal_async_commit in data=ordered mode");
4967 goto out;
4968 }
4969
4970 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4971
4972 sbi->s_journal->j_submit_inode_data_buffers =
4973 ext4_journal_submit_inode_data_buffers;
4974 sbi->s_journal->j_finish_inode_data_buffers =
4975 ext4_journal_finish_inode_data_buffers;
4976
4977 return 0;
4978
4979 out:
4980 /* flush s_sb_upd_work before destroying the journal. */
4981 flush_work(&sbi->s_sb_upd_work);
4982 jbd2_journal_destroy(sbi->s_journal);
4983 sbi->s_journal = NULL;
4984 return -EINVAL;
4985 }
4986
ext4_check_journal_data_mode(struct super_block * sb)4987 static int ext4_check_journal_data_mode(struct super_block *sb)
4988 {
4989 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4990 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4991 "data=journal disables delayed allocation, "
4992 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4993 /* can't mount with both data=journal and dioread_nolock. */
4994 clear_opt(sb, DIOREAD_NOLOCK);
4995 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4996 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4997 ext4_msg(sb, KERN_ERR, "can't mount with "
4998 "both data=journal and delalloc");
4999 return -EINVAL;
5000 }
5001 if (test_opt(sb, DAX_ALWAYS)) {
5002 ext4_msg(sb, KERN_ERR, "can't mount with "
5003 "both data=journal and dax");
5004 return -EINVAL;
5005 }
5006 if (ext4_has_feature_encrypt(sb)) {
5007 ext4_msg(sb, KERN_WARNING,
5008 "encrypted files will use data=ordered "
5009 "instead of data journaling mode");
5010 }
5011 if (test_opt(sb, DELALLOC))
5012 clear_opt(sb, DELALLOC);
5013 } else {
5014 sb->s_iflags |= SB_I_CGROUPWB;
5015 }
5016
5017 return 0;
5018 }
5019
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5020 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5021 int silent)
5022 {
5023 struct ext4_sb_info *sbi = EXT4_SB(sb);
5024 struct ext4_super_block *es;
5025 ext4_fsblk_t logical_sb_block;
5026 unsigned long offset = 0;
5027 struct buffer_head *bh;
5028 int ret = -EINVAL;
5029 int blocksize;
5030
5031 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5032 if (!blocksize) {
5033 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5034 return -EINVAL;
5035 }
5036
5037 /*
5038 * The ext4 superblock will not be buffer aligned for other than 1kB
5039 * block sizes. We need to calculate the offset from buffer start.
5040 */
5041 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5042 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5043 offset = do_div(logical_sb_block, blocksize);
5044 } else {
5045 logical_sb_block = sbi->s_sb_block;
5046 }
5047
5048 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5049 if (IS_ERR(bh)) {
5050 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5051 return PTR_ERR(bh);
5052 }
5053 /*
5054 * Note: s_es must be initialized as soon as possible because
5055 * some ext4 macro-instructions depend on its value
5056 */
5057 es = (struct ext4_super_block *) (bh->b_data + offset);
5058 sbi->s_es = es;
5059 sb->s_magic = le16_to_cpu(es->s_magic);
5060 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5061 if (!silent)
5062 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5063 goto out;
5064 }
5065
5066 if (le32_to_cpu(es->s_log_block_size) >
5067 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5068 ext4_msg(sb, KERN_ERR,
5069 "Invalid log block size: %u",
5070 le32_to_cpu(es->s_log_block_size));
5071 goto out;
5072 }
5073 if (le32_to_cpu(es->s_log_cluster_size) >
5074 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5075 ext4_msg(sb, KERN_ERR,
5076 "Invalid log cluster size: %u",
5077 le32_to_cpu(es->s_log_cluster_size));
5078 goto out;
5079 }
5080
5081 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5082
5083 /*
5084 * If the default block size is not the same as the real block size,
5085 * we need to reload it.
5086 */
5087 if (sb->s_blocksize == blocksize) {
5088 *lsb = logical_sb_block;
5089 sbi->s_sbh = bh;
5090 return 0;
5091 }
5092
5093 /*
5094 * bh must be released before kill_bdev(), otherwise
5095 * it won't be freed and its page also. kill_bdev()
5096 * is called by sb_set_blocksize().
5097 */
5098 brelse(bh);
5099 /* Validate the filesystem blocksize */
5100 if (!sb_set_blocksize(sb, blocksize)) {
5101 ext4_msg(sb, KERN_ERR, "bad block size %d",
5102 blocksize);
5103 bh = NULL;
5104 goto out;
5105 }
5106
5107 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5108 offset = do_div(logical_sb_block, blocksize);
5109 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5110 if (IS_ERR(bh)) {
5111 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5112 ret = PTR_ERR(bh);
5113 bh = NULL;
5114 goto out;
5115 }
5116 es = (struct ext4_super_block *)(bh->b_data + offset);
5117 sbi->s_es = es;
5118 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5119 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5120 goto out;
5121 }
5122 *lsb = logical_sb_block;
5123 sbi->s_sbh = bh;
5124 return 0;
5125 out:
5126 brelse(bh);
5127 return ret;
5128 }
5129
ext4_hash_info_init(struct super_block * sb)5130 static void ext4_hash_info_init(struct super_block *sb)
5131 {
5132 struct ext4_sb_info *sbi = EXT4_SB(sb);
5133 struct ext4_super_block *es = sbi->s_es;
5134 unsigned int i;
5135
5136 for (i = 0; i < 4; i++)
5137 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5138
5139 sbi->s_def_hash_version = es->s_def_hash_version;
5140 if (ext4_has_feature_dir_index(sb)) {
5141 i = le32_to_cpu(es->s_flags);
5142 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5143 sbi->s_hash_unsigned = 3;
5144 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5145 #ifdef __CHAR_UNSIGNED__
5146 if (!sb_rdonly(sb))
5147 es->s_flags |=
5148 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5149 sbi->s_hash_unsigned = 3;
5150 #else
5151 if (!sb_rdonly(sb))
5152 es->s_flags |=
5153 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5154 #endif
5155 }
5156 }
5157 }
5158
ext4_block_group_meta_init(struct super_block * sb,int silent)5159 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5160 {
5161 struct ext4_sb_info *sbi = EXT4_SB(sb);
5162 struct ext4_super_block *es = sbi->s_es;
5163 int has_huge_files;
5164
5165 has_huge_files = ext4_has_feature_huge_file(sb);
5166 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5167 has_huge_files);
5168 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5169
5170 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5171 if (ext4_has_feature_64bit(sb)) {
5172 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5173 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5174 !is_power_of_2(sbi->s_desc_size)) {
5175 ext4_msg(sb, KERN_ERR,
5176 "unsupported descriptor size %lu",
5177 sbi->s_desc_size);
5178 return -EINVAL;
5179 }
5180 } else
5181 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5182
5183 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5184 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5185
5186 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5187 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5188 if (!silent)
5189 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5190 return -EINVAL;
5191 }
5192 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5193 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5194 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5195 sbi->s_inodes_per_group);
5196 return -EINVAL;
5197 }
5198 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5199 sbi->s_inodes_per_block;
5200 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5201 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5202 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5203 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5204
5205 return 0;
5206 }
5207
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5208 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5209 {
5210 struct ext4_super_block *es = NULL;
5211 struct ext4_sb_info *sbi = EXT4_SB(sb);
5212 ext4_fsblk_t logical_sb_block;
5213 struct inode *root;
5214 int needs_recovery;
5215 int err;
5216 ext4_group_t first_not_zeroed;
5217 struct ext4_fs_context *ctx = fc->fs_private;
5218 int silent = fc->sb_flags & SB_SILENT;
5219
5220 /* Set defaults for the variables that will be set during parsing */
5221 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5222 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5223
5224 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5225 sbi->s_sectors_written_start =
5226 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5227
5228 err = ext4_load_super(sb, &logical_sb_block, silent);
5229 if (err)
5230 goto out_fail;
5231
5232 es = sbi->s_es;
5233 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5234
5235 err = ext4_init_metadata_csum(sb, es);
5236 if (err)
5237 goto failed_mount;
5238
5239 ext4_set_def_opts(sb, es);
5240
5241 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5242 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5243 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5244 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5245 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5246
5247 /*
5248 * set default s_li_wait_mult for lazyinit, for the case there is
5249 * no mount option specified.
5250 */
5251 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5252
5253 err = ext4_inode_info_init(sb, es);
5254 if (err)
5255 goto failed_mount;
5256
5257 err = parse_apply_sb_mount_options(sb, ctx);
5258 if (err < 0)
5259 goto failed_mount;
5260
5261 sbi->s_def_mount_opt = sbi->s_mount_opt;
5262 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5263
5264 err = ext4_check_opt_consistency(fc, sb);
5265 if (err < 0)
5266 goto failed_mount;
5267
5268 ext4_apply_options(fc, sb);
5269
5270 err = ext4_encoding_init(sb, es);
5271 if (err)
5272 goto failed_mount;
5273
5274 err = ext4_check_journal_data_mode(sb);
5275 if (err)
5276 goto failed_mount;
5277
5278 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5279 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5280
5281 /* i_version is always enabled now */
5282 sb->s_flags |= SB_I_VERSION;
5283
5284 err = ext4_check_feature_compatibility(sb, es, silent);
5285 if (err)
5286 goto failed_mount;
5287
5288 err = ext4_block_group_meta_init(sb, silent);
5289 if (err)
5290 goto failed_mount;
5291
5292 ext4_hash_info_init(sb);
5293
5294 err = ext4_handle_clustersize(sb);
5295 if (err)
5296 goto failed_mount;
5297
5298 err = ext4_check_geometry(sb, es);
5299 if (err)
5300 goto failed_mount;
5301
5302 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5303 spin_lock_init(&sbi->s_error_lock);
5304 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5305
5306 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5307 if (err)
5308 goto failed_mount3;
5309
5310 err = ext4_es_register_shrinker(sbi);
5311 if (err)
5312 goto failed_mount3;
5313
5314 sbi->s_stripe = ext4_get_stripe_size(sbi);
5315 /*
5316 * It's hard to get stripe aligned blocks if stripe is not aligned with
5317 * cluster, just disable stripe and alert user to simpfy code and avoid
5318 * stripe aligned allocation which will rarely successes.
5319 */
5320 if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5321 sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5322 ext4_msg(sb, KERN_WARNING,
5323 "stripe (%lu) is not aligned with cluster size (%u), "
5324 "stripe is disabled",
5325 sbi->s_stripe, sbi->s_cluster_ratio);
5326 sbi->s_stripe = 0;
5327 }
5328 sbi->s_extent_max_zeroout_kb = 32;
5329
5330 /*
5331 * set up enough so that it can read an inode
5332 */
5333 sb->s_op = &ext4_sops;
5334 sb->s_export_op = &ext4_export_ops;
5335 sb->s_xattr = ext4_xattr_handlers;
5336 #ifdef CONFIG_FS_ENCRYPTION
5337 sb->s_cop = &ext4_cryptops;
5338 #endif
5339 #ifdef CONFIG_FS_VERITY
5340 sb->s_vop = &ext4_verityops;
5341 #endif
5342 #ifdef CONFIG_QUOTA
5343 sb->dq_op = &ext4_quota_operations;
5344 if (ext4_has_feature_quota(sb))
5345 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5346 else
5347 sb->s_qcop = &ext4_qctl_operations;
5348 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5349 #endif
5350 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5351
5352 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5353 mutex_init(&sbi->s_orphan_lock);
5354
5355 ext4_fast_commit_init(sb);
5356
5357 sb->s_root = NULL;
5358
5359 needs_recovery = (es->s_last_orphan != 0 ||
5360 ext4_has_feature_orphan_present(sb) ||
5361 ext4_has_feature_journal_needs_recovery(sb));
5362
5363 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5364 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5365 if (err)
5366 goto failed_mount3a;
5367 }
5368
5369 err = -EINVAL;
5370 /*
5371 * The first inode we look at is the journal inode. Don't try
5372 * root first: it may be modified in the journal!
5373 */
5374 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5375 err = ext4_load_and_init_journal(sb, es, ctx);
5376 if (err)
5377 goto failed_mount3a;
5378 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5379 ext4_has_feature_journal_needs_recovery(sb)) {
5380 ext4_msg(sb, KERN_ERR, "required journal recovery "
5381 "suppressed and not mounted read-only");
5382 goto failed_mount3a;
5383 } else {
5384 /* Nojournal mode, all journal mount options are illegal */
5385 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5386 ext4_msg(sb, KERN_ERR, "can't mount with "
5387 "journal_async_commit, fs mounted w/o journal");
5388 goto failed_mount3a;
5389 }
5390
5391 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5392 ext4_msg(sb, KERN_ERR, "can't mount with "
5393 "journal_checksum, fs mounted w/o journal");
5394 goto failed_mount3a;
5395 }
5396 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5397 ext4_msg(sb, KERN_ERR, "can't mount with "
5398 "commit=%lu, fs mounted w/o journal",
5399 sbi->s_commit_interval / HZ);
5400 goto failed_mount3a;
5401 }
5402 if (EXT4_MOUNT_DATA_FLAGS &
5403 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5404 ext4_msg(sb, KERN_ERR, "can't mount with "
5405 "data=, fs mounted w/o journal");
5406 goto failed_mount3a;
5407 }
5408 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5409 clear_opt(sb, JOURNAL_CHECKSUM);
5410 clear_opt(sb, DATA_FLAGS);
5411 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5412 sbi->s_journal = NULL;
5413 needs_recovery = 0;
5414 }
5415
5416 if (!test_opt(sb, NO_MBCACHE)) {
5417 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5418 if (!sbi->s_ea_block_cache) {
5419 ext4_msg(sb, KERN_ERR,
5420 "Failed to create ea_block_cache");
5421 err = -EINVAL;
5422 goto failed_mount_wq;
5423 }
5424
5425 if (ext4_has_feature_ea_inode(sb)) {
5426 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5427 if (!sbi->s_ea_inode_cache) {
5428 ext4_msg(sb, KERN_ERR,
5429 "Failed to create ea_inode_cache");
5430 err = -EINVAL;
5431 goto failed_mount_wq;
5432 }
5433 }
5434 }
5435
5436 /*
5437 * Get the # of file system overhead blocks from the
5438 * superblock if present.
5439 */
5440 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5441 /* ignore the precalculated value if it is ridiculous */
5442 if (sbi->s_overhead > ext4_blocks_count(es))
5443 sbi->s_overhead = 0;
5444 /*
5445 * If the bigalloc feature is not enabled recalculating the
5446 * overhead doesn't take long, so we might as well just redo
5447 * it to make sure we are using the correct value.
5448 */
5449 if (!ext4_has_feature_bigalloc(sb))
5450 sbi->s_overhead = 0;
5451 if (sbi->s_overhead == 0) {
5452 err = ext4_calculate_overhead(sb);
5453 if (err)
5454 goto failed_mount_wq;
5455 }
5456
5457 /*
5458 * The maximum number of concurrent works can be high and
5459 * concurrency isn't really necessary. Limit it to 1.
5460 */
5461 EXT4_SB(sb)->rsv_conversion_wq =
5462 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5463 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5464 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5465 err = -ENOMEM;
5466 goto failed_mount4;
5467 }
5468
5469 /*
5470 * The jbd2_journal_load will have done any necessary log recovery,
5471 * so we can safely mount the rest of the filesystem now.
5472 */
5473
5474 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5475 if (IS_ERR(root)) {
5476 ext4_msg(sb, KERN_ERR, "get root inode failed");
5477 err = PTR_ERR(root);
5478 root = NULL;
5479 goto failed_mount4;
5480 }
5481 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5482 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5483 iput(root);
5484 err = -EFSCORRUPTED;
5485 goto failed_mount4;
5486 }
5487
5488 sb->s_root = d_make_root(root);
5489 if (!sb->s_root) {
5490 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5491 err = -ENOMEM;
5492 goto failed_mount4;
5493 }
5494
5495 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5496 if (err == -EROFS) {
5497 sb->s_flags |= SB_RDONLY;
5498 } else if (err)
5499 goto failed_mount4a;
5500
5501 ext4_set_resv_clusters(sb);
5502
5503 if (test_opt(sb, BLOCK_VALIDITY)) {
5504 err = ext4_setup_system_zone(sb);
5505 if (err) {
5506 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5507 "zone (%d)", err);
5508 goto failed_mount4a;
5509 }
5510 }
5511 ext4_fc_replay_cleanup(sb);
5512
5513 ext4_ext_init(sb);
5514
5515 /*
5516 * Enable optimize_scan if number of groups is > threshold. This can be
5517 * turned off by passing "mb_optimize_scan=0". This can also be
5518 * turned on forcefully by passing "mb_optimize_scan=1".
5519 */
5520 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5521 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5522 set_opt2(sb, MB_OPTIMIZE_SCAN);
5523 else
5524 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5525 }
5526
5527 err = ext4_mb_init(sb);
5528 if (err) {
5529 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5530 err);
5531 goto failed_mount5;
5532 }
5533
5534 /*
5535 * We can only set up the journal commit callback once
5536 * mballoc is initialized
5537 */
5538 if (sbi->s_journal)
5539 sbi->s_journal->j_commit_callback =
5540 ext4_journal_commit_callback;
5541
5542 err = ext4_percpu_param_init(sbi);
5543 if (err)
5544 goto failed_mount6;
5545
5546 if (ext4_has_feature_flex_bg(sb))
5547 if (!ext4_fill_flex_info(sb)) {
5548 ext4_msg(sb, KERN_ERR,
5549 "unable to initialize "
5550 "flex_bg meta info!");
5551 err = -ENOMEM;
5552 goto failed_mount6;
5553 }
5554
5555 err = ext4_register_li_request(sb, first_not_zeroed);
5556 if (err)
5557 goto failed_mount6;
5558
5559 err = ext4_register_sysfs(sb);
5560 if (err)
5561 goto failed_mount7;
5562
5563 err = ext4_init_orphan_info(sb);
5564 if (err)
5565 goto failed_mount8;
5566 #ifdef CONFIG_QUOTA
5567 /* Enable quota usage during mount. */
5568 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5569 err = ext4_enable_quotas(sb);
5570 if (err)
5571 goto failed_mount9;
5572 }
5573 #endif /* CONFIG_QUOTA */
5574
5575 /*
5576 * Save the original bdev mapping's wb_err value which could be
5577 * used to detect the metadata async write error.
5578 */
5579 spin_lock_init(&sbi->s_bdev_wb_lock);
5580 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5581 &sbi->s_bdev_wb_err);
5582 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5583 ext4_orphan_cleanup(sb, es);
5584 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5585 /*
5586 * Update the checksum after updating free space/inode counters and
5587 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5588 * checksum in the buffer cache until it is written out and
5589 * e2fsprogs programs trying to open a file system immediately
5590 * after it is mounted can fail.
5591 */
5592 ext4_superblock_csum_set(sb);
5593 if (needs_recovery) {
5594 ext4_msg(sb, KERN_INFO, "recovery complete");
5595 err = ext4_mark_recovery_complete(sb, es);
5596 if (err)
5597 goto failed_mount10;
5598 }
5599
5600 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5601 ext4_msg(sb, KERN_WARNING,
5602 "mounting with \"discard\" option, but the device does not support discard");
5603
5604 if (es->s_error_count)
5605 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5606
5607 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5608 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5609 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5610 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5611 atomic_set(&sbi->s_warning_count, 0);
5612 atomic_set(&sbi->s_msg_count, 0);
5613
5614 return 0;
5615
5616 failed_mount10:
5617 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5618 failed_mount9: __maybe_unused
5619 ext4_release_orphan_info(sb);
5620 failed_mount8:
5621 ext4_unregister_sysfs(sb);
5622 kobject_put(&sbi->s_kobj);
5623 failed_mount7:
5624 ext4_unregister_li_request(sb);
5625 failed_mount6:
5626 ext4_mb_release(sb);
5627 ext4_flex_groups_free(sbi);
5628 ext4_percpu_param_destroy(sbi);
5629 failed_mount5:
5630 ext4_ext_release(sb);
5631 ext4_release_system_zone(sb);
5632 failed_mount4a:
5633 dput(sb->s_root);
5634 sb->s_root = NULL;
5635 failed_mount4:
5636 ext4_msg(sb, KERN_ERR, "mount failed");
5637 if (EXT4_SB(sb)->rsv_conversion_wq)
5638 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5639 failed_mount_wq:
5640 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5641 sbi->s_ea_inode_cache = NULL;
5642
5643 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5644 sbi->s_ea_block_cache = NULL;
5645
5646 if (sbi->s_journal) {
5647 /* flush s_sb_upd_work before journal destroy. */
5648 flush_work(&sbi->s_sb_upd_work);
5649 jbd2_journal_destroy(sbi->s_journal);
5650 sbi->s_journal = NULL;
5651 }
5652 failed_mount3a:
5653 ext4_es_unregister_shrinker(sbi);
5654 failed_mount3:
5655 /* flush s_sb_upd_work before sbi destroy */
5656 flush_work(&sbi->s_sb_upd_work);
5657 del_timer_sync(&sbi->s_err_report);
5658 ext4_stop_mmpd(sbi);
5659 ext4_group_desc_free(sbi);
5660 failed_mount:
5661 if (sbi->s_chksum_driver)
5662 crypto_free_shash(sbi->s_chksum_driver);
5663
5664 #if IS_ENABLED(CONFIG_UNICODE)
5665 utf8_unload(sb->s_encoding);
5666 #endif
5667
5668 #ifdef CONFIG_QUOTA
5669 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5670 kfree(get_qf_name(sb, sbi, i));
5671 #endif
5672 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5673 brelse(sbi->s_sbh);
5674 if (sbi->s_journal_bdev) {
5675 invalidate_bdev(sbi->s_journal_bdev);
5676 blkdev_put(sbi->s_journal_bdev, sb);
5677 }
5678 out_fail:
5679 invalidate_bdev(sb->s_bdev);
5680 sb->s_fs_info = NULL;
5681 return err;
5682 }
5683
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5684 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5685 {
5686 struct ext4_fs_context *ctx = fc->fs_private;
5687 struct ext4_sb_info *sbi;
5688 const char *descr;
5689 int ret;
5690
5691 sbi = ext4_alloc_sbi(sb);
5692 if (!sbi)
5693 return -ENOMEM;
5694
5695 fc->s_fs_info = sbi;
5696
5697 /* Cleanup superblock name */
5698 strreplace(sb->s_id, '/', '!');
5699
5700 sbi->s_sb_block = 1; /* Default super block location */
5701 if (ctx->spec & EXT4_SPEC_s_sb_block)
5702 sbi->s_sb_block = ctx->s_sb_block;
5703
5704 ret = __ext4_fill_super(fc, sb);
5705 if (ret < 0)
5706 goto free_sbi;
5707
5708 if (sbi->s_journal) {
5709 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5710 descr = " journalled data mode";
5711 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5712 descr = " ordered data mode";
5713 else
5714 descr = " writeback data mode";
5715 } else
5716 descr = "out journal";
5717
5718 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5719 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5720 "Quota mode: %s.", &sb->s_uuid,
5721 sb_rdonly(sb) ? "ro" : "r/w", descr,
5722 ext4_quota_mode(sb));
5723
5724 /* Update the s_overhead_clusters if necessary */
5725 ext4_update_overhead(sb, false);
5726 return 0;
5727
5728 free_sbi:
5729 ext4_free_sbi(sbi);
5730 fc->s_fs_info = NULL;
5731 return ret;
5732 }
5733
ext4_get_tree(struct fs_context * fc)5734 static int ext4_get_tree(struct fs_context *fc)
5735 {
5736 return get_tree_bdev(fc, ext4_fill_super);
5737 }
5738
5739 /*
5740 * Setup any per-fs journal parameters now. We'll do this both on
5741 * initial mount, once the journal has been initialised but before we've
5742 * done any recovery; and again on any subsequent remount.
5743 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5744 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5745 {
5746 struct ext4_sb_info *sbi = EXT4_SB(sb);
5747
5748 journal->j_commit_interval = sbi->s_commit_interval;
5749 journal->j_min_batch_time = sbi->s_min_batch_time;
5750 journal->j_max_batch_time = sbi->s_max_batch_time;
5751 ext4_fc_init(sb, journal);
5752
5753 write_lock(&journal->j_state_lock);
5754 if (test_opt(sb, BARRIER))
5755 journal->j_flags |= JBD2_BARRIER;
5756 else
5757 journal->j_flags &= ~JBD2_BARRIER;
5758 if (test_opt(sb, DATA_ERR_ABORT))
5759 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5760 else
5761 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5762 /*
5763 * Always enable journal cycle record option, letting the journal
5764 * records log transactions continuously between each mount.
5765 */
5766 journal->j_flags |= JBD2_CYCLE_RECORD;
5767 write_unlock(&journal->j_state_lock);
5768 }
5769
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5770 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5771 unsigned int journal_inum)
5772 {
5773 struct inode *journal_inode;
5774
5775 /*
5776 * Test for the existence of a valid inode on disk. Bad things
5777 * happen if we iget() an unused inode, as the subsequent iput()
5778 * will try to delete it.
5779 */
5780 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5781 if (IS_ERR(journal_inode)) {
5782 ext4_msg(sb, KERN_ERR, "no journal found");
5783 return ERR_CAST(journal_inode);
5784 }
5785 if (!journal_inode->i_nlink) {
5786 make_bad_inode(journal_inode);
5787 iput(journal_inode);
5788 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5789 return ERR_PTR(-EFSCORRUPTED);
5790 }
5791 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5792 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5793 iput(journal_inode);
5794 return ERR_PTR(-EFSCORRUPTED);
5795 }
5796
5797 ext4_debug("Journal inode found at %p: %lld bytes\n",
5798 journal_inode, journal_inode->i_size);
5799 return journal_inode;
5800 }
5801
ext4_journal_bmap(journal_t * journal,sector_t * block)5802 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5803 {
5804 struct ext4_map_blocks map;
5805 int ret;
5806
5807 if (journal->j_inode == NULL)
5808 return 0;
5809
5810 map.m_lblk = *block;
5811 map.m_len = 1;
5812 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5813 if (ret <= 0) {
5814 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5815 "journal bmap failed: block %llu ret %d\n",
5816 *block, ret);
5817 jbd2_journal_abort(journal, ret ? ret : -EIO);
5818 return ret;
5819 }
5820 *block = map.m_pblk;
5821 return 0;
5822 }
5823
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5824 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5825 unsigned int journal_inum)
5826 {
5827 struct inode *journal_inode;
5828 journal_t *journal;
5829
5830 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5831 if (IS_ERR(journal_inode))
5832 return ERR_CAST(journal_inode);
5833
5834 journal = jbd2_journal_init_inode(journal_inode);
5835 if (IS_ERR(journal)) {
5836 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5837 iput(journal_inode);
5838 return ERR_CAST(journal);
5839 }
5840 journal->j_private = sb;
5841 journal->j_bmap = ext4_journal_bmap;
5842 ext4_init_journal_params(sb, journal);
5843 return journal;
5844 }
5845
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5846 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5847 dev_t j_dev, ext4_fsblk_t *j_start,
5848 ext4_fsblk_t *j_len)
5849 {
5850 struct buffer_head *bh;
5851 struct block_device *bdev;
5852 int hblock, blocksize;
5853 ext4_fsblk_t sb_block;
5854 unsigned long offset;
5855 struct ext4_super_block *es;
5856 int errno;
5857
5858 /* see get_tree_bdev why this is needed and safe */
5859 up_write(&sb->s_umount);
5860 bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5861 &fs_holder_ops);
5862 down_write(&sb->s_umount);
5863 if (IS_ERR(bdev)) {
5864 ext4_msg(sb, KERN_ERR,
5865 "failed to open journal device unknown-block(%u,%u) %ld",
5866 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5867 return ERR_CAST(bdev);
5868 }
5869
5870 blocksize = sb->s_blocksize;
5871 hblock = bdev_logical_block_size(bdev);
5872 if (blocksize < hblock) {
5873 ext4_msg(sb, KERN_ERR,
5874 "blocksize too small for journal device");
5875 errno = -EINVAL;
5876 goto out_bdev;
5877 }
5878
5879 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5880 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5881 set_blocksize(bdev, blocksize);
5882 bh = __bread(bdev, sb_block, blocksize);
5883 if (!bh) {
5884 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5885 "external journal");
5886 errno = -EINVAL;
5887 goto out_bdev;
5888 }
5889
5890 es = (struct ext4_super_block *) (bh->b_data + offset);
5891 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5892 !(le32_to_cpu(es->s_feature_incompat) &
5893 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5894 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5895 errno = -EFSCORRUPTED;
5896 goto out_bh;
5897 }
5898
5899 if ((le32_to_cpu(es->s_feature_ro_compat) &
5900 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5901 es->s_checksum != ext4_superblock_csum(sb, es)) {
5902 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5903 errno = -EFSCORRUPTED;
5904 goto out_bh;
5905 }
5906
5907 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5908 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5909 errno = -EFSCORRUPTED;
5910 goto out_bh;
5911 }
5912
5913 *j_start = sb_block + 1;
5914 *j_len = ext4_blocks_count(es);
5915 brelse(bh);
5916 return bdev;
5917
5918 out_bh:
5919 brelse(bh);
5920 out_bdev:
5921 blkdev_put(bdev, sb);
5922 return ERR_PTR(errno);
5923 }
5924
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5925 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5926 dev_t j_dev)
5927 {
5928 journal_t *journal;
5929 ext4_fsblk_t j_start;
5930 ext4_fsblk_t j_len;
5931 struct block_device *journal_bdev;
5932 int errno = 0;
5933
5934 journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5935 if (IS_ERR(journal_bdev))
5936 return ERR_CAST(journal_bdev);
5937
5938 journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5939 j_len, sb->s_blocksize);
5940 if (IS_ERR(journal)) {
5941 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5942 errno = PTR_ERR(journal);
5943 goto out_bdev;
5944 }
5945 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5946 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5947 "user (unsupported) - %d",
5948 be32_to_cpu(journal->j_superblock->s_nr_users));
5949 errno = -EINVAL;
5950 goto out_journal;
5951 }
5952 journal->j_private = sb;
5953 EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5954 ext4_init_journal_params(sb, journal);
5955 return journal;
5956
5957 out_journal:
5958 jbd2_journal_destroy(journal);
5959 out_bdev:
5960 blkdev_put(journal_bdev, sb);
5961 return ERR_PTR(errno);
5962 }
5963
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5964 static int ext4_load_journal(struct super_block *sb,
5965 struct ext4_super_block *es,
5966 unsigned long journal_devnum)
5967 {
5968 journal_t *journal;
5969 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5970 dev_t journal_dev;
5971 int err = 0;
5972 int really_read_only;
5973 int journal_dev_ro;
5974
5975 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5976 return -EFSCORRUPTED;
5977
5978 if (journal_devnum &&
5979 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5980 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5981 "numbers have changed");
5982 journal_dev = new_decode_dev(journal_devnum);
5983 } else
5984 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5985
5986 if (journal_inum && journal_dev) {
5987 ext4_msg(sb, KERN_ERR,
5988 "filesystem has both journal inode and journal device!");
5989 return -EINVAL;
5990 }
5991
5992 if (journal_inum) {
5993 journal = ext4_open_inode_journal(sb, journal_inum);
5994 if (IS_ERR(journal))
5995 return PTR_ERR(journal);
5996 } else {
5997 journal = ext4_open_dev_journal(sb, journal_dev);
5998 if (IS_ERR(journal))
5999 return PTR_ERR(journal);
6000 }
6001
6002 journal_dev_ro = bdev_read_only(journal->j_dev);
6003 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6004
6005 if (journal_dev_ro && !sb_rdonly(sb)) {
6006 ext4_msg(sb, KERN_ERR,
6007 "journal device read-only, try mounting with '-o ro'");
6008 err = -EROFS;
6009 goto err_out;
6010 }
6011
6012 /*
6013 * Are we loading a blank journal or performing recovery after a
6014 * crash? For recovery, we need to check in advance whether we
6015 * can get read-write access to the device.
6016 */
6017 if (ext4_has_feature_journal_needs_recovery(sb)) {
6018 if (sb_rdonly(sb)) {
6019 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6020 "required on readonly filesystem");
6021 if (really_read_only) {
6022 ext4_msg(sb, KERN_ERR, "write access "
6023 "unavailable, cannot proceed "
6024 "(try mounting with noload)");
6025 err = -EROFS;
6026 goto err_out;
6027 }
6028 ext4_msg(sb, KERN_INFO, "write access will "
6029 "be enabled during recovery");
6030 }
6031 }
6032
6033 if (!(journal->j_flags & JBD2_BARRIER))
6034 ext4_msg(sb, KERN_INFO, "barriers disabled");
6035
6036 if (!ext4_has_feature_journal_needs_recovery(sb))
6037 err = jbd2_journal_wipe(journal, !really_read_only);
6038 if (!err) {
6039 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6040 __le16 orig_state;
6041 bool changed = false;
6042
6043 if (save)
6044 memcpy(save, ((char *) es) +
6045 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6046 err = jbd2_journal_load(journal);
6047 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6048 save, EXT4_S_ERR_LEN)) {
6049 memcpy(((char *) es) + EXT4_S_ERR_START,
6050 save, EXT4_S_ERR_LEN);
6051 changed = true;
6052 }
6053 kfree(save);
6054 orig_state = es->s_state;
6055 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6056 EXT4_ERROR_FS);
6057 if (orig_state != es->s_state)
6058 changed = true;
6059 /* Write out restored error information to the superblock */
6060 if (changed && !really_read_only) {
6061 int err2;
6062 err2 = ext4_commit_super(sb);
6063 err = err ? : err2;
6064 }
6065 }
6066
6067 if (err) {
6068 ext4_msg(sb, KERN_ERR, "error loading journal");
6069 goto err_out;
6070 }
6071
6072 EXT4_SB(sb)->s_journal = journal;
6073 err = ext4_clear_journal_err(sb, es);
6074 if (err) {
6075 EXT4_SB(sb)->s_journal = NULL;
6076 jbd2_journal_destroy(journal);
6077 return err;
6078 }
6079
6080 if (!really_read_only && journal_devnum &&
6081 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6082 es->s_journal_dev = cpu_to_le32(journal_devnum);
6083 ext4_commit_super(sb);
6084 }
6085 if (!really_read_only && journal_inum &&
6086 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6087 es->s_journal_inum = cpu_to_le32(journal_inum);
6088 ext4_commit_super(sb);
6089 }
6090
6091 return 0;
6092
6093 err_out:
6094 jbd2_journal_destroy(journal);
6095 return err;
6096 }
6097
6098 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6099 static void ext4_update_super(struct super_block *sb)
6100 {
6101 struct ext4_sb_info *sbi = EXT4_SB(sb);
6102 struct ext4_super_block *es = sbi->s_es;
6103 struct buffer_head *sbh = sbi->s_sbh;
6104
6105 lock_buffer(sbh);
6106 /*
6107 * If the file system is mounted read-only, don't update the
6108 * superblock write time. This avoids updating the superblock
6109 * write time when we are mounting the root file system
6110 * read/only but we need to replay the journal; at that point,
6111 * for people who are east of GMT and who make their clock
6112 * tick in localtime for Windows bug-for-bug compatibility,
6113 * the clock is set in the future, and this will cause e2fsck
6114 * to complain and force a full file system check.
6115 */
6116 if (!sb_rdonly(sb))
6117 ext4_update_tstamp(es, s_wtime);
6118 es->s_kbytes_written =
6119 cpu_to_le64(sbi->s_kbytes_written +
6120 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6121 sbi->s_sectors_written_start) >> 1));
6122 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6123 ext4_free_blocks_count_set(es,
6124 EXT4_C2B(sbi, percpu_counter_sum_positive(
6125 &sbi->s_freeclusters_counter)));
6126 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6127 es->s_free_inodes_count =
6128 cpu_to_le32(percpu_counter_sum_positive(
6129 &sbi->s_freeinodes_counter));
6130 /* Copy error information to the on-disk superblock */
6131 spin_lock(&sbi->s_error_lock);
6132 if (sbi->s_add_error_count > 0) {
6133 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6134 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6135 __ext4_update_tstamp(&es->s_first_error_time,
6136 &es->s_first_error_time_hi,
6137 sbi->s_first_error_time);
6138 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6139 sizeof(es->s_first_error_func));
6140 es->s_first_error_line =
6141 cpu_to_le32(sbi->s_first_error_line);
6142 es->s_first_error_ino =
6143 cpu_to_le32(sbi->s_first_error_ino);
6144 es->s_first_error_block =
6145 cpu_to_le64(sbi->s_first_error_block);
6146 es->s_first_error_errcode =
6147 ext4_errno_to_code(sbi->s_first_error_code);
6148 }
6149 __ext4_update_tstamp(&es->s_last_error_time,
6150 &es->s_last_error_time_hi,
6151 sbi->s_last_error_time);
6152 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6153 sizeof(es->s_last_error_func));
6154 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6155 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6156 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6157 es->s_last_error_errcode =
6158 ext4_errno_to_code(sbi->s_last_error_code);
6159 /*
6160 * Start the daily error reporting function if it hasn't been
6161 * started already
6162 */
6163 if (!es->s_error_count)
6164 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6165 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6166 sbi->s_add_error_count = 0;
6167 }
6168 spin_unlock(&sbi->s_error_lock);
6169
6170 ext4_superblock_csum_set(sb);
6171 unlock_buffer(sbh);
6172 }
6173
ext4_commit_super(struct super_block * sb)6174 static int ext4_commit_super(struct super_block *sb)
6175 {
6176 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6177
6178 if (!sbh)
6179 return -EINVAL;
6180 if (block_device_ejected(sb))
6181 return -ENODEV;
6182
6183 ext4_update_super(sb);
6184
6185 lock_buffer(sbh);
6186 /* Buffer got discarded which means block device got invalidated */
6187 if (!buffer_mapped(sbh)) {
6188 unlock_buffer(sbh);
6189 return -EIO;
6190 }
6191
6192 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6193 /*
6194 * Oh, dear. A previous attempt to write the
6195 * superblock failed. This could happen because the
6196 * USB device was yanked out. Or it could happen to
6197 * be a transient write error and maybe the block will
6198 * be remapped. Nothing we can do but to retry the
6199 * write and hope for the best.
6200 */
6201 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6202 "superblock detected");
6203 clear_buffer_write_io_error(sbh);
6204 set_buffer_uptodate(sbh);
6205 }
6206 get_bh(sbh);
6207 /* Clear potential dirty bit if it was journalled update */
6208 clear_buffer_dirty(sbh);
6209 sbh->b_end_io = end_buffer_write_sync;
6210 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6211 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6212 wait_on_buffer(sbh);
6213 if (buffer_write_io_error(sbh)) {
6214 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6215 "superblock");
6216 clear_buffer_write_io_error(sbh);
6217 set_buffer_uptodate(sbh);
6218 return -EIO;
6219 }
6220 return 0;
6221 }
6222
6223 /*
6224 * Have we just finished recovery? If so, and if we are mounting (or
6225 * remounting) the filesystem readonly, then we will end up with a
6226 * consistent fs on disk. Record that fact.
6227 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6228 static int ext4_mark_recovery_complete(struct super_block *sb,
6229 struct ext4_super_block *es)
6230 {
6231 int err;
6232 journal_t *journal = EXT4_SB(sb)->s_journal;
6233
6234 if (!ext4_has_feature_journal(sb)) {
6235 if (journal != NULL) {
6236 ext4_error(sb, "Journal got removed while the fs was "
6237 "mounted!");
6238 return -EFSCORRUPTED;
6239 }
6240 return 0;
6241 }
6242 jbd2_journal_lock_updates(journal);
6243 err = jbd2_journal_flush(journal, 0);
6244 if (err < 0)
6245 goto out;
6246
6247 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6248 ext4_has_feature_orphan_present(sb))) {
6249 if (!ext4_orphan_file_empty(sb)) {
6250 ext4_error(sb, "Orphan file not empty on read-only fs.");
6251 err = -EFSCORRUPTED;
6252 goto out;
6253 }
6254 ext4_clear_feature_journal_needs_recovery(sb);
6255 ext4_clear_feature_orphan_present(sb);
6256 ext4_commit_super(sb);
6257 }
6258 out:
6259 jbd2_journal_unlock_updates(journal);
6260 return err;
6261 }
6262
6263 /*
6264 * If we are mounting (or read-write remounting) a filesystem whose journal
6265 * has recorded an error from a previous lifetime, move that error to the
6266 * main filesystem now.
6267 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6268 static int ext4_clear_journal_err(struct super_block *sb,
6269 struct ext4_super_block *es)
6270 {
6271 journal_t *journal;
6272 int j_errno;
6273 const char *errstr;
6274
6275 if (!ext4_has_feature_journal(sb)) {
6276 ext4_error(sb, "Journal got removed while the fs was mounted!");
6277 return -EFSCORRUPTED;
6278 }
6279
6280 journal = EXT4_SB(sb)->s_journal;
6281
6282 /*
6283 * Now check for any error status which may have been recorded in the
6284 * journal by a prior ext4_error() or ext4_abort()
6285 */
6286
6287 j_errno = jbd2_journal_errno(journal);
6288 if (j_errno) {
6289 char nbuf[16];
6290
6291 errstr = ext4_decode_error(sb, j_errno, nbuf);
6292 ext4_warning(sb, "Filesystem error recorded "
6293 "from previous mount: %s", errstr);
6294
6295 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6296 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6297 j_errno = ext4_commit_super(sb);
6298 if (j_errno)
6299 return j_errno;
6300 ext4_warning(sb, "Marked fs in need of filesystem check.");
6301
6302 jbd2_journal_clear_err(journal);
6303 jbd2_journal_update_sb_errno(journal);
6304 }
6305 return 0;
6306 }
6307
6308 /*
6309 * Force the running and committing transactions to commit,
6310 * and wait on the commit.
6311 */
ext4_force_commit(struct super_block * sb)6312 int ext4_force_commit(struct super_block *sb)
6313 {
6314 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6315 }
6316
ext4_sync_fs(struct super_block * sb,int wait)6317 static int ext4_sync_fs(struct super_block *sb, int wait)
6318 {
6319 int ret = 0;
6320 tid_t target;
6321 bool needs_barrier = false;
6322 struct ext4_sb_info *sbi = EXT4_SB(sb);
6323
6324 if (unlikely(ext4_forced_shutdown(sb)))
6325 return 0;
6326
6327 trace_ext4_sync_fs(sb, wait);
6328 flush_workqueue(sbi->rsv_conversion_wq);
6329 /*
6330 * Writeback quota in non-journalled quota case - journalled quota has
6331 * no dirty dquots
6332 */
6333 dquot_writeback_dquots(sb, -1);
6334 /*
6335 * Data writeback is possible w/o journal transaction, so barrier must
6336 * being sent at the end of the function. But we can skip it if
6337 * transaction_commit will do it for us.
6338 */
6339 if (sbi->s_journal) {
6340 target = jbd2_get_latest_transaction(sbi->s_journal);
6341 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6342 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6343 needs_barrier = true;
6344
6345 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6346 if (wait)
6347 ret = jbd2_log_wait_commit(sbi->s_journal,
6348 target);
6349 }
6350 } else if (wait && test_opt(sb, BARRIER))
6351 needs_barrier = true;
6352 if (needs_barrier) {
6353 int err;
6354 err = blkdev_issue_flush(sb->s_bdev);
6355 if (!ret)
6356 ret = err;
6357 }
6358
6359 return ret;
6360 }
6361
6362 /*
6363 * LVM calls this function before a (read-only) snapshot is created. This
6364 * gives us a chance to flush the journal completely and mark the fs clean.
6365 *
6366 * Note that only this function cannot bring a filesystem to be in a clean
6367 * state independently. It relies on upper layer to stop all data & metadata
6368 * modifications.
6369 */
ext4_freeze(struct super_block * sb)6370 static int ext4_freeze(struct super_block *sb)
6371 {
6372 int error = 0;
6373 journal_t *journal = EXT4_SB(sb)->s_journal;
6374
6375 if (journal) {
6376 /* Now we set up the journal barrier. */
6377 jbd2_journal_lock_updates(journal);
6378
6379 /*
6380 * Don't clear the needs_recovery flag if we failed to
6381 * flush the journal.
6382 */
6383 error = jbd2_journal_flush(journal, 0);
6384 if (error < 0)
6385 goto out;
6386
6387 /* Journal blocked and flushed, clear needs_recovery flag. */
6388 ext4_clear_feature_journal_needs_recovery(sb);
6389 if (ext4_orphan_file_empty(sb))
6390 ext4_clear_feature_orphan_present(sb);
6391 }
6392
6393 error = ext4_commit_super(sb);
6394 out:
6395 if (journal)
6396 /* we rely on upper layer to stop further updates */
6397 jbd2_journal_unlock_updates(journal);
6398 return error;
6399 }
6400
6401 /*
6402 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6403 * flag here, even though the filesystem is not technically dirty yet.
6404 */
ext4_unfreeze(struct super_block * sb)6405 static int ext4_unfreeze(struct super_block *sb)
6406 {
6407 if (ext4_forced_shutdown(sb))
6408 return 0;
6409
6410 if (EXT4_SB(sb)->s_journal) {
6411 /* Reset the needs_recovery flag before the fs is unlocked. */
6412 ext4_set_feature_journal_needs_recovery(sb);
6413 if (ext4_has_feature_orphan_file(sb))
6414 ext4_set_feature_orphan_present(sb);
6415 }
6416
6417 ext4_commit_super(sb);
6418 return 0;
6419 }
6420
6421 /*
6422 * Structure to save mount options for ext4_remount's benefit
6423 */
6424 struct ext4_mount_options {
6425 unsigned long s_mount_opt;
6426 unsigned long s_mount_opt2;
6427 kuid_t s_resuid;
6428 kgid_t s_resgid;
6429 unsigned long s_commit_interval;
6430 u32 s_min_batch_time, s_max_batch_time;
6431 #ifdef CONFIG_QUOTA
6432 int s_jquota_fmt;
6433 char *s_qf_names[EXT4_MAXQUOTAS];
6434 #endif
6435 };
6436
__ext4_remount(struct fs_context * fc,struct super_block * sb)6437 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6438 {
6439 struct ext4_fs_context *ctx = fc->fs_private;
6440 struct ext4_super_block *es;
6441 struct ext4_sb_info *sbi = EXT4_SB(sb);
6442 unsigned long old_sb_flags;
6443 struct ext4_mount_options old_opts;
6444 ext4_group_t g;
6445 int err = 0;
6446 int alloc_ctx;
6447 #ifdef CONFIG_QUOTA
6448 int enable_quota = 0;
6449 int i, j;
6450 char *to_free[EXT4_MAXQUOTAS];
6451 #endif
6452
6453
6454 /* Store the original options */
6455 old_sb_flags = sb->s_flags;
6456 old_opts.s_mount_opt = sbi->s_mount_opt;
6457 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6458 old_opts.s_resuid = sbi->s_resuid;
6459 old_opts.s_resgid = sbi->s_resgid;
6460 old_opts.s_commit_interval = sbi->s_commit_interval;
6461 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6462 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6463 #ifdef CONFIG_QUOTA
6464 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6465 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6466 if (sbi->s_qf_names[i]) {
6467 char *qf_name = get_qf_name(sb, sbi, i);
6468
6469 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6470 if (!old_opts.s_qf_names[i]) {
6471 for (j = 0; j < i; j++)
6472 kfree(old_opts.s_qf_names[j]);
6473 return -ENOMEM;
6474 }
6475 } else
6476 old_opts.s_qf_names[i] = NULL;
6477 #endif
6478 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6479 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6480 ctx->journal_ioprio =
6481 sbi->s_journal->j_task->io_context->ioprio;
6482 else
6483 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6484
6485 }
6486
6487 /*
6488 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6489 * two calls to ext4_should_dioread_nolock() to return inconsistent
6490 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6491 * here s_writepages_rwsem to avoid race between writepages ops and
6492 * remount.
6493 */
6494 alloc_ctx = ext4_writepages_down_write(sb);
6495 ext4_apply_options(fc, sb);
6496 ext4_writepages_up_write(sb, alloc_ctx);
6497
6498 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6499 test_opt(sb, JOURNAL_CHECKSUM)) {
6500 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6501 "during remount not supported; ignoring");
6502 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6503 }
6504
6505 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6506 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6507 ext4_msg(sb, KERN_ERR, "can't mount with "
6508 "both data=journal and delalloc");
6509 err = -EINVAL;
6510 goto restore_opts;
6511 }
6512 if (test_opt(sb, DIOREAD_NOLOCK)) {
6513 ext4_msg(sb, KERN_ERR, "can't mount with "
6514 "both data=journal and dioread_nolock");
6515 err = -EINVAL;
6516 goto restore_opts;
6517 }
6518 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6519 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6520 ext4_msg(sb, KERN_ERR, "can't mount with "
6521 "journal_async_commit in data=ordered mode");
6522 err = -EINVAL;
6523 goto restore_opts;
6524 }
6525 }
6526
6527 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6528 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6529 err = -EINVAL;
6530 goto restore_opts;
6531 }
6532
6533 if (test_opt2(sb, ABORT))
6534 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6535
6536 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6537 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6538
6539 es = sbi->s_es;
6540
6541 if (sbi->s_journal) {
6542 ext4_init_journal_params(sb, sbi->s_journal);
6543 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6544 }
6545
6546 /* Flush outstanding errors before changing fs state */
6547 flush_work(&sbi->s_sb_upd_work);
6548
6549 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6550 if (ext4_forced_shutdown(sb)) {
6551 err = -EROFS;
6552 goto restore_opts;
6553 }
6554
6555 if (fc->sb_flags & SB_RDONLY) {
6556 err = sync_filesystem(sb);
6557 if (err < 0)
6558 goto restore_opts;
6559 err = dquot_suspend(sb, -1);
6560 if (err < 0)
6561 goto restore_opts;
6562
6563 /*
6564 * First of all, the unconditional stuff we have to do
6565 * to disable replay of the journal when we next remount
6566 */
6567 sb->s_flags |= SB_RDONLY;
6568
6569 /*
6570 * OK, test if we are remounting a valid rw partition
6571 * readonly, and if so set the rdonly flag and then
6572 * mark the partition as valid again.
6573 */
6574 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6575 (sbi->s_mount_state & EXT4_VALID_FS))
6576 es->s_state = cpu_to_le16(sbi->s_mount_state);
6577
6578 if (sbi->s_journal) {
6579 /*
6580 * We let remount-ro finish even if marking fs
6581 * as clean failed...
6582 */
6583 ext4_mark_recovery_complete(sb, es);
6584 }
6585 } else {
6586 /* Make sure we can mount this feature set readwrite */
6587 if (ext4_has_feature_readonly(sb) ||
6588 !ext4_feature_set_ok(sb, 0)) {
6589 err = -EROFS;
6590 goto restore_opts;
6591 }
6592 /*
6593 * Make sure the group descriptor checksums
6594 * are sane. If they aren't, refuse to remount r/w.
6595 */
6596 for (g = 0; g < sbi->s_groups_count; g++) {
6597 struct ext4_group_desc *gdp =
6598 ext4_get_group_desc(sb, g, NULL);
6599
6600 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6601 ext4_msg(sb, KERN_ERR,
6602 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6603 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6604 le16_to_cpu(gdp->bg_checksum));
6605 err = -EFSBADCRC;
6606 goto restore_opts;
6607 }
6608 }
6609
6610 /*
6611 * If we have an unprocessed orphan list hanging
6612 * around from a previously readonly bdev mount,
6613 * require a full umount/remount for now.
6614 */
6615 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6616 ext4_msg(sb, KERN_WARNING, "Couldn't "
6617 "remount RDWR because of unprocessed "
6618 "orphan inode list. Please "
6619 "umount/remount instead");
6620 err = -EINVAL;
6621 goto restore_opts;
6622 }
6623
6624 /*
6625 * Mounting a RDONLY partition read-write, so reread
6626 * and store the current valid flag. (It may have
6627 * been changed by e2fsck since we originally mounted
6628 * the partition.)
6629 */
6630 if (sbi->s_journal) {
6631 err = ext4_clear_journal_err(sb, es);
6632 if (err)
6633 goto restore_opts;
6634 }
6635 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6636 ~EXT4_FC_REPLAY);
6637
6638 err = ext4_setup_super(sb, es, 0);
6639 if (err)
6640 goto restore_opts;
6641
6642 sb->s_flags &= ~SB_RDONLY;
6643 if (ext4_has_feature_mmp(sb)) {
6644 err = ext4_multi_mount_protect(sb,
6645 le64_to_cpu(es->s_mmp_block));
6646 if (err)
6647 goto restore_opts;
6648 }
6649 #ifdef CONFIG_QUOTA
6650 enable_quota = 1;
6651 #endif
6652 }
6653 }
6654
6655 /*
6656 * Handle creation of system zone data early because it can fail.
6657 * Releasing of existing data is done when we are sure remount will
6658 * succeed.
6659 */
6660 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6661 err = ext4_setup_system_zone(sb);
6662 if (err)
6663 goto restore_opts;
6664 }
6665
6666 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6667 err = ext4_commit_super(sb);
6668 if (err)
6669 goto restore_opts;
6670 }
6671
6672 #ifdef CONFIG_QUOTA
6673 if (enable_quota) {
6674 if (sb_any_quota_suspended(sb))
6675 dquot_resume(sb, -1);
6676 else if (ext4_has_feature_quota(sb)) {
6677 err = ext4_enable_quotas(sb);
6678 if (err)
6679 goto restore_opts;
6680 }
6681 }
6682 /* Release old quota file names */
6683 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6684 kfree(old_opts.s_qf_names[i]);
6685 #endif
6686 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6687 ext4_release_system_zone(sb);
6688
6689 /*
6690 * Reinitialize lazy itable initialization thread based on
6691 * current settings
6692 */
6693 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6694 ext4_unregister_li_request(sb);
6695 else {
6696 ext4_group_t first_not_zeroed;
6697 first_not_zeroed = ext4_has_uninit_itable(sb);
6698 ext4_register_li_request(sb, first_not_zeroed);
6699 }
6700
6701 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6702 ext4_stop_mmpd(sbi);
6703
6704 return 0;
6705
6706 restore_opts:
6707 /*
6708 * If there was a failing r/w to ro transition, we may need to
6709 * re-enable quota
6710 */
6711 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6712 sb_any_quota_suspended(sb))
6713 dquot_resume(sb, -1);
6714
6715 alloc_ctx = ext4_writepages_down_write(sb);
6716 sb->s_flags = old_sb_flags;
6717 sbi->s_mount_opt = old_opts.s_mount_opt;
6718 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6719 sbi->s_resuid = old_opts.s_resuid;
6720 sbi->s_resgid = old_opts.s_resgid;
6721 sbi->s_commit_interval = old_opts.s_commit_interval;
6722 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6723 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6724 ext4_writepages_up_write(sb, alloc_ctx);
6725
6726 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6727 ext4_release_system_zone(sb);
6728 #ifdef CONFIG_QUOTA
6729 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6730 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6731 to_free[i] = get_qf_name(sb, sbi, i);
6732 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6733 }
6734 synchronize_rcu();
6735 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6736 kfree(to_free[i]);
6737 #endif
6738 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6739 ext4_stop_mmpd(sbi);
6740 return err;
6741 }
6742
ext4_reconfigure(struct fs_context * fc)6743 static int ext4_reconfigure(struct fs_context *fc)
6744 {
6745 struct super_block *sb = fc->root->d_sb;
6746 int ret;
6747
6748 fc->s_fs_info = EXT4_SB(sb);
6749
6750 ret = ext4_check_opt_consistency(fc, sb);
6751 if (ret < 0)
6752 return ret;
6753
6754 ret = __ext4_remount(fc, sb);
6755 if (ret < 0)
6756 return ret;
6757
6758 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6759 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6760 ext4_quota_mode(sb));
6761
6762 return 0;
6763 }
6764
6765 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6766 static int ext4_statfs_project(struct super_block *sb,
6767 kprojid_t projid, struct kstatfs *buf)
6768 {
6769 struct kqid qid;
6770 struct dquot *dquot;
6771 u64 limit;
6772 u64 curblock;
6773
6774 qid = make_kqid_projid(projid);
6775 dquot = dqget(sb, qid);
6776 if (IS_ERR(dquot))
6777 return PTR_ERR(dquot);
6778 spin_lock(&dquot->dq_dqb_lock);
6779
6780 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6781 dquot->dq_dqb.dqb_bhardlimit);
6782 limit >>= sb->s_blocksize_bits;
6783
6784 if (limit && buf->f_blocks > limit) {
6785 curblock = (dquot->dq_dqb.dqb_curspace +
6786 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6787 buf->f_blocks = limit;
6788 buf->f_bfree = buf->f_bavail =
6789 (buf->f_blocks > curblock) ?
6790 (buf->f_blocks - curblock) : 0;
6791 }
6792
6793 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6794 dquot->dq_dqb.dqb_ihardlimit);
6795 if (limit && buf->f_files > limit) {
6796 buf->f_files = limit;
6797 buf->f_ffree =
6798 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6799 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6800 }
6801
6802 spin_unlock(&dquot->dq_dqb_lock);
6803 dqput(dquot);
6804 return 0;
6805 }
6806 #endif
6807
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6808 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6809 {
6810 struct super_block *sb = dentry->d_sb;
6811 struct ext4_sb_info *sbi = EXT4_SB(sb);
6812 struct ext4_super_block *es = sbi->s_es;
6813 ext4_fsblk_t overhead = 0, resv_blocks;
6814 s64 bfree;
6815 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6816
6817 if (!test_opt(sb, MINIX_DF))
6818 overhead = sbi->s_overhead;
6819
6820 buf->f_type = EXT4_SUPER_MAGIC;
6821 buf->f_bsize = sb->s_blocksize;
6822 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6823 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6824 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6825 /* prevent underflow in case that few free space is available */
6826 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6827 buf->f_bavail = buf->f_bfree -
6828 (ext4_r_blocks_count(es) + resv_blocks);
6829 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6830 buf->f_bavail = 0;
6831 buf->f_files = le32_to_cpu(es->s_inodes_count);
6832 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6833 buf->f_namelen = EXT4_NAME_LEN;
6834 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6835
6836 #ifdef CONFIG_QUOTA
6837 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6838 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6839 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6840 #endif
6841 return 0;
6842 }
6843
6844
6845 #ifdef CONFIG_QUOTA
6846
6847 /*
6848 * Helper functions so that transaction is started before we acquire dqio_sem
6849 * to keep correct lock ordering of transaction > dqio_sem
6850 */
dquot_to_inode(struct dquot * dquot)6851 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6852 {
6853 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6854 }
6855
ext4_write_dquot(struct dquot * dquot)6856 static int ext4_write_dquot(struct dquot *dquot)
6857 {
6858 int ret, err;
6859 handle_t *handle;
6860 struct inode *inode;
6861
6862 inode = dquot_to_inode(dquot);
6863 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6864 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6865 if (IS_ERR(handle))
6866 return PTR_ERR(handle);
6867 ret = dquot_commit(dquot);
6868 err = ext4_journal_stop(handle);
6869 if (!ret)
6870 ret = err;
6871 return ret;
6872 }
6873
ext4_acquire_dquot(struct dquot * dquot)6874 static int ext4_acquire_dquot(struct dquot *dquot)
6875 {
6876 int ret, err;
6877 handle_t *handle;
6878
6879 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6880 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6881 if (IS_ERR(handle))
6882 return PTR_ERR(handle);
6883 ret = dquot_acquire(dquot);
6884 err = ext4_journal_stop(handle);
6885 if (!ret)
6886 ret = err;
6887 return ret;
6888 }
6889
ext4_release_dquot(struct dquot * dquot)6890 static int ext4_release_dquot(struct dquot *dquot)
6891 {
6892 int ret, err;
6893 handle_t *handle;
6894
6895 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6896 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6897 if (IS_ERR(handle)) {
6898 /* Release dquot anyway to avoid endless cycle in dqput() */
6899 dquot_release(dquot);
6900 return PTR_ERR(handle);
6901 }
6902 ret = dquot_release(dquot);
6903 err = ext4_journal_stop(handle);
6904 if (!ret)
6905 ret = err;
6906 return ret;
6907 }
6908
ext4_mark_dquot_dirty(struct dquot * dquot)6909 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6910 {
6911 struct super_block *sb = dquot->dq_sb;
6912
6913 if (ext4_is_quota_journalled(sb)) {
6914 dquot_mark_dquot_dirty(dquot);
6915 return ext4_write_dquot(dquot);
6916 } else {
6917 return dquot_mark_dquot_dirty(dquot);
6918 }
6919 }
6920
ext4_write_info(struct super_block * sb,int type)6921 static int ext4_write_info(struct super_block *sb, int type)
6922 {
6923 int ret, err;
6924 handle_t *handle;
6925
6926 /* Data block + inode block */
6927 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6928 if (IS_ERR(handle))
6929 return PTR_ERR(handle);
6930 ret = dquot_commit_info(sb, type);
6931 err = ext4_journal_stop(handle);
6932 if (!ret)
6933 ret = err;
6934 return ret;
6935 }
6936
lockdep_set_quota_inode(struct inode * inode,int subclass)6937 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6938 {
6939 struct ext4_inode_info *ei = EXT4_I(inode);
6940
6941 /* The first argument of lockdep_set_subclass has to be
6942 * *exactly* the same as the argument to init_rwsem() --- in
6943 * this case, in init_once() --- or lockdep gets unhappy
6944 * because the name of the lock is set using the
6945 * stringification of the argument to init_rwsem().
6946 */
6947 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6948 lockdep_set_subclass(&ei->i_data_sem, subclass);
6949 }
6950
6951 /*
6952 * Standard function to be called on quota_on
6953 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6954 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6955 const struct path *path)
6956 {
6957 int err;
6958
6959 if (!test_opt(sb, QUOTA))
6960 return -EINVAL;
6961
6962 /* Quotafile not on the same filesystem? */
6963 if (path->dentry->d_sb != sb)
6964 return -EXDEV;
6965
6966 /* Quota already enabled for this file? */
6967 if (IS_NOQUOTA(d_inode(path->dentry)))
6968 return -EBUSY;
6969
6970 /* Journaling quota? */
6971 if (EXT4_SB(sb)->s_qf_names[type]) {
6972 /* Quotafile not in fs root? */
6973 if (path->dentry->d_parent != sb->s_root)
6974 ext4_msg(sb, KERN_WARNING,
6975 "Quota file not on filesystem root. "
6976 "Journaled quota will not work");
6977 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6978 } else {
6979 /*
6980 * Clear the flag just in case mount options changed since
6981 * last time.
6982 */
6983 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6984 }
6985
6986 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6987 err = dquot_quota_on(sb, type, format_id, path);
6988 if (!err) {
6989 struct inode *inode = d_inode(path->dentry);
6990 handle_t *handle;
6991
6992 /*
6993 * Set inode flags to prevent userspace from messing with quota
6994 * files. If this fails, we return success anyway since quotas
6995 * are already enabled and this is not a hard failure.
6996 */
6997 inode_lock(inode);
6998 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6999 if (IS_ERR(handle))
7000 goto unlock_inode;
7001 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7002 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7003 S_NOATIME | S_IMMUTABLE);
7004 err = ext4_mark_inode_dirty(handle, inode);
7005 ext4_journal_stop(handle);
7006 unlock_inode:
7007 inode_unlock(inode);
7008 if (err)
7009 dquot_quota_off(sb, type);
7010 }
7011 if (err)
7012 lockdep_set_quota_inode(path->dentry->d_inode,
7013 I_DATA_SEM_NORMAL);
7014 return err;
7015 }
7016
ext4_check_quota_inum(int type,unsigned long qf_inum)7017 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7018 {
7019 switch (type) {
7020 case USRQUOTA:
7021 return qf_inum == EXT4_USR_QUOTA_INO;
7022 case GRPQUOTA:
7023 return qf_inum == EXT4_GRP_QUOTA_INO;
7024 case PRJQUOTA:
7025 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7026 default:
7027 BUG();
7028 }
7029 }
7030
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7031 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7032 unsigned int flags)
7033 {
7034 int err;
7035 struct inode *qf_inode;
7036 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7037 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7038 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7039 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7040 };
7041
7042 BUG_ON(!ext4_has_feature_quota(sb));
7043
7044 if (!qf_inums[type])
7045 return -EPERM;
7046
7047 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7048 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7049 qf_inums[type], type);
7050 return -EUCLEAN;
7051 }
7052
7053 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7054 if (IS_ERR(qf_inode)) {
7055 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7056 qf_inums[type], type);
7057 return PTR_ERR(qf_inode);
7058 }
7059
7060 /* Don't account quota for quota files to avoid recursion */
7061 qf_inode->i_flags |= S_NOQUOTA;
7062 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7063 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7064 if (err)
7065 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7066 iput(qf_inode);
7067
7068 return err;
7069 }
7070
7071 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7072 int ext4_enable_quotas(struct super_block *sb)
7073 {
7074 int type, err = 0;
7075 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7076 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7077 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7078 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7079 };
7080 bool quota_mopt[EXT4_MAXQUOTAS] = {
7081 test_opt(sb, USRQUOTA),
7082 test_opt(sb, GRPQUOTA),
7083 test_opt(sb, PRJQUOTA),
7084 };
7085
7086 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7087 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7088 if (qf_inums[type]) {
7089 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7090 DQUOT_USAGE_ENABLED |
7091 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7092 if (err) {
7093 ext4_warning(sb,
7094 "Failed to enable quota tracking "
7095 "(type=%d, err=%d, ino=%lu). "
7096 "Please run e2fsck to fix.", type,
7097 err, qf_inums[type]);
7098
7099 ext4_quotas_off(sb, type);
7100 return err;
7101 }
7102 }
7103 }
7104 return 0;
7105 }
7106
ext4_quota_off(struct super_block * sb,int type)7107 static int ext4_quota_off(struct super_block *sb, int type)
7108 {
7109 struct inode *inode = sb_dqopt(sb)->files[type];
7110 handle_t *handle;
7111 int err;
7112
7113 /* Force all delayed allocation blocks to be allocated.
7114 * Caller already holds s_umount sem */
7115 if (test_opt(sb, DELALLOC))
7116 sync_filesystem(sb);
7117
7118 if (!inode || !igrab(inode))
7119 goto out;
7120
7121 err = dquot_quota_off(sb, type);
7122 if (err || ext4_has_feature_quota(sb))
7123 goto out_put;
7124 /*
7125 * When the filesystem was remounted read-only first, we cannot cleanup
7126 * inode flags here. Bad luck but people should be using QUOTA feature
7127 * these days anyway.
7128 */
7129 if (sb_rdonly(sb))
7130 goto out_put;
7131
7132 inode_lock(inode);
7133 /*
7134 * Update modification times of quota files when userspace can
7135 * start looking at them. If we fail, we return success anyway since
7136 * this is not a hard failure and quotas are already disabled.
7137 */
7138 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7139 if (IS_ERR(handle)) {
7140 err = PTR_ERR(handle);
7141 goto out_unlock;
7142 }
7143 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7144 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7145 inode->i_mtime = inode_set_ctime_current(inode);
7146 err = ext4_mark_inode_dirty(handle, inode);
7147 ext4_journal_stop(handle);
7148 out_unlock:
7149 inode_unlock(inode);
7150 out_put:
7151 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7152 iput(inode);
7153 return err;
7154 out:
7155 return dquot_quota_off(sb, type);
7156 }
7157
7158 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7159 * acquiring the locks... As quota files are never truncated and quota code
7160 * itself serializes the operations (and no one else should touch the files)
7161 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7162 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7163 size_t len, loff_t off)
7164 {
7165 struct inode *inode = sb_dqopt(sb)->files[type];
7166 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7167 int offset = off & (sb->s_blocksize - 1);
7168 int tocopy;
7169 size_t toread;
7170 struct buffer_head *bh;
7171 loff_t i_size = i_size_read(inode);
7172
7173 if (off > i_size)
7174 return 0;
7175 if (off+len > i_size)
7176 len = i_size-off;
7177 toread = len;
7178 while (toread > 0) {
7179 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7180 bh = ext4_bread(NULL, inode, blk, 0);
7181 if (IS_ERR(bh))
7182 return PTR_ERR(bh);
7183 if (!bh) /* A hole? */
7184 memset(data, 0, tocopy);
7185 else
7186 memcpy(data, bh->b_data+offset, tocopy);
7187 brelse(bh);
7188 offset = 0;
7189 toread -= tocopy;
7190 data += tocopy;
7191 blk++;
7192 }
7193 return len;
7194 }
7195
7196 /* Write to quotafile (we know the transaction is already started and has
7197 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7198 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7199 const char *data, size_t len, loff_t off)
7200 {
7201 struct inode *inode = sb_dqopt(sb)->files[type];
7202 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7203 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7204 int retries = 0;
7205 struct buffer_head *bh;
7206 handle_t *handle = journal_current_handle();
7207
7208 if (!handle) {
7209 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7210 " cancelled because transaction is not started",
7211 (unsigned long long)off, (unsigned long long)len);
7212 return -EIO;
7213 }
7214 /*
7215 * Since we account only one data block in transaction credits,
7216 * then it is impossible to cross a block boundary.
7217 */
7218 if (sb->s_blocksize - offset < len) {
7219 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7220 " cancelled because not block aligned",
7221 (unsigned long long)off, (unsigned long long)len);
7222 return -EIO;
7223 }
7224
7225 do {
7226 bh = ext4_bread(handle, inode, blk,
7227 EXT4_GET_BLOCKS_CREATE |
7228 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7229 } while (PTR_ERR(bh) == -ENOSPC &&
7230 ext4_should_retry_alloc(inode->i_sb, &retries));
7231 if (IS_ERR(bh))
7232 return PTR_ERR(bh);
7233 if (!bh)
7234 goto out;
7235 BUFFER_TRACE(bh, "get write access");
7236 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7237 if (err) {
7238 brelse(bh);
7239 return err;
7240 }
7241 lock_buffer(bh);
7242 memcpy(bh->b_data+offset, data, len);
7243 flush_dcache_page(bh->b_page);
7244 unlock_buffer(bh);
7245 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7246 brelse(bh);
7247 out:
7248 if (inode->i_size < off + len) {
7249 i_size_write(inode, off + len);
7250 EXT4_I(inode)->i_disksize = inode->i_size;
7251 err2 = ext4_mark_inode_dirty(handle, inode);
7252 if (unlikely(err2 && !err))
7253 err = err2;
7254 }
7255 return err ? err : len;
7256 }
7257 #endif
7258
7259 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7260 static inline void register_as_ext2(void)
7261 {
7262 int err = register_filesystem(&ext2_fs_type);
7263 if (err)
7264 printk(KERN_WARNING
7265 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7266 }
7267
unregister_as_ext2(void)7268 static inline void unregister_as_ext2(void)
7269 {
7270 unregister_filesystem(&ext2_fs_type);
7271 }
7272
ext2_feature_set_ok(struct super_block * sb)7273 static inline int ext2_feature_set_ok(struct super_block *sb)
7274 {
7275 if (ext4_has_unknown_ext2_incompat_features(sb))
7276 return 0;
7277 if (sb_rdonly(sb))
7278 return 1;
7279 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7280 return 0;
7281 return 1;
7282 }
7283 #else
register_as_ext2(void)7284 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7285 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7286 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7287 #endif
7288
register_as_ext3(void)7289 static inline void register_as_ext3(void)
7290 {
7291 int err = register_filesystem(&ext3_fs_type);
7292 if (err)
7293 printk(KERN_WARNING
7294 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7295 }
7296
unregister_as_ext3(void)7297 static inline void unregister_as_ext3(void)
7298 {
7299 unregister_filesystem(&ext3_fs_type);
7300 }
7301
ext3_feature_set_ok(struct super_block * sb)7302 static inline int ext3_feature_set_ok(struct super_block *sb)
7303 {
7304 if (ext4_has_unknown_ext3_incompat_features(sb))
7305 return 0;
7306 if (!ext4_has_feature_journal(sb))
7307 return 0;
7308 if (sb_rdonly(sb))
7309 return 1;
7310 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7311 return 0;
7312 return 1;
7313 }
7314
ext4_kill_sb(struct super_block * sb)7315 static void ext4_kill_sb(struct super_block *sb)
7316 {
7317 struct ext4_sb_info *sbi = EXT4_SB(sb);
7318 struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7319
7320 kill_block_super(sb);
7321
7322 if (journal_bdev)
7323 blkdev_put(journal_bdev, sb);
7324 }
7325
7326 static struct file_system_type ext4_fs_type = {
7327 .owner = THIS_MODULE,
7328 .name = "ext4",
7329 .init_fs_context = ext4_init_fs_context,
7330 .parameters = ext4_param_specs,
7331 .kill_sb = ext4_kill_sb,
7332 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7333 };
7334 MODULE_ALIAS_FS("ext4");
7335
7336 /* Shared across all ext4 file systems */
7337 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7338
ext4_init_fs(void)7339 static int __init ext4_init_fs(void)
7340 {
7341 int i, err;
7342
7343 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7344 ext4_li_info = NULL;
7345
7346 /* Build-time check for flags consistency */
7347 ext4_check_flag_values();
7348
7349 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7350 init_waitqueue_head(&ext4__ioend_wq[i]);
7351
7352 err = ext4_init_es();
7353 if (err)
7354 return err;
7355
7356 err = ext4_init_pending();
7357 if (err)
7358 goto out7;
7359
7360 err = ext4_init_post_read_processing();
7361 if (err)
7362 goto out6;
7363
7364 err = ext4_init_pageio();
7365 if (err)
7366 goto out5;
7367
7368 err = ext4_init_system_zone();
7369 if (err)
7370 goto out4;
7371
7372 err = ext4_init_sysfs();
7373 if (err)
7374 goto out3;
7375
7376 err = ext4_init_mballoc();
7377 if (err)
7378 goto out2;
7379 err = init_inodecache();
7380 if (err)
7381 goto out1;
7382
7383 err = ext4_fc_init_dentry_cache();
7384 if (err)
7385 goto out05;
7386
7387 register_as_ext3();
7388 register_as_ext2();
7389 err = register_filesystem(&ext4_fs_type);
7390 if (err)
7391 goto out;
7392
7393 return 0;
7394 out:
7395 unregister_as_ext2();
7396 unregister_as_ext3();
7397 ext4_fc_destroy_dentry_cache();
7398 out05:
7399 destroy_inodecache();
7400 out1:
7401 ext4_exit_mballoc();
7402 out2:
7403 ext4_exit_sysfs();
7404 out3:
7405 ext4_exit_system_zone();
7406 out4:
7407 ext4_exit_pageio();
7408 out5:
7409 ext4_exit_post_read_processing();
7410 out6:
7411 ext4_exit_pending();
7412 out7:
7413 ext4_exit_es();
7414
7415 return err;
7416 }
7417
ext4_exit_fs(void)7418 static void __exit ext4_exit_fs(void)
7419 {
7420 ext4_destroy_lazyinit_thread();
7421 unregister_as_ext2();
7422 unregister_as_ext3();
7423 unregister_filesystem(&ext4_fs_type);
7424 ext4_fc_destroy_dentry_cache();
7425 destroy_inodecache();
7426 ext4_exit_mballoc();
7427 ext4_exit_sysfs();
7428 ext4_exit_system_zone();
7429 ext4_exit_pageio();
7430 ext4_exit_post_read_processing();
7431 ext4_exit_es();
7432 ext4_exit_pending();
7433 }
7434
7435 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7436 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7437 MODULE_LICENSE("GPL");
7438 MODULE_SOFTDEP("pre: crc32c");
7439 module_init(ext4_init_fs)
7440 module_exit(ext4_exit_fs)
7441