1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
entry_end(struct btrfs_ordered_extent * entry)26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38 {
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58 }
59
60 /*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66 {
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112 }
113
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116 {
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121 }
122
123 /*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 u64 file_offset)
129 {
130 struct rb_root *root = &tree->tree;
131 struct rb_node *prev = NULL;
132 struct rb_node *ret;
133 struct btrfs_ordered_extent *entry;
134
135 if (tree->last) {
136 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 rb_node);
138 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 return tree->last;
140 }
141 ret = __tree_search(root, file_offset, &prev);
142 if (!ret)
143 ret = prev;
144 if (ret)
145 tree->last = ret;
146 return ret;
147 }
148
alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)149 static struct btrfs_ordered_extent *alloc_ordered_extent(
150 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
151 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
152 u64 offset, unsigned long flags, int compress_type)
153 {
154 struct btrfs_ordered_extent *entry;
155 int ret;
156 u64 qgroup_rsv = 0;
157
158 if (flags &
159 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
160 /* For nocow write, we can release the qgroup rsv right now */
161 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
162 if (ret < 0)
163 return ERR_PTR(ret);
164 } else {
165 /*
166 * The ordered extent has reserved qgroup space, release now
167 * and pass the reserved number for qgroup_record to free.
168 */
169 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
170 if (ret < 0)
171 return ERR_PTR(ret);
172 }
173 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
174 if (!entry)
175 return ERR_PTR(-ENOMEM);
176
177 entry->file_offset = file_offset;
178 entry->num_bytes = num_bytes;
179 entry->ram_bytes = ram_bytes;
180 entry->disk_bytenr = disk_bytenr;
181 entry->disk_num_bytes = disk_num_bytes;
182 entry->offset = offset;
183 entry->bytes_left = num_bytes;
184 entry->inode = igrab(&inode->vfs_inode);
185 entry->compress_type = compress_type;
186 entry->truncated_len = (u64)-1;
187 entry->qgroup_rsv = qgroup_rsv;
188 entry->flags = flags;
189 refcount_set(&entry->refs, 1);
190 init_waitqueue_head(&entry->wait);
191 INIT_LIST_HEAD(&entry->list);
192 INIT_LIST_HEAD(&entry->log_list);
193 INIT_LIST_HEAD(&entry->root_extent_list);
194 INIT_LIST_HEAD(&entry->work_list);
195 init_completion(&entry->completion);
196
197 /*
198 * We don't need the count_max_extents here, we can assume that all of
199 * that work has been done at higher layers, so this is truly the
200 * smallest the extent is going to get.
201 */
202 spin_lock(&inode->lock);
203 btrfs_mod_outstanding_extents(inode, 1);
204 spin_unlock(&inode->lock);
205
206 return entry;
207 }
208
insert_ordered_extent(struct btrfs_ordered_extent * entry)209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
210 {
211 struct btrfs_inode *inode = BTRFS_I(entry->inode);
212 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
213 struct btrfs_root *root = inode->root;
214 struct btrfs_fs_info *fs_info = root->fs_info;
215 struct rb_node *node;
216
217 trace_btrfs_ordered_extent_add(inode, entry);
218
219 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
220 fs_info->delalloc_batch);
221
222 /* One ref for the tree. */
223 refcount_inc(&entry->refs);
224
225 spin_lock_irq(&tree->lock);
226 node = tree_insert(&tree->tree, entry->file_offset, &entry->rb_node);
227 if (node)
228 btrfs_panic(fs_info, -EEXIST,
229 "inconsistency in ordered tree at offset %llu",
230 entry->file_offset);
231 spin_unlock_irq(&tree->lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241 spin_unlock(&fs_info->ordered_root_lock);
242 }
243 spin_unlock(&root->ordered_extent_lock);
244 }
245
246 /*
247 * Add an ordered extent to the per-inode tree.
248 *
249 * @inode: Inode that this extent is for.
250 * @file_offset: Logical offset in file where the extent starts.
251 * @num_bytes: Logical length of extent in file.
252 * @ram_bytes: Full length of unencoded data.
253 * @disk_bytenr: Offset of extent on disk.
254 * @disk_num_bytes: Size of extent on disk.
255 * @offset: Offset into unencoded data where file data starts.
256 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
257 * @compress_type: Compression algorithm used for data.
258 *
259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
260 * tree is given a single reference on the ordered extent that was inserted, and
261 * the returned pointer is given a second reference.
262 *
263 * Return: the new ordered extent or error pointer.
264 */
btrfs_alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
266 struct btrfs_inode *inode, u64 file_offset,
267 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
268 u64 disk_num_bytes, u64 offset, unsigned long flags,
269 int compress_type)
270 {
271 struct btrfs_ordered_extent *entry;
272
273 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
274
275 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
276 disk_bytenr, disk_num_bytes, offset, flags,
277 compress_type);
278 if (!IS_ERR(entry))
279 insert_ordered_extent(entry);
280 return entry;
281 }
282
283 /*
284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
285 * when an ordered extent is finished. If the list covers more than one
286 * ordered extent, it is split across multiples.
287 */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
289 struct btrfs_ordered_sum *sum)
290 {
291 struct btrfs_ordered_inode_tree *tree;
292
293 tree = &BTRFS_I(entry->inode)->ordered_tree;
294 spin_lock_irq(&tree->lock);
295 list_add_tail(&sum->list, &entry->list);
296 spin_unlock_irq(&tree->lock);
297 }
298
finish_ordered_fn(struct btrfs_work * work)299 static void finish_ordered_fn(struct btrfs_work *work)
300 {
301 struct btrfs_ordered_extent *ordered_extent;
302
303 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
304 btrfs_finish_ordered_io(ordered_extent);
305 }
306
can_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct page * page,u64 file_offset,u64 len,bool uptodate)307 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
308 struct page *page, u64 file_offset,
309 u64 len, bool uptodate)
310 {
311 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
312 struct btrfs_fs_info *fs_info = inode->root->fs_info;
313
314 lockdep_assert_held(&inode->ordered_tree.lock);
315
316 if (page) {
317 ASSERT(page->mapping);
318 ASSERT(page_offset(page) <= file_offset);
319 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
320
321 /*
322 * Ordered (Private2) bit indicates whether we still have
323 * pending io unfinished for the ordered extent.
324 *
325 * If there's no such bit, we need to skip to next range.
326 */
327 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
328 return false;
329 btrfs_page_clear_ordered(fs_info, page, file_offset, len);
330 }
331
332 /* Now we're fine to update the accounting. */
333 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
334 btrfs_crit(fs_info,
335 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
336 inode->root->root_key.objectid, btrfs_ino(inode),
337 ordered->file_offset, ordered->num_bytes,
338 len, ordered->bytes_left);
339 ordered->bytes_left = 0;
340 } else {
341 ordered->bytes_left -= len;
342 }
343
344 if (!uptodate)
345 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
346
347 if (ordered->bytes_left)
348 return false;
349
350 /*
351 * All the IO of the ordered extent is finished, we need to queue
352 * the finish_func to be executed.
353 */
354 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
355 cond_wake_up(&ordered->wait);
356 refcount_inc(&ordered->refs);
357 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
358 return true;
359 }
360
btrfs_queue_ordered_fn(struct btrfs_ordered_extent * ordered)361 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
362 {
363 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
364 struct btrfs_fs_info *fs_info = inode->root->fs_info;
365 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
366 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
367
368 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
369 btrfs_queue_work(wq, &ordered->work);
370 }
371
btrfs_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct page * page,u64 file_offset,u64 len,bool uptodate)372 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
373 struct page *page, u64 file_offset, u64 len,
374 bool uptodate)
375 {
376 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
377 unsigned long flags;
378 bool ret;
379
380 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
381
382 spin_lock_irqsave(&inode->ordered_tree.lock, flags);
383 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
384 spin_unlock_irqrestore(&inode->ordered_tree.lock, flags);
385
386 if (ret)
387 btrfs_queue_ordered_fn(ordered);
388 return ret;
389 }
390
391 /*
392 * Mark all ordered extents io inside the specified range finished.
393 *
394 * @page: The involved page for the operation.
395 * For uncompressed buffered IO, the page status also needs to be
396 * updated to indicate whether the pending ordered io is finished.
397 * Can be NULL for direct IO and compressed write.
398 * For these cases, callers are ensured they won't execute the
399 * endio function twice.
400 *
401 * This function is called for endio, thus the range must have ordered
402 * extent(s) covering it.
403 */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct page * page,u64 file_offset,u64 num_bytes,bool uptodate)404 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
405 struct page *page, u64 file_offset,
406 u64 num_bytes, bool uptodate)
407 {
408 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
409 struct rb_node *node;
410 struct btrfs_ordered_extent *entry = NULL;
411 unsigned long flags;
412 u64 cur = file_offset;
413
414 trace_btrfs_writepage_end_io_hook(inode, file_offset,
415 file_offset + num_bytes - 1,
416 uptodate);
417
418 spin_lock_irqsave(&tree->lock, flags);
419 while (cur < file_offset + num_bytes) {
420 u64 entry_end;
421 u64 end;
422 u32 len;
423
424 node = tree_search(tree, cur);
425 /* No ordered extents at all */
426 if (!node)
427 break;
428
429 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
430 entry_end = entry->file_offset + entry->num_bytes;
431 /*
432 * |<-- OE --->| |
433 * cur
434 * Go to next OE.
435 */
436 if (cur >= entry_end) {
437 node = rb_next(node);
438 /* No more ordered extents, exit */
439 if (!node)
440 break;
441 entry = rb_entry(node, struct btrfs_ordered_extent,
442 rb_node);
443
444 /* Go to next ordered extent and continue */
445 cur = entry->file_offset;
446 continue;
447 }
448 /*
449 * | |<--- OE --->|
450 * cur
451 * Go to the start of OE.
452 */
453 if (cur < entry->file_offset) {
454 cur = entry->file_offset;
455 continue;
456 }
457
458 /*
459 * Now we are definitely inside one ordered extent.
460 *
461 * |<--- OE --->|
462 * |
463 * cur
464 */
465 end = min(entry->file_offset + entry->num_bytes,
466 file_offset + num_bytes) - 1;
467 ASSERT(end + 1 - cur < U32_MAX);
468 len = end + 1 - cur;
469
470 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
471 spin_unlock_irqrestore(&tree->lock, flags);
472 btrfs_queue_ordered_fn(entry);
473 spin_lock_irqsave(&tree->lock, flags);
474 }
475 cur += len;
476 }
477 spin_unlock_irqrestore(&tree->lock, flags);
478 }
479
480 /*
481 * Finish IO for one ordered extent across a given range. The range can only
482 * contain one ordered extent.
483 *
484 * @cached: The cached ordered extent. If not NULL, we can skip the tree
485 * search and use the ordered extent directly.
486 * Will be also used to store the finished ordered extent.
487 * @file_offset: File offset for the finished IO
488 * @io_size: Length of the finish IO range
489 *
490 * Return true if the ordered extent is finished in the range, and update
491 * @cached.
492 * Return false otherwise.
493 *
494 * NOTE: The range can NOT cross multiple ordered extents.
495 * Thus caller should ensure the range doesn't cross ordered extents.
496 */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)497 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
498 struct btrfs_ordered_extent **cached,
499 u64 file_offset, u64 io_size)
500 {
501 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
502 struct rb_node *node;
503 struct btrfs_ordered_extent *entry = NULL;
504 unsigned long flags;
505 bool finished = false;
506
507 spin_lock_irqsave(&tree->lock, flags);
508 if (cached && *cached) {
509 entry = *cached;
510 goto have_entry;
511 }
512
513 node = tree_search(tree, file_offset);
514 if (!node)
515 goto out;
516
517 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
518 have_entry:
519 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
520 goto out;
521
522 if (io_size > entry->bytes_left)
523 btrfs_crit(inode->root->fs_info,
524 "bad ordered accounting left %llu size %llu",
525 entry->bytes_left, io_size);
526
527 entry->bytes_left -= io_size;
528
529 if (entry->bytes_left == 0) {
530 /*
531 * Ensure only one caller can set the flag and finished_ret
532 * accordingly
533 */
534 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
535 /* test_and_set_bit implies a barrier */
536 cond_wake_up_nomb(&entry->wait);
537 }
538 out:
539 if (finished && cached && entry) {
540 *cached = entry;
541 refcount_inc(&entry->refs);
542 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
543 }
544 spin_unlock_irqrestore(&tree->lock, flags);
545 return finished;
546 }
547
548 /*
549 * used to drop a reference on an ordered extent. This will free
550 * the extent if the last reference is dropped
551 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)552 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
553 {
554 struct list_head *cur;
555 struct btrfs_ordered_sum *sum;
556
557 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
558
559 if (refcount_dec_and_test(&entry->refs)) {
560 ASSERT(list_empty(&entry->root_extent_list));
561 ASSERT(list_empty(&entry->log_list));
562 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
563 if (entry->inode)
564 btrfs_add_delayed_iput(BTRFS_I(entry->inode));
565 while (!list_empty(&entry->list)) {
566 cur = entry->list.next;
567 sum = list_entry(cur, struct btrfs_ordered_sum, list);
568 list_del(&sum->list);
569 kvfree(sum);
570 }
571 kmem_cache_free(btrfs_ordered_extent_cache, entry);
572 }
573 }
574
575 /*
576 * remove an ordered extent from the tree. No references are dropped
577 * and waiters are woken up.
578 */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)579 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
580 struct btrfs_ordered_extent *entry)
581 {
582 struct btrfs_ordered_inode_tree *tree;
583 struct btrfs_root *root = btrfs_inode->root;
584 struct btrfs_fs_info *fs_info = root->fs_info;
585 struct rb_node *node;
586 bool pending;
587 bool freespace_inode;
588
589 /*
590 * If this is a free space inode the thread has not acquired the ordered
591 * extents lockdep map.
592 */
593 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
594
595 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
596 /* This is paired with btrfs_alloc_ordered_extent. */
597 spin_lock(&btrfs_inode->lock);
598 btrfs_mod_outstanding_extents(btrfs_inode, -1);
599 spin_unlock(&btrfs_inode->lock);
600 if (root != fs_info->tree_root) {
601 u64 release;
602
603 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
604 release = entry->disk_num_bytes;
605 else
606 release = entry->num_bytes;
607 btrfs_delalloc_release_metadata(btrfs_inode, release,
608 test_bit(BTRFS_ORDERED_IOERR,
609 &entry->flags));
610 }
611
612 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
613 fs_info->delalloc_batch);
614
615 tree = &btrfs_inode->ordered_tree;
616 spin_lock_irq(&tree->lock);
617 node = &entry->rb_node;
618 rb_erase(node, &tree->tree);
619 RB_CLEAR_NODE(node);
620 if (tree->last == node)
621 tree->last = NULL;
622 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
623 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
624 spin_unlock_irq(&tree->lock);
625
626 /*
627 * The current running transaction is waiting on us, we need to let it
628 * know that we're complete and wake it up.
629 */
630 if (pending) {
631 struct btrfs_transaction *trans;
632
633 /*
634 * The checks for trans are just a formality, it should be set,
635 * but if it isn't we don't want to deref/assert under the spin
636 * lock, so be nice and check if trans is set, but ASSERT() so
637 * if it isn't set a developer will notice.
638 */
639 spin_lock(&fs_info->trans_lock);
640 trans = fs_info->running_transaction;
641 if (trans)
642 refcount_inc(&trans->use_count);
643 spin_unlock(&fs_info->trans_lock);
644
645 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
646 if (trans) {
647 if (atomic_dec_and_test(&trans->pending_ordered))
648 wake_up(&trans->pending_wait);
649 btrfs_put_transaction(trans);
650 }
651 }
652
653 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
654
655 spin_lock(&root->ordered_extent_lock);
656 list_del_init(&entry->root_extent_list);
657 root->nr_ordered_extents--;
658
659 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
660
661 if (!root->nr_ordered_extents) {
662 spin_lock(&fs_info->ordered_root_lock);
663 BUG_ON(list_empty(&root->ordered_root));
664 list_del_init(&root->ordered_root);
665 spin_unlock(&fs_info->ordered_root_lock);
666 }
667 spin_unlock(&root->ordered_extent_lock);
668 wake_up(&entry->wait);
669 if (!freespace_inode)
670 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
671 }
672
btrfs_run_ordered_extent_work(struct btrfs_work * work)673 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
674 {
675 struct btrfs_ordered_extent *ordered;
676
677 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
678 btrfs_start_ordered_extent(ordered);
679 complete(&ordered->completion);
680 }
681
682 /*
683 * wait for all the ordered extents in a root. This is done when balancing
684 * space between drives.
685 */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const u64 range_start,const u64 range_len)686 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
687 const u64 range_start, const u64 range_len)
688 {
689 struct btrfs_fs_info *fs_info = root->fs_info;
690 LIST_HEAD(splice);
691 LIST_HEAD(skipped);
692 LIST_HEAD(works);
693 struct btrfs_ordered_extent *ordered, *next;
694 u64 count = 0;
695 const u64 range_end = range_start + range_len;
696
697 mutex_lock(&root->ordered_extent_mutex);
698 spin_lock(&root->ordered_extent_lock);
699 list_splice_init(&root->ordered_extents, &splice);
700 while (!list_empty(&splice) && nr) {
701 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
702 root_extent_list);
703
704 if (range_end <= ordered->disk_bytenr ||
705 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
706 list_move_tail(&ordered->root_extent_list, &skipped);
707 cond_resched_lock(&root->ordered_extent_lock);
708 continue;
709 }
710
711 list_move_tail(&ordered->root_extent_list,
712 &root->ordered_extents);
713 refcount_inc(&ordered->refs);
714 spin_unlock(&root->ordered_extent_lock);
715
716 btrfs_init_work(&ordered->flush_work,
717 btrfs_run_ordered_extent_work, NULL, NULL);
718 list_add_tail(&ordered->work_list, &works);
719 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
720
721 cond_resched();
722 spin_lock(&root->ordered_extent_lock);
723 if (nr != U64_MAX)
724 nr--;
725 count++;
726 }
727 list_splice_tail(&skipped, &root->ordered_extents);
728 list_splice_tail(&splice, &root->ordered_extents);
729 spin_unlock(&root->ordered_extent_lock);
730
731 list_for_each_entry_safe(ordered, next, &works, work_list) {
732 list_del_init(&ordered->work_list);
733 wait_for_completion(&ordered->completion);
734 btrfs_put_ordered_extent(ordered);
735 cond_resched();
736 }
737 mutex_unlock(&root->ordered_extent_mutex);
738
739 return count;
740 }
741
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const u64 range_start,const u64 range_len)742 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
743 const u64 range_start, const u64 range_len)
744 {
745 struct btrfs_root *root;
746 LIST_HEAD(splice);
747 u64 done;
748
749 mutex_lock(&fs_info->ordered_operations_mutex);
750 spin_lock(&fs_info->ordered_root_lock);
751 list_splice_init(&fs_info->ordered_roots, &splice);
752 while (!list_empty(&splice) && nr) {
753 root = list_first_entry(&splice, struct btrfs_root,
754 ordered_root);
755 root = btrfs_grab_root(root);
756 BUG_ON(!root);
757 list_move_tail(&root->ordered_root,
758 &fs_info->ordered_roots);
759 spin_unlock(&fs_info->ordered_root_lock);
760
761 done = btrfs_wait_ordered_extents(root, nr,
762 range_start, range_len);
763 btrfs_put_root(root);
764
765 spin_lock(&fs_info->ordered_root_lock);
766 if (nr != U64_MAX) {
767 nr -= done;
768 }
769 }
770 list_splice_tail(&splice, &fs_info->ordered_roots);
771 spin_unlock(&fs_info->ordered_root_lock);
772 mutex_unlock(&fs_info->ordered_operations_mutex);
773 }
774
775 /*
776 * Start IO and wait for a given ordered extent to finish.
777 *
778 * Wait on page writeback for all the pages in the extent and the IO completion
779 * code to insert metadata into the btree corresponding to the extent.
780 */
btrfs_start_ordered_extent(struct btrfs_ordered_extent * entry)781 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
782 {
783 u64 start = entry->file_offset;
784 u64 end = start + entry->num_bytes - 1;
785 struct btrfs_inode *inode = BTRFS_I(entry->inode);
786 bool freespace_inode;
787
788 trace_btrfs_ordered_extent_start(inode, entry);
789
790 /*
791 * If this is a free space inode do not take the ordered extents lockdep
792 * map.
793 */
794 freespace_inode = btrfs_is_free_space_inode(inode);
795
796 /*
797 * pages in the range can be dirty, clean or writeback. We
798 * start IO on any dirty ones so the wait doesn't stall waiting
799 * for the flusher thread to find them
800 */
801 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
802 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
803
804 if (!freespace_inode)
805 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
806 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
807 }
808
809 /*
810 * Used to wait on ordered extents across a large range of bytes.
811 */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)812 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
813 {
814 int ret = 0;
815 int ret_wb = 0;
816 u64 end;
817 u64 orig_end;
818 struct btrfs_ordered_extent *ordered;
819
820 if (start + len < start) {
821 orig_end = OFFSET_MAX;
822 } else {
823 orig_end = start + len - 1;
824 if (orig_end > OFFSET_MAX)
825 orig_end = OFFSET_MAX;
826 }
827
828 /* start IO across the range first to instantiate any delalloc
829 * extents
830 */
831 ret = btrfs_fdatawrite_range(inode, start, orig_end);
832 if (ret)
833 return ret;
834
835 /*
836 * If we have a writeback error don't return immediately. Wait first
837 * for any ordered extents that haven't completed yet. This is to make
838 * sure no one can dirty the same page ranges and call writepages()
839 * before the ordered extents complete - to avoid failures (-EEXIST)
840 * when adding the new ordered extents to the ordered tree.
841 */
842 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
843
844 end = orig_end;
845 while (1) {
846 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
847 if (!ordered)
848 break;
849 if (ordered->file_offset > orig_end) {
850 btrfs_put_ordered_extent(ordered);
851 break;
852 }
853 if (ordered->file_offset + ordered->num_bytes <= start) {
854 btrfs_put_ordered_extent(ordered);
855 break;
856 }
857 btrfs_start_ordered_extent(ordered);
858 end = ordered->file_offset;
859 /*
860 * If the ordered extent had an error save the error but don't
861 * exit without waiting first for all other ordered extents in
862 * the range to complete.
863 */
864 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
865 ret = -EIO;
866 btrfs_put_ordered_extent(ordered);
867 if (end == 0 || end == start)
868 break;
869 end--;
870 }
871 return ret_wb ? ret_wb : ret;
872 }
873
874 /*
875 * find an ordered extent corresponding to file_offset. return NULL if
876 * nothing is found, otherwise take a reference on the extent and return it
877 */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)878 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
879 u64 file_offset)
880 {
881 struct btrfs_ordered_inode_tree *tree;
882 struct rb_node *node;
883 struct btrfs_ordered_extent *entry = NULL;
884 unsigned long flags;
885
886 tree = &inode->ordered_tree;
887 spin_lock_irqsave(&tree->lock, flags);
888 node = tree_search(tree, file_offset);
889 if (!node)
890 goto out;
891
892 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
893 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
894 entry = NULL;
895 if (entry) {
896 refcount_inc(&entry->refs);
897 trace_btrfs_ordered_extent_lookup(inode, entry);
898 }
899 out:
900 spin_unlock_irqrestore(&tree->lock, flags);
901 return entry;
902 }
903
904 /* Since the DIO code tries to lock a wide area we need to look for any ordered
905 * extents that exist in the range, rather than just the start of the range.
906 */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)907 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
908 struct btrfs_inode *inode, u64 file_offset, u64 len)
909 {
910 struct btrfs_ordered_inode_tree *tree;
911 struct rb_node *node;
912 struct btrfs_ordered_extent *entry = NULL;
913
914 tree = &inode->ordered_tree;
915 spin_lock_irq(&tree->lock);
916 node = tree_search(tree, file_offset);
917 if (!node) {
918 node = tree_search(tree, file_offset + len);
919 if (!node)
920 goto out;
921 }
922
923 while (1) {
924 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
925 if (range_overlaps(entry, file_offset, len))
926 break;
927
928 if (entry->file_offset >= file_offset + len) {
929 entry = NULL;
930 break;
931 }
932 entry = NULL;
933 node = rb_next(node);
934 if (!node)
935 break;
936 }
937 out:
938 if (entry) {
939 refcount_inc(&entry->refs);
940 trace_btrfs_ordered_extent_lookup_range(inode, entry);
941 }
942 spin_unlock_irq(&tree->lock);
943 return entry;
944 }
945
946 /*
947 * Adds all ordered extents to the given list. The list ends up sorted by the
948 * file_offset of the ordered extents.
949 */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)950 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
951 struct list_head *list)
952 {
953 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
954 struct rb_node *n;
955
956 ASSERT(inode_is_locked(&inode->vfs_inode));
957
958 spin_lock_irq(&tree->lock);
959 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
960 struct btrfs_ordered_extent *ordered;
961
962 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
963
964 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
965 continue;
966
967 ASSERT(list_empty(&ordered->log_list));
968 list_add_tail(&ordered->log_list, list);
969 refcount_inc(&ordered->refs);
970 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
971 }
972 spin_unlock_irq(&tree->lock);
973 }
974
975 /*
976 * lookup and return any extent before 'file_offset'. NULL is returned
977 * if none is found
978 */
979 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)980 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
981 {
982 struct btrfs_ordered_inode_tree *tree;
983 struct rb_node *node;
984 struct btrfs_ordered_extent *entry = NULL;
985
986 tree = &inode->ordered_tree;
987 spin_lock_irq(&tree->lock);
988 node = tree_search(tree, file_offset);
989 if (!node)
990 goto out;
991
992 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
993 refcount_inc(&entry->refs);
994 trace_btrfs_ordered_extent_lookup_first(inode, entry);
995 out:
996 spin_unlock_irq(&tree->lock);
997 return entry;
998 }
999
1000 /*
1001 * Lookup the first ordered extent that overlaps the range
1002 * [@file_offset, @file_offset + @len).
1003 *
1004 * The difference between this and btrfs_lookup_first_ordered_extent() is
1005 * that this one won't return any ordered extent that does not overlap the range.
1006 * And the difference against btrfs_lookup_ordered_extent() is, this function
1007 * ensures the first ordered extent gets returned.
1008 */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)1009 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1010 struct btrfs_inode *inode, u64 file_offset, u64 len)
1011 {
1012 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1013 struct rb_node *node;
1014 struct rb_node *cur;
1015 struct rb_node *prev;
1016 struct rb_node *next;
1017 struct btrfs_ordered_extent *entry = NULL;
1018
1019 spin_lock_irq(&tree->lock);
1020 node = tree->tree.rb_node;
1021 /*
1022 * Here we don't want to use tree_search() which will use tree->last
1023 * and screw up the search order.
1024 * And __tree_search() can't return the adjacent ordered extents
1025 * either, thus here we do our own search.
1026 */
1027 while (node) {
1028 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1029
1030 if (file_offset < entry->file_offset) {
1031 node = node->rb_left;
1032 } else if (file_offset >= entry_end(entry)) {
1033 node = node->rb_right;
1034 } else {
1035 /*
1036 * Direct hit, got an ordered extent that starts at
1037 * @file_offset
1038 */
1039 goto out;
1040 }
1041 }
1042 if (!entry) {
1043 /* Empty tree */
1044 goto out;
1045 }
1046
1047 cur = &entry->rb_node;
1048 /* We got an entry around @file_offset, check adjacent entries */
1049 if (entry->file_offset < file_offset) {
1050 prev = cur;
1051 next = rb_next(cur);
1052 } else {
1053 prev = rb_prev(cur);
1054 next = cur;
1055 }
1056 if (prev) {
1057 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1058 if (range_overlaps(entry, file_offset, len))
1059 goto out;
1060 }
1061 if (next) {
1062 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1063 if (range_overlaps(entry, file_offset, len))
1064 goto out;
1065 }
1066 /* No ordered extent in the range */
1067 entry = NULL;
1068 out:
1069 if (entry) {
1070 refcount_inc(&entry->refs);
1071 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1072 }
1073
1074 spin_unlock_irq(&tree->lock);
1075 return entry;
1076 }
1077
1078 /*
1079 * Lock the passed range and ensures all pending ordered extents in it are run
1080 * to completion.
1081 *
1082 * @inode: Inode whose ordered tree is to be searched
1083 * @start: Beginning of range to flush
1084 * @end: Last byte of range to lock
1085 * @cached_state: If passed, will return the extent state responsible for the
1086 * locked range. It's the caller's responsibility to free the
1087 * cached state.
1088 *
1089 * Always return with the given range locked, ensuring after it's called no
1090 * order extent can be pending.
1091 */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1092 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1093 u64 end,
1094 struct extent_state **cached_state)
1095 {
1096 struct btrfs_ordered_extent *ordered;
1097 struct extent_state *cache = NULL;
1098 struct extent_state **cachedp = &cache;
1099
1100 if (cached_state)
1101 cachedp = cached_state;
1102
1103 while (1) {
1104 lock_extent(&inode->io_tree, start, end, cachedp);
1105 ordered = btrfs_lookup_ordered_range(inode, start,
1106 end - start + 1);
1107 if (!ordered) {
1108 /*
1109 * If no external cached_state has been passed then
1110 * decrement the extra ref taken for cachedp since we
1111 * aren't exposing it outside of this function
1112 */
1113 if (!cached_state)
1114 refcount_dec(&cache->refs);
1115 break;
1116 }
1117 unlock_extent(&inode->io_tree, start, end, cachedp);
1118 btrfs_start_ordered_extent(ordered);
1119 btrfs_put_ordered_extent(ordered);
1120 }
1121 }
1122
1123 /*
1124 * Lock the passed range and ensure all pending ordered extents in it are run
1125 * to completion in nowait mode.
1126 *
1127 * Return true if btrfs_lock_ordered_range does not return any extents,
1128 * otherwise false.
1129 */
btrfs_try_lock_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1130 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1131 struct extent_state **cached_state)
1132 {
1133 struct btrfs_ordered_extent *ordered;
1134
1135 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1136 return false;
1137
1138 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1139 if (!ordered)
1140 return true;
1141
1142 btrfs_put_ordered_extent(ordered);
1143 unlock_extent(&inode->io_tree, start, end, cached_state);
1144
1145 return false;
1146 }
1147
1148 /* Split out a new ordered extent for this first @len bytes of @ordered. */
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 len)1149 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1150 struct btrfs_ordered_extent *ordered, u64 len)
1151 {
1152 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1153 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
1154 struct btrfs_root *root = inode->root;
1155 struct btrfs_fs_info *fs_info = root->fs_info;
1156 u64 file_offset = ordered->file_offset;
1157 u64 disk_bytenr = ordered->disk_bytenr;
1158 unsigned long flags = ordered->flags;
1159 struct btrfs_ordered_sum *sum, *tmpsum;
1160 struct btrfs_ordered_extent *new;
1161 struct rb_node *node;
1162 u64 offset = 0;
1163
1164 trace_btrfs_ordered_extent_split(inode, ordered);
1165
1166 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1167
1168 /*
1169 * The entire bio must be covered by the ordered extent, but we can't
1170 * reduce the original extent to a zero length either.
1171 */
1172 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1173 return ERR_PTR(-EINVAL);
1174 /* We cannot split partially completed ordered extents. */
1175 if (ordered->bytes_left) {
1176 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1177 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1178 return ERR_PTR(-EINVAL);
1179 }
1180 /* We cannot split a compressed ordered extent. */
1181 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1182 return ERR_PTR(-EINVAL);
1183
1184 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1185 len, 0, flags, ordered->compress_type);
1186 if (IS_ERR(new))
1187 return new;
1188
1189 /* One ref for the tree. */
1190 refcount_inc(&new->refs);
1191
1192 spin_lock_irq(&root->ordered_extent_lock);
1193 spin_lock(&tree->lock);
1194 /* Remove from tree once */
1195 node = &ordered->rb_node;
1196 rb_erase(node, &tree->tree);
1197 RB_CLEAR_NODE(node);
1198 if (tree->last == node)
1199 tree->last = NULL;
1200
1201 ordered->file_offset += len;
1202 ordered->disk_bytenr += len;
1203 ordered->num_bytes -= len;
1204 ordered->disk_num_bytes -= len;
1205
1206 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1207 ASSERT(ordered->bytes_left == 0);
1208 new->bytes_left = 0;
1209 } else {
1210 ordered->bytes_left -= len;
1211 }
1212
1213 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1214 if (ordered->truncated_len > len) {
1215 ordered->truncated_len -= len;
1216 } else {
1217 new->truncated_len = ordered->truncated_len;
1218 ordered->truncated_len = 0;
1219 }
1220 }
1221
1222 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1223 if (offset == len)
1224 break;
1225 list_move_tail(&sum->list, &new->list);
1226 offset += sum->len;
1227 }
1228
1229 /* Re-insert the node */
1230 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1231 if (node)
1232 btrfs_panic(fs_info, -EEXIST,
1233 "zoned: inconsistency in ordered tree at offset %llu",
1234 ordered->file_offset);
1235
1236 node = tree_insert(&tree->tree, new->file_offset, &new->rb_node);
1237 if (node)
1238 btrfs_panic(fs_info, -EEXIST,
1239 "zoned: inconsistency in ordered tree at offset %llu",
1240 new->file_offset);
1241 spin_unlock(&tree->lock);
1242
1243 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1244 root->nr_ordered_extents++;
1245 spin_unlock_irq(&root->ordered_extent_lock);
1246 return new;
1247 }
1248
ordered_data_init(void)1249 int __init ordered_data_init(void)
1250 {
1251 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1252 sizeof(struct btrfs_ordered_extent), 0,
1253 SLAB_MEM_SPREAD,
1254 NULL);
1255 if (!btrfs_ordered_extent_cache)
1256 return -ENOMEM;
1257
1258 return 0;
1259 }
1260
ordered_data_exit(void)1261 void __cold ordered_data_exit(void)
1262 {
1263 kmem_cache_destroy(btrfs_ordered_extent_cache);
1264 }
1265