1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for Alauda-based card readers
4 *
5 * Current development and maintenance by:
6 * (c) 2005 Daniel Drake <dsd@gentoo.org>
7 *
8 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
9 *
10 * Alauda implements a vendor-specific command set to access two media reader
11 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
12 * which are accepted by these devices.
13 *
14 * The driver was developed through reverse-engineering, with the help of the
15 * sddr09 driver which has many similarities, and with some help from the
16 * (very old) vendor-supplied GPL sma03 driver.
17 *
18 * For protocol info, see http://alauda.sourceforge.net
19 */
20
21 #include <linux/module.h>
22 #include <linux/slab.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_device.h>
27
28 #include "usb.h"
29 #include "transport.h"
30 #include "protocol.h"
31 #include "debug.h"
32 #include "scsiglue.h"
33
34 #define DRV_NAME "ums-alauda"
35
36 MODULE_DESCRIPTION("Driver for Alauda-based card readers");
37 MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
38 MODULE_LICENSE("GPL");
39 MODULE_IMPORT_NS(USB_STORAGE);
40
41 /*
42 * Status bytes
43 */
44 #define ALAUDA_STATUS_ERROR 0x01
45 #define ALAUDA_STATUS_READY 0x40
46
47 /*
48 * Control opcodes (for request field)
49 */
50 #define ALAUDA_GET_XD_MEDIA_STATUS 0x08
51 #define ALAUDA_GET_SM_MEDIA_STATUS 0x98
52 #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
53 #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a
54 #define ALAUDA_GET_XD_MEDIA_SIG 0x86
55 #define ALAUDA_GET_SM_MEDIA_SIG 0x96
56
57 /*
58 * Bulk command identity (byte 0)
59 */
60 #define ALAUDA_BULK_CMD 0x40
61
62 /*
63 * Bulk opcodes (byte 1)
64 */
65 #define ALAUDA_BULK_GET_REDU_DATA 0x85
66 #define ALAUDA_BULK_READ_BLOCK 0x94
67 #define ALAUDA_BULK_ERASE_BLOCK 0xa3
68 #define ALAUDA_BULK_WRITE_BLOCK 0xb4
69 #define ALAUDA_BULK_GET_STATUS2 0xb7
70 #define ALAUDA_BULK_RESET_MEDIA 0xe0
71
72 /*
73 * Port to operate on (byte 8)
74 */
75 #define ALAUDA_PORT_XD 0x00
76 #define ALAUDA_PORT_SM 0x01
77
78 /*
79 * LBA and PBA are unsigned ints. Special values.
80 */
81 #define UNDEF 0xffff
82 #define SPARE 0xfffe
83 #define UNUSABLE 0xfffd
84
85 struct alauda_media_info {
86 unsigned long capacity; /* total media size in bytes */
87 unsigned int pagesize; /* page size in bytes */
88 unsigned int blocksize; /* number of pages per block */
89 unsigned int uzonesize; /* number of usable blocks per zone */
90 unsigned int zonesize; /* number of blocks per zone */
91 unsigned int blockmask; /* mask to get page from address */
92
93 unsigned char pageshift;
94 unsigned char blockshift;
95 unsigned char zoneshift;
96
97 u16 **lba_to_pba; /* logical to physical block map */
98 u16 **pba_to_lba; /* physical to logical block map */
99 };
100
101 struct alauda_info {
102 struct alauda_media_info port[2];
103 int wr_ep; /* endpoint to write data out of */
104
105 unsigned char sense_key;
106 unsigned long sense_asc; /* additional sense code */
107 unsigned long sense_ascq; /* additional sense code qualifier */
108 };
109
110 #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
111 #define LSB_of(s) ((s)&0xFF)
112 #define MSB_of(s) ((s)>>8)
113
114 #define MEDIA_PORT(us) us->srb->device->lun
115 #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
116
117 #define PBA_LO(pba) ((pba & 0xF) << 5)
118 #define PBA_HI(pba) (pba >> 3)
119 #define PBA_ZONE(pba) (pba >> 11)
120
121 static int init_alauda(struct us_data *us);
122
123
124 /*
125 * The table of devices
126 */
127 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
128 vendorName, productName, useProtocol, useTransport, \
129 initFunction, flags) \
130 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
131 .driver_info = (flags) }
132
133 static struct usb_device_id alauda_usb_ids[] = {
134 # include "unusual_alauda.h"
135 { } /* Terminating entry */
136 };
137 MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
138
139 #undef UNUSUAL_DEV
140
141 /*
142 * The flags table
143 */
144 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
145 vendor_name, product_name, use_protocol, use_transport, \
146 init_function, Flags) \
147 { \
148 .vendorName = vendor_name, \
149 .productName = product_name, \
150 .useProtocol = use_protocol, \
151 .useTransport = use_transport, \
152 .initFunction = init_function, \
153 }
154
155 static struct us_unusual_dev alauda_unusual_dev_list[] = {
156 # include "unusual_alauda.h"
157 { } /* Terminating entry */
158 };
159
160 #undef UNUSUAL_DEV
161
162
163 /*
164 * Media handling
165 */
166
167 struct alauda_card_info {
168 unsigned char id; /* id byte */
169 unsigned char chipshift; /* 1<<cs bytes total capacity */
170 unsigned char pageshift; /* 1<<ps bytes in a page */
171 unsigned char blockshift; /* 1<<bs pages per block */
172 unsigned char zoneshift; /* 1<<zs blocks per zone */
173 };
174
175 static struct alauda_card_info alauda_card_ids[] = {
176 /* NAND flash */
177 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
178 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
179 { 0xec, 20, 8, 4, 8}, /* 1 MB */
180 { 0x64, 21, 8, 4, 9}, /* 2 MB */
181 { 0xea, 21, 8, 4, 9}, /* 2 MB */
182 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
183 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
184 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
185 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
186 { 0x73, 24, 9, 5, 10}, /* 16 MB */
187 { 0x75, 25, 9, 5, 10}, /* 32 MB */
188 { 0x76, 26, 9, 5, 10}, /* 64 MB */
189 { 0x79, 27, 9, 5, 10}, /* 128 MB */
190 { 0x71, 28, 9, 5, 10}, /* 256 MB */
191
192 /* MASK ROM */
193 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
194 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
195 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
196 { 0x57, 24, 9, 4, 11}, /* 16 MB */
197 { 0x58, 25, 9, 4, 12}, /* 32 MB */
198 { 0,}
199 };
200
alauda_card_find_id(unsigned char id)201 static struct alauda_card_info *alauda_card_find_id(unsigned char id)
202 {
203 int i;
204
205 for (i = 0; alauda_card_ids[i].id != 0; i++)
206 if (alauda_card_ids[i].id == id)
207 return &(alauda_card_ids[i]);
208 return NULL;
209 }
210
211 /*
212 * ECC computation.
213 */
214
215 static unsigned char parity[256];
216 static unsigned char ecc2[256];
217
nand_init_ecc(void)218 static void nand_init_ecc(void)
219 {
220 int i, j, a;
221
222 parity[0] = 0;
223 for (i = 1; i < 256; i++)
224 parity[i] = (parity[i&(i-1)] ^ 1);
225
226 for (i = 0; i < 256; i++) {
227 a = 0;
228 for (j = 0; j < 8; j++) {
229 if (i & (1<<j)) {
230 if ((j & 1) == 0)
231 a ^= 0x04;
232 if ((j & 2) == 0)
233 a ^= 0x10;
234 if ((j & 4) == 0)
235 a ^= 0x40;
236 }
237 }
238 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
239 }
240 }
241
242 /* compute 3-byte ecc on 256 bytes */
nand_compute_ecc(unsigned char * data,unsigned char * ecc)243 static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
244 {
245 int i, j, a;
246 unsigned char par = 0, bit, bits[8] = {0};
247
248 /* collect 16 checksum bits */
249 for (i = 0; i < 256; i++) {
250 par ^= data[i];
251 bit = parity[data[i]];
252 for (j = 0; j < 8; j++)
253 if ((i & (1<<j)) == 0)
254 bits[j] ^= bit;
255 }
256
257 /* put 4+4+4 = 12 bits in the ecc */
258 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
259 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
260
261 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
262 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
263
264 ecc[2] = ecc2[par];
265 }
266
nand_compare_ecc(unsigned char * data,unsigned char * ecc)267 static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
268 {
269 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
270 }
271
nand_store_ecc(unsigned char * data,unsigned char * ecc)272 static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
273 {
274 memcpy(data, ecc, 3);
275 }
276
277 /*
278 * Alauda driver
279 */
280
281 /*
282 * Forget our PBA <---> LBA mappings for a particular port
283 */
alauda_free_maps(struct alauda_media_info * media_info)284 static void alauda_free_maps (struct alauda_media_info *media_info)
285 {
286 unsigned int shift = media_info->zoneshift
287 + media_info->blockshift + media_info->pageshift;
288 unsigned int num_zones = media_info->capacity >> shift;
289 unsigned int i;
290
291 if (media_info->lba_to_pba != NULL)
292 for (i = 0; i < num_zones; i++) {
293 kfree(media_info->lba_to_pba[i]);
294 media_info->lba_to_pba[i] = NULL;
295 }
296
297 if (media_info->pba_to_lba != NULL)
298 for (i = 0; i < num_zones; i++) {
299 kfree(media_info->pba_to_lba[i]);
300 media_info->pba_to_lba[i] = NULL;
301 }
302 }
303
304 /*
305 * Returns 2 bytes of status data
306 * The first byte describes media status, and second byte describes door status
307 */
alauda_get_media_status(struct us_data * us,unsigned char * data)308 static int alauda_get_media_status(struct us_data *us, unsigned char *data)
309 {
310 int rc;
311 unsigned char command;
312
313 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
314 command = ALAUDA_GET_XD_MEDIA_STATUS;
315 else
316 command = ALAUDA_GET_SM_MEDIA_STATUS;
317
318 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
319 command, 0xc0, 0, 1, data, 2);
320
321 if (rc == USB_STOR_XFER_GOOD)
322 usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
323
324 return rc;
325 }
326
327 /*
328 * Clears the "media was changed" bit so that we know when it changes again
329 * in the future.
330 */
alauda_ack_media(struct us_data * us)331 static int alauda_ack_media(struct us_data *us)
332 {
333 unsigned char command;
334
335 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
336 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
337 else
338 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
339
340 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
341 command, 0x40, 0, 1, NULL, 0);
342 }
343
344 /*
345 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
346 * and some other details.
347 */
alauda_get_media_signature(struct us_data * us,unsigned char * data)348 static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
349 {
350 unsigned char command;
351
352 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
353 command = ALAUDA_GET_XD_MEDIA_SIG;
354 else
355 command = ALAUDA_GET_SM_MEDIA_SIG;
356
357 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
358 command, 0xc0, 0, 0, data, 4);
359 }
360
361 /*
362 * Resets the media status (but not the whole device?)
363 */
alauda_reset_media(struct us_data * us)364 static int alauda_reset_media(struct us_data *us)
365 {
366 unsigned char *command = us->iobuf;
367
368 memset(command, 0, 9);
369 command[0] = ALAUDA_BULK_CMD;
370 command[1] = ALAUDA_BULK_RESET_MEDIA;
371 command[8] = MEDIA_PORT(us);
372
373 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
374 command, 9, NULL);
375 }
376
377 /*
378 * Examines the media and deduces capacity, etc.
379 */
alauda_init_media(struct us_data * us)380 static int alauda_init_media(struct us_data *us)
381 {
382 unsigned char *data = us->iobuf;
383 int ready = 0;
384 struct alauda_card_info *media_info;
385 unsigned int num_zones;
386
387 while (ready == 0) {
388 msleep(20);
389
390 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
391 return USB_STOR_TRANSPORT_ERROR;
392
393 if (data[0] & 0x10)
394 ready = 1;
395 }
396
397 usb_stor_dbg(us, "We are ready for action!\n");
398
399 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
400 return USB_STOR_TRANSPORT_ERROR;
401
402 msleep(10);
403
404 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
405 return USB_STOR_TRANSPORT_ERROR;
406
407 if (data[0] != 0x14) {
408 usb_stor_dbg(us, "Media not ready after ack\n");
409 return USB_STOR_TRANSPORT_ERROR;
410 }
411
412 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
413 return USB_STOR_TRANSPORT_ERROR;
414
415 usb_stor_dbg(us, "Media signature: %4ph\n", data);
416 media_info = alauda_card_find_id(data[1]);
417 if (media_info == NULL) {
418 pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
419 data);
420 return USB_STOR_TRANSPORT_ERROR;
421 }
422
423 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
424 usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
425 MEDIA_INFO(us).capacity >> 20);
426
427 MEDIA_INFO(us).pageshift = media_info->pageshift;
428 MEDIA_INFO(us).blockshift = media_info->blockshift;
429 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
430
431 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
432 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
433 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
434
435 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
436 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
437
438 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
439 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
440 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
441 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
442 if (MEDIA_INFO(us).pba_to_lba == NULL || MEDIA_INFO(us).lba_to_pba == NULL)
443 return USB_STOR_TRANSPORT_ERROR;
444
445 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
446 return USB_STOR_TRANSPORT_ERROR;
447
448 return USB_STOR_TRANSPORT_GOOD;
449 }
450
451 /*
452 * Examines the media status and does the right thing when the media has gone,
453 * appeared, or changed.
454 */
alauda_check_media(struct us_data * us)455 static int alauda_check_media(struct us_data *us)
456 {
457 struct alauda_info *info = (struct alauda_info *) us->extra;
458 unsigned char *status = us->iobuf;
459 int rc;
460
461 rc = alauda_get_media_status(us, status);
462 if (rc != USB_STOR_XFER_GOOD) {
463 status[0] = 0xF0; /* Pretend there's no media */
464 status[1] = 0;
465 }
466
467 /* Check for no media or door open */
468 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
469 || ((status[1] & 0x01) == 0)) {
470 usb_stor_dbg(us, "No media, or door open\n");
471 alauda_free_maps(&MEDIA_INFO(us));
472 info->sense_key = 0x02;
473 info->sense_asc = 0x3A;
474 info->sense_ascq = 0x00;
475 return USB_STOR_TRANSPORT_FAILED;
476 }
477
478 /* Check for media change */
479 if (status[0] & 0x08) {
480 usb_stor_dbg(us, "Media change detected\n");
481 alauda_free_maps(&MEDIA_INFO(us));
482 alauda_init_media(us);
483
484 info->sense_key = UNIT_ATTENTION;
485 info->sense_asc = 0x28;
486 info->sense_ascq = 0x00;
487 return USB_STOR_TRANSPORT_FAILED;
488 }
489
490 return USB_STOR_TRANSPORT_GOOD;
491 }
492
493 /*
494 * Checks the status from the 2nd status register
495 * Returns 3 bytes of status data, only the first is known
496 */
alauda_check_status2(struct us_data * us)497 static int alauda_check_status2(struct us_data *us)
498 {
499 int rc;
500 unsigned char command[] = {
501 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
502 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
503 };
504 unsigned char data[3];
505
506 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
507 command, 9, NULL);
508 if (rc != USB_STOR_XFER_GOOD)
509 return rc;
510
511 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
512 data, 3, NULL);
513 if (rc != USB_STOR_XFER_GOOD)
514 return rc;
515
516 usb_stor_dbg(us, "%3ph\n", data);
517 if (data[0] & ALAUDA_STATUS_ERROR)
518 return USB_STOR_XFER_ERROR;
519
520 return USB_STOR_XFER_GOOD;
521 }
522
523 /*
524 * Gets the redundancy data for the first page of a PBA
525 * Returns 16 bytes.
526 */
alauda_get_redu_data(struct us_data * us,u16 pba,unsigned char * data)527 static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
528 {
529 int rc;
530 unsigned char command[] = {
531 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
532 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
533 };
534
535 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
536 command, 9, NULL);
537 if (rc != USB_STOR_XFER_GOOD)
538 return rc;
539
540 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
541 data, 16, NULL);
542 }
543
544 /*
545 * Finds the first unused PBA in a zone
546 * Returns the absolute PBA of an unused PBA, or 0 if none found.
547 */
alauda_find_unused_pba(struct alauda_media_info * info,unsigned int zone)548 static u16 alauda_find_unused_pba(struct alauda_media_info *info,
549 unsigned int zone)
550 {
551 u16 *pba_to_lba = info->pba_to_lba[zone];
552 unsigned int i;
553
554 for (i = 0; i < info->zonesize; i++)
555 if (pba_to_lba[i] == UNDEF)
556 return (zone << info->zoneshift) + i;
557
558 return 0;
559 }
560
561 /*
562 * Reads the redundancy data for all PBA's in a zone
563 * Produces lba <--> pba mappings
564 */
alauda_read_map(struct us_data * us,unsigned int zone)565 static int alauda_read_map(struct us_data *us, unsigned int zone)
566 {
567 unsigned char *data = us->iobuf;
568 int result;
569 int i, j;
570 unsigned int zonesize = MEDIA_INFO(us).zonesize;
571 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
572 unsigned int lba_offset, lba_real, blocknum;
573 unsigned int zone_base_lba = zone * uzonesize;
574 unsigned int zone_base_pba = zone * zonesize;
575 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
576 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
577 if (lba_to_pba == NULL || pba_to_lba == NULL) {
578 result = USB_STOR_TRANSPORT_ERROR;
579 goto error;
580 }
581
582 usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
583
584 /* 1024 PBA's per zone */
585 for (i = 0; i < zonesize; i++)
586 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
587
588 for (i = 0; i < zonesize; i++) {
589 blocknum = zone_base_pba + i;
590
591 result = alauda_get_redu_data(us, blocknum, data);
592 if (result != USB_STOR_XFER_GOOD) {
593 result = USB_STOR_TRANSPORT_ERROR;
594 goto error;
595 }
596
597 /* special PBAs have control field 0^16 */
598 for (j = 0; j < 16; j++)
599 if (data[j] != 0)
600 goto nonz;
601 pba_to_lba[i] = UNUSABLE;
602 usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
603 continue;
604
605 nonz:
606 /* unwritten PBAs have control field FF^16 */
607 for (j = 0; j < 16; j++)
608 if (data[j] != 0xff)
609 goto nonff;
610 continue;
611
612 nonff:
613 /* normal PBAs start with six FFs */
614 if (j < 6) {
615 usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
616 blocknum,
617 data[0], data[1], data[2], data[3],
618 data[4], data[5]);
619 pba_to_lba[i] = UNUSABLE;
620 continue;
621 }
622
623 if ((data[6] >> 4) != 0x01) {
624 usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
625 blocknum, data[6], data[7],
626 data[11], data[12]);
627 pba_to_lba[i] = UNUSABLE;
628 continue;
629 }
630
631 /* check even parity */
632 if (parity[data[6] ^ data[7]]) {
633 printk(KERN_WARNING
634 "alauda_read_map: Bad parity in LBA for block %d"
635 " (%02X %02X)\n", i, data[6], data[7]);
636 pba_to_lba[i] = UNUSABLE;
637 continue;
638 }
639
640 lba_offset = short_pack(data[7], data[6]);
641 lba_offset = (lba_offset & 0x07FF) >> 1;
642 lba_real = lba_offset + zone_base_lba;
643
644 /*
645 * Every 1024 physical blocks ("zone"), the LBA numbers
646 * go back to zero, but are within a higher block of LBA's.
647 * Also, there is a maximum of 1000 LBA's per zone.
648 * In other words, in PBA 1024-2047 you will find LBA 0-999
649 * which are really LBA 1000-1999. This allows for 24 bad
650 * or special physical blocks per zone.
651 */
652
653 if (lba_offset >= uzonesize) {
654 printk(KERN_WARNING
655 "alauda_read_map: Bad low LBA %d for block %d\n",
656 lba_real, blocknum);
657 continue;
658 }
659
660 if (lba_to_pba[lba_offset] != UNDEF) {
661 printk(KERN_WARNING
662 "alauda_read_map: "
663 "LBA %d seen for PBA %d and %d\n",
664 lba_real, lba_to_pba[lba_offset], blocknum);
665 continue;
666 }
667
668 pba_to_lba[i] = lba_real;
669 lba_to_pba[lba_offset] = blocknum;
670 continue;
671 }
672
673 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
674 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
675 result = 0;
676 goto out;
677
678 error:
679 kfree(lba_to_pba);
680 kfree(pba_to_lba);
681 out:
682 return result;
683 }
684
685 /*
686 * Checks to see whether we have already mapped a certain zone
687 * If we haven't, the map is generated
688 */
alauda_ensure_map_for_zone(struct us_data * us,unsigned int zone)689 static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
690 {
691 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
692 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
693 alauda_read_map(us, zone);
694 }
695
696 /*
697 * Erases an entire block
698 */
alauda_erase_block(struct us_data * us,u16 pba)699 static int alauda_erase_block(struct us_data *us, u16 pba)
700 {
701 int rc;
702 unsigned char command[] = {
703 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
704 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
705 };
706 unsigned char buf[2];
707
708 usb_stor_dbg(us, "Erasing PBA %d\n", pba);
709
710 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
711 command, 9, NULL);
712 if (rc != USB_STOR_XFER_GOOD)
713 return rc;
714
715 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
716 buf, 2, NULL);
717 if (rc != USB_STOR_XFER_GOOD)
718 return rc;
719
720 usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
721 return rc;
722 }
723
724 /*
725 * Reads data from a certain offset page inside a PBA, including interleaved
726 * redundancy data. Returns (pagesize+64)*pages bytes in data.
727 */
alauda_read_block_raw(struct us_data * us,u16 pba,unsigned int page,unsigned int pages,unsigned char * data)728 static int alauda_read_block_raw(struct us_data *us, u16 pba,
729 unsigned int page, unsigned int pages, unsigned char *data)
730 {
731 int rc;
732 unsigned char command[] = {
733 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
734 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
735 };
736
737 usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
738
739 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
740 command, 9, NULL);
741 if (rc != USB_STOR_XFER_GOOD)
742 return rc;
743
744 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
745 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
746 }
747
748 /*
749 * Reads data from a certain offset page inside a PBA, excluding redundancy
750 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
751 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
752 * trailing bytes outside this function.
753 */
alauda_read_block(struct us_data * us,u16 pba,unsigned int page,unsigned int pages,unsigned char * data)754 static int alauda_read_block(struct us_data *us, u16 pba,
755 unsigned int page, unsigned int pages, unsigned char *data)
756 {
757 int i, rc;
758 unsigned int pagesize = MEDIA_INFO(us).pagesize;
759
760 rc = alauda_read_block_raw(us, pba, page, pages, data);
761 if (rc != USB_STOR_XFER_GOOD)
762 return rc;
763
764 /* Cut out the redundancy data */
765 for (i = 0; i < pages; i++) {
766 int dest_offset = i * pagesize;
767 int src_offset = i * (pagesize + 64);
768 memmove(data + dest_offset, data + src_offset, pagesize);
769 }
770
771 return rc;
772 }
773
774 /*
775 * Writes an entire block of data and checks status after write.
776 * Redundancy data must be already included in data. Data should be
777 * (pagesize+64)*blocksize bytes in length.
778 */
alauda_write_block(struct us_data * us,u16 pba,unsigned char * data)779 static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
780 {
781 int rc;
782 struct alauda_info *info = (struct alauda_info *) us->extra;
783 unsigned char command[] = {
784 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
785 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
786 };
787
788 usb_stor_dbg(us, "pba %d\n", pba);
789
790 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
791 command, 9, NULL);
792 if (rc != USB_STOR_XFER_GOOD)
793 return rc;
794
795 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
796 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
797 NULL);
798 if (rc != USB_STOR_XFER_GOOD)
799 return rc;
800
801 return alauda_check_status2(us);
802 }
803
804 /*
805 * Write some data to a specific LBA.
806 */
alauda_write_lba(struct us_data * us,u16 lba,unsigned int page,unsigned int pages,unsigned char * ptr,unsigned char * blockbuffer)807 static int alauda_write_lba(struct us_data *us, u16 lba,
808 unsigned int page, unsigned int pages,
809 unsigned char *ptr, unsigned char *blockbuffer)
810 {
811 u16 pba, lbap, new_pba;
812 unsigned char *bptr, *cptr, *xptr;
813 unsigned char ecc[3];
814 int i, result;
815 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
816 unsigned int zonesize = MEDIA_INFO(us).zonesize;
817 unsigned int pagesize = MEDIA_INFO(us).pagesize;
818 unsigned int blocksize = MEDIA_INFO(us).blocksize;
819 unsigned int lba_offset = lba % uzonesize;
820 unsigned int new_pba_offset;
821 unsigned int zone = lba / uzonesize;
822
823 alauda_ensure_map_for_zone(us, zone);
824
825 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
826 if (pba == 1) {
827 /*
828 * Maybe it is impossible to write to PBA 1.
829 * Fake success, but don't do anything.
830 */
831 printk(KERN_WARNING
832 "alauda_write_lba: avoid writing to pba 1\n");
833 return USB_STOR_TRANSPORT_GOOD;
834 }
835
836 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
837 if (!new_pba) {
838 printk(KERN_WARNING
839 "alauda_write_lba: Out of unused blocks\n");
840 return USB_STOR_TRANSPORT_ERROR;
841 }
842
843 /* read old contents */
844 if (pba != UNDEF) {
845 result = alauda_read_block_raw(us, pba, 0,
846 blocksize, blockbuffer);
847 if (result != USB_STOR_XFER_GOOD)
848 return result;
849 } else {
850 memset(blockbuffer, 0, blocksize * (pagesize + 64));
851 }
852
853 lbap = (lba_offset << 1) | 0x1000;
854 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
855 lbap ^= 1;
856
857 /* check old contents and fill lba */
858 for (i = 0; i < blocksize; i++) {
859 bptr = blockbuffer + (i * (pagesize + 64));
860 cptr = bptr + pagesize;
861 nand_compute_ecc(bptr, ecc);
862 if (!nand_compare_ecc(cptr+13, ecc)) {
863 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
864 i, pba);
865 nand_store_ecc(cptr+13, ecc);
866 }
867 nand_compute_ecc(bptr + (pagesize / 2), ecc);
868 if (!nand_compare_ecc(cptr+8, ecc)) {
869 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
870 i, pba);
871 nand_store_ecc(cptr+8, ecc);
872 }
873 cptr[6] = cptr[11] = MSB_of(lbap);
874 cptr[7] = cptr[12] = LSB_of(lbap);
875 }
876
877 /* copy in new stuff and compute ECC */
878 xptr = ptr;
879 for (i = page; i < page+pages; i++) {
880 bptr = blockbuffer + (i * (pagesize + 64));
881 cptr = bptr + pagesize;
882 memcpy(bptr, xptr, pagesize);
883 xptr += pagesize;
884 nand_compute_ecc(bptr, ecc);
885 nand_store_ecc(cptr+13, ecc);
886 nand_compute_ecc(bptr + (pagesize / 2), ecc);
887 nand_store_ecc(cptr+8, ecc);
888 }
889
890 result = alauda_write_block(us, new_pba, blockbuffer);
891 if (result != USB_STOR_XFER_GOOD)
892 return result;
893
894 new_pba_offset = new_pba - (zone * zonesize);
895 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
896 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
897 usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
898
899 if (pba != UNDEF) {
900 unsigned int pba_offset = pba - (zone * zonesize);
901 result = alauda_erase_block(us, pba);
902 if (result != USB_STOR_XFER_GOOD)
903 return result;
904 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
905 }
906
907 return USB_STOR_TRANSPORT_GOOD;
908 }
909
910 /*
911 * Read data from a specific sector address
912 */
alauda_read_data(struct us_data * us,unsigned long address,unsigned int sectors)913 static int alauda_read_data(struct us_data *us, unsigned long address,
914 unsigned int sectors)
915 {
916 unsigned char *buffer;
917 u16 lba, max_lba;
918 unsigned int page, len, offset;
919 unsigned int blockshift = MEDIA_INFO(us).blockshift;
920 unsigned int pageshift = MEDIA_INFO(us).pageshift;
921 unsigned int blocksize = MEDIA_INFO(us).blocksize;
922 unsigned int pagesize = MEDIA_INFO(us).pagesize;
923 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
924 struct scatterlist *sg;
925 int result;
926
927 /*
928 * Since we only read in one block at a time, we have to create
929 * a bounce buffer and move the data a piece at a time between the
930 * bounce buffer and the actual transfer buffer.
931 * We make this buffer big enough to hold temporary redundancy data,
932 * which we use when reading the data blocks.
933 */
934
935 len = min(sectors, blocksize) * (pagesize + 64);
936 buffer = kmalloc(len, GFP_NOIO);
937 if (!buffer)
938 return USB_STOR_TRANSPORT_ERROR;
939
940 /* Figure out the initial LBA and page */
941 lba = address >> blockshift;
942 page = (address & MEDIA_INFO(us).blockmask);
943 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
944
945 result = USB_STOR_TRANSPORT_GOOD;
946 offset = 0;
947 sg = NULL;
948
949 while (sectors > 0) {
950 unsigned int zone = lba / uzonesize; /* integer division */
951 unsigned int lba_offset = lba - (zone * uzonesize);
952 unsigned int pages;
953 u16 pba;
954 alauda_ensure_map_for_zone(us, zone);
955
956 /* Not overflowing capacity? */
957 if (lba >= max_lba) {
958 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
959 lba, max_lba);
960 result = USB_STOR_TRANSPORT_ERROR;
961 break;
962 }
963
964 /* Find number of pages we can read in this block */
965 pages = min(sectors, blocksize - page);
966 len = pages << pageshift;
967
968 /* Find where this lba lives on disk */
969 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
970
971 if (pba == UNDEF) { /* this lba was never written */
972 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
973 pages, lba, page);
974
975 /*
976 * This is not really an error. It just means
977 * that the block has never been written.
978 * Instead of returning USB_STOR_TRANSPORT_ERROR
979 * it is better to return all zero data.
980 */
981
982 memset(buffer, 0, len);
983 } else {
984 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
985 pages, pba, lba, page);
986
987 result = alauda_read_block(us, pba, page, pages, buffer);
988 if (result != USB_STOR_TRANSPORT_GOOD)
989 break;
990 }
991
992 /* Store the data in the transfer buffer */
993 usb_stor_access_xfer_buf(buffer, len, us->srb,
994 &sg, &offset, TO_XFER_BUF);
995
996 page = 0;
997 lba++;
998 sectors -= pages;
999 }
1000
1001 kfree(buffer);
1002 return result;
1003 }
1004
1005 /*
1006 * Write data to a specific sector address
1007 */
alauda_write_data(struct us_data * us,unsigned long address,unsigned int sectors)1008 static int alauda_write_data(struct us_data *us, unsigned long address,
1009 unsigned int sectors)
1010 {
1011 unsigned char *buffer, *blockbuffer;
1012 unsigned int page, len, offset;
1013 unsigned int blockshift = MEDIA_INFO(us).blockshift;
1014 unsigned int pageshift = MEDIA_INFO(us).pageshift;
1015 unsigned int blocksize = MEDIA_INFO(us).blocksize;
1016 unsigned int pagesize = MEDIA_INFO(us).pagesize;
1017 struct scatterlist *sg;
1018 u16 lba, max_lba;
1019 int result;
1020
1021 /*
1022 * Since we don't write the user data directly to the device,
1023 * we have to create a bounce buffer and move the data a piece
1024 * at a time between the bounce buffer and the actual transfer buffer.
1025 */
1026
1027 len = min(sectors, blocksize) * pagesize;
1028 buffer = kmalloc(len, GFP_NOIO);
1029 if (!buffer)
1030 return USB_STOR_TRANSPORT_ERROR;
1031
1032 /*
1033 * We also need a temporary block buffer, where we read in the old data,
1034 * overwrite parts with the new data, and manipulate the redundancy data
1035 */
1036 blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO);
1037 if (!blockbuffer) {
1038 kfree(buffer);
1039 return USB_STOR_TRANSPORT_ERROR;
1040 }
1041
1042 /* Figure out the initial LBA and page */
1043 lba = address >> blockshift;
1044 page = (address & MEDIA_INFO(us).blockmask);
1045 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1046
1047 result = USB_STOR_TRANSPORT_GOOD;
1048 offset = 0;
1049 sg = NULL;
1050
1051 while (sectors > 0) {
1052 /* Write as many sectors as possible in this block */
1053 unsigned int pages = min(sectors, blocksize - page);
1054 len = pages << pageshift;
1055
1056 /* Not overflowing capacity? */
1057 if (lba >= max_lba) {
1058 usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1059 lba, max_lba);
1060 result = USB_STOR_TRANSPORT_ERROR;
1061 break;
1062 }
1063
1064 /* Get the data from the transfer buffer */
1065 usb_stor_access_xfer_buf(buffer, len, us->srb,
1066 &sg, &offset, FROM_XFER_BUF);
1067
1068 result = alauda_write_lba(us, lba, page, pages, buffer,
1069 blockbuffer);
1070 if (result != USB_STOR_TRANSPORT_GOOD)
1071 break;
1072
1073 page = 0;
1074 lba++;
1075 sectors -= pages;
1076 }
1077
1078 kfree(buffer);
1079 kfree(blockbuffer);
1080 return result;
1081 }
1082
1083 /*
1084 * Our interface with the rest of the world
1085 */
1086
alauda_info_destructor(void * extra)1087 static void alauda_info_destructor(void *extra)
1088 {
1089 struct alauda_info *info = (struct alauda_info *) extra;
1090 int port;
1091
1092 if (!info)
1093 return;
1094
1095 for (port = 0; port < 2; port++) {
1096 struct alauda_media_info *media_info = &info->port[port];
1097
1098 alauda_free_maps(media_info);
1099 kfree(media_info->lba_to_pba);
1100 kfree(media_info->pba_to_lba);
1101 }
1102 }
1103
1104 /*
1105 * Initialize alauda_info struct and find the data-write endpoint
1106 */
init_alauda(struct us_data * us)1107 static int init_alauda(struct us_data *us)
1108 {
1109 struct alauda_info *info;
1110 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1111 nand_init_ecc();
1112
1113 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1114 if (!us->extra)
1115 return -ENOMEM;
1116
1117 info = (struct alauda_info *) us->extra;
1118 us->extra_destructor = alauda_info_destructor;
1119
1120 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1121 altsetting->endpoint[0].desc.bEndpointAddress
1122 & USB_ENDPOINT_NUMBER_MASK);
1123
1124 return 0;
1125 }
1126
alauda_transport(struct scsi_cmnd * srb,struct us_data * us)1127 static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1128 {
1129 int rc;
1130 struct alauda_info *info = (struct alauda_info *) us->extra;
1131 unsigned char *ptr = us->iobuf;
1132 static unsigned char inquiry_response[36] = {
1133 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1134 };
1135
1136 if (srb->cmnd[0] == INQUIRY) {
1137 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1138 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1139 fill_inquiry_response(us, ptr, 36);
1140 return USB_STOR_TRANSPORT_GOOD;
1141 }
1142
1143 if (srb->cmnd[0] == TEST_UNIT_READY) {
1144 usb_stor_dbg(us, "TEST_UNIT_READY\n");
1145 return alauda_check_media(us);
1146 }
1147
1148 if (srb->cmnd[0] == READ_CAPACITY) {
1149 unsigned int num_zones;
1150 unsigned long capacity;
1151
1152 rc = alauda_check_media(us);
1153 if (rc != USB_STOR_TRANSPORT_GOOD)
1154 return rc;
1155
1156 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1157 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1158
1159 capacity = num_zones * MEDIA_INFO(us).uzonesize
1160 * MEDIA_INFO(us).blocksize;
1161
1162 /* Report capacity and page size */
1163 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1164 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1165
1166 usb_stor_set_xfer_buf(ptr, 8, srb);
1167 return USB_STOR_TRANSPORT_GOOD;
1168 }
1169
1170 if (srb->cmnd[0] == READ_10) {
1171 unsigned int page, pages;
1172
1173 rc = alauda_check_media(us);
1174 if (rc != USB_STOR_TRANSPORT_GOOD)
1175 return rc;
1176
1177 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1178 page <<= 16;
1179 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1180 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1181
1182 usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1183
1184 return alauda_read_data(us, page, pages);
1185 }
1186
1187 if (srb->cmnd[0] == WRITE_10) {
1188 unsigned int page, pages;
1189
1190 rc = alauda_check_media(us);
1191 if (rc != USB_STOR_TRANSPORT_GOOD)
1192 return rc;
1193
1194 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1195 page <<= 16;
1196 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1197 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1198
1199 usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1200
1201 return alauda_write_data(us, page, pages);
1202 }
1203
1204 if (srb->cmnd[0] == REQUEST_SENSE) {
1205 usb_stor_dbg(us, "REQUEST_SENSE\n");
1206
1207 memset(ptr, 0, 18);
1208 ptr[0] = 0xF0;
1209 ptr[2] = info->sense_key;
1210 ptr[7] = 11;
1211 ptr[12] = info->sense_asc;
1212 ptr[13] = info->sense_ascq;
1213 usb_stor_set_xfer_buf(ptr, 18, srb);
1214
1215 return USB_STOR_TRANSPORT_GOOD;
1216 }
1217
1218 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1219 /*
1220 * sure. whatever. not like we can stop the user from popping
1221 * the media out of the device (no locking doors, etc)
1222 */
1223 return USB_STOR_TRANSPORT_GOOD;
1224 }
1225
1226 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1227 srb->cmnd[0], srb->cmnd[0]);
1228 info->sense_key = 0x05;
1229 info->sense_asc = 0x20;
1230 info->sense_ascq = 0x00;
1231 return USB_STOR_TRANSPORT_FAILED;
1232 }
1233
1234 static struct scsi_host_template alauda_host_template;
1235
alauda_probe(struct usb_interface * intf,const struct usb_device_id * id)1236 static int alauda_probe(struct usb_interface *intf,
1237 const struct usb_device_id *id)
1238 {
1239 struct us_data *us;
1240 int result;
1241
1242 result = usb_stor_probe1(&us, intf, id,
1243 (id - alauda_usb_ids) + alauda_unusual_dev_list,
1244 &alauda_host_template);
1245 if (result)
1246 return result;
1247
1248 us->transport_name = "Alauda Control/Bulk";
1249 us->transport = alauda_transport;
1250 us->transport_reset = usb_stor_Bulk_reset;
1251 us->max_lun = 1;
1252
1253 result = usb_stor_probe2(us);
1254 return result;
1255 }
1256
1257 static struct usb_driver alauda_driver = {
1258 .name = DRV_NAME,
1259 .probe = alauda_probe,
1260 .disconnect = usb_stor_disconnect,
1261 .suspend = usb_stor_suspend,
1262 .resume = usb_stor_resume,
1263 .reset_resume = usb_stor_reset_resume,
1264 .pre_reset = usb_stor_pre_reset,
1265 .post_reset = usb_stor_post_reset,
1266 .id_table = alauda_usb_ids,
1267 .soft_unbind = 1,
1268 .no_dynamic_id = 1,
1269 };
1270
1271 module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1272