1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * CXL Flash Device Driver
4 *
5 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
6 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
7 *
8 * Copyright (C) 2015 IBM Corporation
9 */
10
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15
16 #include <asm/unaligned.h>
17
18 #include <scsi/scsi_cmnd.h>
19 #include <scsi/scsi_host.h>
20 #include <uapi/scsi/cxlflash_ioctl.h>
21
22 #include "main.h"
23 #include "sislite.h"
24 #include "common.h"
25
26 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
27 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
28 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
29 MODULE_LICENSE("GPL");
30
31 static struct class *cxlflash_class;
32 static u32 cxlflash_major;
33 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
34
35 /**
36 * process_cmd_err() - command error handler
37 * @cmd: AFU command that experienced the error.
38 * @scp: SCSI command associated with the AFU command in error.
39 *
40 * Translates error bits from AFU command to SCSI command results.
41 */
process_cmd_err(struct afu_cmd * cmd,struct scsi_cmnd * scp)42 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
43 {
44 struct afu *afu = cmd->parent;
45 struct cxlflash_cfg *cfg = afu->parent;
46 struct device *dev = &cfg->dev->dev;
47 struct sisl_ioasa *ioasa;
48 u32 resid;
49
50 ioasa = &(cmd->sa);
51
52 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
53 resid = ioasa->resid;
54 scsi_set_resid(scp, resid);
55 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
56 __func__, cmd, scp, resid);
57 }
58
59 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
60 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
61 __func__, cmd, scp);
62 scp->result = (DID_ERROR << 16);
63 }
64
65 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
66 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
67 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
68 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
69
70 if (ioasa->rc.scsi_rc) {
71 /* We have a SCSI status */
72 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
73 memcpy(scp->sense_buffer, ioasa->sense_data,
74 SISL_SENSE_DATA_LEN);
75 scp->result = ioasa->rc.scsi_rc;
76 } else
77 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
78 }
79
80 /*
81 * We encountered an error. Set scp->result based on nature
82 * of error.
83 */
84 if (ioasa->rc.fc_rc) {
85 /* We have an FC status */
86 switch (ioasa->rc.fc_rc) {
87 case SISL_FC_RC_LINKDOWN:
88 scp->result = (DID_REQUEUE << 16);
89 break;
90 case SISL_FC_RC_RESID:
91 /* This indicates an FCP resid underrun */
92 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
93 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
94 * then we will handle this error else where.
95 * If not then we must handle it here.
96 * This is probably an AFU bug.
97 */
98 scp->result = (DID_ERROR << 16);
99 }
100 break;
101 case SISL_FC_RC_RESIDERR:
102 /* Resid mismatch between adapter and device */
103 case SISL_FC_RC_TGTABORT:
104 case SISL_FC_RC_ABORTOK:
105 case SISL_FC_RC_ABORTFAIL:
106 case SISL_FC_RC_NOLOGI:
107 case SISL_FC_RC_ABORTPEND:
108 case SISL_FC_RC_WRABORTPEND:
109 case SISL_FC_RC_NOEXP:
110 case SISL_FC_RC_INUSE:
111 scp->result = (DID_ERROR << 16);
112 break;
113 }
114 }
115
116 if (ioasa->rc.afu_rc) {
117 /* We have an AFU error */
118 switch (ioasa->rc.afu_rc) {
119 case SISL_AFU_RC_NO_CHANNELS:
120 scp->result = (DID_NO_CONNECT << 16);
121 break;
122 case SISL_AFU_RC_DATA_DMA_ERR:
123 switch (ioasa->afu_extra) {
124 case SISL_AFU_DMA_ERR_PAGE_IN:
125 /* Retry */
126 scp->result = (DID_IMM_RETRY << 16);
127 break;
128 case SISL_AFU_DMA_ERR_INVALID_EA:
129 default:
130 scp->result = (DID_ERROR << 16);
131 }
132 break;
133 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
134 /* Retry */
135 scp->result = (DID_ERROR << 16);
136 break;
137 default:
138 scp->result = (DID_ERROR << 16);
139 }
140 }
141 }
142
143 /**
144 * cmd_complete() - command completion handler
145 * @cmd: AFU command that has completed.
146 *
147 * For SCSI commands this routine prepares and submits commands that have
148 * either completed or timed out to the SCSI stack. For internal commands
149 * (TMF or AFU), this routine simply notifies the originator that the
150 * command has completed.
151 */
cmd_complete(struct afu_cmd * cmd)152 static void cmd_complete(struct afu_cmd *cmd)
153 {
154 struct scsi_cmnd *scp;
155 ulong lock_flags;
156 struct afu *afu = cmd->parent;
157 struct cxlflash_cfg *cfg = afu->parent;
158 struct device *dev = &cfg->dev->dev;
159 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
160
161 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
162 list_del(&cmd->list);
163 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
164
165 if (cmd->scp) {
166 scp = cmd->scp;
167 if (unlikely(cmd->sa.ioasc))
168 process_cmd_err(cmd, scp);
169 else
170 scp->result = (DID_OK << 16);
171
172 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
173 __func__, scp, scp->result, cmd->sa.ioasc);
174 scsi_done(scp);
175 } else if (cmd->cmd_tmf) {
176 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
177 cfg->tmf_active = false;
178 wake_up_all_locked(&cfg->tmf_waitq);
179 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
180 } else
181 complete(&cmd->cevent);
182 }
183
184 /**
185 * flush_pending_cmds() - flush all pending commands on this hardware queue
186 * @hwq: Hardware queue to flush.
187 *
188 * The hardware send queue lock associated with this hardware queue must be
189 * held when calling this routine.
190 */
flush_pending_cmds(struct hwq * hwq)191 static void flush_pending_cmds(struct hwq *hwq)
192 {
193 struct cxlflash_cfg *cfg = hwq->afu->parent;
194 struct afu_cmd *cmd, *tmp;
195 struct scsi_cmnd *scp;
196 ulong lock_flags;
197
198 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
199 /* Bypass command when on a doneq, cmd_complete() will handle */
200 if (!list_empty(&cmd->queue))
201 continue;
202
203 list_del(&cmd->list);
204
205 if (cmd->scp) {
206 scp = cmd->scp;
207 scp->result = (DID_IMM_RETRY << 16);
208 scsi_done(scp);
209 } else {
210 cmd->cmd_aborted = true;
211
212 if (cmd->cmd_tmf) {
213 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
214 cfg->tmf_active = false;
215 wake_up_all_locked(&cfg->tmf_waitq);
216 spin_unlock_irqrestore(&cfg->tmf_slock,
217 lock_flags);
218 } else
219 complete(&cmd->cevent);
220 }
221 }
222 }
223
224 /**
225 * context_reset() - reset context via specified register
226 * @hwq: Hardware queue owning the context to be reset.
227 * @reset_reg: MMIO register to perform reset.
228 *
229 * When the reset is successful, the SISLite specification guarantees that
230 * the AFU has aborted all currently pending I/O. Accordingly, these commands
231 * must be flushed.
232 *
233 * Return: 0 on success, -errno on failure
234 */
context_reset(struct hwq * hwq,__be64 __iomem * reset_reg)235 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
236 {
237 struct cxlflash_cfg *cfg = hwq->afu->parent;
238 struct device *dev = &cfg->dev->dev;
239 int rc = -ETIMEDOUT;
240 int nretry = 0;
241 u64 val = 0x1;
242 ulong lock_flags;
243
244 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
245
246 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
247
248 writeq_be(val, reset_reg);
249 do {
250 val = readq_be(reset_reg);
251 if ((val & 0x1) == 0x0) {
252 rc = 0;
253 break;
254 }
255
256 /* Double delay each time */
257 udelay(1 << nretry);
258 } while (nretry++ < MC_ROOM_RETRY_CNT);
259
260 if (!rc)
261 flush_pending_cmds(hwq);
262
263 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
264
265 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
266 __func__, rc, val, nretry);
267 return rc;
268 }
269
270 /**
271 * context_reset_ioarrin() - reset context via IOARRIN register
272 * @hwq: Hardware queue owning the context to be reset.
273 *
274 * Return: 0 on success, -errno on failure
275 */
context_reset_ioarrin(struct hwq * hwq)276 static int context_reset_ioarrin(struct hwq *hwq)
277 {
278 return context_reset(hwq, &hwq->host_map->ioarrin);
279 }
280
281 /**
282 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
283 * @hwq: Hardware queue owning the context to be reset.
284 *
285 * Return: 0 on success, -errno on failure
286 */
context_reset_sq(struct hwq * hwq)287 static int context_reset_sq(struct hwq *hwq)
288 {
289 return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
290 }
291
292 /**
293 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
294 * @afu: AFU associated with the host.
295 * @cmd: AFU command to send.
296 *
297 * Return:
298 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
299 */
send_cmd_ioarrin(struct afu * afu,struct afu_cmd * cmd)300 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
301 {
302 struct cxlflash_cfg *cfg = afu->parent;
303 struct device *dev = &cfg->dev->dev;
304 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
305 int rc = 0;
306 s64 room;
307 ulong lock_flags;
308
309 /*
310 * To avoid the performance penalty of MMIO, spread the update of
311 * 'room' over multiple commands.
312 */
313 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
314 if (--hwq->room < 0) {
315 room = readq_be(&hwq->host_map->cmd_room);
316 if (room <= 0) {
317 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
318 "0x%02X, room=0x%016llX\n",
319 __func__, cmd->rcb.cdb[0], room);
320 hwq->room = 0;
321 rc = SCSI_MLQUEUE_HOST_BUSY;
322 goto out;
323 }
324 hwq->room = room - 1;
325 }
326
327 list_add(&cmd->list, &hwq->pending_cmds);
328 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
329 out:
330 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
331 dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
332 __func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
333 return rc;
334 }
335
336 /**
337 * send_cmd_sq() - sends an AFU command via SQ ring
338 * @afu: AFU associated with the host.
339 * @cmd: AFU command to send.
340 *
341 * Return:
342 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
343 */
send_cmd_sq(struct afu * afu,struct afu_cmd * cmd)344 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
345 {
346 struct cxlflash_cfg *cfg = afu->parent;
347 struct device *dev = &cfg->dev->dev;
348 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
349 int rc = 0;
350 int newval;
351 ulong lock_flags;
352
353 newval = atomic_dec_if_positive(&hwq->hsq_credits);
354 if (newval <= 0) {
355 rc = SCSI_MLQUEUE_HOST_BUSY;
356 goto out;
357 }
358
359 cmd->rcb.ioasa = &cmd->sa;
360
361 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
362
363 *hwq->hsq_curr = cmd->rcb;
364 if (hwq->hsq_curr < hwq->hsq_end)
365 hwq->hsq_curr++;
366 else
367 hwq->hsq_curr = hwq->hsq_start;
368
369 list_add(&cmd->list, &hwq->pending_cmds);
370 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
371
372 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
373 out:
374 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
375 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
376 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
377 readq_be(&hwq->host_map->sq_head),
378 readq_be(&hwq->host_map->sq_tail));
379 return rc;
380 }
381
382 /**
383 * wait_resp() - polls for a response or timeout to a sent AFU command
384 * @afu: AFU associated with the host.
385 * @cmd: AFU command that was sent.
386 *
387 * Return: 0 on success, -errno on failure
388 */
wait_resp(struct afu * afu,struct afu_cmd * cmd)389 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
390 {
391 struct cxlflash_cfg *cfg = afu->parent;
392 struct device *dev = &cfg->dev->dev;
393 int rc = 0;
394 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
395
396 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
397 if (!timeout)
398 rc = -ETIMEDOUT;
399
400 if (cmd->cmd_aborted)
401 rc = -EAGAIN;
402
403 if (unlikely(cmd->sa.ioasc != 0)) {
404 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
405 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
406 rc = -EIO;
407 }
408
409 return rc;
410 }
411
412 /**
413 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
414 * @host: SCSI host associated with device.
415 * @scp: SCSI command to send.
416 * @afu: SCSI command to send.
417 *
418 * Hashes a command based upon the hardware queue mode.
419 *
420 * Return: Trusted index of target hardware queue
421 */
cmd_to_target_hwq(struct Scsi_Host * host,struct scsi_cmnd * scp,struct afu * afu)422 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
423 struct afu *afu)
424 {
425 u32 tag;
426 u32 hwq = 0;
427
428 if (afu->num_hwqs == 1)
429 return 0;
430
431 switch (afu->hwq_mode) {
432 case HWQ_MODE_RR:
433 hwq = afu->hwq_rr_count++ % afu->num_hwqs;
434 break;
435 case HWQ_MODE_TAG:
436 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scp));
437 hwq = blk_mq_unique_tag_to_hwq(tag);
438 break;
439 case HWQ_MODE_CPU:
440 hwq = smp_processor_id() % afu->num_hwqs;
441 break;
442 default:
443 WARN_ON_ONCE(1);
444 }
445
446 return hwq;
447 }
448
449 /**
450 * send_tmf() - sends a Task Management Function (TMF)
451 * @cfg: Internal structure associated with the host.
452 * @sdev: SCSI device destined for TMF.
453 * @tmfcmd: TMF command to send.
454 *
455 * Return:
456 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
457 */
send_tmf(struct cxlflash_cfg * cfg,struct scsi_device * sdev,u64 tmfcmd)458 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
459 u64 tmfcmd)
460 {
461 struct afu *afu = cfg->afu;
462 struct afu_cmd *cmd = NULL;
463 struct device *dev = &cfg->dev->dev;
464 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
465 bool needs_deletion = false;
466 char *buf = NULL;
467 ulong lock_flags;
468 int rc = 0;
469 ulong to;
470
471 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
472 if (unlikely(!buf)) {
473 dev_err(dev, "%s: no memory for command\n", __func__);
474 rc = -ENOMEM;
475 goto out;
476 }
477
478 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
479 INIT_LIST_HEAD(&cmd->queue);
480
481 /* When Task Management Function is active do not send another */
482 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
483 if (cfg->tmf_active)
484 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
485 !cfg->tmf_active,
486 cfg->tmf_slock);
487 cfg->tmf_active = true;
488 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
489
490 cmd->parent = afu;
491 cmd->cmd_tmf = true;
492 cmd->hwq_index = hwq->index;
493
494 cmd->rcb.ctx_id = hwq->ctx_hndl;
495 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
496 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
497 cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
498 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
499 SISL_REQ_FLAGS_SUP_UNDERRUN |
500 SISL_REQ_FLAGS_TMF_CMD);
501 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
502
503 rc = afu->send_cmd(afu, cmd);
504 if (unlikely(rc)) {
505 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
506 cfg->tmf_active = false;
507 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
508 goto out;
509 }
510
511 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
512 to = msecs_to_jiffies(5000);
513 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
514 !cfg->tmf_active,
515 cfg->tmf_slock,
516 to);
517 if (!to) {
518 dev_err(dev, "%s: TMF timed out\n", __func__);
519 rc = -ETIMEDOUT;
520 needs_deletion = true;
521 } else if (cmd->cmd_aborted) {
522 dev_err(dev, "%s: TMF aborted\n", __func__);
523 rc = -EAGAIN;
524 } else if (cmd->sa.ioasc) {
525 dev_err(dev, "%s: TMF failed ioasc=%08x\n",
526 __func__, cmd->sa.ioasc);
527 rc = -EIO;
528 }
529 cfg->tmf_active = false;
530 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
531
532 if (needs_deletion) {
533 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
534 list_del(&cmd->list);
535 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
536 }
537 out:
538 kfree(buf);
539 return rc;
540 }
541
542 /**
543 * cxlflash_driver_info() - information handler for this host driver
544 * @host: SCSI host associated with device.
545 *
546 * Return: A string describing the device.
547 */
cxlflash_driver_info(struct Scsi_Host * host)548 static const char *cxlflash_driver_info(struct Scsi_Host *host)
549 {
550 return CXLFLASH_ADAPTER_NAME;
551 }
552
553 /**
554 * cxlflash_queuecommand() - sends a mid-layer request
555 * @host: SCSI host associated with device.
556 * @scp: SCSI command to send.
557 *
558 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
559 */
cxlflash_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * scp)560 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
561 {
562 struct cxlflash_cfg *cfg = shost_priv(host);
563 struct afu *afu = cfg->afu;
564 struct device *dev = &cfg->dev->dev;
565 struct afu_cmd *cmd = sc_to_afuci(scp);
566 struct scatterlist *sg = scsi_sglist(scp);
567 int hwq_index = cmd_to_target_hwq(host, scp, afu);
568 struct hwq *hwq = get_hwq(afu, hwq_index);
569 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
570 ulong lock_flags;
571 int rc = 0;
572
573 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
574 "cdb=(%08x-%08x-%08x-%08x)\n",
575 __func__, scp, host->host_no, scp->device->channel,
576 scp->device->id, scp->device->lun,
577 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
578 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
579 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
580 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
581
582 /*
583 * If a Task Management Function is active, wait for it to complete
584 * before continuing with regular commands.
585 */
586 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
587 if (cfg->tmf_active) {
588 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
589 rc = SCSI_MLQUEUE_HOST_BUSY;
590 goto out;
591 }
592 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
593
594 switch (cfg->state) {
595 case STATE_PROBING:
596 case STATE_PROBED:
597 case STATE_RESET:
598 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
599 rc = SCSI_MLQUEUE_HOST_BUSY;
600 goto out;
601 case STATE_FAILTERM:
602 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
603 scp->result = (DID_NO_CONNECT << 16);
604 scsi_done(scp);
605 rc = 0;
606 goto out;
607 default:
608 atomic_inc(&afu->cmds_active);
609 break;
610 }
611
612 if (likely(sg)) {
613 cmd->rcb.data_len = sg->length;
614 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
615 }
616
617 cmd->scp = scp;
618 cmd->parent = afu;
619 cmd->hwq_index = hwq_index;
620
621 cmd->sa.ioasc = 0;
622 cmd->rcb.ctx_id = hwq->ctx_hndl;
623 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
624 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
625 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
626
627 if (scp->sc_data_direction == DMA_TO_DEVICE)
628 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
629
630 cmd->rcb.req_flags = req_flags;
631 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
632
633 rc = afu->send_cmd(afu, cmd);
634 atomic_dec(&afu->cmds_active);
635 out:
636 return rc;
637 }
638
639 /**
640 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
641 * @cfg: Internal structure associated with the host.
642 */
cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg * cfg)643 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
644 {
645 struct pci_dev *pdev = cfg->dev;
646
647 if (pci_channel_offline(pdev))
648 wait_event_timeout(cfg->reset_waitq,
649 !pci_channel_offline(pdev),
650 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
651 }
652
653 /**
654 * free_mem() - free memory associated with the AFU
655 * @cfg: Internal structure associated with the host.
656 */
free_mem(struct cxlflash_cfg * cfg)657 static void free_mem(struct cxlflash_cfg *cfg)
658 {
659 struct afu *afu = cfg->afu;
660
661 if (cfg->afu) {
662 free_pages((ulong)afu, get_order(sizeof(struct afu)));
663 cfg->afu = NULL;
664 }
665 }
666
667 /**
668 * cxlflash_reset_sync() - synchronizing point for asynchronous resets
669 * @cfg: Internal structure associated with the host.
670 */
cxlflash_reset_sync(struct cxlflash_cfg * cfg)671 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
672 {
673 if (cfg->async_reset_cookie == 0)
674 return;
675
676 /* Wait until all async calls prior to this cookie have completed */
677 async_synchronize_cookie(cfg->async_reset_cookie + 1);
678 cfg->async_reset_cookie = 0;
679 }
680
681 /**
682 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
683 * @cfg: Internal structure associated with the host.
684 *
685 * Safe to call with AFU in a partially allocated/initialized state.
686 *
687 * Cancels scheduled worker threads, waits for any active internal AFU
688 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
689 */
stop_afu(struct cxlflash_cfg * cfg)690 static void stop_afu(struct cxlflash_cfg *cfg)
691 {
692 struct afu *afu = cfg->afu;
693 struct hwq *hwq;
694 int i;
695
696 cancel_work_sync(&cfg->work_q);
697 if (!current_is_async())
698 cxlflash_reset_sync(cfg);
699
700 if (likely(afu)) {
701 while (atomic_read(&afu->cmds_active))
702 ssleep(1);
703
704 if (afu_is_irqpoll_enabled(afu)) {
705 for (i = 0; i < afu->num_hwqs; i++) {
706 hwq = get_hwq(afu, i);
707
708 irq_poll_disable(&hwq->irqpoll);
709 }
710 }
711
712 if (likely(afu->afu_map)) {
713 cfg->ops->psa_unmap(afu->afu_map);
714 afu->afu_map = NULL;
715 }
716 }
717 }
718
719 /**
720 * term_intr() - disables all AFU interrupts
721 * @cfg: Internal structure associated with the host.
722 * @level: Depth of allocation, where to begin waterfall tear down.
723 * @index: Index of the hardware queue.
724 *
725 * Safe to call with AFU/MC in partially allocated/initialized state.
726 */
term_intr(struct cxlflash_cfg * cfg,enum undo_level level,u32 index)727 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
728 u32 index)
729 {
730 struct afu *afu = cfg->afu;
731 struct device *dev = &cfg->dev->dev;
732 struct hwq *hwq;
733
734 if (!afu) {
735 dev_err(dev, "%s: returning with NULL afu\n", __func__);
736 return;
737 }
738
739 hwq = get_hwq(afu, index);
740
741 if (!hwq->ctx_cookie) {
742 dev_err(dev, "%s: returning with NULL MC\n", __func__);
743 return;
744 }
745
746 switch (level) {
747 case UNMAP_THREE:
748 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
749 if (index == PRIMARY_HWQ)
750 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
751 fallthrough;
752 case UNMAP_TWO:
753 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
754 fallthrough;
755 case UNMAP_ONE:
756 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
757 fallthrough;
758 case FREE_IRQ:
759 cfg->ops->free_afu_irqs(hwq->ctx_cookie);
760 fallthrough;
761 case UNDO_NOOP:
762 /* No action required */
763 break;
764 }
765 }
766
767 /**
768 * term_mc() - terminates the master context
769 * @cfg: Internal structure associated with the host.
770 * @index: Index of the hardware queue.
771 *
772 * Safe to call with AFU/MC in partially allocated/initialized state.
773 */
term_mc(struct cxlflash_cfg * cfg,u32 index)774 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
775 {
776 struct afu *afu = cfg->afu;
777 struct device *dev = &cfg->dev->dev;
778 struct hwq *hwq;
779 ulong lock_flags;
780
781 if (!afu) {
782 dev_err(dev, "%s: returning with NULL afu\n", __func__);
783 return;
784 }
785
786 hwq = get_hwq(afu, index);
787
788 if (!hwq->ctx_cookie) {
789 dev_err(dev, "%s: returning with NULL MC\n", __func__);
790 return;
791 }
792
793 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
794 if (index != PRIMARY_HWQ)
795 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
796 hwq->ctx_cookie = NULL;
797
798 spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
799 hwq->hrrq_online = false;
800 spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
801
802 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
803 flush_pending_cmds(hwq);
804 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
805 }
806
807 /**
808 * term_afu() - terminates the AFU
809 * @cfg: Internal structure associated with the host.
810 *
811 * Safe to call with AFU/MC in partially allocated/initialized state.
812 */
term_afu(struct cxlflash_cfg * cfg)813 static void term_afu(struct cxlflash_cfg *cfg)
814 {
815 struct device *dev = &cfg->dev->dev;
816 int k;
817
818 /*
819 * Tear down is carefully orchestrated to ensure
820 * no interrupts can come in when the problem state
821 * area is unmapped.
822 *
823 * 1) Disable all AFU interrupts for each master
824 * 2) Unmap the problem state area
825 * 3) Stop each master context
826 */
827 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
828 term_intr(cfg, UNMAP_THREE, k);
829
830 stop_afu(cfg);
831
832 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
833 term_mc(cfg, k);
834
835 dev_dbg(dev, "%s: returning\n", __func__);
836 }
837
838 /**
839 * notify_shutdown() - notifies device of pending shutdown
840 * @cfg: Internal structure associated with the host.
841 * @wait: Whether to wait for shutdown processing to complete.
842 *
843 * This function will notify the AFU that the adapter is being shutdown
844 * and will wait for shutdown processing to complete if wait is true.
845 * This notification should flush pending I/Os to the device and halt
846 * further I/Os until the next AFU reset is issued and device restarted.
847 */
notify_shutdown(struct cxlflash_cfg * cfg,bool wait)848 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
849 {
850 struct afu *afu = cfg->afu;
851 struct device *dev = &cfg->dev->dev;
852 struct dev_dependent_vals *ddv;
853 __be64 __iomem *fc_port_regs;
854 u64 reg, status;
855 int i, retry_cnt = 0;
856
857 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
858 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
859 return;
860
861 if (!afu || !afu->afu_map) {
862 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
863 return;
864 }
865
866 /* Notify AFU */
867 for (i = 0; i < cfg->num_fc_ports; i++) {
868 fc_port_regs = get_fc_port_regs(cfg, i);
869
870 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
871 reg |= SISL_FC_SHUTDOWN_NORMAL;
872 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
873 }
874
875 if (!wait)
876 return;
877
878 /* Wait up to 1.5 seconds for shutdown processing to complete */
879 for (i = 0; i < cfg->num_fc_ports; i++) {
880 fc_port_regs = get_fc_port_regs(cfg, i);
881 retry_cnt = 0;
882
883 while (true) {
884 status = readq_be(&fc_port_regs[FC_STATUS / 8]);
885 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
886 break;
887 if (++retry_cnt >= MC_RETRY_CNT) {
888 dev_dbg(dev, "%s: port %d shutdown processing "
889 "not yet completed\n", __func__, i);
890 break;
891 }
892 msleep(100 * retry_cnt);
893 }
894 }
895 }
896
897 /**
898 * cxlflash_get_minor() - gets the first available minor number
899 *
900 * Return: Unique minor number that can be used to create the character device.
901 */
cxlflash_get_minor(void)902 static int cxlflash_get_minor(void)
903 {
904 int minor;
905 long bit;
906
907 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
908 if (bit >= CXLFLASH_MAX_ADAPTERS)
909 return -1;
910
911 minor = bit & MINORMASK;
912 set_bit(minor, cxlflash_minor);
913 return minor;
914 }
915
916 /**
917 * cxlflash_put_minor() - releases the minor number
918 * @minor: Minor number that is no longer needed.
919 */
cxlflash_put_minor(int minor)920 static void cxlflash_put_minor(int minor)
921 {
922 clear_bit(minor, cxlflash_minor);
923 }
924
925 /**
926 * cxlflash_release_chrdev() - release the character device for the host
927 * @cfg: Internal structure associated with the host.
928 */
cxlflash_release_chrdev(struct cxlflash_cfg * cfg)929 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
930 {
931 device_unregister(cfg->chardev);
932 cfg->chardev = NULL;
933 cdev_del(&cfg->cdev);
934 cxlflash_put_minor(MINOR(cfg->cdev.dev));
935 }
936
937 /**
938 * cxlflash_remove() - PCI entry point to tear down host
939 * @pdev: PCI device associated with the host.
940 *
941 * Safe to use as a cleanup in partially allocated/initialized state. Note that
942 * the reset_waitq is flushed as part of the stop/termination of user contexts.
943 */
cxlflash_remove(struct pci_dev * pdev)944 static void cxlflash_remove(struct pci_dev *pdev)
945 {
946 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
947 struct device *dev = &pdev->dev;
948 ulong lock_flags;
949
950 if (!pci_is_enabled(pdev)) {
951 dev_dbg(dev, "%s: Device is disabled\n", __func__);
952 return;
953 }
954
955 /* Yield to running recovery threads before continuing with remove */
956 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
957 cfg->state != STATE_PROBING);
958 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
959 if (cfg->tmf_active)
960 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
961 !cfg->tmf_active,
962 cfg->tmf_slock);
963 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
964
965 /* Notify AFU and wait for shutdown processing to complete */
966 notify_shutdown(cfg, true);
967
968 cfg->state = STATE_FAILTERM;
969 cxlflash_stop_term_user_contexts(cfg);
970
971 switch (cfg->init_state) {
972 case INIT_STATE_CDEV:
973 cxlflash_release_chrdev(cfg);
974 fallthrough;
975 case INIT_STATE_SCSI:
976 cxlflash_term_local_luns(cfg);
977 scsi_remove_host(cfg->host);
978 fallthrough;
979 case INIT_STATE_AFU:
980 term_afu(cfg);
981 fallthrough;
982 case INIT_STATE_PCI:
983 cfg->ops->destroy_afu(cfg->afu_cookie);
984 pci_disable_device(pdev);
985 fallthrough;
986 case INIT_STATE_NONE:
987 free_mem(cfg);
988 scsi_host_put(cfg->host);
989 break;
990 }
991
992 dev_dbg(dev, "%s: returning\n", __func__);
993 }
994
995 /**
996 * alloc_mem() - allocates the AFU and its command pool
997 * @cfg: Internal structure associated with the host.
998 *
999 * A partially allocated state remains on failure.
1000 *
1001 * Return:
1002 * 0 on success
1003 * -ENOMEM on failure to allocate memory
1004 */
alloc_mem(struct cxlflash_cfg * cfg)1005 static int alloc_mem(struct cxlflash_cfg *cfg)
1006 {
1007 int rc = 0;
1008 struct device *dev = &cfg->dev->dev;
1009
1010 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1011 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1012 get_order(sizeof(struct afu)));
1013 if (unlikely(!cfg->afu)) {
1014 dev_err(dev, "%s: cannot get %d free pages\n",
1015 __func__, get_order(sizeof(struct afu)));
1016 rc = -ENOMEM;
1017 goto out;
1018 }
1019 cfg->afu->parent = cfg;
1020 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1021 cfg->afu->afu_map = NULL;
1022 out:
1023 return rc;
1024 }
1025
1026 /**
1027 * init_pci() - initializes the host as a PCI device
1028 * @cfg: Internal structure associated with the host.
1029 *
1030 * Return: 0 on success, -errno on failure
1031 */
init_pci(struct cxlflash_cfg * cfg)1032 static int init_pci(struct cxlflash_cfg *cfg)
1033 {
1034 struct pci_dev *pdev = cfg->dev;
1035 struct device *dev = &cfg->dev->dev;
1036 int rc = 0;
1037
1038 rc = pci_enable_device(pdev);
1039 if (rc || pci_channel_offline(pdev)) {
1040 if (pci_channel_offline(pdev)) {
1041 cxlflash_wait_for_pci_err_recovery(cfg);
1042 rc = pci_enable_device(pdev);
1043 }
1044
1045 if (rc) {
1046 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1047 cxlflash_wait_for_pci_err_recovery(cfg);
1048 goto out;
1049 }
1050 }
1051
1052 out:
1053 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1054 return rc;
1055 }
1056
1057 /**
1058 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1059 * @cfg: Internal structure associated with the host.
1060 *
1061 * Return: 0 on success, -errno on failure
1062 */
init_scsi(struct cxlflash_cfg * cfg)1063 static int init_scsi(struct cxlflash_cfg *cfg)
1064 {
1065 struct pci_dev *pdev = cfg->dev;
1066 struct device *dev = &cfg->dev->dev;
1067 int rc = 0;
1068
1069 rc = scsi_add_host(cfg->host, &pdev->dev);
1070 if (rc) {
1071 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1072 goto out;
1073 }
1074
1075 scsi_scan_host(cfg->host);
1076
1077 out:
1078 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1079 return rc;
1080 }
1081
1082 /**
1083 * set_port_online() - transitions the specified host FC port to online state
1084 * @fc_regs: Top of MMIO region defined for specified port.
1085 *
1086 * The provided MMIO region must be mapped prior to call. Online state means
1087 * that the FC link layer has synced, completed the handshaking process, and
1088 * is ready for login to start.
1089 */
set_port_online(__be64 __iomem * fc_regs)1090 static void set_port_online(__be64 __iomem *fc_regs)
1091 {
1092 u64 cmdcfg;
1093
1094 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1095 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
1096 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
1097 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1098 }
1099
1100 /**
1101 * set_port_offline() - transitions the specified host FC port to offline state
1102 * @fc_regs: Top of MMIO region defined for specified port.
1103 *
1104 * The provided MMIO region must be mapped prior to call.
1105 */
set_port_offline(__be64 __iomem * fc_regs)1106 static void set_port_offline(__be64 __iomem *fc_regs)
1107 {
1108 u64 cmdcfg;
1109
1110 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1111 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
1112 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
1113 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1114 }
1115
1116 /**
1117 * wait_port_online() - waits for the specified host FC port come online
1118 * @fc_regs: Top of MMIO region defined for specified port.
1119 * @delay_us: Number of microseconds to delay between reading port status.
1120 * @nretry: Number of cycles to retry reading port status.
1121 *
1122 * The provided MMIO region must be mapped prior to call. This will timeout
1123 * when the cable is not plugged in.
1124 *
1125 * Return:
1126 * TRUE (1) when the specified port is online
1127 * FALSE (0) when the specified port fails to come online after timeout
1128 */
wait_port_online(__be64 __iomem * fc_regs,u32 delay_us,u32 nretry)1129 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1130 {
1131 u64 status;
1132
1133 WARN_ON(delay_us < 1000);
1134
1135 do {
1136 msleep(delay_us / 1000);
1137 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1138 if (status == U64_MAX)
1139 nretry /= 2;
1140 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1141 nretry--);
1142
1143 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1144 }
1145
1146 /**
1147 * wait_port_offline() - waits for the specified host FC port go offline
1148 * @fc_regs: Top of MMIO region defined for specified port.
1149 * @delay_us: Number of microseconds to delay between reading port status.
1150 * @nretry: Number of cycles to retry reading port status.
1151 *
1152 * The provided MMIO region must be mapped prior to call.
1153 *
1154 * Return:
1155 * TRUE (1) when the specified port is offline
1156 * FALSE (0) when the specified port fails to go offline after timeout
1157 */
wait_port_offline(__be64 __iomem * fc_regs,u32 delay_us,u32 nretry)1158 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1159 {
1160 u64 status;
1161
1162 WARN_ON(delay_us < 1000);
1163
1164 do {
1165 msleep(delay_us / 1000);
1166 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1167 if (status == U64_MAX)
1168 nretry /= 2;
1169 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1170 nretry--);
1171
1172 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1173 }
1174
1175 /**
1176 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1177 * @afu: AFU associated with the host that owns the specified FC port.
1178 * @port: Port number being configured.
1179 * @fc_regs: Top of MMIO region defined for specified port.
1180 * @wwpn: The world-wide-port-number previously discovered for port.
1181 *
1182 * The provided MMIO region must be mapped prior to call. As part of the
1183 * sequence to configure the WWPN, the port is toggled offline and then back
1184 * online. This toggling action can cause this routine to delay up to a few
1185 * seconds. When configured to use the internal LUN feature of the AFU, a
1186 * failure to come online is overridden.
1187 */
afu_set_wwpn(struct afu * afu,int port,__be64 __iomem * fc_regs,u64 wwpn)1188 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1189 u64 wwpn)
1190 {
1191 struct cxlflash_cfg *cfg = afu->parent;
1192 struct device *dev = &cfg->dev->dev;
1193
1194 set_port_offline(fc_regs);
1195 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1196 FC_PORT_STATUS_RETRY_CNT)) {
1197 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1198 __func__, port);
1199 }
1200
1201 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1202
1203 set_port_online(fc_regs);
1204 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1205 FC_PORT_STATUS_RETRY_CNT)) {
1206 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1207 __func__, port);
1208 }
1209 }
1210
1211 /**
1212 * afu_link_reset() - resets the specified host FC port
1213 * @afu: AFU associated with the host that owns the specified FC port.
1214 * @port: Port number being configured.
1215 * @fc_regs: Top of MMIO region defined for specified port.
1216 *
1217 * The provided MMIO region must be mapped prior to call. The sequence to
1218 * reset the port involves toggling it offline and then back online. This
1219 * action can cause this routine to delay up to a few seconds. An effort
1220 * is made to maintain link with the device by switching to host to use
1221 * the alternate port exclusively while the reset takes place.
1222 * failure to come online is overridden.
1223 */
afu_link_reset(struct afu * afu,int port,__be64 __iomem * fc_regs)1224 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1225 {
1226 struct cxlflash_cfg *cfg = afu->parent;
1227 struct device *dev = &cfg->dev->dev;
1228 u64 port_sel;
1229
1230 /* first switch the AFU to the other links, if any */
1231 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1232 port_sel &= ~(1ULL << port);
1233 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1234 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1235
1236 set_port_offline(fc_regs);
1237 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1238 FC_PORT_STATUS_RETRY_CNT))
1239 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1240 __func__, port);
1241
1242 set_port_online(fc_regs);
1243 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1244 FC_PORT_STATUS_RETRY_CNT))
1245 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1246 __func__, port);
1247
1248 /* switch back to include this port */
1249 port_sel |= (1ULL << port);
1250 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1251 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1252
1253 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1254 }
1255
1256 /**
1257 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1258 * @afu: AFU associated with the host.
1259 */
afu_err_intr_init(struct afu * afu)1260 static void afu_err_intr_init(struct afu *afu)
1261 {
1262 struct cxlflash_cfg *cfg = afu->parent;
1263 __be64 __iomem *fc_port_regs;
1264 int i;
1265 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1266 u64 reg;
1267
1268 /* global async interrupts: AFU clears afu_ctrl on context exit
1269 * if async interrupts were sent to that context. This prevents
1270 * the AFU form sending further async interrupts when
1271 * there is
1272 * nobody to receive them.
1273 */
1274
1275 /* mask all */
1276 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1277 /* set LISN# to send and point to primary master context */
1278 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1279
1280 if (afu->internal_lun)
1281 reg |= 1; /* Bit 63 indicates local lun */
1282 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1283 /* clear all */
1284 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1285 /* unmask bits that are of interest */
1286 /* note: afu can send an interrupt after this step */
1287 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1288 /* clear again in case a bit came on after previous clear but before */
1289 /* unmask */
1290 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1291
1292 /* Clear/Set internal lun bits */
1293 fc_port_regs = get_fc_port_regs(cfg, 0);
1294 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1295 reg &= SISL_FC_INTERNAL_MASK;
1296 if (afu->internal_lun)
1297 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1298 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1299
1300 /* now clear FC errors */
1301 for (i = 0; i < cfg->num_fc_ports; i++) {
1302 fc_port_regs = get_fc_port_regs(cfg, i);
1303
1304 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1305 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1306 }
1307
1308 /* sync interrupts for master's IOARRIN write */
1309 /* note that unlike asyncs, there can be no pending sync interrupts */
1310 /* at this time (this is a fresh context and master has not written */
1311 /* IOARRIN yet), so there is nothing to clear. */
1312
1313 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1314 for (i = 0; i < afu->num_hwqs; i++) {
1315 hwq = get_hwq(afu, i);
1316
1317 reg = readq_be(&hwq->host_map->ctx_ctrl);
1318 WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
1319 reg |= SISL_MSI_SYNC_ERROR;
1320 writeq_be(reg, &hwq->host_map->ctx_ctrl);
1321 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1322 }
1323 }
1324
1325 /**
1326 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1327 * @irq: Interrupt number.
1328 * @data: Private data provided at interrupt registration, the AFU.
1329 *
1330 * Return: Always return IRQ_HANDLED.
1331 */
cxlflash_sync_err_irq(int irq,void * data)1332 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1333 {
1334 struct hwq *hwq = (struct hwq *)data;
1335 struct cxlflash_cfg *cfg = hwq->afu->parent;
1336 struct device *dev = &cfg->dev->dev;
1337 u64 reg;
1338 u64 reg_unmasked;
1339
1340 reg = readq_be(&hwq->host_map->intr_status);
1341 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1342
1343 if (reg_unmasked == 0UL) {
1344 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1345 __func__, reg);
1346 goto cxlflash_sync_err_irq_exit;
1347 }
1348
1349 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1350 __func__, reg);
1351
1352 writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1353
1354 cxlflash_sync_err_irq_exit:
1355 return IRQ_HANDLED;
1356 }
1357
1358 /**
1359 * process_hrrq() - process the read-response queue
1360 * @hwq: HWQ associated with the host.
1361 * @doneq: Queue of commands harvested from the RRQ.
1362 * @budget: Threshold of RRQ entries to process.
1363 *
1364 * This routine must be called holding the disabled RRQ spin lock.
1365 *
1366 * Return: The number of entries processed.
1367 */
process_hrrq(struct hwq * hwq,struct list_head * doneq,int budget)1368 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1369 {
1370 struct afu *afu = hwq->afu;
1371 struct afu_cmd *cmd;
1372 struct sisl_ioasa *ioasa;
1373 struct sisl_ioarcb *ioarcb;
1374 bool toggle = hwq->toggle;
1375 int num_hrrq = 0;
1376 u64 entry,
1377 *hrrq_start = hwq->hrrq_start,
1378 *hrrq_end = hwq->hrrq_end,
1379 *hrrq_curr = hwq->hrrq_curr;
1380
1381 /* Process ready RRQ entries up to the specified budget (if any) */
1382 while (true) {
1383 entry = *hrrq_curr;
1384
1385 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1386 break;
1387
1388 entry &= ~SISL_RESP_HANDLE_T_BIT;
1389
1390 if (afu_is_sq_cmd_mode(afu)) {
1391 ioasa = (struct sisl_ioasa *)entry;
1392 cmd = container_of(ioasa, struct afu_cmd, sa);
1393 } else {
1394 ioarcb = (struct sisl_ioarcb *)entry;
1395 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1396 }
1397
1398 list_add_tail(&cmd->queue, doneq);
1399
1400 /* Advance to next entry or wrap and flip the toggle bit */
1401 if (hrrq_curr < hrrq_end)
1402 hrrq_curr++;
1403 else {
1404 hrrq_curr = hrrq_start;
1405 toggle ^= SISL_RESP_HANDLE_T_BIT;
1406 }
1407
1408 atomic_inc(&hwq->hsq_credits);
1409 num_hrrq++;
1410
1411 if (budget > 0 && num_hrrq >= budget)
1412 break;
1413 }
1414
1415 hwq->hrrq_curr = hrrq_curr;
1416 hwq->toggle = toggle;
1417
1418 return num_hrrq;
1419 }
1420
1421 /**
1422 * process_cmd_doneq() - process a queue of harvested RRQ commands
1423 * @doneq: Queue of completed commands.
1424 *
1425 * Note that upon return the queue can no longer be trusted.
1426 */
process_cmd_doneq(struct list_head * doneq)1427 static void process_cmd_doneq(struct list_head *doneq)
1428 {
1429 struct afu_cmd *cmd, *tmp;
1430
1431 WARN_ON(list_empty(doneq));
1432
1433 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1434 cmd_complete(cmd);
1435 }
1436
1437 /**
1438 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1439 * @irqpoll: IRQ poll structure associated with queue to poll.
1440 * @budget: Threshold of RRQ entries to process per poll.
1441 *
1442 * Return: The number of entries processed.
1443 */
cxlflash_irqpoll(struct irq_poll * irqpoll,int budget)1444 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1445 {
1446 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1447 unsigned long hrrq_flags;
1448 LIST_HEAD(doneq);
1449 int num_entries = 0;
1450
1451 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1452
1453 num_entries = process_hrrq(hwq, &doneq, budget);
1454 if (num_entries < budget)
1455 irq_poll_complete(irqpoll);
1456
1457 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1458
1459 process_cmd_doneq(&doneq);
1460 return num_entries;
1461 }
1462
1463 /**
1464 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1465 * @irq: Interrupt number.
1466 * @data: Private data provided at interrupt registration, the AFU.
1467 *
1468 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1469 */
cxlflash_rrq_irq(int irq,void * data)1470 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1471 {
1472 struct hwq *hwq = (struct hwq *)data;
1473 struct afu *afu = hwq->afu;
1474 unsigned long hrrq_flags;
1475 LIST_HEAD(doneq);
1476 int num_entries = 0;
1477
1478 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1479
1480 /* Silently drop spurious interrupts when queue is not online */
1481 if (!hwq->hrrq_online) {
1482 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1483 return IRQ_HANDLED;
1484 }
1485
1486 if (afu_is_irqpoll_enabled(afu)) {
1487 irq_poll_sched(&hwq->irqpoll);
1488 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1489 return IRQ_HANDLED;
1490 }
1491
1492 num_entries = process_hrrq(hwq, &doneq, -1);
1493 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1494
1495 if (num_entries == 0)
1496 return IRQ_NONE;
1497
1498 process_cmd_doneq(&doneq);
1499 return IRQ_HANDLED;
1500 }
1501
1502 /*
1503 * Asynchronous interrupt information table
1504 *
1505 * NOTE:
1506 * - Order matters here as this array is indexed by bit position.
1507 *
1508 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1509 * as complex and complains due to a lack of parentheses/braces.
1510 */
1511 #define ASTATUS_FC(_a, _b, _c, _d) \
1512 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1513
1514 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \
1515 ASTATUS_FC(_a, LINK_UP, "link up", 0), \
1516 ASTATUS_FC(_a, LINK_DN, "link down", 0), \
1517 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
1518 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
1519 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1520 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
1521 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
1522 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1523
1524 static const struct asyc_intr_info ainfo[] = {
1525 BUILD_SISL_ASTATUS_FC_PORT(1),
1526 BUILD_SISL_ASTATUS_FC_PORT(0),
1527 BUILD_SISL_ASTATUS_FC_PORT(3),
1528 BUILD_SISL_ASTATUS_FC_PORT(2)
1529 };
1530
1531 /**
1532 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1533 * @irq: Interrupt number.
1534 * @data: Private data provided at interrupt registration, the AFU.
1535 *
1536 * Return: Always return IRQ_HANDLED.
1537 */
cxlflash_async_err_irq(int irq,void * data)1538 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1539 {
1540 struct hwq *hwq = (struct hwq *)data;
1541 struct afu *afu = hwq->afu;
1542 struct cxlflash_cfg *cfg = afu->parent;
1543 struct device *dev = &cfg->dev->dev;
1544 const struct asyc_intr_info *info;
1545 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1546 __be64 __iomem *fc_port_regs;
1547 u64 reg_unmasked;
1548 u64 reg;
1549 u64 bit;
1550 u8 port;
1551
1552 reg = readq_be(&global->regs.aintr_status);
1553 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1554
1555 if (unlikely(reg_unmasked == 0)) {
1556 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1557 __func__, reg);
1558 goto out;
1559 }
1560
1561 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1562 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1563
1564 /* Check each bit that is on */
1565 for_each_set_bit(bit, (ulong *)®_unmasked, BITS_PER_LONG) {
1566 if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1567 WARN_ON_ONCE(1);
1568 continue;
1569 }
1570
1571 info = &ainfo[bit];
1572 if (unlikely(info->status != 1ULL << bit)) {
1573 WARN_ON_ONCE(1);
1574 continue;
1575 }
1576
1577 port = info->port;
1578 fc_port_regs = get_fc_port_regs(cfg, port);
1579
1580 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1581 __func__, port, info->desc,
1582 readq_be(&fc_port_regs[FC_STATUS / 8]));
1583
1584 /*
1585 * Do link reset first, some OTHER errors will set FC_ERROR
1586 * again if cleared before or w/o a reset
1587 */
1588 if (info->action & LINK_RESET) {
1589 dev_err(dev, "%s: FC Port %d: resetting link\n",
1590 __func__, port);
1591 cfg->lr_state = LINK_RESET_REQUIRED;
1592 cfg->lr_port = port;
1593 schedule_work(&cfg->work_q);
1594 }
1595
1596 if (info->action & CLR_FC_ERROR) {
1597 reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1598
1599 /*
1600 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1601 * should be the same and tracing one is sufficient.
1602 */
1603
1604 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1605 __func__, port, reg);
1606
1607 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1608 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1609 }
1610
1611 if (info->action & SCAN_HOST) {
1612 atomic_inc(&cfg->scan_host_needed);
1613 schedule_work(&cfg->work_q);
1614 }
1615 }
1616
1617 out:
1618 return IRQ_HANDLED;
1619 }
1620
1621 /**
1622 * read_vpd() - obtains the WWPNs from VPD
1623 * @cfg: Internal structure associated with the host.
1624 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
1625 *
1626 * Return: 0 on success, -errno on failure
1627 */
read_vpd(struct cxlflash_cfg * cfg,u64 wwpn[])1628 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1629 {
1630 struct device *dev = &cfg->dev->dev;
1631 struct pci_dev *pdev = cfg->dev;
1632 int i, k, rc = 0;
1633 unsigned int kw_size;
1634 ssize_t vpd_size;
1635 char vpd_data[CXLFLASH_VPD_LEN];
1636 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1637 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1638 cfg->dev_id->driver_data;
1639 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1640 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1641
1642 /* Get the VPD data from the device */
1643 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1644 if (unlikely(vpd_size <= 0)) {
1645 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1646 __func__, vpd_size);
1647 rc = -ENODEV;
1648 goto out;
1649 }
1650
1651 /*
1652 * Find the offset of the WWPN tag within the read only
1653 * VPD data and validate the found field (partials are
1654 * no good to us). Convert the ASCII data to an integer
1655 * value. Note that we must copy to a temporary buffer
1656 * because the conversion service requires that the ASCII
1657 * string be terminated.
1658 *
1659 * Allow for WWPN not being found for all devices, setting
1660 * the returned WWPN to zero when not found. Notify with a
1661 * log error for cards that should have had WWPN keywords
1662 * in the VPD - cards requiring WWPN will not have their
1663 * ports programmed and operate in an undefined state.
1664 */
1665 for (k = 0; k < cfg->num_fc_ports; k++) {
1666 i = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
1667 wwpn_vpd_tags[k], &kw_size);
1668 if (i == -ENOENT) {
1669 if (wwpn_vpd_required)
1670 dev_err(dev, "%s: Port %d WWPN not found\n",
1671 __func__, k);
1672 wwpn[k] = 0ULL;
1673 continue;
1674 }
1675
1676 if (i < 0 || kw_size != WWPN_LEN) {
1677 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1678 __func__, k);
1679 rc = -ENODEV;
1680 goto out;
1681 }
1682
1683 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1684 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1685 if (unlikely(rc)) {
1686 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1687 __func__, k);
1688 rc = -ENODEV;
1689 goto out;
1690 }
1691
1692 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1693 }
1694
1695 out:
1696 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1697 return rc;
1698 }
1699
1700 /**
1701 * init_pcr() - initialize the provisioning and control registers
1702 * @cfg: Internal structure associated with the host.
1703 *
1704 * Also sets up fast access to the mapped registers and initializes AFU
1705 * command fields that never change.
1706 */
init_pcr(struct cxlflash_cfg * cfg)1707 static void init_pcr(struct cxlflash_cfg *cfg)
1708 {
1709 struct afu *afu = cfg->afu;
1710 struct sisl_ctrl_map __iomem *ctrl_map;
1711 struct hwq *hwq;
1712 void *cookie;
1713 int i;
1714
1715 for (i = 0; i < MAX_CONTEXT; i++) {
1716 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1717 /* Disrupt any clients that could be running */
1718 /* e.g. clients that survived a master restart */
1719 writeq_be(0, &ctrl_map->rht_start);
1720 writeq_be(0, &ctrl_map->rht_cnt_id);
1721 writeq_be(0, &ctrl_map->ctx_cap);
1722 }
1723
1724 /* Copy frequently used fields into hwq */
1725 for (i = 0; i < afu->num_hwqs; i++) {
1726 hwq = get_hwq(afu, i);
1727 cookie = hwq->ctx_cookie;
1728
1729 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1730 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1731 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1732
1733 /* Program the Endian Control for the master context */
1734 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1735 }
1736 }
1737
1738 /**
1739 * init_global() - initialize AFU global registers
1740 * @cfg: Internal structure associated with the host.
1741 */
init_global(struct cxlflash_cfg * cfg)1742 static int init_global(struct cxlflash_cfg *cfg)
1743 {
1744 struct afu *afu = cfg->afu;
1745 struct device *dev = &cfg->dev->dev;
1746 struct hwq *hwq;
1747 struct sisl_host_map __iomem *hmap;
1748 __be64 __iomem *fc_port_regs;
1749 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1750 int i = 0, num_ports = 0;
1751 int rc = 0;
1752 int j;
1753 void *ctx;
1754 u64 reg;
1755
1756 rc = read_vpd(cfg, &wwpn[0]);
1757 if (rc) {
1758 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1759 goto out;
1760 }
1761
1762 /* Set up RRQ and SQ in HWQ for master issued cmds */
1763 for (i = 0; i < afu->num_hwqs; i++) {
1764 hwq = get_hwq(afu, i);
1765 hmap = hwq->host_map;
1766
1767 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1768 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1769 hwq->hrrq_online = true;
1770
1771 if (afu_is_sq_cmd_mode(afu)) {
1772 writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1773 writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1774 }
1775 }
1776
1777 /* AFU configuration */
1778 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1779 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1780 /* enable all auto retry options and control endianness */
1781 /* leave others at default: */
1782 /* CTX_CAP write protected, mbox_r does not clear on read and */
1783 /* checker on if dual afu */
1784 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1785
1786 /* Global port select: select either port */
1787 if (afu->internal_lun) {
1788 /* Only use port 0 */
1789 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1790 num_ports = 0;
1791 } else {
1792 writeq_be(PORT_MASK(cfg->num_fc_ports),
1793 &afu->afu_map->global.regs.afu_port_sel);
1794 num_ports = cfg->num_fc_ports;
1795 }
1796
1797 for (i = 0; i < num_ports; i++) {
1798 fc_port_regs = get_fc_port_regs(cfg, i);
1799
1800 /* Unmask all errors (but they are still masked at AFU) */
1801 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1802 /* Clear CRC error cnt & set a threshold */
1803 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1804 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1805
1806 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1807 if (wwpn[i] != 0)
1808 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1809 /* Programming WWPN back to back causes additional
1810 * offline/online transitions and a PLOGI
1811 */
1812 msleep(100);
1813 }
1814
1815 if (afu_is_ocxl_lisn(afu)) {
1816 /* Set up the LISN effective address for each master */
1817 for (i = 0; i < afu->num_hwqs; i++) {
1818 hwq = get_hwq(afu, i);
1819 ctx = hwq->ctx_cookie;
1820
1821 for (j = 0; j < hwq->num_irqs; j++) {
1822 reg = cfg->ops->get_irq_objhndl(ctx, j);
1823 writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
1824 }
1825
1826 reg = hwq->ctx_hndl;
1827 writeq_be(SISL_LISN_PASID(reg, reg),
1828 &hwq->ctrl_map->lisn_pasid[0]);
1829 writeq_be(SISL_LISN_PASID(0UL, reg),
1830 &hwq->ctrl_map->lisn_pasid[1]);
1831 }
1832 }
1833
1834 /* Set up master's own CTX_CAP to allow real mode, host translation */
1835 /* tables, afu cmds and read/write GSCSI cmds. */
1836 /* First, unlock ctx_cap write by reading mbox */
1837 for (i = 0; i < afu->num_hwqs; i++) {
1838 hwq = get_hwq(afu, i);
1839
1840 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1841 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1842 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1843 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1844 &hwq->ctrl_map->ctx_cap);
1845 }
1846
1847 /*
1848 * Determine write-same unmap support for host by evaluating the unmap
1849 * sector support bit of the context control register associated with
1850 * the primary hardware queue. Note that while this status is reflected
1851 * in a context register, the outcome can be assumed to be host-wide.
1852 */
1853 hwq = get_hwq(afu, PRIMARY_HWQ);
1854 reg = readq_be(&hwq->host_map->ctx_ctrl);
1855 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1856 cfg->ws_unmap = true;
1857
1858 /* Initialize heartbeat */
1859 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1860 out:
1861 return rc;
1862 }
1863
1864 /**
1865 * start_afu() - initializes and starts the AFU
1866 * @cfg: Internal structure associated with the host.
1867 */
start_afu(struct cxlflash_cfg * cfg)1868 static int start_afu(struct cxlflash_cfg *cfg)
1869 {
1870 struct afu *afu = cfg->afu;
1871 struct device *dev = &cfg->dev->dev;
1872 struct hwq *hwq;
1873 int rc = 0;
1874 int i;
1875
1876 init_pcr(cfg);
1877
1878 /* Initialize each HWQ */
1879 for (i = 0; i < afu->num_hwqs; i++) {
1880 hwq = get_hwq(afu, i);
1881
1882 /* After an AFU reset, RRQ entries are stale, clear them */
1883 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1884
1885 /* Initialize RRQ pointers */
1886 hwq->hrrq_start = &hwq->rrq_entry[0];
1887 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1888 hwq->hrrq_curr = hwq->hrrq_start;
1889 hwq->toggle = 1;
1890
1891 /* Initialize spin locks */
1892 spin_lock_init(&hwq->hrrq_slock);
1893 spin_lock_init(&hwq->hsq_slock);
1894
1895 /* Initialize SQ */
1896 if (afu_is_sq_cmd_mode(afu)) {
1897 memset(&hwq->sq, 0, sizeof(hwq->sq));
1898 hwq->hsq_start = &hwq->sq[0];
1899 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1900 hwq->hsq_curr = hwq->hsq_start;
1901
1902 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1903 }
1904
1905 /* Initialize IRQ poll */
1906 if (afu_is_irqpoll_enabled(afu))
1907 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1908 cxlflash_irqpoll);
1909
1910 }
1911
1912 rc = init_global(cfg);
1913
1914 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1915 return rc;
1916 }
1917
1918 /**
1919 * init_intr() - setup interrupt handlers for the master context
1920 * @cfg: Internal structure associated with the host.
1921 * @hwq: Hardware queue to initialize.
1922 *
1923 * Return: 0 on success, -errno on failure
1924 */
init_intr(struct cxlflash_cfg * cfg,struct hwq * hwq)1925 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1926 struct hwq *hwq)
1927 {
1928 struct device *dev = &cfg->dev->dev;
1929 void *ctx = hwq->ctx_cookie;
1930 int rc = 0;
1931 enum undo_level level = UNDO_NOOP;
1932 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1933 int num_irqs = hwq->num_irqs;
1934
1935 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1936 if (unlikely(rc)) {
1937 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1938 __func__, rc);
1939 level = UNDO_NOOP;
1940 goto out;
1941 }
1942
1943 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1944 "SISL_MSI_SYNC_ERROR");
1945 if (unlikely(rc <= 0)) {
1946 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1947 level = FREE_IRQ;
1948 goto out;
1949 }
1950
1951 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1952 "SISL_MSI_RRQ_UPDATED");
1953 if (unlikely(rc <= 0)) {
1954 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1955 level = UNMAP_ONE;
1956 goto out;
1957 }
1958
1959 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1960 if (!is_primary_hwq)
1961 goto out;
1962
1963 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1964 "SISL_MSI_ASYNC_ERROR");
1965 if (unlikely(rc <= 0)) {
1966 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1967 level = UNMAP_TWO;
1968 goto out;
1969 }
1970 out:
1971 return level;
1972 }
1973
1974 /**
1975 * init_mc() - create and register as the master context
1976 * @cfg: Internal structure associated with the host.
1977 * @index: HWQ Index of the master context.
1978 *
1979 * Return: 0 on success, -errno on failure
1980 */
init_mc(struct cxlflash_cfg * cfg,u32 index)1981 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1982 {
1983 void *ctx;
1984 struct device *dev = &cfg->dev->dev;
1985 struct hwq *hwq = get_hwq(cfg->afu, index);
1986 int rc = 0;
1987 int num_irqs;
1988 enum undo_level level;
1989
1990 hwq->afu = cfg->afu;
1991 hwq->index = index;
1992 INIT_LIST_HEAD(&hwq->pending_cmds);
1993
1994 if (index == PRIMARY_HWQ) {
1995 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
1996 num_irqs = 3;
1997 } else {
1998 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
1999 num_irqs = 2;
2000 }
2001 if (IS_ERR_OR_NULL(ctx)) {
2002 rc = -ENOMEM;
2003 goto err1;
2004 }
2005
2006 WARN_ON(hwq->ctx_cookie);
2007 hwq->ctx_cookie = ctx;
2008 hwq->num_irqs = num_irqs;
2009
2010 /* Set it up as a master with the CXL */
2011 cfg->ops->set_master(ctx);
2012
2013 /* Reset AFU when initializing primary context */
2014 if (index == PRIMARY_HWQ) {
2015 rc = cfg->ops->afu_reset(ctx);
2016 if (unlikely(rc)) {
2017 dev_err(dev, "%s: AFU reset failed rc=%d\n",
2018 __func__, rc);
2019 goto err1;
2020 }
2021 }
2022
2023 level = init_intr(cfg, hwq);
2024 if (unlikely(level)) {
2025 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2026 goto err2;
2027 }
2028
2029 /* Finally, activate the context by starting it */
2030 rc = cfg->ops->start_context(hwq->ctx_cookie);
2031 if (unlikely(rc)) {
2032 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2033 level = UNMAP_THREE;
2034 goto err2;
2035 }
2036
2037 out:
2038 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2039 return rc;
2040 err2:
2041 term_intr(cfg, level, index);
2042 if (index != PRIMARY_HWQ)
2043 cfg->ops->release_context(ctx);
2044 err1:
2045 hwq->ctx_cookie = NULL;
2046 goto out;
2047 }
2048
2049 /**
2050 * get_num_afu_ports() - determines and configures the number of AFU ports
2051 * @cfg: Internal structure associated with the host.
2052 *
2053 * This routine determines the number of AFU ports by converting the global
2054 * port selection mask. The converted value is only valid following an AFU
2055 * reset (explicit or power-on). This routine must be invoked shortly after
2056 * mapping as other routines are dependent on the number of ports during the
2057 * initialization sequence.
2058 *
2059 * To support legacy AFUs that might not have reflected an initial global
2060 * port mask (value read is 0), default to the number of ports originally
2061 * supported by the cxlflash driver (2) before hardware with other port
2062 * offerings was introduced.
2063 */
get_num_afu_ports(struct cxlflash_cfg * cfg)2064 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2065 {
2066 struct afu *afu = cfg->afu;
2067 struct device *dev = &cfg->dev->dev;
2068 u64 port_mask;
2069 int num_fc_ports = LEGACY_FC_PORTS;
2070
2071 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2072 if (port_mask != 0ULL)
2073 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2074
2075 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2076 __func__, port_mask, num_fc_ports);
2077
2078 cfg->num_fc_ports = num_fc_ports;
2079 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2080 }
2081
2082 /**
2083 * init_afu() - setup as master context and start AFU
2084 * @cfg: Internal structure associated with the host.
2085 *
2086 * This routine is a higher level of control for configuring the
2087 * AFU on probe and reset paths.
2088 *
2089 * Return: 0 on success, -errno on failure
2090 */
init_afu(struct cxlflash_cfg * cfg)2091 static int init_afu(struct cxlflash_cfg *cfg)
2092 {
2093 u64 reg;
2094 int rc = 0;
2095 struct afu *afu = cfg->afu;
2096 struct device *dev = &cfg->dev->dev;
2097 struct hwq *hwq;
2098 int i;
2099
2100 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2101
2102 mutex_init(&afu->sync_active);
2103 afu->num_hwqs = afu->desired_hwqs;
2104 for (i = 0; i < afu->num_hwqs; i++) {
2105 rc = init_mc(cfg, i);
2106 if (rc) {
2107 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2108 __func__, rc, i);
2109 goto err1;
2110 }
2111 }
2112
2113 /* Map the entire MMIO space of the AFU using the first context */
2114 hwq = get_hwq(afu, PRIMARY_HWQ);
2115 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2116 if (!afu->afu_map) {
2117 dev_err(dev, "%s: psa_map failed\n", __func__);
2118 rc = -ENOMEM;
2119 goto err1;
2120 }
2121
2122 /* No byte reverse on reading afu_version or string will be backwards */
2123 reg = readq(&afu->afu_map->global.regs.afu_version);
2124 memcpy(afu->version, ®, sizeof(reg));
2125 afu->interface_version =
2126 readq_be(&afu->afu_map->global.regs.interface_version);
2127 if ((afu->interface_version + 1) == 0) {
2128 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2129 "interface version %016llx\n", afu->version,
2130 afu->interface_version);
2131 rc = -EINVAL;
2132 goto err1;
2133 }
2134
2135 if (afu_is_sq_cmd_mode(afu)) {
2136 afu->send_cmd = send_cmd_sq;
2137 afu->context_reset = context_reset_sq;
2138 } else {
2139 afu->send_cmd = send_cmd_ioarrin;
2140 afu->context_reset = context_reset_ioarrin;
2141 }
2142
2143 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2144 afu->version, afu->interface_version);
2145
2146 get_num_afu_ports(cfg);
2147
2148 rc = start_afu(cfg);
2149 if (rc) {
2150 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2151 goto err1;
2152 }
2153
2154 afu_err_intr_init(cfg->afu);
2155 for (i = 0; i < afu->num_hwqs; i++) {
2156 hwq = get_hwq(afu, i);
2157
2158 hwq->room = readq_be(&hwq->host_map->cmd_room);
2159 }
2160
2161 /* Restore the LUN mappings */
2162 cxlflash_restore_luntable(cfg);
2163 out:
2164 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2165 return rc;
2166
2167 err1:
2168 for (i = afu->num_hwqs - 1; i >= 0; i--) {
2169 term_intr(cfg, UNMAP_THREE, i);
2170 term_mc(cfg, i);
2171 }
2172 goto out;
2173 }
2174
2175 /**
2176 * afu_reset() - resets the AFU
2177 * @cfg: Internal structure associated with the host.
2178 *
2179 * Return: 0 on success, -errno on failure
2180 */
afu_reset(struct cxlflash_cfg * cfg)2181 static int afu_reset(struct cxlflash_cfg *cfg)
2182 {
2183 struct device *dev = &cfg->dev->dev;
2184 int rc = 0;
2185
2186 /* Stop the context before the reset. Since the context is
2187 * no longer available restart it after the reset is complete
2188 */
2189 term_afu(cfg);
2190
2191 rc = init_afu(cfg);
2192
2193 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2194 return rc;
2195 }
2196
2197 /**
2198 * drain_ioctls() - wait until all currently executing ioctls have completed
2199 * @cfg: Internal structure associated with the host.
2200 *
2201 * Obtain write access to read/write semaphore that wraps ioctl
2202 * handling to 'drain' ioctls currently executing.
2203 */
drain_ioctls(struct cxlflash_cfg * cfg)2204 static void drain_ioctls(struct cxlflash_cfg *cfg)
2205 {
2206 down_write(&cfg->ioctl_rwsem);
2207 up_write(&cfg->ioctl_rwsem);
2208 }
2209
2210 /**
2211 * cxlflash_async_reset_host() - asynchronous host reset handler
2212 * @data: Private data provided while scheduling reset.
2213 * @cookie: Cookie that can be used for checkpointing.
2214 */
cxlflash_async_reset_host(void * data,async_cookie_t cookie)2215 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2216 {
2217 struct cxlflash_cfg *cfg = data;
2218 struct device *dev = &cfg->dev->dev;
2219 int rc = 0;
2220
2221 if (cfg->state != STATE_RESET) {
2222 dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2223 __func__, cfg->state);
2224 goto out;
2225 }
2226
2227 drain_ioctls(cfg);
2228 cxlflash_mark_contexts_error(cfg);
2229 rc = afu_reset(cfg);
2230 if (rc)
2231 cfg->state = STATE_FAILTERM;
2232 else
2233 cfg->state = STATE_NORMAL;
2234 wake_up_all(&cfg->reset_waitq);
2235
2236 out:
2237 scsi_unblock_requests(cfg->host);
2238 }
2239
2240 /**
2241 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2242 * @cfg: Internal structure associated with the host.
2243 */
cxlflash_schedule_async_reset(struct cxlflash_cfg * cfg)2244 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2245 {
2246 struct device *dev = &cfg->dev->dev;
2247
2248 if (cfg->state != STATE_NORMAL) {
2249 dev_dbg(dev, "%s: Not performing reset state=%d\n",
2250 __func__, cfg->state);
2251 return;
2252 }
2253
2254 cfg->state = STATE_RESET;
2255 scsi_block_requests(cfg->host);
2256 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2257 cfg);
2258 }
2259
2260 /**
2261 * send_afu_cmd() - builds and sends an internal AFU command
2262 * @afu: AFU associated with the host.
2263 * @rcb: Pre-populated IOARCB describing command to send.
2264 *
2265 * The AFU can only take one internal AFU command at a time. This limitation is
2266 * enforced by using a mutex to provide exclusive access to the AFU during the
2267 * operation. This design point requires calling threads to not be on interrupt
2268 * context due to the possibility of sleeping during concurrent AFU operations.
2269 *
2270 * The command status is optionally passed back to the caller when the caller
2271 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2272 *
2273 * Return:
2274 * 0 on success, -errno on failure
2275 */
send_afu_cmd(struct afu * afu,struct sisl_ioarcb * rcb)2276 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2277 {
2278 struct cxlflash_cfg *cfg = afu->parent;
2279 struct device *dev = &cfg->dev->dev;
2280 struct afu_cmd *cmd = NULL;
2281 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2282 ulong lock_flags;
2283 char *buf = NULL;
2284 int rc = 0;
2285 int nretry = 0;
2286
2287 if (cfg->state != STATE_NORMAL) {
2288 dev_dbg(dev, "%s: Sync not required state=%u\n",
2289 __func__, cfg->state);
2290 return 0;
2291 }
2292
2293 mutex_lock(&afu->sync_active);
2294 atomic_inc(&afu->cmds_active);
2295 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2296 if (unlikely(!buf)) {
2297 dev_err(dev, "%s: no memory for command\n", __func__);
2298 rc = -ENOMEM;
2299 goto out;
2300 }
2301
2302 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2303
2304 retry:
2305 memset(cmd, 0, sizeof(*cmd));
2306 memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2307 INIT_LIST_HEAD(&cmd->queue);
2308 init_completion(&cmd->cevent);
2309 cmd->parent = afu;
2310 cmd->hwq_index = hwq->index;
2311 cmd->rcb.ctx_id = hwq->ctx_hndl;
2312
2313 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2314 __func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2315
2316 rc = afu->send_cmd(afu, cmd);
2317 if (unlikely(rc)) {
2318 rc = -ENOBUFS;
2319 goto out;
2320 }
2321
2322 rc = wait_resp(afu, cmd);
2323 switch (rc) {
2324 case -ETIMEDOUT:
2325 rc = afu->context_reset(hwq);
2326 if (rc) {
2327 /* Delete the command from pending_cmds list */
2328 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
2329 list_del(&cmd->list);
2330 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
2331
2332 cxlflash_schedule_async_reset(cfg);
2333 break;
2334 }
2335 fallthrough; /* to retry */
2336 case -EAGAIN:
2337 if (++nretry < 2)
2338 goto retry;
2339 fallthrough; /* to exit */
2340 default:
2341 break;
2342 }
2343
2344 if (rcb->ioasa)
2345 *rcb->ioasa = cmd->sa;
2346 out:
2347 atomic_dec(&afu->cmds_active);
2348 mutex_unlock(&afu->sync_active);
2349 kfree(buf);
2350 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2351 return rc;
2352 }
2353
2354 /**
2355 * cxlflash_afu_sync() - builds and sends an AFU sync command
2356 * @afu: AFU associated with the host.
2357 * @ctx: Identifies context requesting sync.
2358 * @res: Identifies resource requesting sync.
2359 * @mode: Type of sync to issue (lightweight, heavyweight, global).
2360 *
2361 * AFU sync operations are only necessary and allowed when the device is
2362 * operating normally. When not operating normally, sync requests can occur as
2363 * part of cleaning up resources associated with an adapter prior to removal.
2364 * In this scenario, these requests are simply ignored (safe due to the AFU
2365 * going away).
2366 *
2367 * Return:
2368 * 0 on success, -errno on failure
2369 */
cxlflash_afu_sync(struct afu * afu,ctx_hndl_t ctx,res_hndl_t res,u8 mode)2370 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2371 {
2372 struct cxlflash_cfg *cfg = afu->parent;
2373 struct device *dev = &cfg->dev->dev;
2374 struct sisl_ioarcb rcb = { 0 };
2375
2376 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2377 __func__, afu, ctx, res, mode);
2378
2379 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2380 rcb.msi = SISL_MSI_RRQ_UPDATED;
2381 rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2382
2383 rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2384 rcb.cdb[1] = mode;
2385 put_unaligned_be16(ctx, &rcb.cdb[2]);
2386 put_unaligned_be32(res, &rcb.cdb[4]);
2387
2388 return send_afu_cmd(afu, &rcb);
2389 }
2390
2391 /**
2392 * cxlflash_eh_abort_handler() - abort a SCSI command
2393 * @scp: SCSI command to abort.
2394 *
2395 * CXL Flash devices do not support a single command abort. Reset the context
2396 * as per SISLite specification. Flush any pending commands in the hardware
2397 * queue before the reset.
2398 *
2399 * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2400 */
cxlflash_eh_abort_handler(struct scsi_cmnd * scp)2401 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2402 {
2403 int rc = FAILED;
2404 struct Scsi_Host *host = scp->device->host;
2405 struct cxlflash_cfg *cfg = shost_priv(host);
2406 struct afu_cmd *cmd = sc_to_afuc(scp);
2407 struct device *dev = &cfg->dev->dev;
2408 struct afu *afu = cfg->afu;
2409 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2410
2411 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2412 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2413 scp->device->channel, scp->device->id, scp->device->lun,
2414 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2415 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2416 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2417 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2418
2419 /* When the state is not normal, another reset/reload is in progress.
2420 * Return failed and the mid-layer will invoke host reset handler.
2421 */
2422 if (cfg->state != STATE_NORMAL) {
2423 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2424 __func__, cfg->state);
2425 goto out;
2426 }
2427
2428 rc = afu->context_reset(hwq);
2429 if (unlikely(rc))
2430 goto out;
2431
2432 rc = SUCCESS;
2433
2434 out:
2435 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2436 return rc;
2437 }
2438
2439 /**
2440 * cxlflash_eh_device_reset_handler() - reset a single LUN
2441 * @scp: SCSI command to send.
2442 *
2443 * Return:
2444 * SUCCESS as defined in scsi/scsi.h
2445 * FAILED as defined in scsi/scsi.h
2446 */
cxlflash_eh_device_reset_handler(struct scsi_cmnd * scp)2447 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2448 {
2449 int rc = SUCCESS;
2450 struct scsi_device *sdev = scp->device;
2451 struct Scsi_Host *host = sdev->host;
2452 struct cxlflash_cfg *cfg = shost_priv(host);
2453 struct device *dev = &cfg->dev->dev;
2454 int rcr = 0;
2455
2456 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2457 host->host_no, sdev->channel, sdev->id, sdev->lun);
2458 retry:
2459 switch (cfg->state) {
2460 case STATE_NORMAL:
2461 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2462 if (unlikely(rcr))
2463 rc = FAILED;
2464 break;
2465 case STATE_RESET:
2466 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2467 goto retry;
2468 default:
2469 rc = FAILED;
2470 break;
2471 }
2472
2473 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2474 return rc;
2475 }
2476
2477 /**
2478 * cxlflash_eh_host_reset_handler() - reset the host adapter
2479 * @scp: SCSI command from stack identifying host.
2480 *
2481 * Following a reset, the state is evaluated again in case an EEH occurred
2482 * during the reset. In such a scenario, the host reset will either yield
2483 * until the EEH recovery is complete or return success or failure based
2484 * upon the current device state.
2485 *
2486 * Return:
2487 * SUCCESS as defined in scsi/scsi.h
2488 * FAILED as defined in scsi/scsi.h
2489 */
cxlflash_eh_host_reset_handler(struct scsi_cmnd * scp)2490 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2491 {
2492 int rc = SUCCESS;
2493 int rcr = 0;
2494 struct Scsi_Host *host = scp->device->host;
2495 struct cxlflash_cfg *cfg = shost_priv(host);
2496 struct device *dev = &cfg->dev->dev;
2497
2498 dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2499
2500 switch (cfg->state) {
2501 case STATE_NORMAL:
2502 cfg->state = STATE_RESET;
2503 drain_ioctls(cfg);
2504 cxlflash_mark_contexts_error(cfg);
2505 rcr = afu_reset(cfg);
2506 if (rcr) {
2507 rc = FAILED;
2508 cfg->state = STATE_FAILTERM;
2509 } else
2510 cfg->state = STATE_NORMAL;
2511 wake_up_all(&cfg->reset_waitq);
2512 ssleep(1);
2513 fallthrough;
2514 case STATE_RESET:
2515 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2516 if (cfg->state == STATE_NORMAL)
2517 break;
2518 fallthrough;
2519 default:
2520 rc = FAILED;
2521 break;
2522 }
2523
2524 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2525 return rc;
2526 }
2527
2528 /**
2529 * cxlflash_change_queue_depth() - change the queue depth for the device
2530 * @sdev: SCSI device destined for queue depth change.
2531 * @qdepth: Requested queue depth value to set.
2532 *
2533 * The requested queue depth is capped to the maximum supported value.
2534 *
2535 * Return: The actual queue depth set.
2536 */
cxlflash_change_queue_depth(struct scsi_device * sdev,int qdepth)2537 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2538 {
2539
2540 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2541 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2542
2543 scsi_change_queue_depth(sdev, qdepth);
2544 return sdev->queue_depth;
2545 }
2546
2547 /**
2548 * cxlflash_show_port_status() - queries and presents the current port status
2549 * @port: Desired port for status reporting.
2550 * @cfg: Internal structure associated with the host.
2551 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2552 *
2553 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2554 */
cxlflash_show_port_status(u32 port,struct cxlflash_cfg * cfg,char * buf)2555 static ssize_t cxlflash_show_port_status(u32 port,
2556 struct cxlflash_cfg *cfg,
2557 char *buf)
2558 {
2559 struct device *dev = &cfg->dev->dev;
2560 char *disp_status;
2561 u64 status;
2562 __be64 __iomem *fc_port_regs;
2563
2564 WARN_ON(port >= MAX_FC_PORTS);
2565
2566 if (port >= cfg->num_fc_ports) {
2567 dev_info(dev, "%s: Port %d not supported on this card.\n",
2568 __func__, port);
2569 return -EINVAL;
2570 }
2571
2572 fc_port_regs = get_fc_port_regs(cfg, port);
2573 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2574 status &= FC_MTIP_STATUS_MASK;
2575
2576 if (status == FC_MTIP_STATUS_ONLINE)
2577 disp_status = "online";
2578 else if (status == FC_MTIP_STATUS_OFFLINE)
2579 disp_status = "offline";
2580 else
2581 disp_status = "unknown";
2582
2583 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2584 }
2585
2586 /**
2587 * port0_show() - queries and presents the current status of port 0
2588 * @dev: Generic device associated with the host owning the port.
2589 * @attr: Device attribute representing the port.
2590 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2591 *
2592 * Return: The size of the ASCII string returned in @buf.
2593 */
port0_show(struct device * dev,struct device_attribute * attr,char * buf)2594 static ssize_t port0_show(struct device *dev,
2595 struct device_attribute *attr,
2596 char *buf)
2597 {
2598 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2599
2600 return cxlflash_show_port_status(0, cfg, buf);
2601 }
2602
2603 /**
2604 * port1_show() - queries and presents the current status of port 1
2605 * @dev: Generic device associated with the host owning the port.
2606 * @attr: Device attribute representing the port.
2607 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2608 *
2609 * Return: The size of the ASCII string returned in @buf.
2610 */
port1_show(struct device * dev,struct device_attribute * attr,char * buf)2611 static ssize_t port1_show(struct device *dev,
2612 struct device_attribute *attr,
2613 char *buf)
2614 {
2615 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2616
2617 return cxlflash_show_port_status(1, cfg, buf);
2618 }
2619
2620 /**
2621 * port2_show() - queries and presents the current status of port 2
2622 * @dev: Generic device associated with the host owning the port.
2623 * @attr: Device attribute representing the port.
2624 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2625 *
2626 * Return: The size of the ASCII string returned in @buf.
2627 */
port2_show(struct device * dev,struct device_attribute * attr,char * buf)2628 static ssize_t port2_show(struct device *dev,
2629 struct device_attribute *attr,
2630 char *buf)
2631 {
2632 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2633
2634 return cxlflash_show_port_status(2, cfg, buf);
2635 }
2636
2637 /**
2638 * port3_show() - queries and presents the current status of port 3
2639 * @dev: Generic device associated with the host owning the port.
2640 * @attr: Device attribute representing the port.
2641 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2642 *
2643 * Return: The size of the ASCII string returned in @buf.
2644 */
port3_show(struct device * dev,struct device_attribute * attr,char * buf)2645 static ssize_t port3_show(struct device *dev,
2646 struct device_attribute *attr,
2647 char *buf)
2648 {
2649 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2650
2651 return cxlflash_show_port_status(3, cfg, buf);
2652 }
2653
2654 /**
2655 * lun_mode_show() - presents the current LUN mode of the host
2656 * @dev: Generic device associated with the host.
2657 * @attr: Device attribute representing the LUN mode.
2658 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2659 *
2660 * Return: The size of the ASCII string returned in @buf.
2661 */
lun_mode_show(struct device * dev,struct device_attribute * attr,char * buf)2662 static ssize_t lun_mode_show(struct device *dev,
2663 struct device_attribute *attr, char *buf)
2664 {
2665 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2666 struct afu *afu = cfg->afu;
2667
2668 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2669 }
2670
2671 /**
2672 * lun_mode_store() - sets the LUN mode of the host
2673 * @dev: Generic device associated with the host.
2674 * @attr: Device attribute representing the LUN mode.
2675 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2676 * @count: Length of data resizing in @buf.
2677 *
2678 * The CXL Flash AFU supports a dummy LUN mode where the external
2679 * links and storage are not required. Space on the FPGA is used
2680 * to create 1 or 2 small LUNs which are presented to the system
2681 * as if they were a normal storage device. This feature is useful
2682 * during development and also provides manufacturing with a way
2683 * to test the AFU without an actual device.
2684 *
2685 * 0 = external LUN[s] (default)
2686 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2687 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2688 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2689 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2690 *
2691 * Return: The size of the ASCII string returned in @buf.
2692 */
lun_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2693 static ssize_t lun_mode_store(struct device *dev,
2694 struct device_attribute *attr,
2695 const char *buf, size_t count)
2696 {
2697 struct Scsi_Host *shost = class_to_shost(dev);
2698 struct cxlflash_cfg *cfg = shost_priv(shost);
2699 struct afu *afu = cfg->afu;
2700 int rc;
2701 u32 lun_mode;
2702
2703 rc = kstrtouint(buf, 10, &lun_mode);
2704 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2705 afu->internal_lun = lun_mode;
2706
2707 /*
2708 * When configured for internal LUN, there is only one channel,
2709 * channel number 0, else there will be one less than the number
2710 * of fc ports for this card.
2711 */
2712 if (afu->internal_lun)
2713 shost->max_channel = 0;
2714 else
2715 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2716
2717 afu_reset(cfg);
2718 scsi_scan_host(cfg->host);
2719 }
2720
2721 return count;
2722 }
2723
2724 /**
2725 * ioctl_version_show() - presents the current ioctl version of the host
2726 * @dev: Generic device associated with the host.
2727 * @attr: Device attribute representing the ioctl version.
2728 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2729 *
2730 * Return: The size of the ASCII string returned in @buf.
2731 */
ioctl_version_show(struct device * dev,struct device_attribute * attr,char * buf)2732 static ssize_t ioctl_version_show(struct device *dev,
2733 struct device_attribute *attr, char *buf)
2734 {
2735 ssize_t bytes = 0;
2736
2737 bytes = scnprintf(buf, PAGE_SIZE,
2738 "disk: %u\n", DK_CXLFLASH_VERSION_0);
2739 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2740 "host: %u\n", HT_CXLFLASH_VERSION_0);
2741
2742 return bytes;
2743 }
2744
2745 /**
2746 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2747 * @port: Desired port for status reporting.
2748 * @cfg: Internal structure associated with the host.
2749 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2750 *
2751 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2752 */
cxlflash_show_port_lun_table(u32 port,struct cxlflash_cfg * cfg,char * buf)2753 static ssize_t cxlflash_show_port_lun_table(u32 port,
2754 struct cxlflash_cfg *cfg,
2755 char *buf)
2756 {
2757 struct device *dev = &cfg->dev->dev;
2758 __be64 __iomem *fc_port_luns;
2759 int i;
2760 ssize_t bytes = 0;
2761
2762 WARN_ON(port >= MAX_FC_PORTS);
2763
2764 if (port >= cfg->num_fc_ports) {
2765 dev_info(dev, "%s: Port %d not supported on this card.\n",
2766 __func__, port);
2767 return -EINVAL;
2768 }
2769
2770 fc_port_luns = get_fc_port_luns(cfg, port);
2771
2772 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2773 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2774 "%03d: %016llx\n",
2775 i, readq_be(&fc_port_luns[i]));
2776 return bytes;
2777 }
2778
2779 /**
2780 * port0_lun_table_show() - presents the current LUN table of port 0
2781 * @dev: Generic device associated with the host owning the port.
2782 * @attr: Device attribute representing the port.
2783 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2784 *
2785 * Return: The size of the ASCII string returned in @buf.
2786 */
port0_lun_table_show(struct device * dev,struct device_attribute * attr,char * buf)2787 static ssize_t port0_lun_table_show(struct device *dev,
2788 struct device_attribute *attr,
2789 char *buf)
2790 {
2791 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2792
2793 return cxlflash_show_port_lun_table(0, cfg, buf);
2794 }
2795
2796 /**
2797 * port1_lun_table_show() - presents the current LUN table of port 1
2798 * @dev: Generic device associated with the host owning the port.
2799 * @attr: Device attribute representing the port.
2800 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2801 *
2802 * Return: The size of the ASCII string returned in @buf.
2803 */
port1_lun_table_show(struct device * dev,struct device_attribute * attr,char * buf)2804 static ssize_t port1_lun_table_show(struct device *dev,
2805 struct device_attribute *attr,
2806 char *buf)
2807 {
2808 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2809
2810 return cxlflash_show_port_lun_table(1, cfg, buf);
2811 }
2812
2813 /**
2814 * port2_lun_table_show() - presents the current LUN table of port 2
2815 * @dev: Generic device associated with the host owning the port.
2816 * @attr: Device attribute representing the port.
2817 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2818 *
2819 * Return: The size of the ASCII string returned in @buf.
2820 */
port2_lun_table_show(struct device * dev,struct device_attribute * attr,char * buf)2821 static ssize_t port2_lun_table_show(struct device *dev,
2822 struct device_attribute *attr,
2823 char *buf)
2824 {
2825 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2826
2827 return cxlflash_show_port_lun_table(2, cfg, buf);
2828 }
2829
2830 /**
2831 * port3_lun_table_show() - presents the current LUN table of port 3
2832 * @dev: Generic device associated with the host owning the port.
2833 * @attr: Device attribute representing the port.
2834 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2835 *
2836 * Return: The size of the ASCII string returned in @buf.
2837 */
port3_lun_table_show(struct device * dev,struct device_attribute * attr,char * buf)2838 static ssize_t port3_lun_table_show(struct device *dev,
2839 struct device_attribute *attr,
2840 char *buf)
2841 {
2842 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2843
2844 return cxlflash_show_port_lun_table(3, cfg, buf);
2845 }
2846
2847 /**
2848 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2849 * @dev: Generic device associated with the host.
2850 * @attr: Device attribute representing the IRQ poll weight.
2851 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2852 * weight in ASCII.
2853 *
2854 * An IRQ poll weight of 0 indicates polling is disabled.
2855 *
2856 * Return: The size of the ASCII string returned in @buf.
2857 */
irqpoll_weight_show(struct device * dev,struct device_attribute * attr,char * buf)2858 static ssize_t irqpoll_weight_show(struct device *dev,
2859 struct device_attribute *attr, char *buf)
2860 {
2861 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2862 struct afu *afu = cfg->afu;
2863
2864 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2865 }
2866
2867 /**
2868 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2869 * @dev: Generic device associated with the host.
2870 * @attr: Device attribute representing the IRQ poll weight.
2871 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2872 * weight in ASCII.
2873 * @count: Length of data resizing in @buf.
2874 *
2875 * An IRQ poll weight of 0 indicates polling is disabled.
2876 *
2877 * Return: The size of the ASCII string returned in @buf.
2878 */
irqpoll_weight_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2879 static ssize_t irqpoll_weight_store(struct device *dev,
2880 struct device_attribute *attr,
2881 const char *buf, size_t count)
2882 {
2883 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2884 struct device *cfgdev = &cfg->dev->dev;
2885 struct afu *afu = cfg->afu;
2886 struct hwq *hwq;
2887 u32 weight;
2888 int rc, i;
2889
2890 rc = kstrtouint(buf, 10, &weight);
2891 if (rc)
2892 return -EINVAL;
2893
2894 if (weight > 256) {
2895 dev_info(cfgdev,
2896 "Invalid IRQ poll weight. It must be 256 or less.\n");
2897 return -EINVAL;
2898 }
2899
2900 if (weight == afu->irqpoll_weight) {
2901 dev_info(cfgdev,
2902 "Current IRQ poll weight has the same weight.\n");
2903 return -EINVAL;
2904 }
2905
2906 if (afu_is_irqpoll_enabled(afu)) {
2907 for (i = 0; i < afu->num_hwqs; i++) {
2908 hwq = get_hwq(afu, i);
2909
2910 irq_poll_disable(&hwq->irqpoll);
2911 }
2912 }
2913
2914 afu->irqpoll_weight = weight;
2915
2916 if (weight > 0) {
2917 for (i = 0; i < afu->num_hwqs; i++) {
2918 hwq = get_hwq(afu, i);
2919
2920 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2921 }
2922 }
2923
2924 return count;
2925 }
2926
2927 /**
2928 * num_hwqs_show() - presents the number of hardware queues for the host
2929 * @dev: Generic device associated with the host.
2930 * @attr: Device attribute representing the number of hardware queues.
2931 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware
2932 * queues in ASCII.
2933 *
2934 * Return: The size of the ASCII string returned in @buf.
2935 */
num_hwqs_show(struct device * dev,struct device_attribute * attr,char * buf)2936 static ssize_t num_hwqs_show(struct device *dev,
2937 struct device_attribute *attr, char *buf)
2938 {
2939 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2940 struct afu *afu = cfg->afu;
2941
2942 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2943 }
2944
2945 /**
2946 * num_hwqs_store() - sets the number of hardware queues for the host
2947 * @dev: Generic device associated with the host.
2948 * @attr: Device attribute representing the number of hardware queues.
2949 * @buf: Buffer of length PAGE_SIZE containing the number of hardware
2950 * queues in ASCII.
2951 * @count: Length of data resizing in @buf.
2952 *
2953 * n > 0: num_hwqs = n
2954 * n = 0: num_hwqs = num_online_cpus()
2955 * n < 0: num_online_cpus() / abs(n)
2956 *
2957 * Return: The size of the ASCII string returned in @buf.
2958 */
num_hwqs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2959 static ssize_t num_hwqs_store(struct device *dev,
2960 struct device_attribute *attr,
2961 const char *buf, size_t count)
2962 {
2963 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2964 struct afu *afu = cfg->afu;
2965 int rc;
2966 int nhwqs, num_hwqs;
2967
2968 rc = kstrtoint(buf, 10, &nhwqs);
2969 if (rc)
2970 return -EINVAL;
2971
2972 if (nhwqs >= 1)
2973 num_hwqs = nhwqs;
2974 else if (nhwqs == 0)
2975 num_hwqs = num_online_cpus();
2976 else
2977 num_hwqs = num_online_cpus() / abs(nhwqs);
2978
2979 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2980 WARN_ON_ONCE(afu->desired_hwqs == 0);
2981
2982 retry:
2983 switch (cfg->state) {
2984 case STATE_NORMAL:
2985 cfg->state = STATE_RESET;
2986 drain_ioctls(cfg);
2987 cxlflash_mark_contexts_error(cfg);
2988 rc = afu_reset(cfg);
2989 if (rc)
2990 cfg->state = STATE_FAILTERM;
2991 else
2992 cfg->state = STATE_NORMAL;
2993 wake_up_all(&cfg->reset_waitq);
2994 break;
2995 case STATE_RESET:
2996 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2997 if (cfg->state == STATE_NORMAL)
2998 goto retry;
2999 fallthrough;
3000 default:
3001 /* Ideally should not happen */
3002 dev_err(dev, "%s: Device is not ready, state=%d\n",
3003 __func__, cfg->state);
3004 break;
3005 }
3006
3007 return count;
3008 }
3009
3010 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
3011
3012 /**
3013 * hwq_mode_show() - presents the HWQ steering mode for the host
3014 * @dev: Generic device associated with the host.
3015 * @attr: Device attribute representing the HWQ steering mode.
3016 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode
3017 * as a character string.
3018 *
3019 * Return: The size of the ASCII string returned in @buf.
3020 */
hwq_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3021 static ssize_t hwq_mode_show(struct device *dev,
3022 struct device_attribute *attr, char *buf)
3023 {
3024 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
3025 struct afu *afu = cfg->afu;
3026
3027 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3028 }
3029
3030 /**
3031 * hwq_mode_store() - sets the HWQ steering mode for the host
3032 * @dev: Generic device associated with the host.
3033 * @attr: Device attribute representing the HWQ steering mode.
3034 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode
3035 * as a character string.
3036 * @count: Length of data resizing in @buf.
3037 *
3038 * rr = Round-Robin
3039 * tag = Block MQ Tagging
3040 * cpu = CPU Affinity
3041 *
3042 * Return: The size of the ASCII string returned in @buf.
3043 */
hwq_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3044 static ssize_t hwq_mode_store(struct device *dev,
3045 struct device_attribute *attr,
3046 const char *buf, size_t count)
3047 {
3048 struct Scsi_Host *shost = class_to_shost(dev);
3049 struct cxlflash_cfg *cfg = shost_priv(shost);
3050 struct device *cfgdev = &cfg->dev->dev;
3051 struct afu *afu = cfg->afu;
3052 int i;
3053 u32 mode = MAX_HWQ_MODE;
3054
3055 for (i = 0; i < MAX_HWQ_MODE; i++) {
3056 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3057 mode = i;
3058 break;
3059 }
3060 }
3061
3062 if (mode >= MAX_HWQ_MODE) {
3063 dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3064 return -EINVAL;
3065 }
3066
3067 afu->hwq_mode = mode;
3068
3069 return count;
3070 }
3071
3072 /**
3073 * mode_show() - presents the current mode of the device
3074 * @dev: Generic device associated with the device.
3075 * @attr: Device attribute representing the device mode.
3076 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3077 *
3078 * Return: The size of the ASCII string returned in @buf.
3079 */
mode_show(struct device * dev,struct device_attribute * attr,char * buf)3080 static ssize_t mode_show(struct device *dev,
3081 struct device_attribute *attr, char *buf)
3082 {
3083 struct scsi_device *sdev = to_scsi_device(dev);
3084
3085 return scnprintf(buf, PAGE_SIZE, "%s\n",
3086 sdev->hostdata ? "superpipe" : "legacy");
3087 }
3088
3089 /*
3090 * Host attributes
3091 */
3092 static DEVICE_ATTR_RO(port0);
3093 static DEVICE_ATTR_RO(port1);
3094 static DEVICE_ATTR_RO(port2);
3095 static DEVICE_ATTR_RO(port3);
3096 static DEVICE_ATTR_RW(lun_mode);
3097 static DEVICE_ATTR_RO(ioctl_version);
3098 static DEVICE_ATTR_RO(port0_lun_table);
3099 static DEVICE_ATTR_RO(port1_lun_table);
3100 static DEVICE_ATTR_RO(port2_lun_table);
3101 static DEVICE_ATTR_RO(port3_lun_table);
3102 static DEVICE_ATTR_RW(irqpoll_weight);
3103 static DEVICE_ATTR_RW(num_hwqs);
3104 static DEVICE_ATTR_RW(hwq_mode);
3105
3106 static struct attribute *cxlflash_host_attrs[] = {
3107 &dev_attr_port0.attr,
3108 &dev_attr_port1.attr,
3109 &dev_attr_port2.attr,
3110 &dev_attr_port3.attr,
3111 &dev_attr_lun_mode.attr,
3112 &dev_attr_ioctl_version.attr,
3113 &dev_attr_port0_lun_table.attr,
3114 &dev_attr_port1_lun_table.attr,
3115 &dev_attr_port2_lun_table.attr,
3116 &dev_attr_port3_lun_table.attr,
3117 &dev_attr_irqpoll_weight.attr,
3118 &dev_attr_num_hwqs.attr,
3119 &dev_attr_hwq_mode.attr,
3120 NULL
3121 };
3122
3123 ATTRIBUTE_GROUPS(cxlflash_host);
3124
3125 /*
3126 * Device attributes
3127 */
3128 static DEVICE_ATTR_RO(mode);
3129
3130 static struct attribute *cxlflash_dev_attrs[] = {
3131 &dev_attr_mode.attr,
3132 NULL
3133 };
3134
3135 ATTRIBUTE_GROUPS(cxlflash_dev);
3136
3137 /*
3138 * Host template
3139 */
3140 static struct scsi_host_template driver_template = {
3141 .module = THIS_MODULE,
3142 .name = CXLFLASH_ADAPTER_NAME,
3143 .info = cxlflash_driver_info,
3144 .ioctl = cxlflash_ioctl,
3145 .proc_name = CXLFLASH_NAME,
3146 .queuecommand = cxlflash_queuecommand,
3147 .eh_abort_handler = cxlflash_eh_abort_handler,
3148 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3149 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3150 .change_queue_depth = cxlflash_change_queue_depth,
3151 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3152 .can_queue = CXLFLASH_MAX_CMDS,
3153 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3154 .this_id = -1,
3155 .sg_tablesize = 1, /* No scatter gather support */
3156 .max_sectors = CXLFLASH_MAX_SECTORS,
3157 .shost_groups = cxlflash_host_groups,
3158 .sdev_groups = cxlflash_dev_groups,
3159 };
3160
3161 /*
3162 * Device dependent values
3163 */
3164 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3165 CXLFLASH_WWPN_VPD_REQUIRED };
3166 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3167 CXLFLASH_NOTIFY_SHUTDOWN };
3168 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3169 (CXLFLASH_NOTIFY_SHUTDOWN |
3170 CXLFLASH_OCXL_DEV) };
3171
3172 /*
3173 * PCI device binding table
3174 */
3175 static struct pci_device_id cxlflash_pci_table[] = {
3176 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3177 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3178 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3179 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3180 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3181 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3182 {}
3183 };
3184
3185 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3186
3187 /**
3188 * cxlflash_worker_thread() - work thread handler for the AFU
3189 * @work: Work structure contained within cxlflash associated with host.
3190 *
3191 * Handles the following events:
3192 * - Link reset which cannot be performed on interrupt context due to
3193 * blocking up to a few seconds
3194 * - Rescan the host
3195 */
cxlflash_worker_thread(struct work_struct * work)3196 static void cxlflash_worker_thread(struct work_struct *work)
3197 {
3198 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3199 work_q);
3200 struct afu *afu = cfg->afu;
3201 struct device *dev = &cfg->dev->dev;
3202 __be64 __iomem *fc_port_regs;
3203 int port;
3204 ulong lock_flags;
3205
3206 /* Avoid MMIO if the device has failed */
3207
3208 if (cfg->state != STATE_NORMAL)
3209 return;
3210
3211 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3212
3213 if (cfg->lr_state == LINK_RESET_REQUIRED) {
3214 port = cfg->lr_port;
3215 if (port < 0)
3216 dev_err(dev, "%s: invalid port index %d\n",
3217 __func__, port);
3218 else {
3219 spin_unlock_irqrestore(cfg->host->host_lock,
3220 lock_flags);
3221
3222 /* The reset can block... */
3223 fc_port_regs = get_fc_port_regs(cfg, port);
3224 afu_link_reset(afu, port, fc_port_regs);
3225 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3226 }
3227
3228 cfg->lr_state = LINK_RESET_COMPLETE;
3229 }
3230
3231 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3232
3233 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3234 scsi_scan_host(cfg->host);
3235 }
3236
3237 /**
3238 * cxlflash_chr_open() - character device open handler
3239 * @inode: Device inode associated with this character device.
3240 * @file: File pointer for this device.
3241 *
3242 * Only users with admin privileges are allowed to open the character device.
3243 *
3244 * Return: 0 on success, -errno on failure
3245 */
cxlflash_chr_open(struct inode * inode,struct file * file)3246 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3247 {
3248 struct cxlflash_cfg *cfg;
3249
3250 if (!capable(CAP_SYS_ADMIN))
3251 return -EACCES;
3252
3253 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3254 file->private_data = cfg;
3255
3256 return 0;
3257 }
3258
3259 /**
3260 * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3261 * @cmd: The host ioctl command to decode.
3262 *
3263 * Return: A string identifying the decoded host ioctl.
3264 */
decode_hioctl(unsigned int cmd)3265 static char *decode_hioctl(unsigned int cmd)
3266 {
3267 switch (cmd) {
3268 case HT_CXLFLASH_LUN_PROVISION:
3269 return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3270 }
3271
3272 return "UNKNOWN";
3273 }
3274
3275 /**
3276 * cxlflash_lun_provision() - host LUN provisioning handler
3277 * @cfg: Internal structure associated with the host.
3278 * @lunprov: Kernel copy of userspace ioctl data structure.
3279 *
3280 * Return: 0 on success, -errno on failure
3281 */
cxlflash_lun_provision(struct cxlflash_cfg * cfg,struct ht_cxlflash_lun_provision * lunprov)3282 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3283 struct ht_cxlflash_lun_provision *lunprov)
3284 {
3285 struct afu *afu = cfg->afu;
3286 struct device *dev = &cfg->dev->dev;
3287 struct sisl_ioarcb rcb;
3288 struct sisl_ioasa asa;
3289 __be64 __iomem *fc_port_regs;
3290 u16 port = lunprov->port;
3291 u16 scmd = lunprov->hdr.subcmd;
3292 u16 type;
3293 u64 reg;
3294 u64 size;
3295 u64 lun_id;
3296 int rc = 0;
3297
3298 if (!afu_is_lun_provision(afu)) {
3299 rc = -ENOTSUPP;
3300 goto out;
3301 }
3302
3303 if (port >= cfg->num_fc_ports) {
3304 rc = -EINVAL;
3305 goto out;
3306 }
3307
3308 switch (scmd) {
3309 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3310 type = SISL_AFU_LUN_PROVISION_CREATE;
3311 size = lunprov->size;
3312 lun_id = 0;
3313 break;
3314 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3315 type = SISL_AFU_LUN_PROVISION_DELETE;
3316 size = 0;
3317 lun_id = lunprov->lun_id;
3318 break;
3319 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3320 fc_port_regs = get_fc_port_regs(cfg, port);
3321
3322 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3323 lunprov->max_num_luns = reg;
3324 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3325 lunprov->cur_num_luns = reg;
3326 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3327 lunprov->max_cap_port = reg;
3328 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3329 lunprov->cur_cap_port = reg;
3330
3331 goto out;
3332 default:
3333 rc = -EINVAL;
3334 goto out;
3335 }
3336
3337 memset(&rcb, 0, sizeof(rcb));
3338 memset(&asa, 0, sizeof(asa));
3339 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3340 rcb.lun_id = lun_id;
3341 rcb.msi = SISL_MSI_RRQ_UPDATED;
3342 rcb.timeout = MC_LUN_PROV_TIMEOUT;
3343 rcb.ioasa = &asa;
3344
3345 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3346 rcb.cdb[1] = type;
3347 rcb.cdb[2] = port;
3348 put_unaligned_be64(size, &rcb.cdb[8]);
3349
3350 rc = send_afu_cmd(afu, &rcb);
3351 if (rc) {
3352 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3353 __func__, rc, asa.ioasc, asa.afu_extra);
3354 goto out;
3355 }
3356
3357 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3358 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3359 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3360 }
3361 out:
3362 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3363 return rc;
3364 }
3365
3366 /**
3367 * cxlflash_afu_debug() - host AFU debug handler
3368 * @cfg: Internal structure associated with the host.
3369 * @afu_dbg: Kernel copy of userspace ioctl data structure.
3370 *
3371 * For debug requests requiring a data buffer, always provide an aligned
3372 * (cache line) buffer to the AFU to appease any alignment requirements.
3373 *
3374 * Return: 0 on success, -errno on failure
3375 */
cxlflash_afu_debug(struct cxlflash_cfg * cfg,struct ht_cxlflash_afu_debug * afu_dbg)3376 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3377 struct ht_cxlflash_afu_debug *afu_dbg)
3378 {
3379 struct afu *afu = cfg->afu;
3380 struct device *dev = &cfg->dev->dev;
3381 struct sisl_ioarcb rcb;
3382 struct sisl_ioasa asa;
3383 char *buf = NULL;
3384 char *kbuf = NULL;
3385 void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3386 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3387 u32 ulen = afu_dbg->data_len;
3388 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3389 int rc = 0;
3390
3391 if (!afu_is_afu_debug(afu)) {
3392 rc = -ENOTSUPP;
3393 goto out;
3394 }
3395
3396 if (ulen) {
3397 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3398
3399 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3400 rc = -EINVAL;
3401 goto out;
3402 }
3403
3404 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3405 if (unlikely(!buf)) {
3406 rc = -ENOMEM;
3407 goto out;
3408 }
3409
3410 kbuf = PTR_ALIGN(buf, cache_line_size());
3411
3412 if (is_write) {
3413 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3414
3415 if (copy_from_user(kbuf, ubuf, ulen)) {
3416 rc = -EFAULT;
3417 goto out;
3418 }
3419 }
3420 }
3421
3422 memset(&rcb, 0, sizeof(rcb));
3423 memset(&asa, 0, sizeof(asa));
3424
3425 rcb.req_flags = req_flags;
3426 rcb.msi = SISL_MSI_RRQ_UPDATED;
3427 rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3428 rcb.ioasa = &asa;
3429
3430 if (ulen) {
3431 rcb.data_len = ulen;
3432 rcb.data_ea = (uintptr_t)kbuf;
3433 }
3434
3435 rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3436 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3437 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3438
3439 rc = send_afu_cmd(afu, &rcb);
3440 if (rc) {
3441 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3442 __func__, rc, asa.ioasc, asa.afu_extra);
3443 goto out;
3444 }
3445
3446 if (ulen && !is_write) {
3447 if (copy_to_user(ubuf, kbuf, ulen))
3448 rc = -EFAULT;
3449 }
3450 out:
3451 kfree(buf);
3452 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3453 return rc;
3454 }
3455
3456 /**
3457 * cxlflash_chr_ioctl() - character device IOCTL handler
3458 * @file: File pointer for this device.
3459 * @cmd: IOCTL command.
3460 * @arg: Userspace ioctl data structure.
3461 *
3462 * A read/write semaphore is used to implement a 'drain' of currently
3463 * running ioctls. The read semaphore is taken at the beginning of each
3464 * ioctl thread and released upon concluding execution. Additionally the
3465 * semaphore should be released and then reacquired in any ioctl execution
3466 * path which will wait for an event to occur that is outside the scope of
3467 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3468 * a thread simply needs to acquire the write semaphore.
3469 *
3470 * Return: 0 on success, -errno on failure
3471 */
cxlflash_chr_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3472 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3473 unsigned long arg)
3474 {
3475 typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3476
3477 struct cxlflash_cfg *cfg = file->private_data;
3478 struct device *dev = &cfg->dev->dev;
3479 char buf[sizeof(union cxlflash_ht_ioctls)];
3480 void __user *uarg = (void __user *)arg;
3481 struct ht_cxlflash_hdr *hdr;
3482 size_t size = 0;
3483 bool known_ioctl = false;
3484 int idx = 0;
3485 int rc = 0;
3486 hioctl do_ioctl = NULL;
3487
3488 static const struct {
3489 size_t size;
3490 hioctl ioctl;
3491 } ioctl_tbl[] = { /* NOTE: order matters here */
3492 { sizeof(struct ht_cxlflash_lun_provision),
3493 (hioctl)cxlflash_lun_provision },
3494 { sizeof(struct ht_cxlflash_afu_debug),
3495 (hioctl)cxlflash_afu_debug },
3496 };
3497
3498 /* Hold read semaphore so we can drain if needed */
3499 down_read(&cfg->ioctl_rwsem);
3500
3501 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3502 __func__, cmd, idx, sizeof(ioctl_tbl));
3503
3504 switch (cmd) {
3505 case HT_CXLFLASH_LUN_PROVISION:
3506 case HT_CXLFLASH_AFU_DEBUG:
3507 known_ioctl = true;
3508 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3509 size = ioctl_tbl[idx].size;
3510 do_ioctl = ioctl_tbl[idx].ioctl;
3511
3512 if (likely(do_ioctl))
3513 break;
3514
3515 fallthrough;
3516 default:
3517 rc = -EINVAL;
3518 goto out;
3519 }
3520
3521 if (unlikely(copy_from_user(&buf, uarg, size))) {
3522 dev_err(dev, "%s: copy_from_user() fail "
3523 "size=%lu cmd=%d (%s) uarg=%p\n",
3524 __func__, size, cmd, decode_hioctl(cmd), uarg);
3525 rc = -EFAULT;
3526 goto out;
3527 }
3528
3529 hdr = (struct ht_cxlflash_hdr *)&buf;
3530 if (hdr->version != HT_CXLFLASH_VERSION_0) {
3531 dev_dbg(dev, "%s: Version %u not supported for %s\n",
3532 __func__, hdr->version, decode_hioctl(cmd));
3533 rc = -EINVAL;
3534 goto out;
3535 }
3536
3537 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3538 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3539 rc = -EINVAL;
3540 goto out;
3541 }
3542
3543 rc = do_ioctl(cfg, (void *)&buf);
3544 if (likely(!rc))
3545 if (unlikely(copy_to_user(uarg, &buf, size))) {
3546 dev_err(dev, "%s: copy_to_user() fail "
3547 "size=%lu cmd=%d (%s) uarg=%p\n",
3548 __func__, size, cmd, decode_hioctl(cmd), uarg);
3549 rc = -EFAULT;
3550 }
3551
3552 /* fall through to exit */
3553
3554 out:
3555 up_read(&cfg->ioctl_rwsem);
3556 if (unlikely(rc && known_ioctl))
3557 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3558 __func__, decode_hioctl(cmd), cmd, rc);
3559 else
3560 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3561 __func__, decode_hioctl(cmd), cmd, rc);
3562 return rc;
3563 }
3564
3565 /*
3566 * Character device file operations
3567 */
3568 static const struct file_operations cxlflash_chr_fops = {
3569 .owner = THIS_MODULE,
3570 .open = cxlflash_chr_open,
3571 .unlocked_ioctl = cxlflash_chr_ioctl,
3572 .compat_ioctl = compat_ptr_ioctl,
3573 };
3574
3575 /**
3576 * init_chrdev() - initialize the character device for the host
3577 * @cfg: Internal structure associated with the host.
3578 *
3579 * Return: 0 on success, -errno on failure
3580 */
init_chrdev(struct cxlflash_cfg * cfg)3581 static int init_chrdev(struct cxlflash_cfg *cfg)
3582 {
3583 struct device *dev = &cfg->dev->dev;
3584 struct device *char_dev;
3585 dev_t devno;
3586 int minor;
3587 int rc = 0;
3588
3589 minor = cxlflash_get_minor();
3590 if (unlikely(minor < 0)) {
3591 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3592 rc = -ENOSPC;
3593 goto out;
3594 }
3595
3596 devno = MKDEV(cxlflash_major, minor);
3597 cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3598
3599 rc = cdev_add(&cfg->cdev, devno, 1);
3600 if (rc) {
3601 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3602 goto err1;
3603 }
3604
3605 char_dev = device_create(cxlflash_class, NULL, devno,
3606 NULL, "cxlflash%d", minor);
3607 if (IS_ERR(char_dev)) {
3608 rc = PTR_ERR(char_dev);
3609 dev_err(dev, "%s: device_create failed rc=%d\n",
3610 __func__, rc);
3611 goto err2;
3612 }
3613
3614 cfg->chardev = char_dev;
3615 out:
3616 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3617 return rc;
3618 err2:
3619 cdev_del(&cfg->cdev);
3620 err1:
3621 cxlflash_put_minor(minor);
3622 goto out;
3623 }
3624
3625 /**
3626 * cxlflash_probe() - PCI entry point to add host
3627 * @pdev: PCI device associated with the host.
3628 * @dev_id: PCI device id associated with device.
3629 *
3630 * The device will initially start out in a 'probing' state and
3631 * transition to the 'normal' state at the end of a successful
3632 * probe. Should an EEH event occur during probe, the notification
3633 * thread (error_detected()) will wait until the probe handler
3634 * is nearly complete. At that time, the device will be moved to
3635 * a 'probed' state and the EEH thread woken up to drive the slot
3636 * reset and recovery (device moves to 'normal' state). Meanwhile,
3637 * the probe will be allowed to exit successfully.
3638 *
3639 * Return: 0 on success, -errno on failure
3640 */
cxlflash_probe(struct pci_dev * pdev,const struct pci_device_id * dev_id)3641 static int cxlflash_probe(struct pci_dev *pdev,
3642 const struct pci_device_id *dev_id)
3643 {
3644 struct Scsi_Host *host;
3645 struct cxlflash_cfg *cfg = NULL;
3646 struct device *dev = &pdev->dev;
3647 struct dev_dependent_vals *ddv;
3648 int rc = 0;
3649 int k;
3650
3651 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3652 __func__, pdev->irq);
3653
3654 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3655 driver_template.max_sectors = ddv->max_sectors;
3656
3657 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3658 if (!host) {
3659 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3660 rc = -ENOMEM;
3661 goto out;
3662 }
3663
3664 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3665 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3666 host->unique_id = host->host_no;
3667 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3668
3669 cfg = shost_priv(host);
3670 cfg->state = STATE_PROBING;
3671 cfg->host = host;
3672 rc = alloc_mem(cfg);
3673 if (rc) {
3674 dev_err(dev, "%s: alloc_mem failed\n", __func__);
3675 rc = -ENOMEM;
3676 scsi_host_put(cfg->host);
3677 goto out;
3678 }
3679
3680 cfg->init_state = INIT_STATE_NONE;
3681 cfg->dev = pdev;
3682 cfg->cxl_fops = cxlflash_cxl_fops;
3683 cfg->ops = cxlflash_assign_ops(ddv);
3684 WARN_ON_ONCE(!cfg->ops);
3685
3686 /*
3687 * Promoted LUNs move to the top of the LUN table. The rest stay on
3688 * the bottom half. The bottom half grows from the end (index = 255),
3689 * whereas the top half grows from the beginning (index = 0).
3690 *
3691 * Initialize the last LUN index for all possible ports.
3692 */
3693 cfg->promote_lun_index = 0;
3694
3695 for (k = 0; k < MAX_FC_PORTS; k++)
3696 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3697
3698 cfg->dev_id = (struct pci_device_id *)dev_id;
3699
3700 init_waitqueue_head(&cfg->tmf_waitq);
3701 init_waitqueue_head(&cfg->reset_waitq);
3702
3703 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3704 cfg->lr_state = LINK_RESET_INVALID;
3705 cfg->lr_port = -1;
3706 spin_lock_init(&cfg->tmf_slock);
3707 mutex_init(&cfg->ctx_tbl_list_mutex);
3708 mutex_init(&cfg->ctx_recovery_mutex);
3709 init_rwsem(&cfg->ioctl_rwsem);
3710 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3711 INIT_LIST_HEAD(&cfg->lluns);
3712
3713 pci_set_drvdata(pdev, cfg);
3714
3715 rc = init_pci(cfg);
3716 if (rc) {
3717 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3718 goto out_remove;
3719 }
3720 cfg->init_state = INIT_STATE_PCI;
3721
3722 cfg->afu_cookie = cfg->ops->create_afu(pdev);
3723 if (unlikely(!cfg->afu_cookie)) {
3724 dev_err(dev, "%s: create_afu failed\n", __func__);
3725 rc = -ENOMEM;
3726 goto out_remove;
3727 }
3728
3729 rc = init_afu(cfg);
3730 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3731 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3732 goto out_remove;
3733 }
3734 cfg->init_state = INIT_STATE_AFU;
3735
3736 rc = init_scsi(cfg);
3737 if (rc) {
3738 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3739 goto out_remove;
3740 }
3741 cfg->init_state = INIT_STATE_SCSI;
3742
3743 rc = init_chrdev(cfg);
3744 if (rc) {
3745 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3746 goto out_remove;
3747 }
3748 cfg->init_state = INIT_STATE_CDEV;
3749
3750 if (wq_has_sleeper(&cfg->reset_waitq)) {
3751 cfg->state = STATE_PROBED;
3752 wake_up_all(&cfg->reset_waitq);
3753 } else
3754 cfg->state = STATE_NORMAL;
3755 out:
3756 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3757 return rc;
3758
3759 out_remove:
3760 cfg->state = STATE_PROBED;
3761 cxlflash_remove(pdev);
3762 goto out;
3763 }
3764
3765 /**
3766 * cxlflash_pci_error_detected() - called when a PCI error is detected
3767 * @pdev: PCI device struct.
3768 * @state: PCI channel state.
3769 *
3770 * When an EEH occurs during an active reset, wait until the reset is
3771 * complete and then take action based upon the device state.
3772 *
3773 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3774 */
cxlflash_pci_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3775 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3776 pci_channel_state_t state)
3777 {
3778 int rc = 0;
3779 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3780 struct device *dev = &cfg->dev->dev;
3781
3782 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3783
3784 switch (state) {
3785 case pci_channel_io_frozen:
3786 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3787 cfg->state != STATE_PROBING);
3788 if (cfg->state == STATE_FAILTERM)
3789 return PCI_ERS_RESULT_DISCONNECT;
3790
3791 cfg->state = STATE_RESET;
3792 scsi_block_requests(cfg->host);
3793 drain_ioctls(cfg);
3794 rc = cxlflash_mark_contexts_error(cfg);
3795 if (unlikely(rc))
3796 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3797 __func__, rc);
3798 term_afu(cfg);
3799 return PCI_ERS_RESULT_NEED_RESET;
3800 case pci_channel_io_perm_failure:
3801 cfg->state = STATE_FAILTERM;
3802 wake_up_all(&cfg->reset_waitq);
3803 scsi_unblock_requests(cfg->host);
3804 return PCI_ERS_RESULT_DISCONNECT;
3805 default:
3806 break;
3807 }
3808 return PCI_ERS_RESULT_NEED_RESET;
3809 }
3810
3811 /**
3812 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3813 * @pdev: PCI device struct.
3814 *
3815 * This routine is called by the pci error recovery code after the PCI
3816 * slot has been reset, just before we should resume normal operations.
3817 *
3818 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3819 */
cxlflash_pci_slot_reset(struct pci_dev * pdev)3820 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3821 {
3822 int rc = 0;
3823 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3824 struct device *dev = &cfg->dev->dev;
3825
3826 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3827
3828 rc = init_afu(cfg);
3829 if (unlikely(rc)) {
3830 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3831 return PCI_ERS_RESULT_DISCONNECT;
3832 }
3833
3834 return PCI_ERS_RESULT_RECOVERED;
3835 }
3836
3837 /**
3838 * cxlflash_pci_resume() - called when normal operation can resume
3839 * @pdev: PCI device struct
3840 */
cxlflash_pci_resume(struct pci_dev * pdev)3841 static void cxlflash_pci_resume(struct pci_dev *pdev)
3842 {
3843 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3844 struct device *dev = &cfg->dev->dev;
3845
3846 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3847
3848 cfg->state = STATE_NORMAL;
3849 wake_up_all(&cfg->reset_waitq);
3850 scsi_unblock_requests(cfg->host);
3851 }
3852
3853 /**
3854 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3855 * @dev: Character device.
3856 * @mode: Mode that can be used to verify access.
3857 *
3858 * Return: Allocated string describing the devtmpfs structure.
3859 */
cxlflash_devnode(const struct device * dev,umode_t * mode)3860 static char *cxlflash_devnode(const struct device *dev, umode_t *mode)
3861 {
3862 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3863 }
3864
3865 /**
3866 * cxlflash_class_init() - create character device class
3867 *
3868 * Return: 0 on success, -errno on failure
3869 */
cxlflash_class_init(void)3870 static int cxlflash_class_init(void)
3871 {
3872 dev_t devno;
3873 int rc = 0;
3874
3875 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3876 if (unlikely(rc)) {
3877 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3878 goto out;
3879 }
3880
3881 cxlflash_major = MAJOR(devno);
3882
3883 cxlflash_class = class_create("cxlflash");
3884 if (IS_ERR(cxlflash_class)) {
3885 rc = PTR_ERR(cxlflash_class);
3886 pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3887 goto err;
3888 }
3889
3890 cxlflash_class->devnode = cxlflash_devnode;
3891 out:
3892 pr_debug("%s: returning rc=%d\n", __func__, rc);
3893 return rc;
3894 err:
3895 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3896 goto out;
3897 }
3898
3899 /**
3900 * cxlflash_class_exit() - destroy character device class
3901 */
cxlflash_class_exit(void)3902 static void cxlflash_class_exit(void)
3903 {
3904 dev_t devno = MKDEV(cxlflash_major, 0);
3905
3906 class_destroy(cxlflash_class);
3907 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3908 }
3909
3910 static const struct pci_error_handlers cxlflash_err_handler = {
3911 .error_detected = cxlflash_pci_error_detected,
3912 .slot_reset = cxlflash_pci_slot_reset,
3913 .resume = cxlflash_pci_resume,
3914 };
3915
3916 /*
3917 * PCI device structure
3918 */
3919 static struct pci_driver cxlflash_driver = {
3920 .name = CXLFLASH_NAME,
3921 .id_table = cxlflash_pci_table,
3922 .probe = cxlflash_probe,
3923 .remove = cxlflash_remove,
3924 .shutdown = cxlflash_remove,
3925 .err_handler = &cxlflash_err_handler,
3926 };
3927
3928 /**
3929 * init_cxlflash() - module entry point
3930 *
3931 * Return: 0 on success, -errno on failure
3932 */
init_cxlflash(void)3933 static int __init init_cxlflash(void)
3934 {
3935 int rc;
3936
3937 check_sizes();
3938 cxlflash_list_init();
3939 rc = cxlflash_class_init();
3940 if (unlikely(rc))
3941 goto out;
3942
3943 rc = pci_register_driver(&cxlflash_driver);
3944 if (unlikely(rc))
3945 goto err;
3946 out:
3947 pr_debug("%s: returning rc=%d\n", __func__, rc);
3948 return rc;
3949 err:
3950 cxlflash_class_exit();
3951 goto out;
3952 }
3953
3954 /**
3955 * exit_cxlflash() - module exit point
3956 */
exit_cxlflash(void)3957 static void __exit exit_cxlflash(void)
3958 {
3959 cxlflash_term_global_luns();
3960 cxlflash_free_errpage();
3961
3962 pci_unregister_driver(&cxlflash_driver);
3963 cxlflash_class_exit();
3964 }
3965
3966 module_init(init_cxlflash);
3967 module_exit(exit_cxlflash);
3968