1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3 *
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/firmware.h>
12 #include <linux/device.h>
13 #include <linux/errno.h>
14 #include <linux/slab.h>
15 #include <linux/skbuff.h>
16 #include <linux/usb.h>
17 #include <linux/workqueue.h>
18 #include <linux/module.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21
22 #include "zd_def.h"
23 #include "zd_mac.h"
24 #include "zd_usb.h"
25
26 static const struct usb_device_id usb_ids[] = {
27 /* ZD1211 */
28 { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
29 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
30 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
31 { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
32 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
33 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
34 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
35 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
36 { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
37 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
38 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
54 /* ZD1211B */
55 { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
56 { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
57 { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
58 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
59 { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
60 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
61 { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
62 { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
63 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
65 { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
66 { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
67 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
68 { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
69 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
70 { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
71 { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
72 { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
73 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
74 { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
75 { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
76 { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
77 { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
78 { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
79 { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
80 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
81 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
82 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
83 { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
84 { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
85 /* "Driverless" devices that need ejecting */
86 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
87 { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
88 {}
89 };
90
91 MODULE_LICENSE("GPL");
92 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
93 MODULE_AUTHOR("Ulrich Kunitz");
94 MODULE_AUTHOR("Daniel Drake");
95 MODULE_VERSION("1.0");
96 MODULE_DEVICE_TABLE(usb, usb_ids);
97
98 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
99 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
100
101 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
102 unsigned int count);
103
104 /* USB device initialization */
105 static void int_urb_complete(struct urb *urb);
106
request_fw_file(const struct firmware ** fw,const char * name,struct device * device)107 static int request_fw_file(
108 const struct firmware **fw, const char *name, struct device *device)
109 {
110 int r;
111
112 dev_dbg_f(device, "fw name %s\n", name);
113
114 r = request_firmware(fw, name, device);
115 if (r)
116 dev_err(device,
117 "Could not load firmware file %s. Error number %d\n",
118 name, r);
119 return r;
120 }
121
get_bcdDevice(const struct usb_device * udev)122 static inline u16 get_bcdDevice(const struct usb_device *udev)
123 {
124 return le16_to_cpu(udev->descriptor.bcdDevice);
125 }
126
127 enum upload_code_flags {
128 REBOOT = 1,
129 };
130
131 /* Ensures that MAX_TRANSFER_SIZE is even. */
132 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
133
upload_code(struct usb_device * udev,const u8 * data,size_t size,u16 code_offset,int flags)134 static int upload_code(struct usb_device *udev,
135 const u8 *data, size_t size, u16 code_offset, int flags)
136 {
137 u8 *p;
138 int r;
139
140 /* USB request blocks need "kmalloced" buffers.
141 */
142 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
143 if (!p) {
144 r = -ENOMEM;
145 goto error;
146 }
147
148 size &= ~1;
149 while (size > 0) {
150 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
151 size : MAX_TRANSFER_SIZE;
152
153 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
154
155 memcpy(p, data, transfer_size);
156 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
157 USB_REQ_FIRMWARE_DOWNLOAD,
158 USB_DIR_OUT | USB_TYPE_VENDOR,
159 code_offset, 0, p, transfer_size, 1000 /* ms */);
160 if (r < 0) {
161 dev_err(&udev->dev,
162 "USB control request for firmware upload"
163 " failed. Error number %d\n", r);
164 goto error;
165 }
166 transfer_size = r & ~1;
167
168 size -= transfer_size;
169 data += transfer_size;
170 code_offset += transfer_size/sizeof(u16);
171 }
172
173 if (flags & REBOOT) {
174 u8 ret;
175
176 /* Use "DMA-aware" buffer. */
177 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
178 USB_REQ_FIRMWARE_CONFIRM,
179 USB_DIR_IN | USB_TYPE_VENDOR,
180 0, 0, p, sizeof(ret), 5000 /* ms */);
181 if (r != sizeof(ret)) {
182 dev_err(&udev->dev,
183 "control request firmware confirmation failed."
184 " Return value %d\n", r);
185 if (r >= 0)
186 r = -ENODEV;
187 goto error;
188 }
189 ret = p[0];
190 if (ret & 0x80) {
191 dev_err(&udev->dev,
192 "Internal error while downloading."
193 " Firmware confirm return value %#04x\n",
194 (unsigned int)ret);
195 r = -ENODEV;
196 goto error;
197 }
198 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
199 (unsigned int)ret);
200 }
201
202 r = 0;
203 error:
204 kfree(p);
205 return r;
206 }
207
get_word(const void * data,u16 offset)208 static u16 get_word(const void *data, u16 offset)
209 {
210 const __le16 *p = data;
211 return le16_to_cpu(p[offset]);
212 }
213
get_fw_name(struct zd_usb * usb,char * buffer,size_t size,const char * postfix)214 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
215 const char* postfix)
216 {
217 scnprintf(buffer, size, "%s%s",
218 usb->is_zd1211b ?
219 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
220 postfix);
221 return buffer;
222 }
223
handle_version_mismatch(struct zd_usb * usb,const struct firmware * ub_fw)224 static int handle_version_mismatch(struct zd_usb *usb,
225 const struct firmware *ub_fw)
226 {
227 struct usb_device *udev = zd_usb_to_usbdev(usb);
228 const struct firmware *ur_fw = NULL;
229 int offset;
230 int r = 0;
231 char fw_name[128];
232
233 r = request_fw_file(&ur_fw,
234 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
235 &udev->dev);
236 if (r)
237 goto error;
238
239 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
240 if (r)
241 goto error;
242
243 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
244 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
245 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
246
247 /* At this point, the vendor driver downloads the whole firmware
248 * image, hacks around with version IDs, and uploads it again,
249 * completely overwriting the boot code. We do not do this here as
250 * it is not required on any tested devices, and it is suspected to
251 * cause problems. */
252 error:
253 release_firmware(ur_fw);
254 return r;
255 }
256
upload_firmware(struct zd_usb * usb)257 static int upload_firmware(struct zd_usb *usb)
258 {
259 int r;
260 u16 fw_bcdDevice;
261 u16 bcdDevice;
262 struct usb_device *udev = zd_usb_to_usbdev(usb);
263 const struct firmware *ub_fw = NULL;
264 const struct firmware *uph_fw = NULL;
265 char fw_name[128];
266
267 bcdDevice = get_bcdDevice(udev);
268
269 r = request_fw_file(&ub_fw,
270 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
271 &udev->dev);
272 if (r)
273 goto error;
274
275 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
276
277 if (fw_bcdDevice != bcdDevice) {
278 dev_info(&udev->dev,
279 "firmware version %#06x and device bootcode version "
280 "%#06x differ\n", fw_bcdDevice, bcdDevice);
281 if (bcdDevice <= 0x4313)
282 dev_warn(&udev->dev, "device has old bootcode, please "
283 "report success or failure\n");
284
285 r = handle_version_mismatch(usb, ub_fw);
286 if (r)
287 goto error;
288 } else {
289 dev_dbg_f(&udev->dev,
290 "firmware device id %#06x is equal to the "
291 "actual device id\n", fw_bcdDevice);
292 }
293
294
295 r = request_fw_file(&uph_fw,
296 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
297 &udev->dev);
298 if (r)
299 goto error;
300
301 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
302 if (r) {
303 dev_err(&udev->dev,
304 "Could not upload firmware code uph. Error number %d\n",
305 r);
306 }
307
308 /* FALL-THROUGH */
309 error:
310 release_firmware(ub_fw);
311 release_firmware(uph_fw);
312 return r;
313 }
314
315 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
316 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
317 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
318 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
319 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
320 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
321
322 /* Read data from device address space using "firmware interface" which does
323 * not require firmware to be loaded. */
zd_usb_read_fw(struct zd_usb * usb,zd_addr_t addr,u8 * data,u16 len)324 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
325 {
326 int r;
327 struct usb_device *udev = zd_usb_to_usbdev(usb);
328 u8 *buf;
329
330 /* Use "DMA-aware" buffer. */
331 buf = kmalloc(len, GFP_KERNEL);
332 if (!buf)
333 return -ENOMEM;
334 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
335 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
336 buf, len, 5000);
337 if (r < 0) {
338 dev_err(&udev->dev,
339 "read over firmware interface failed: %d\n", r);
340 goto exit;
341 } else if (r != len) {
342 dev_err(&udev->dev,
343 "incomplete read over firmware interface: %d/%d\n",
344 r, len);
345 r = -EIO;
346 goto exit;
347 }
348 r = 0;
349 memcpy(data, buf, len);
350 exit:
351 kfree(buf);
352 return r;
353 }
354
355 #define urb_dev(urb) (&(urb)->dev->dev)
356
handle_regs_int_override(struct urb * urb)357 static inline void handle_regs_int_override(struct urb *urb)
358 {
359 struct zd_usb *usb = urb->context;
360 struct zd_usb_interrupt *intr = &usb->intr;
361 unsigned long flags;
362
363 spin_lock_irqsave(&intr->lock, flags);
364 if (atomic_read(&intr->read_regs_enabled)) {
365 atomic_set(&intr->read_regs_enabled, 0);
366 intr->read_regs_int_overridden = 1;
367 complete(&intr->read_regs.completion);
368 }
369 spin_unlock_irqrestore(&intr->lock, flags);
370 }
371
handle_regs_int(struct urb * urb)372 static inline void handle_regs_int(struct urb *urb)
373 {
374 struct zd_usb *usb = urb->context;
375 struct zd_usb_interrupt *intr = &usb->intr;
376 unsigned long flags;
377 int len;
378 u16 int_num;
379
380 spin_lock_irqsave(&intr->lock, flags);
381
382 int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
383 if (int_num == CR_INTERRUPT) {
384 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
385 spin_lock(&mac->lock);
386 memcpy(&mac->intr_buffer, urb->transfer_buffer,
387 USB_MAX_EP_INT_BUFFER);
388 spin_unlock(&mac->lock);
389 schedule_work(&mac->process_intr);
390 } else if (atomic_read(&intr->read_regs_enabled)) {
391 len = urb->actual_length;
392 intr->read_regs.length = urb->actual_length;
393 if (len > sizeof(intr->read_regs.buffer))
394 len = sizeof(intr->read_regs.buffer);
395
396 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
397
398 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
399 * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
400 * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
401 * retry unhandled. Next read-reg command then might catch
402 * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
403 */
404 if (!check_read_regs(usb, intr->read_regs.req,
405 intr->read_regs.req_count))
406 goto out;
407
408 atomic_set(&intr->read_regs_enabled, 0);
409 intr->read_regs_int_overridden = 0;
410 complete(&intr->read_regs.completion);
411
412 goto out;
413 }
414
415 out:
416 spin_unlock_irqrestore(&intr->lock, flags);
417
418 /* CR_INTERRUPT might override read_reg too. */
419 if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
420 handle_regs_int_override(urb);
421 }
422
int_urb_complete(struct urb * urb)423 static void int_urb_complete(struct urb *urb)
424 {
425 int r;
426 struct usb_int_header *hdr;
427 struct zd_usb *usb;
428 struct zd_usb_interrupt *intr;
429
430 switch (urb->status) {
431 case 0:
432 break;
433 case -ESHUTDOWN:
434 case -EINVAL:
435 case -ENODEV:
436 case -ENOENT:
437 case -ECONNRESET:
438 case -EPIPE:
439 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
440 return;
441 default:
442 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
443 goto resubmit;
444 }
445
446 if (urb->actual_length < sizeof(hdr)) {
447 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
448 goto resubmit;
449 }
450
451 hdr = urb->transfer_buffer;
452 if (hdr->type != USB_INT_TYPE) {
453 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
454 goto resubmit;
455 }
456
457 /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
458 * pending USB_INT_ID_REGS causing read command timeout.
459 */
460 usb = urb->context;
461 intr = &usb->intr;
462 if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
463 handle_regs_int_override(urb);
464
465 switch (hdr->id) {
466 case USB_INT_ID_REGS:
467 handle_regs_int(urb);
468 break;
469 case USB_INT_ID_RETRY_FAILED:
470 zd_mac_tx_failed(urb);
471 break;
472 default:
473 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
474 (unsigned int)hdr->id);
475 goto resubmit;
476 }
477
478 resubmit:
479 r = usb_submit_urb(urb, GFP_ATOMIC);
480 if (r) {
481 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
482 urb, r);
483 /* TODO: add worker to reset intr->urb */
484 }
485 return;
486 }
487
int_urb_interval(struct usb_device * udev)488 static inline int int_urb_interval(struct usb_device *udev)
489 {
490 switch (udev->speed) {
491 case USB_SPEED_HIGH:
492 return 4;
493 case USB_SPEED_LOW:
494 return 10;
495 case USB_SPEED_FULL:
496 default:
497 return 1;
498 }
499 }
500
usb_int_enabled(struct zd_usb * usb)501 static inline int usb_int_enabled(struct zd_usb *usb)
502 {
503 unsigned long flags;
504 struct zd_usb_interrupt *intr = &usb->intr;
505 struct urb *urb;
506
507 spin_lock_irqsave(&intr->lock, flags);
508 urb = intr->urb;
509 spin_unlock_irqrestore(&intr->lock, flags);
510 return urb != NULL;
511 }
512
zd_usb_enable_int(struct zd_usb * usb)513 int zd_usb_enable_int(struct zd_usb *usb)
514 {
515 int r;
516 struct usb_device *udev = zd_usb_to_usbdev(usb);
517 struct zd_usb_interrupt *intr = &usb->intr;
518 struct urb *urb;
519
520 dev_dbg_f(zd_usb_dev(usb), "\n");
521
522 urb = usb_alloc_urb(0, GFP_KERNEL);
523 if (!urb) {
524 r = -ENOMEM;
525 goto out;
526 }
527
528 ZD_ASSERT(!irqs_disabled());
529 spin_lock_irq(&intr->lock);
530 if (intr->urb) {
531 spin_unlock_irq(&intr->lock);
532 r = 0;
533 goto error_free_urb;
534 }
535 intr->urb = urb;
536 spin_unlock_irq(&intr->lock);
537
538 r = -ENOMEM;
539 intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
540 GFP_KERNEL, &intr->buffer_dma);
541 if (!intr->buffer) {
542 dev_dbg_f(zd_usb_dev(usb),
543 "couldn't allocate transfer_buffer\n");
544 goto error_set_urb_null;
545 }
546
547 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
548 intr->buffer, USB_MAX_EP_INT_BUFFER,
549 int_urb_complete, usb,
550 intr->interval);
551 urb->transfer_dma = intr->buffer_dma;
552 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
553
554 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
555 r = usb_submit_urb(urb, GFP_KERNEL);
556 if (r) {
557 dev_dbg_f(zd_usb_dev(usb),
558 "Couldn't submit urb. Error number %d\n", r);
559 goto error;
560 }
561
562 return 0;
563 error:
564 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
565 intr->buffer, intr->buffer_dma);
566 error_set_urb_null:
567 spin_lock_irq(&intr->lock);
568 intr->urb = NULL;
569 spin_unlock_irq(&intr->lock);
570 error_free_urb:
571 usb_free_urb(urb);
572 out:
573 return r;
574 }
575
zd_usb_disable_int(struct zd_usb * usb)576 void zd_usb_disable_int(struct zd_usb *usb)
577 {
578 unsigned long flags;
579 struct usb_device *udev = zd_usb_to_usbdev(usb);
580 struct zd_usb_interrupt *intr = &usb->intr;
581 struct urb *urb;
582 void *buffer;
583 dma_addr_t buffer_dma;
584
585 spin_lock_irqsave(&intr->lock, flags);
586 urb = intr->urb;
587 if (!urb) {
588 spin_unlock_irqrestore(&intr->lock, flags);
589 return;
590 }
591 intr->urb = NULL;
592 buffer = intr->buffer;
593 buffer_dma = intr->buffer_dma;
594 intr->buffer = NULL;
595 spin_unlock_irqrestore(&intr->lock, flags);
596
597 usb_kill_urb(urb);
598 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
599 usb_free_urb(urb);
600
601 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER, buffer, buffer_dma);
602 }
603
handle_rx_packet(struct zd_usb * usb,const u8 * buffer,unsigned int length)604 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
605 unsigned int length)
606 {
607 int i;
608 const struct rx_length_info *length_info;
609
610 if (length < sizeof(struct rx_length_info)) {
611 /* It's not a complete packet anyhow. */
612 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
613 length);
614 return;
615 }
616 length_info = (struct rx_length_info *)
617 (buffer + length - sizeof(struct rx_length_info));
618
619 /* It might be that three frames are merged into a single URB
620 * transaction. We have to check for the length info tag.
621 *
622 * While testing we discovered that length_info might be unaligned,
623 * because if USB transactions are merged, the last packet will not
624 * be padded. Unaligned access might also happen if the length_info
625 * structure is not present.
626 */
627 if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
628 {
629 unsigned int l, k, n;
630 for (i = 0, l = 0;; i++) {
631 k = get_unaligned_le16(&length_info->length[i]);
632 if (k == 0)
633 return;
634 n = l+k;
635 if (n > length)
636 return;
637 zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
638 if (i >= 2)
639 return;
640 l = (n+3) & ~3;
641 }
642 } else {
643 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
644 }
645 }
646
rx_urb_complete(struct urb * urb)647 static void rx_urb_complete(struct urb *urb)
648 {
649 int r;
650 struct zd_usb *usb;
651 struct zd_usb_rx *rx;
652 const u8 *buffer;
653 unsigned int length;
654 unsigned long flags;
655
656 switch (urb->status) {
657 case 0:
658 break;
659 case -ESHUTDOWN:
660 case -EINVAL:
661 case -ENODEV:
662 case -ENOENT:
663 case -ECONNRESET:
664 case -EPIPE:
665 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
666 return;
667 default:
668 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
669 goto resubmit;
670 }
671
672 buffer = urb->transfer_buffer;
673 length = urb->actual_length;
674 usb = urb->context;
675 rx = &usb->rx;
676
677 tasklet_schedule(&rx->reset_timer_tasklet);
678
679 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
680 /* If there is an old first fragment, we don't care. */
681 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
682 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
683 spin_lock_irqsave(&rx->lock, flags);
684 memcpy(rx->fragment, buffer, length);
685 rx->fragment_length = length;
686 spin_unlock_irqrestore(&rx->lock, flags);
687 goto resubmit;
688 }
689
690 spin_lock_irqsave(&rx->lock, flags);
691 if (rx->fragment_length > 0) {
692 /* We are on a second fragment, we believe */
693 ZD_ASSERT(length + rx->fragment_length <=
694 ARRAY_SIZE(rx->fragment));
695 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
696 memcpy(rx->fragment+rx->fragment_length, buffer, length);
697 handle_rx_packet(usb, rx->fragment,
698 rx->fragment_length + length);
699 rx->fragment_length = 0;
700 spin_unlock_irqrestore(&rx->lock, flags);
701 } else {
702 spin_unlock_irqrestore(&rx->lock, flags);
703 handle_rx_packet(usb, buffer, length);
704 }
705
706 resubmit:
707 r = usb_submit_urb(urb, GFP_ATOMIC);
708 if (r)
709 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
710 }
711
alloc_rx_urb(struct zd_usb * usb)712 static struct urb *alloc_rx_urb(struct zd_usb *usb)
713 {
714 struct usb_device *udev = zd_usb_to_usbdev(usb);
715 struct urb *urb;
716 void *buffer;
717
718 urb = usb_alloc_urb(0, GFP_KERNEL);
719 if (!urb)
720 return NULL;
721 buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
722 &urb->transfer_dma);
723 if (!buffer) {
724 usb_free_urb(urb);
725 return NULL;
726 }
727
728 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
729 buffer, USB_MAX_RX_SIZE,
730 rx_urb_complete, usb);
731 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
732
733 return urb;
734 }
735
free_rx_urb(struct urb * urb)736 static void free_rx_urb(struct urb *urb)
737 {
738 if (!urb)
739 return;
740 usb_free_coherent(urb->dev, urb->transfer_buffer_length,
741 urb->transfer_buffer, urb->transfer_dma);
742 usb_free_urb(urb);
743 }
744
__zd_usb_enable_rx(struct zd_usb * usb)745 static int __zd_usb_enable_rx(struct zd_usb *usb)
746 {
747 int i, r;
748 struct zd_usb_rx *rx = &usb->rx;
749 struct urb **urbs;
750
751 dev_dbg_f(zd_usb_dev(usb), "\n");
752
753 r = -ENOMEM;
754 urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
755 if (!urbs)
756 goto error;
757 for (i = 0; i < RX_URBS_COUNT; i++) {
758 urbs[i] = alloc_rx_urb(usb);
759 if (!urbs[i])
760 goto error;
761 }
762
763 ZD_ASSERT(!irqs_disabled());
764 spin_lock_irq(&rx->lock);
765 if (rx->urbs) {
766 spin_unlock_irq(&rx->lock);
767 r = 0;
768 goto error;
769 }
770 rx->urbs = urbs;
771 rx->urbs_count = RX_URBS_COUNT;
772 spin_unlock_irq(&rx->lock);
773
774 for (i = 0; i < RX_URBS_COUNT; i++) {
775 r = usb_submit_urb(urbs[i], GFP_KERNEL);
776 if (r)
777 goto error_submit;
778 }
779
780 return 0;
781 error_submit:
782 for (i = 0; i < RX_URBS_COUNT; i++) {
783 usb_kill_urb(urbs[i]);
784 }
785 spin_lock_irq(&rx->lock);
786 rx->urbs = NULL;
787 rx->urbs_count = 0;
788 spin_unlock_irq(&rx->lock);
789 error:
790 if (urbs) {
791 for (i = 0; i < RX_URBS_COUNT; i++)
792 free_rx_urb(urbs[i]);
793 }
794 return r;
795 }
796
zd_usb_enable_rx(struct zd_usb * usb)797 int zd_usb_enable_rx(struct zd_usb *usb)
798 {
799 int r;
800 struct zd_usb_rx *rx = &usb->rx;
801
802 mutex_lock(&rx->setup_mutex);
803 r = __zd_usb_enable_rx(usb);
804 mutex_unlock(&rx->setup_mutex);
805
806 zd_usb_reset_rx_idle_timer(usb);
807
808 return r;
809 }
810
__zd_usb_disable_rx(struct zd_usb * usb)811 static void __zd_usb_disable_rx(struct zd_usb *usb)
812 {
813 int i;
814 unsigned long flags;
815 struct urb **urbs;
816 unsigned int count;
817 struct zd_usb_rx *rx = &usb->rx;
818
819 spin_lock_irqsave(&rx->lock, flags);
820 urbs = rx->urbs;
821 count = rx->urbs_count;
822 spin_unlock_irqrestore(&rx->lock, flags);
823 if (!urbs)
824 return;
825
826 for (i = 0; i < count; i++) {
827 usb_kill_urb(urbs[i]);
828 free_rx_urb(urbs[i]);
829 }
830 kfree(urbs);
831
832 spin_lock_irqsave(&rx->lock, flags);
833 rx->urbs = NULL;
834 rx->urbs_count = 0;
835 spin_unlock_irqrestore(&rx->lock, flags);
836 }
837
zd_usb_disable_rx(struct zd_usb * usb)838 void zd_usb_disable_rx(struct zd_usb *usb)
839 {
840 struct zd_usb_rx *rx = &usb->rx;
841
842 mutex_lock(&rx->setup_mutex);
843 __zd_usb_disable_rx(usb);
844 mutex_unlock(&rx->setup_mutex);
845
846 tasklet_kill(&rx->reset_timer_tasklet);
847 cancel_delayed_work_sync(&rx->idle_work);
848 }
849
zd_usb_reset_rx(struct zd_usb * usb)850 static void zd_usb_reset_rx(struct zd_usb *usb)
851 {
852 bool do_reset;
853 struct zd_usb_rx *rx = &usb->rx;
854 unsigned long flags;
855
856 mutex_lock(&rx->setup_mutex);
857
858 spin_lock_irqsave(&rx->lock, flags);
859 do_reset = rx->urbs != NULL;
860 spin_unlock_irqrestore(&rx->lock, flags);
861
862 if (do_reset) {
863 __zd_usb_disable_rx(usb);
864 __zd_usb_enable_rx(usb);
865 }
866
867 mutex_unlock(&rx->setup_mutex);
868
869 if (do_reset)
870 zd_usb_reset_rx_idle_timer(usb);
871 }
872
873 /**
874 * zd_usb_disable_tx - disable transmission
875 * @usb: the zd1211rw-private USB structure
876 *
877 * Frees all URBs in the free list and marks the transmission as disabled.
878 */
zd_usb_disable_tx(struct zd_usb * usb)879 void zd_usb_disable_tx(struct zd_usb *usb)
880 {
881 struct zd_usb_tx *tx = &usb->tx;
882 unsigned long flags;
883
884 atomic_set(&tx->enabled, 0);
885
886 /* kill all submitted tx-urbs */
887 usb_kill_anchored_urbs(&tx->submitted);
888
889 spin_lock_irqsave(&tx->lock, flags);
890 WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
891 WARN_ON(tx->submitted_urbs != 0);
892 tx->submitted_urbs = 0;
893 spin_unlock_irqrestore(&tx->lock, flags);
894
895 /* The stopped state is ignored, relying on ieee80211_wake_queues()
896 * in a potentionally following zd_usb_enable_tx().
897 */
898 }
899
900 /**
901 * zd_usb_enable_tx - enables transmission
902 * @usb: a &struct zd_usb pointer
903 *
904 * This function enables transmission and prepares the &zd_usb_tx data
905 * structure.
906 */
zd_usb_enable_tx(struct zd_usb * usb)907 void zd_usb_enable_tx(struct zd_usb *usb)
908 {
909 unsigned long flags;
910 struct zd_usb_tx *tx = &usb->tx;
911
912 spin_lock_irqsave(&tx->lock, flags);
913 atomic_set(&tx->enabled, 1);
914 tx->submitted_urbs = 0;
915 ieee80211_wake_queues(zd_usb_to_hw(usb));
916 tx->stopped = 0;
917 spin_unlock_irqrestore(&tx->lock, flags);
918 }
919
tx_dec_submitted_urbs(struct zd_usb * usb)920 static void tx_dec_submitted_urbs(struct zd_usb *usb)
921 {
922 struct zd_usb_tx *tx = &usb->tx;
923 unsigned long flags;
924
925 spin_lock_irqsave(&tx->lock, flags);
926 --tx->submitted_urbs;
927 if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
928 ieee80211_wake_queues(zd_usb_to_hw(usb));
929 tx->stopped = 0;
930 }
931 spin_unlock_irqrestore(&tx->lock, flags);
932 }
933
tx_inc_submitted_urbs(struct zd_usb * usb)934 static void tx_inc_submitted_urbs(struct zd_usb *usb)
935 {
936 struct zd_usb_tx *tx = &usb->tx;
937 unsigned long flags;
938
939 spin_lock_irqsave(&tx->lock, flags);
940 ++tx->submitted_urbs;
941 if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
942 ieee80211_stop_queues(zd_usb_to_hw(usb));
943 tx->stopped = 1;
944 }
945 spin_unlock_irqrestore(&tx->lock, flags);
946 }
947
948 /**
949 * tx_urb_complete - completes the execution of an URB
950 * @urb: a URB
951 *
952 * This function is called if the URB has been transferred to a device or an
953 * error has happened.
954 */
tx_urb_complete(struct urb * urb)955 static void tx_urb_complete(struct urb *urb)
956 {
957 int r;
958 struct sk_buff *skb;
959 struct ieee80211_tx_info *info;
960 struct zd_usb *usb;
961 struct zd_usb_tx *tx;
962
963 skb = (struct sk_buff *)urb->context;
964 info = IEEE80211_SKB_CB(skb);
965 /*
966 * grab 'usb' pointer before handing off the skb (since
967 * it might be freed by zd_mac_tx_to_dev or mac80211)
968 */
969 usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
970 tx = &usb->tx;
971
972 switch (urb->status) {
973 case 0:
974 break;
975 case -ESHUTDOWN:
976 case -EINVAL:
977 case -ENODEV:
978 case -ENOENT:
979 case -ECONNRESET:
980 case -EPIPE:
981 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
982 break;
983 default:
984 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
985 goto resubmit;
986 }
987 free_urb:
988 skb_unlink(skb, &usb->tx.submitted_skbs);
989 zd_mac_tx_to_dev(skb, urb->status);
990 usb_free_urb(urb);
991 tx_dec_submitted_urbs(usb);
992 return;
993 resubmit:
994 usb_anchor_urb(urb, &tx->submitted);
995 r = usb_submit_urb(urb, GFP_ATOMIC);
996 if (r) {
997 usb_unanchor_urb(urb);
998 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
999 goto free_urb;
1000 }
1001 }
1002
1003 /**
1004 * zd_usb_tx: initiates transfer of a frame of the device
1005 *
1006 * @usb: the zd1211rw-private USB structure
1007 * @skb: a &struct sk_buff pointer
1008 *
1009 * This function transmits a frame to the device. It doesn't wait for
1010 * completion. The frame must contain the control set and have all the
1011 * control set information available.
1012 *
1013 * The function returns 0 if the transfer has been successfully initiated.
1014 */
zd_usb_tx(struct zd_usb * usb,struct sk_buff * skb)1015 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1016 {
1017 int r;
1018 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1019 struct usb_device *udev = zd_usb_to_usbdev(usb);
1020 struct urb *urb;
1021 struct zd_usb_tx *tx = &usb->tx;
1022
1023 if (!atomic_read(&tx->enabled)) {
1024 r = -ENOENT;
1025 goto out;
1026 }
1027
1028 urb = usb_alloc_urb(0, GFP_ATOMIC);
1029 if (!urb) {
1030 r = -ENOMEM;
1031 goto out;
1032 }
1033
1034 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1035 skb->data, skb->len, tx_urb_complete, skb);
1036
1037 info->rate_driver_data[1] = (void *)jiffies;
1038 skb_queue_tail(&tx->submitted_skbs, skb);
1039 usb_anchor_urb(urb, &tx->submitted);
1040
1041 r = usb_submit_urb(urb, GFP_ATOMIC);
1042 if (r) {
1043 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1044 usb_unanchor_urb(urb);
1045 skb_unlink(skb, &tx->submitted_skbs);
1046 goto error;
1047 }
1048 tx_inc_submitted_urbs(usb);
1049 return 0;
1050 error:
1051 usb_free_urb(urb);
1052 out:
1053 return r;
1054 }
1055
zd_tx_timeout(struct zd_usb * usb)1056 static bool zd_tx_timeout(struct zd_usb *usb)
1057 {
1058 struct zd_usb_tx *tx = &usb->tx;
1059 struct sk_buff_head *q = &tx->submitted_skbs;
1060 struct sk_buff *skb, *skbnext;
1061 struct ieee80211_tx_info *info;
1062 unsigned long flags, trans_start;
1063 bool have_timedout = false;
1064
1065 spin_lock_irqsave(&q->lock, flags);
1066 skb_queue_walk_safe(q, skb, skbnext) {
1067 info = IEEE80211_SKB_CB(skb);
1068 trans_start = (unsigned long)info->rate_driver_data[1];
1069
1070 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1071 have_timedout = true;
1072 break;
1073 }
1074 }
1075 spin_unlock_irqrestore(&q->lock, flags);
1076
1077 return have_timedout;
1078 }
1079
zd_tx_watchdog_handler(struct work_struct * work)1080 static void zd_tx_watchdog_handler(struct work_struct *work)
1081 {
1082 struct zd_usb *usb =
1083 container_of(work, struct zd_usb, tx.watchdog_work.work);
1084 struct zd_usb_tx *tx = &usb->tx;
1085
1086 if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1087 goto out;
1088 if (!zd_tx_timeout(usb))
1089 goto out;
1090
1091 /* TX halted, try reset */
1092 dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1093
1094 usb_queue_reset_device(usb->intf);
1095
1096 /* reset will stop this worker, don't rearm */
1097 return;
1098 out:
1099 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1100 ZD_TX_WATCHDOG_INTERVAL);
1101 }
1102
zd_tx_watchdog_enable(struct zd_usb * usb)1103 void zd_tx_watchdog_enable(struct zd_usb *usb)
1104 {
1105 struct zd_usb_tx *tx = &usb->tx;
1106
1107 if (!tx->watchdog_enabled) {
1108 dev_dbg_f(zd_usb_dev(usb), "\n");
1109 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1110 ZD_TX_WATCHDOG_INTERVAL);
1111 tx->watchdog_enabled = 1;
1112 }
1113 }
1114
zd_tx_watchdog_disable(struct zd_usb * usb)1115 void zd_tx_watchdog_disable(struct zd_usb *usb)
1116 {
1117 struct zd_usb_tx *tx = &usb->tx;
1118
1119 if (tx->watchdog_enabled) {
1120 dev_dbg_f(zd_usb_dev(usb), "\n");
1121 tx->watchdog_enabled = 0;
1122 cancel_delayed_work_sync(&tx->watchdog_work);
1123 }
1124 }
1125
zd_rx_idle_timer_handler(struct work_struct * work)1126 static void zd_rx_idle_timer_handler(struct work_struct *work)
1127 {
1128 struct zd_usb *usb =
1129 container_of(work, struct zd_usb, rx.idle_work.work);
1130 struct zd_mac *mac = zd_usb_to_mac(usb);
1131
1132 if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1133 return;
1134
1135 dev_dbg_f(zd_usb_dev(usb), "\n");
1136
1137 /* 30 seconds since last rx, reset rx */
1138 zd_usb_reset_rx(usb);
1139 }
1140
zd_usb_reset_rx_idle_timer_tasklet(struct tasklet_struct * t)1141 static void zd_usb_reset_rx_idle_timer_tasklet(struct tasklet_struct *t)
1142 {
1143 struct zd_usb *usb = from_tasklet(usb, t, rx.reset_timer_tasklet);
1144
1145 zd_usb_reset_rx_idle_timer(usb);
1146 }
1147
zd_usb_reset_rx_idle_timer(struct zd_usb * usb)1148 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1149 {
1150 struct zd_usb_rx *rx = &usb->rx;
1151
1152 mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1153 }
1154
init_usb_interrupt(struct zd_usb * usb)1155 static inline void init_usb_interrupt(struct zd_usb *usb)
1156 {
1157 struct zd_usb_interrupt *intr = &usb->intr;
1158
1159 spin_lock_init(&intr->lock);
1160 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1161 init_completion(&intr->read_regs.completion);
1162 atomic_set(&intr->read_regs_enabled, 0);
1163 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1164 }
1165
init_usb_rx(struct zd_usb * usb)1166 static inline void init_usb_rx(struct zd_usb *usb)
1167 {
1168 struct zd_usb_rx *rx = &usb->rx;
1169
1170 spin_lock_init(&rx->lock);
1171 mutex_init(&rx->setup_mutex);
1172 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1173 rx->usb_packet_size = 512;
1174 } else {
1175 rx->usb_packet_size = 64;
1176 }
1177 ZD_ASSERT(rx->fragment_length == 0);
1178 INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1179 rx->reset_timer_tasklet.func = (void (*))
1180 zd_usb_reset_rx_idle_timer_tasklet;
1181 rx->reset_timer_tasklet.data = (unsigned long)&rx->reset_timer_tasklet;
1182 }
1183
init_usb_tx(struct zd_usb * usb)1184 static inline void init_usb_tx(struct zd_usb *usb)
1185 {
1186 struct zd_usb_tx *tx = &usb->tx;
1187
1188 spin_lock_init(&tx->lock);
1189 atomic_set(&tx->enabled, 0);
1190 tx->stopped = 0;
1191 skb_queue_head_init(&tx->submitted_skbs);
1192 init_usb_anchor(&tx->submitted);
1193 tx->submitted_urbs = 0;
1194 tx->watchdog_enabled = 0;
1195 INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1196 }
1197
zd_usb_init(struct zd_usb * usb,struct ieee80211_hw * hw,struct usb_interface * intf)1198 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1199 struct usb_interface *intf)
1200 {
1201 memset(usb, 0, sizeof(*usb));
1202 usb->intf = usb_get_intf(intf);
1203 usb_set_intfdata(usb->intf, hw);
1204 init_usb_anchor(&usb->submitted_cmds);
1205 init_usb_interrupt(usb);
1206 init_usb_tx(usb);
1207 init_usb_rx(usb);
1208 }
1209
zd_usb_clear(struct zd_usb * usb)1210 void zd_usb_clear(struct zd_usb *usb)
1211 {
1212 usb_set_intfdata(usb->intf, NULL);
1213 usb_put_intf(usb->intf);
1214 ZD_MEMCLEAR(usb, sizeof(*usb));
1215 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1216 }
1217
speed(enum usb_device_speed speed)1218 static const char *speed(enum usb_device_speed speed)
1219 {
1220 switch (speed) {
1221 case USB_SPEED_LOW:
1222 return "low";
1223 case USB_SPEED_FULL:
1224 return "full";
1225 case USB_SPEED_HIGH:
1226 return "high";
1227 default:
1228 return "unknown speed";
1229 }
1230 }
1231
scnprint_id(struct usb_device * udev,char * buffer,size_t size)1232 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1233 {
1234 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1235 le16_to_cpu(udev->descriptor.idVendor),
1236 le16_to_cpu(udev->descriptor.idProduct),
1237 get_bcdDevice(udev),
1238 speed(udev->speed));
1239 }
1240
zd_usb_scnprint_id(struct zd_usb * usb,char * buffer,size_t size)1241 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1242 {
1243 struct usb_device *udev = interface_to_usbdev(usb->intf);
1244 return scnprint_id(udev, buffer, size);
1245 }
1246
1247 #ifdef DEBUG
print_id(struct usb_device * udev)1248 static void print_id(struct usb_device *udev)
1249 {
1250 char buffer[40];
1251
1252 scnprint_id(udev, buffer, sizeof(buffer));
1253 buffer[sizeof(buffer)-1] = 0;
1254 dev_dbg_f(&udev->dev, "%s\n", buffer);
1255 }
1256 #else
1257 #define print_id(udev) do { } while (0)
1258 #endif
1259
eject_installer(struct usb_interface * intf)1260 static int eject_installer(struct usb_interface *intf)
1261 {
1262 struct usb_device *udev = interface_to_usbdev(intf);
1263 struct usb_host_interface *iface_desc = intf->cur_altsetting;
1264 struct usb_endpoint_descriptor *endpoint;
1265 unsigned char *cmd;
1266 u8 bulk_out_ep;
1267 int r;
1268
1269 if (iface_desc->desc.bNumEndpoints < 2)
1270 return -ENODEV;
1271
1272 /* Find bulk out endpoint */
1273 for (r = 1; r >= 0; r--) {
1274 endpoint = &iface_desc->endpoint[r].desc;
1275 if (usb_endpoint_dir_out(endpoint) &&
1276 usb_endpoint_xfer_bulk(endpoint)) {
1277 bulk_out_ep = endpoint->bEndpointAddress;
1278 break;
1279 }
1280 }
1281 if (r == -1) {
1282 dev_err(&udev->dev,
1283 "zd1211rw: Could not find bulk out endpoint\n");
1284 return -ENODEV;
1285 }
1286
1287 cmd = kzalloc(31, GFP_KERNEL);
1288 if (cmd == NULL)
1289 return -ENODEV;
1290
1291 /* USB bulk command block */
1292 cmd[0] = 0x55; /* bulk command signature */
1293 cmd[1] = 0x53; /* bulk command signature */
1294 cmd[2] = 0x42; /* bulk command signature */
1295 cmd[3] = 0x43; /* bulk command signature */
1296 cmd[14] = 6; /* command length */
1297
1298 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1299 cmd[19] = 0x2; /* eject disc */
1300
1301 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1302 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1303 cmd, 31, NULL, 2000);
1304 kfree(cmd);
1305 if (r)
1306 return r;
1307
1308 /* At this point, the device disconnects and reconnects with the real
1309 * ID numbers. */
1310
1311 usb_set_intfdata(intf, NULL);
1312 return 0;
1313 }
1314
zd_usb_init_hw(struct zd_usb * usb)1315 int zd_usb_init_hw(struct zd_usb *usb)
1316 {
1317 int r;
1318 struct zd_mac *mac = zd_usb_to_mac(usb);
1319
1320 dev_dbg_f(zd_usb_dev(usb), "\n");
1321
1322 r = upload_firmware(usb);
1323 if (r) {
1324 dev_err(zd_usb_dev(usb),
1325 "couldn't load firmware. Error number %d\n", r);
1326 return r;
1327 }
1328
1329 r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1330 if (r) {
1331 dev_dbg_f(zd_usb_dev(usb),
1332 "couldn't reset configuration. Error number %d\n", r);
1333 return r;
1334 }
1335
1336 r = zd_mac_init_hw(mac->hw);
1337 if (r) {
1338 dev_dbg_f(zd_usb_dev(usb),
1339 "couldn't initialize mac. Error number %d\n", r);
1340 return r;
1341 }
1342
1343 usb->initialized = 1;
1344 return 0;
1345 }
1346
probe(struct usb_interface * intf,const struct usb_device_id * id)1347 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1348 {
1349 int r;
1350 struct usb_device *udev = interface_to_usbdev(intf);
1351 struct zd_usb *usb;
1352 struct ieee80211_hw *hw = NULL;
1353
1354 print_id(udev);
1355
1356 if (id->driver_info & DEVICE_INSTALLER)
1357 return eject_installer(intf);
1358
1359 switch (udev->speed) {
1360 case USB_SPEED_LOW:
1361 case USB_SPEED_FULL:
1362 case USB_SPEED_HIGH:
1363 break;
1364 default:
1365 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1366 r = -ENODEV;
1367 goto error;
1368 }
1369
1370 r = usb_reset_device(udev);
1371 if (r) {
1372 dev_err(&intf->dev,
1373 "couldn't reset usb device. Error number %d\n", r);
1374 goto error;
1375 }
1376
1377 hw = zd_mac_alloc_hw(intf);
1378 if (hw == NULL) {
1379 r = -ENOMEM;
1380 goto error;
1381 }
1382
1383 usb = &zd_hw_mac(hw)->chip.usb;
1384 usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1385
1386 r = zd_mac_preinit_hw(hw);
1387 if (r) {
1388 dev_dbg_f(&intf->dev,
1389 "couldn't initialize mac. Error number %d\n", r);
1390 goto error;
1391 }
1392
1393 r = ieee80211_register_hw(hw);
1394 if (r) {
1395 dev_dbg_f(&intf->dev,
1396 "couldn't register device. Error number %d\n", r);
1397 goto error;
1398 }
1399
1400 dev_dbg_f(&intf->dev, "successful\n");
1401 dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1402 return 0;
1403 error:
1404 usb_reset_device(interface_to_usbdev(intf));
1405 if (hw) {
1406 zd_mac_clear(zd_hw_mac(hw));
1407 ieee80211_free_hw(hw);
1408 }
1409 return r;
1410 }
1411
disconnect(struct usb_interface * intf)1412 static void disconnect(struct usb_interface *intf)
1413 {
1414 struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1415 struct zd_mac *mac;
1416 struct zd_usb *usb;
1417
1418 /* Either something really bad happened, or we're just dealing with
1419 * a DEVICE_INSTALLER. */
1420 if (hw == NULL)
1421 return;
1422
1423 mac = zd_hw_mac(hw);
1424 usb = &mac->chip.usb;
1425
1426 dev_dbg_f(zd_usb_dev(usb), "\n");
1427
1428 ieee80211_unregister_hw(hw);
1429
1430 /* Just in case something has gone wrong! */
1431 zd_usb_disable_tx(usb);
1432 zd_usb_disable_rx(usb);
1433 zd_usb_disable_int(usb);
1434
1435 /* If the disconnect has been caused by a removal of the
1436 * driver module, the reset allows reloading of the driver. If the
1437 * reset will not be executed here, the upload of the firmware in the
1438 * probe function caused by the reloading of the driver will fail.
1439 */
1440 usb_reset_device(interface_to_usbdev(intf));
1441
1442 zd_mac_clear(mac);
1443 ieee80211_free_hw(hw);
1444 dev_dbg(&intf->dev, "disconnected\n");
1445 }
1446
zd_usb_resume(struct zd_usb * usb)1447 static void zd_usb_resume(struct zd_usb *usb)
1448 {
1449 struct zd_mac *mac = zd_usb_to_mac(usb);
1450 int r;
1451
1452 dev_dbg_f(zd_usb_dev(usb), "\n");
1453
1454 r = zd_op_start(zd_usb_to_hw(usb));
1455 if (r < 0) {
1456 dev_warn(zd_usb_dev(usb), "Device resume failed "
1457 "with error code %d. Retrying...\n", r);
1458 if (usb->was_running)
1459 set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1460 usb_queue_reset_device(usb->intf);
1461 return;
1462 }
1463
1464 if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1465 r = zd_restore_settings(mac);
1466 if (r < 0) {
1467 dev_dbg(zd_usb_dev(usb),
1468 "failed to restore settings, %d\n", r);
1469 return;
1470 }
1471 }
1472 }
1473
zd_usb_stop(struct zd_usb * usb)1474 static void zd_usb_stop(struct zd_usb *usb)
1475 {
1476 dev_dbg_f(zd_usb_dev(usb), "\n");
1477
1478 zd_op_stop(zd_usb_to_hw(usb));
1479
1480 zd_usb_disable_tx(usb);
1481 zd_usb_disable_rx(usb);
1482 zd_usb_disable_int(usb);
1483
1484 usb->initialized = 0;
1485 }
1486
pre_reset(struct usb_interface * intf)1487 static int pre_reset(struct usb_interface *intf)
1488 {
1489 struct ieee80211_hw *hw = usb_get_intfdata(intf);
1490 struct zd_mac *mac;
1491 struct zd_usb *usb;
1492
1493 if (!hw || intf->condition != USB_INTERFACE_BOUND)
1494 return 0;
1495
1496 mac = zd_hw_mac(hw);
1497 usb = &mac->chip.usb;
1498
1499 usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1500
1501 zd_usb_stop(usb);
1502
1503 mutex_lock(&mac->chip.mutex);
1504 return 0;
1505 }
1506
post_reset(struct usb_interface * intf)1507 static int post_reset(struct usb_interface *intf)
1508 {
1509 struct ieee80211_hw *hw = usb_get_intfdata(intf);
1510 struct zd_mac *mac;
1511 struct zd_usb *usb;
1512
1513 if (!hw || intf->condition != USB_INTERFACE_BOUND)
1514 return 0;
1515
1516 mac = zd_hw_mac(hw);
1517 usb = &mac->chip.usb;
1518
1519 mutex_unlock(&mac->chip.mutex);
1520
1521 if (usb->was_running)
1522 zd_usb_resume(usb);
1523 return 0;
1524 }
1525
1526 static struct usb_driver driver = {
1527 .name = KBUILD_MODNAME,
1528 .id_table = usb_ids,
1529 .probe = probe,
1530 .disconnect = disconnect,
1531 .pre_reset = pre_reset,
1532 .post_reset = post_reset,
1533 .disable_hub_initiated_lpm = 1,
1534 };
1535
1536 struct workqueue_struct *zd_workqueue;
1537
usb_init(void)1538 static int __init usb_init(void)
1539 {
1540 int r;
1541
1542 pr_debug("%s usb_init()\n", driver.name);
1543
1544 zd_workqueue = create_singlethread_workqueue(driver.name);
1545 if (zd_workqueue == NULL) {
1546 pr_err("%s couldn't create workqueue\n", driver.name);
1547 return -ENOMEM;
1548 }
1549
1550 r = usb_register(&driver);
1551 if (r) {
1552 destroy_workqueue(zd_workqueue);
1553 pr_err("%s usb_register() failed. Error number %d\n",
1554 driver.name, r);
1555 return r;
1556 }
1557
1558 pr_debug("%s initialized\n", driver.name);
1559 return 0;
1560 }
1561
usb_exit(void)1562 static void __exit usb_exit(void)
1563 {
1564 pr_debug("%s usb_exit()\n", driver.name);
1565 usb_deregister(&driver);
1566 destroy_workqueue(zd_workqueue);
1567 }
1568
1569 module_init(usb_init);
1570 module_exit(usb_exit);
1571
zd_ep_regs_out_msg(struct usb_device * udev,void * data,int len,int * actual_length,int timeout)1572 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1573 int *actual_length, int timeout)
1574 {
1575 /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1576 * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1577 * descriptor.
1578 */
1579 struct usb_host_endpoint *ep;
1580 unsigned int pipe;
1581
1582 pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1583 ep = usb_pipe_endpoint(udev, pipe);
1584 if (!ep)
1585 return -EINVAL;
1586
1587 if (usb_endpoint_xfer_int(&ep->desc)) {
1588 return usb_interrupt_msg(udev, pipe, data, len,
1589 actual_length, timeout);
1590 } else {
1591 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1592 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1593 timeout);
1594 }
1595 }
1596
prepare_read_regs_int(struct zd_usb * usb,struct usb_req_read_regs * req,unsigned int count)1597 static void prepare_read_regs_int(struct zd_usb *usb,
1598 struct usb_req_read_regs *req,
1599 unsigned int count)
1600 {
1601 struct zd_usb_interrupt *intr = &usb->intr;
1602
1603 spin_lock_irq(&intr->lock);
1604 atomic_set(&intr->read_regs_enabled, 1);
1605 intr->read_regs.req = req;
1606 intr->read_regs.req_count = count;
1607 reinit_completion(&intr->read_regs.completion);
1608 spin_unlock_irq(&intr->lock);
1609 }
1610
disable_read_regs_int(struct zd_usb * usb)1611 static void disable_read_regs_int(struct zd_usb *usb)
1612 {
1613 struct zd_usb_interrupt *intr = &usb->intr;
1614
1615 spin_lock_irq(&intr->lock);
1616 atomic_set(&intr->read_regs_enabled, 0);
1617 spin_unlock_irq(&intr->lock);
1618 }
1619
check_read_regs(struct zd_usb * usb,struct usb_req_read_regs * req,unsigned int count)1620 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1621 unsigned int count)
1622 {
1623 int i;
1624 struct zd_usb_interrupt *intr = &usb->intr;
1625 struct read_regs_int *rr = &intr->read_regs;
1626 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1627
1628 /* The created block size seems to be larger than expected.
1629 * However results appear to be correct.
1630 */
1631 if (rr->length < struct_size(regs, regs, count)) {
1632 dev_dbg_f(zd_usb_dev(usb),
1633 "error: actual length %d less than expected %zu\n",
1634 rr->length, struct_size(regs, regs, count));
1635 return false;
1636 }
1637
1638 if (rr->length > sizeof(rr->buffer)) {
1639 dev_dbg_f(zd_usb_dev(usb),
1640 "error: actual length %d exceeds buffer size %zu\n",
1641 rr->length, sizeof(rr->buffer));
1642 return false;
1643 }
1644
1645 for (i = 0; i < count; i++) {
1646 struct reg_data *rd = ®s->regs[i];
1647 if (rd->addr != req->addr[i]) {
1648 dev_dbg_f(zd_usb_dev(usb),
1649 "rd[%d] addr %#06hx expected %#06hx\n", i,
1650 le16_to_cpu(rd->addr),
1651 le16_to_cpu(req->addr[i]));
1652 return false;
1653 }
1654 }
1655
1656 return true;
1657 }
1658
get_results(struct zd_usb * usb,u16 * values,struct usb_req_read_regs * req,unsigned int count,bool * retry)1659 static int get_results(struct zd_usb *usb, u16 *values,
1660 struct usb_req_read_regs *req, unsigned int count,
1661 bool *retry)
1662 {
1663 int r;
1664 int i;
1665 struct zd_usb_interrupt *intr = &usb->intr;
1666 struct read_regs_int *rr = &intr->read_regs;
1667 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1668
1669 spin_lock_irq(&intr->lock);
1670
1671 r = -EIO;
1672
1673 /* Read failed because firmware bug? */
1674 *retry = !!intr->read_regs_int_overridden;
1675 if (*retry)
1676 goto error_unlock;
1677
1678 if (!check_read_regs(usb, req, count)) {
1679 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1680 goto error_unlock;
1681 }
1682
1683 for (i = 0; i < count; i++) {
1684 struct reg_data *rd = ®s->regs[i];
1685 values[i] = le16_to_cpu(rd->value);
1686 }
1687
1688 r = 0;
1689 error_unlock:
1690 spin_unlock_irq(&intr->lock);
1691 return r;
1692 }
1693
zd_usb_ioread16v(struct zd_usb * usb,u16 * values,const zd_addr_t * addresses,unsigned int count)1694 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1695 const zd_addr_t *addresses, unsigned int count)
1696 {
1697 int r, i, req_len, actual_req_len, try_count = 0;
1698 struct usb_device *udev;
1699 struct usb_req_read_regs *req = NULL;
1700 unsigned long timeout;
1701 bool retry = false;
1702
1703 if (count < 1) {
1704 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1705 return -EINVAL;
1706 }
1707 if (count > USB_MAX_IOREAD16_COUNT) {
1708 dev_dbg_f(zd_usb_dev(usb),
1709 "error: count %u exceeds possible max %u\n",
1710 count, USB_MAX_IOREAD16_COUNT);
1711 return -EINVAL;
1712 }
1713 if (!usb_int_enabled(usb)) {
1714 dev_dbg_f(zd_usb_dev(usb),
1715 "error: usb interrupt not enabled\n");
1716 return -EWOULDBLOCK;
1717 }
1718
1719 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1720 BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1721 sizeof(__le16) > sizeof(usb->req_buf));
1722 BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1723 sizeof(usb->req_buf));
1724
1725 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1726 req = (void *)usb->req_buf;
1727
1728 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1729 for (i = 0; i < count; i++)
1730 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1731
1732 retry_read:
1733 try_count++;
1734 udev = zd_usb_to_usbdev(usb);
1735 prepare_read_regs_int(usb, req, count);
1736 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1737 if (r) {
1738 dev_dbg_f(zd_usb_dev(usb),
1739 "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1740 goto error;
1741 }
1742 if (req_len != actual_req_len) {
1743 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1744 " req_len %d != actual_req_len %d\n",
1745 req_len, actual_req_len);
1746 r = -EIO;
1747 goto error;
1748 }
1749
1750 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1751 msecs_to_jiffies(50));
1752 if (!timeout) {
1753 disable_read_regs_int(usb);
1754 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1755 r = -ETIMEDOUT;
1756 goto error;
1757 }
1758
1759 r = get_results(usb, values, req, count, &retry);
1760 if (retry && try_count < 20) {
1761 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1762 try_count);
1763 goto retry_read;
1764 }
1765 error:
1766 return r;
1767 }
1768
iowrite16v_urb_complete(struct urb * urb)1769 static void iowrite16v_urb_complete(struct urb *urb)
1770 {
1771 struct zd_usb *usb = urb->context;
1772
1773 if (urb->status && !usb->cmd_error)
1774 usb->cmd_error = urb->status;
1775
1776 if (!usb->cmd_error &&
1777 urb->actual_length != urb->transfer_buffer_length)
1778 usb->cmd_error = -EIO;
1779 }
1780
zd_submit_waiting_urb(struct zd_usb * usb,bool last)1781 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1782 {
1783 int r = 0;
1784 struct urb *urb = usb->urb_async_waiting;
1785
1786 if (!urb)
1787 return 0;
1788
1789 usb->urb_async_waiting = NULL;
1790
1791 if (!last)
1792 urb->transfer_flags |= URB_NO_INTERRUPT;
1793
1794 usb_anchor_urb(urb, &usb->submitted_cmds);
1795 r = usb_submit_urb(urb, GFP_KERNEL);
1796 if (r) {
1797 usb_unanchor_urb(urb);
1798 dev_dbg_f(zd_usb_dev(usb),
1799 "error in usb_submit_urb(). Error number %d\n", r);
1800 goto error;
1801 }
1802
1803 /* fall-through with r == 0 */
1804 error:
1805 usb_free_urb(urb);
1806 return r;
1807 }
1808
zd_usb_iowrite16v_async_start(struct zd_usb * usb)1809 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1810 {
1811 ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1812 ZD_ASSERT(usb->urb_async_waiting == NULL);
1813 ZD_ASSERT(!usb->in_async);
1814
1815 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1816
1817 usb->in_async = 1;
1818 usb->cmd_error = 0;
1819 usb->urb_async_waiting = NULL;
1820 }
1821
zd_usb_iowrite16v_async_end(struct zd_usb * usb,unsigned int timeout)1822 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1823 {
1824 int r;
1825
1826 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1827 ZD_ASSERT(usb->in_async);
1828
1829 /* Submit last iowrite16v URB */
1830 r = zd_submit_waiting_urb(usb, true);
1831 if (r) {
1832 dev_dbg_f(zd_usb_dev(usb),
1833 "error in zd_submit_waiting_usb(). "
1834 "Error number %d\n", r);
1835
1836 usb_kill_anchored_urbs(&usb->submitted_cmds);
1837 goto error;
1838 }
1839
1840 if (timeout)
1841 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1842 timeout);
1843 if (!timeout) {
1844 usb_kill_anchored_urbs(&usb->submitted_cmds);
1845 if (usb->cmd_error == -ENOENT) {
1846 dev_dbg_f(zd_usb_dev(usb), "timed out");
1847 r = -ETIMEDOUT;
1848 goto error;
1849 }
1850 }
1851
1852 r = usb->cmd_error;
1853 error:
1854 usb->in_async = 0;
1855 return r;
1856 }
1857
zd_usb_iowrite16v_async(struct zd_usb * usb,const struct zd_ioreq16 * ioreqs,unsigned int count)1858 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1859 unsigned int count)
1860 {
1861 int r;
1862 struct usb_device *udev;
1863 struct usb_req_write_regs *req = NULL;
1864 int i, req_len;
1865 struct urb *urb;
1866 struct usb_host_endpoint *ep;
1867
1868 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1869 ZD_ASSERT(usb->in_async);
1870
1871 if (count == 0)
1872 return 0;
1873 if (count > USB_MAX_IOWRITE16_COUNT) {
1874 dev_dbg_f(zd_usb_dev(usb),
1875 "error: count %u exceeds possible max %u\n",
1876 count, USB_MAX_IOWRITE16_COUNT);
1877 return -EINVAL;
1878 }
1879
1880 udev = zd_usb_to_usbdev(usb);
1881
1882 ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1883 if (!ep)
1884 return -ENOENT;
1885
1886 urb = usb_alloc_urb(0, GFP_KERNEL);
1887 if (!urb)
1888 return -ENOMEM;
1889
1890 req_len = struct_size(req, reg_writes, count);
1891 req = kmalloc(req_len, GFP_KERNEL);
1892 if (!req) {
1893 r = -ENOMEM;
1894 goto error;
1895 }
1896
1897 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1898 for (i = 0; i < count; i++) {
1899 struct reg_data *rw = &req->reg_writes[i];
1900 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1901 rw->value = cpu_to_le16(ioreqs[i].value);
1902 }
1903
1904 /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1905 * endpoint is bulk. Select correct type URB by endpoint descriptor.
1906 */
1907 if (usb_endpoint_xfer_int(&ep->desc))
1908 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1909 req, req_len, iowrite16v_urb_complete, usb,
1910 ep->desc.bInterval);
1911 else
1912 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1913 req, req_len, iowrite16v_urb_complete, usb);
1914
1915 urb->transfer_flags |= URB_FREE_BUFFER;
1916
1917 /* Submit previous URB */
1918 r = zd_submit_waiting_urb(usb, false);
1919 if (r) {
1920 dev_dbg_f(zd_usb_dev(usb),
1921 "error in zd_submit_waiting_usb(). "
1922 "Error number %d\n", r);
1923 goto error;
1924 }
1925
1926 /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1927 * of currect batch except for very last.
1928 */
1929 usb->urb_async_waiting = urb;
1930 return 0;
1931 error:
1932 usb_free_urb(urb);
1933 return r;
1934 }
1935
zd_usb_iowrite16v(struct zd_usb * usb,const struct zd_ioreq16 * ioreqs,unsigned int count)1936 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1937 unsigned int count)
1938 {
1939 int r;
1940
1941 zd_usb_iowrite16v_async_start(usb);
1942 r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1943 if (r) {
1944 zd_usb_iowrite16v_async_end(usb, 0);
1945 return r;
1946 }
1947 return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1948 }
1949
zd_usb_rfwrite(struct zd_usb * usb,u32 value,u8 bits)1950 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1951 {
1952 int r;
1953 struct usb_device *udev;
1954 struct usb_req_rfwrite *req = NULL;
1955 int i, req_len, actual_req_len;
1956 u16 bit_value_template;
1957
1958 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1959 dev_dbg_f(zd_usb_dev(usb),
1960 "error: bits %d are smaller than"
1961 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1962 bits, USB_MIN_RFWRITE_BIT_COUNT);
1963 return -EINVAL;
1964 }
1965 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1966 dev_dbg_f(zd_usb_dev(usb),
1967 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1968 bits, USB_MAX_RFWRITE_BIT_COUNT);
1969 return -EINVAL;
1970 }
1971 #ifdef DEBUG
1972 if (value & (~0UL << bits)) {
1973 dev_dbg_f(zd_usb_dev(usb),
1974 "error: value %#09x has bits >= %d set\n",
1975 value, bits);
1976 return -EINVAL;
1977 }
1978 #endif /* DEBUG */
1979
1980 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1981
1982 r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
1983 if (r) {
1984 dev_dbg_f(zd_usb_dev(usb),
1985 "error %d: Couldn't read ZD_CR203\n", r);
1986 return r;
1987 }
1988 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1989
1990 ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1991 BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
1992 USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
1993 sizeof(usb->req_buf));
1994 BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
1995 sizeof(usb->req_buf));
1996
1997 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1998 req = (void *)usb->req_buf;
1999
2000 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2001 /* 1: 3683a, but not used in ZYDAS driver */
2002 req->value = cpu_to_le16(2);
2003 req->bits = cpu_to_le16(bits);
2004
2005 for (i = 0; i < bits; i++) {
2006 u16 bv = bit_value_template;
2007 if (value & (1 << (bits-1-i)))
2008 bv |= RF_DATA;
2009 req->bit_values[i] = cpu_to_le16(bv);
2010 }
2011
2012 udev = zd_usb_to_usbdev(usb);
2013 r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2014 if (r) {
2015 dev_dbg_f(zd_usb_dev(usb),
2016 "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2017 goto out;
2018 }
2019 if (req_len != actual_req_len) {
2020 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2021 " req_len %d != actual_req_len %d\n",
2022 req_len, actual_req_len);
2023 r = -EIO;
2024 goto out;
2025 }
2026
2027 /* FALL-THROUGH with r == 0 */
2028 out:
2029 return r;
2030 }
2031