1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/platform_device.h>
36 #include <linux/skbuff.h>
37 #include <linux/math64.h>
38 #include <linux/phy.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 
42 #include "xilinx_axienet.h"
43 
44 /* Descriptors defines for Tx and Rx DMA */
45 #define TX_BD_NUM_DEFAULT		128
46 #define RX_BD_NUM_DEFAULT		1024
47 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
48 #define TX_BD_NUM_MAX			4096
49 #define RX_BD_NUM_MAX			4096
50 
51 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
52 #define DRIVER_NAME		"xaxienet"
53 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
54 #define DRIVER_VERSION		"1.00a"
55 
56 #define AXIENET_REGS_N		40
57 
58 /* Match table for of_platform binding */
59 static const struct of_device_id axienet_of_match[] = {
60 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
61 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
62 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
63 	{},
64 };
65 
66 MODULE_DEVICE_TABLE(of, axienet_of_match);
67 
68 /* Option table for setting up Axi Ethernet hardware options */
69 static struct axienet_option axienet_options[] = {
70 	/* Turn on jumbo packet support for both Rx and Tx */
71 	{
72 		.opt = XAE_OPTION_JUMBO,
73 		.reg = XAE_TC_OFFSET,
74 		.m_or = XAE_TC_JUM_MASK,
75 	}, {
76 		.opt = XAE_OPTION_JUMBO,
77 		.reg = XAE_RCW1_OFFSET,
78 		.m_or = XAE_RCW1_JUM_MASK,
79 	}, { /* Turn on VLAN packet support for both Rx and Tx */
80 		.opt = XAE_OPTION_VLAN,
81 		.reg = XAE_TC_OFFSET,
82 		.m_or = XAE_TC_VLAN_MASK,
83 	}, {
84 		.opt = XAE_OPTION_VLAN,
85 		.reg = XAE_RCW1_OFFSET,
86 		.m_or = XAE_RCW1_VLAN_MASK,
87 	}, { /* Turn on FCS stripping on receive packets */
88 		.opt = XAE_OPTION_FCS_STRIP,
89 		.reg = XAE_RCW1_OFFSET,
90 		.m_or = XAE_RCW1_FCS_MASK,
91 	}, { /* Turn on FCS insertion on transmit packets */
92 		.opt = XAE_OPTION_FCS_INSERT,
93 		.reg = XAE_TC_OFFSET,
94 		.m_or = XAE_TC_FCS_MASK,
95 	}, { /* Turn off length/type field checking on receive packets */
96 		.opt = XAE_OPTION_LENTYPE_ERR,
97 		.reg = XAE_RCW1_OFFSET,
98 		.m_or = XAE_RCW1_LT_DIS_MASK,
99 	}, { /* Turn on Rx flow control */
100 		.opt = XAE_OPTION_FLOW_CONTROL,
101 		.reg = XAE_FCC_OFFSET,
102 		.m_or = XAE_FCC_FCRX_MASK,
103 	}, { /* Turn on Tx flow control */
104 		.opt = XAE_OPTION_FLOW_CONTROL,
105 		.reg = XAE_FCC_OFFSET,
106 		.m_or = XAE_FCC_FCTX_MASK,
107 	}, { /* Turn on promiscuous frame filtering */
108 		.opt = XAE_OPTION_PROMISC,
109 		.reg = XAE_FMI_OFFSET,
110 		.m_or = XAE_FMI_PM_MASK,
111 	}, { /* Enable transmitter */
112 		.opt = XAE_OPTION_TXEN,
113 		.reg = XAE_TC_OFFSET,
114 		.m_or = XAE_TC_TX_MASK,
115 	}, { /* Enable receiver */
116 		.opt = XAE_OPTION_RXEN,
117 		.reg = XAE_RCW1_OFFSET,
118 		.m_or = XAE_RCW1_RX_MASK,
119 	},
120 	{}
121 };
122 
123 /**
124  * axienet_dma_in32 - Memory mapped Axi DMA register read
125  * @lp:		Pointer to axienet local structure
126  * @reg:	Address offset from the base address of the Axi DMA core
127  *
128  * Return: The contents of the Axi DMA register
129  *
130  * This function returns the contents of the corresponding Axi DMA register.
131  */
axienet_dma_in32(struct axienet_local * lp,off_t reg)132 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
133 {
134 	return ioread32(lp->dma_regs + reg);
135 }
136 
desc_set_phys_addr(struct axienet_local * lp,dma_addr_t addr,struct axidma_bd * desc)137 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
138 			       struct axidma_bd *desc)
139 {
140 	desc->phys = lower_32_bits(addr);
141 	if (lp->features & XAE_FEATURE_DMA_64BIT)
142 		desc->phys_msb = upper_32_bits(addr);
143 }
144 
desc_get_phys_addr(struct axienet_local * lp,struct axidma_bd * desc)145 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
146 				     struct axidma_bd *desc)
147 {
148 	dma_addr_t ret = desc->phys;
149 
150 	if (lp->features & XAE_FEATURE_DMA_64BIT)
151 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
152 
153 	return ret;
154 }
155 
156 /**
157  * axienet_dma_bd_release - Release buffer descriptor rings
158  * @ndev:	Pointer to the net_device structure
159  *
160  * This function is used to release the descriptors allocated in
161  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
162  * driver stop api is called.
163  */
axienet_dma_bd_release(struct net_device * ndev)164 static void axienet_dma_bd_release(struct net_device *ndev)
165 {
166 	int i;
167 	struct axienet_local *lp = netdev_priv(ndev);
168 
169 	/* If we end up here, tx_bd_v must have been DMA allocated. */
170 	dma_free_coherent(lp->dev,
171 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
172 			  lp->tx_bd_v,
173 			  lp->tx_bd_p);
174 
175 	if (!lp->rx_bd_v)
176 		return;
177 
178 	for (i = 0; i < lp->rx_bd_num; i++) {
179 		dma_addr_t phys;
180 
181 		/* A NULL skb means this descriptor has not been initialised
182 		 * at all.
183 		 */
184 		if (!lp->rx_bd_v[i].skb)
185 			break;
186 
187 		dev_kfree_skb(lp->rx_bd_v[i].skb);
188 
189 		/* For each descriptor, we programmed cntrl with the (non-zero)
190 		 * descriptor size, after it had been successfully allocated.
191 		 * So a non-zero value in there means we need to unmap it.
192 		 */
193 		if (lp->rx_bd_v[i].cntrl) {
194 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
195 			dma_unmap_single(lp->dev, phys,
196 					 lp->max_frm_size, DMA_FROM_DEVICE);
197 		}
198 	}
199 
200 	dma_free_coherent(lp->dev,
201 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
202 			  lp->rx_bd_v,
203 			  lp->rx_bd_p);
204 }
205 
206 /**
207  * axienet_usec_to_timer - Calculate IRQ delay timer value
208  * @lp:		Pointer to the axienet_local structure
209  * @coalesce_usec: Microseconds to convert into timer value
210  */
axienet_usec_to_timer(struct axienet_local * lp,u32 coalesce_usec)211 static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
212 {
213 	u32 result;
214 	u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
215 
216 	if (lp->axi_clk)
217 		clk_rate = clk_get_rate(lp->axi_clk);
218 
219 	/* 1 Timeout Interval = 125 * (clock period of SG clock) */
220 	result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
221 					 (u64)125000000);
222 	if (result > 255)
223 		result = 255;
224 
225 	return result;
226 }
227 
228 /**
229  * axienet_dma_start - Set up DMA registers and start DMA operation
230  * @lp:		Pointer to the axienet_local structure
231  */
axienet_dma_start(struct axienet_local * lp)232 static void axienet_dma_start(struct axienet_local *lp)
233 {
234 	/* Start updating the Rx channel control register */
235 	lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
236 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
237 	/* Only set interrupt delay timer if not generating an interrupt on
238 	 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
239 	 */
240 	if (lp->coalesce_count_rx > 1)
241 		lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
242 					<< XAXIDMA_DELAY_SHIFT) |
243 				 XAXIDMA_IRQ_DELAY_MASK;
244 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
245 
246 	/* Start updating the Tx channel control register */
247 	lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
248 			XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
249 	/* Only set interrupt delay timer if not generating an interrupt on
250 	 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
251 	 */
252 	if (lp->coalesce_count_tx > 1)
253 		lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
254 					<< XAXIDMA_DELAY_SHIFT) |
255 				 XAXIDMA_IRQ_DELAY_MASK;
256 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
257 
258 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
259 	 * halted state. This will make the Rx side ready for reception.
260 	 */
261 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
262 	lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
263 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
264 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
265 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
266 
267 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
268 	 * Tx channel is now ready to run. But only after we write to the
269 	 * tail pointer register that the Tx channel will start transmitting.
270 	 */
271 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
272 	lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
273 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
274 }
275 
276 /**
277  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
278  * @ndev:	Pointer to the net_device structure
279  *
280  * Return: 0, on success -ENOMEM, on failure
281  *
282  * This function is called to initialize the Rx and Tx DMA descriptor
283  * rings. This initializes the descriptors with required default values
284  * and is called when Axi Ethernet driver reset is called.
285  */
axienet_dma_bd_init(struct net_device * ndev)286 static int axienet_dma_bd_init(struct net_device *ndev)
287 {
288 	int i;
289 	struct sk_buff *skb;
290 	struct axienet_local *lp = netdev_priv(ndev);
291 
292 	/* Reset the indexes which are used for accessing the BDs */
293 	lp->tx_bd_ci = 0;
294 	lp->tx_bd_tail = 0;
295 	lp->rx_bd_ci = 0;
296 
297 	/* Allocate the Tx and Rx buffer descriptors. */
298 	lp->tx_bd_v = dma_alloc_coherent(lp->dev,
299 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
300 					 &lp->tx_bd_p, GFP_KERNEL);
301 	if (!lp->tx_bd_v)
302 		return -ENOMEM;
303 
304 	lp->rx_bd_v = dma_alloc_coherent(lp->dev,
305 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
306 					 &lp->rx_bd_p, GFP_KERNEL);
307 	if (!lp->rx_bd_v)
308 		goto out;
309 
310 	for (i = 0; i < lp->tx_bd_num; i++) {
311 		dma_addr_t addr = lp->tx_bd_p +
312 				  sizeof(*lp->tx_bd_v) *
313 				  ((i + 1) % lp->tx_bd_num);
314 
315 		lp->tx_bd_v[i].next = lower_32_bits(addr);
316 		if (lp->features & XAE_FEATURE_DMA_64BIT)
317 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
318 	}
319 
320 	for (i = 0; i < lp->rx_bd_num; i++) {
321 		dma_addr_t addr;
322 
323 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
324 			((i + 1) % lp->rx_bd_num);
325 		lp->rx_bd_v[i].next = lower_32_bits(addr);
326 		if (lp->features & XAE_FEATURE_DMA_64BIT)
327 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
328 
329 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
330 		if (!skb)
331 			goto out;
332 
333 		lp->rx_bd_v[i].skb = skb;
334 		addr = dma_map_single(lp->dev, skb->data,
335 				      lp->max_frm_size, DMA_FROM_DEVICE);
336 		if (dma_mapping_error(lp->dev, addr)) {
337 			netdev_err(ndev, "DMA mapping error\n");
338 			goto out;
339 		}
340 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
341 
342 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
343 	}
344 
345 	axienet_dma_start(lp);
346 
347 	return 0;
348 out:
349 	axienet_dma_bd_release(ndev);
350 	return -ENOMEM;
351 }
352 
353 /**
354  * axienet_set_mac_address - Write the MAC address
355  * @ndev:	Pointer to the net_device structure
356  * @address:	6 byte Address to be written as MAC address
357  *
358  * This function is called to initialize the MAC address of the Axi Ethernet
359  * core. It writes to the UAW0 and UAW1 registers of the core.
360  */
axienet_set_mac_address(struct net_device * ndev,const void * address)361 static void axienet_set_mac_address(struct net_device *ndev,
362 				    const void *address)
363 {
364 	struct axienet_local *lp = netdev_priv(ndev);
365 
366 	if (address)
367 		eth_hw_addr_set(ndev, address);
368 	if (!is_valid_ether_addr(ndev->dev_addr))
369 		eth_hw_addr_random(ndev);
370 
371 	/* Set up unicast MAC address filter set its mac address */
372 	axienet_iow(lp, XAE_UAW0_OFFSET,
373 		    (ndev->dev_addr[0]) |
374 		    (ndev->dev_addr[1] << 8) |
375 		    (ndev->dev_addr[2] << 16) |
376 		    (ndev->dev_addr[3] << 24));
377 	axienet_iow(lp, XAE_UAW1_OFFSET,
378 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
379 		      ~XAE_UAW1_UNICASTADDR_MASK) |
380 		     (ndev->dev_addr[4] |
381 		     (ndev->dev_addr[5] << 8))));
382 }
383 
384 /**
385  * netdev_set_mac_address - Write the MAC address (from outside the driver)
386  * @ndev:	Pointer to the net_device structure
387  * @p:		6 byte Address to be written as MAC address
388  *
389  * Return: 0 for all conditions. Presently, there is no failure case.
390  *
391  * This function is called to initialize the MAC address of the Axi Ethernet
392  * core. It calls the core specific axienet_set_mac_address. This is the
393  * function that goes into net_device_ops structure entry ndo_set_mac_address.
394  */
netdev_set_mac_address(struct net_device * ndev,void * p)395 static int netdev_set_mac_address(struct net_device *ndev, void *p)
396 {
397 	struct sockaddr *addr = p;
398 	axienet_set_mac_address(ndev, addr->sa_data);
399 	return 0;
400 }
401 
402 /**
403  * axienet_set_multicast_list - Prepare the multicast table
404  * @ndev:	Pointer to the net_device structure
405  *
406  * This function is called to initialize the multicast table during
407  * initialization. The Axi Ethernet basic multicast support has a four-entry
408  * multicast table which is initialized here. Additionally this function
409  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
410  * means whenever the multicast table entries need to be updated this
411  * function gets called.
412  */
axienet_set_multicast_list(struct net_device * ndev)413 static void axienet_set_multicast_list(struct net_device *ndev)
414 {
415 	int i;
416 	u32 reg, af0reg, af1reg;
417 	struct axienet_local *lp = netdev_priv(ndev);
418 
419 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
420 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
421 		/* We must make the kernel realize we had to move into
422 		 * promiscuous mode. If it was a promiscuous mode request
423 		 * the flag is already set. If not we set it.
424 		 */
425 		ndev->flags |= IFF_PROMISC;
426 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
427 		reg |= XAE_FMI_PM_MASK;
428 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
429 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
430 	} else if (!netdev_mc_empty(ndev)) {
431 		struct netdev_hw_addr *ha;
432 
433 		i = 0;
434 		netdev_for_each_mc_addr(ha, ndev) {
435 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
436 				break;
437 
438 			af0reg = (ha->addr[0]);
439 			af0reg |= (ha->addr[1] << 8);
440 			af0reg |= (ha->addr[2] << 16);
441 			af0reg |= (ha->addr[3] << 24);
442 
443 			af1reg = (ha->addr[4]);
444 			af1reg |= (ha->addr[5] << 8);
445 
446 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
447 			reg |= i;
448 
449 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
450 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
451 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
452 			i++;
453 		}
454 	} else {
455 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
456 		reg &= ~XAE_FMI_PM_MASK;
457 
458 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
459 
460 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
461 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
462 			reg |= i;
463 
464 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
465 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
466 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
467 		}
468 
469 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
470 	}
471 }
472 
473 /**
474  * axienet_setoptions - Set an Axi Ethernet option
475  * @ndev:	Pointer to the net_device structure
476  * @options:	Option to be enabled/disabled
477  *
478  * The Axi Ethernet core has multiple features which can be selectively turned
479  * on or off. The typical options could be jumbo frame option, basic VLAN
480  * option, promiscuous mode option etc. This function is used to set or clear
481  * these options in the Axi Ethernet hardware. This is done through
482  * axienet_option structure .
483  */
axienet_setoptions(struct net_device * ndev,u32 options)484 static void axienet_setoptions(struct net_device *ndev, u32 options)
485 {
486 	int reg;
487 	struct axienet_local *lp = netdev_priv(ndev);
488 	struct axienet_option *tp = &axienet_options[0];
489 
490 	while (tp->opt) {
491 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
492 		if (options & tp->opt)
493 			reg |= tp->m_or;
494 		axienet_iow(lp, tp->reg, reg);
495 		tp++;
496 	}
497 
498 	lp->options |= options;
499 }
500 
__axienet_device_reset(struct axienet_local * lp)501 static int __axienet_device_reset(struct axienet_local *lp)
502 {
503 	u32 value;
504 	int ret;
505 
506 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
507 	 * process of Axi DMA takes a while to complete as all pending
508 	 * commands/transfers will be flushed or completed during this
509 	 * reset process.
510 	 * Note that even though both TX and RX have their own reset register,
511 	 * they both reset the entire DMA core, so only one needs to be used.
512 	 */
513 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
514 	ret = read_poll_timeout(axienet_dma_in32, value,
515 				!(value & XAXIDMA_CR_RESET_MASK),
516 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
517 				XAXIDMA_TX_CR_OFFSET);
518 	if (ret) {
519 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
520 		return ret;
521 	}
522 
523 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
524 	ret = read_poll_timeout(axienet_ior, value,
525 				value & XAE_INT_PHYRSTCMPLT_MASK,
526 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
527 				XAE_IS_OFFSET);
528 	if (ret) {
529 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
530 		return ret;
531 	}
532 
533 	return 0;
534 }
535 
536 /**
537  * axienet_dma_stop - Stop DMA operation
538  * @lp:		Pointer to the axienet_local structure
539  */
axienet_dma_stop(struct axienet_local * lp)540 static void axienet_dma_stop(struct axienet_local *lp)
541 {
542 	int count;
543 	u32 cr, sr;
544 
545 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
546 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
547 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
548 	synchronize_irq(lp->rx_irq);
549 
550 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
551 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
552 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
553 	synchronize_irq(lp->tx_irq);
554 
555 	/* Give DMAs a chance to halt gracefully */
556 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
557 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
558 		msleep(20);
559 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
560 	}
561 
562 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
563 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
564 		msleep(20);
565 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
566 	}
567 
568 	/* Do a reset to ensure DMA is really stopped */
569 	axienet_lock_mii(lp);
570 	__axienet_device_reset(lp);
571 	axienet_unlock_mii(lp);
572 }
573 
574 /**
575  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
576  * @ndev:	Pointer to the net_device structure
577  *
578  * This function is called to reset and initialize the Axi Ethernet core. This
579  * is typically called during initialization. It does a reset of the Axi DMA
580  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
581  * are connected to Axi Ethernet reset lines, this in turn resets the Axi
582  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
583  * core.
584  * Returns 0 on success or a negative error number otherwise.
585  */
axienet_device_reset(struct net_device * ndev)586 static int axienet_device_reset(struct net_device *ndev)
587 {
588 	u32 axienet_status;
589 	struct axienet_local *lp = netdev_priv(ndev);
590 	int ret;
591 
592 	ret = __axienet_device_reset(lp);
593 	if (ret)
594 		return ret;
595 
596 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
597 	lp->options |= XAE_OPTION_VLAN;
598 	lp->options &= (~XAE_OPTION_JUMBO);
599 
600 	if ((ndev->mtu > XAE_MTU) &&
601 	    (ndev->mtu <= XAE_JUMBO_MTU)) {
602 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
603 					XAE_TRL_SIZE;
604 
605 		if (lp->max_frm_size <= lp->rxmem)
606 			lp->options |= XAE_OPTION_JUMBO;
607 	}
608 
609 	ret = axienet_dma_bd_init(ndev);
610 	if (ret) {
611 		netdev_err(ndev, "%s: descriptor allocation failed\n",
612 			   __func__);
613 		return ret;
614 	}
615 
616 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
617 	axienet_status &= ~XAE_RCW1_RX_MASK;
618 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
619 
620 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
621 	if (axienet_status & XAE_INT_RXRJECT_MASK)
622 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
623 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
624 		    XAE_INT_RECV_ERROR_MASK : 0);
625 
626 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
627 
628 	/* Sync default options with HW but leave receiver and
629 	 * transmitter disabled.
630 	 */
631 	axienet_setoptions(ndev, lp->options &
632 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
633 	axienet_set_mac_address(ndev, NULL);
634 	axienet_set_multicast_list(ndev);
635 	axienet_setoptions(ndev, lp->options);
636 
637 	netif_trans_update(ndev);
638 
639 	return 0;
640 }
641 
642 /**
643  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
644  * @lp:		Pointer to the axienet_local structure
645  * @first_bd:	Index of first descriptor to clean up
646  * @nr_bds:	Max number of descriptors to clean up
647  * @force:	Whether to clean descriptors even if not complete
648  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
649  *		in all cleaned-up descriptors. Ignored if NULL.
650  * @budget:	NAPI budget (use 0 when not called from NAPI poll)
651  *
652  * Would either be called after a successful transmit operation, or after
653  * there was an error when setting up the chain.
654  * Returns the number of descriptors handled.
655  */
axienet_free_tx_chain(struct axienet_local * lp,u32 first_bd,int nr_bds,bool force,u32 * sizep,int budget)656 static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
657 				 int nr_bds, bool force, u32 *sizep, int budget)
658 {
659 	struct axidma_bd *cur_p;
660 	unsigned int status;
661 	dma_addr_t phys;
662 	int i;
663 
664 	for (i = 0; i < nr_bds; i++) {
665 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
666 		status = cur_p->status;
667 
668 		/* If force is not specified, clean up only descriptors
669 		 * that have been completed by the MAC.
670 		 */
671 		if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
672 			break;
673 
674 		/* Ensure we see complete descriptor update */
675 		dma_rmb();
676 		phys = desc_get_phys_addr(lp, cur_p);
677 		dma_unmap_single(lp->dev, phys,
678 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
679 				 DMA_TO_DEVICE);
680 
681 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
682 			napi_consume_skb(cur_p->skb, budget);
683 
684 		cur_p->app0 = 0;
685 		cur_p->app1 = 0;
686 		cur_p->app2 = 0;
687 		cur_p->app4 = 0;
688 		cur_p->skb = NULL;
689 		/* ensure our transmit path and device don't prematurely see status cleared */
690 		wmb();
691 		cur_p->cntrl = 0;
692 		cur_p->status = 0;
693 
694 		if (sizep)
695 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
696 	}
697 
698 	return i;
699 }
700 
701 /**
702  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
703  * @lp:		Pointer to the axienet_local structure
704  * @num_frag:	The number of BDs to check for
705  *
706  * Return: 0, on success
707  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
708  *
709  * This function is invoked before BDs are allocated and transmission starts.
710  * This function returns 0 if a BD or group of BDs can be allocated for
711  * transmission. If the BD or any of the BDs are not free the function
712  * returns a busy status.
713  */
axienet_check_tx_bd_space(struct axienet_local * lp,int num_frag)714 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
715 					    int num_frag)
716 {
717 	struct axidma_bd *cur_p;
718 
719 	/* Ensure we see all descriptor updates from device or TX polling */
720 	rmb();
721 	cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
722 			     lp->tx_bd_num];
723 	if (cur_p->cntrl)
724 		return NETDEV_TX_BUSY;
725 	return 0;
726 }
727 
728 /**
729  * axienet_tx_poll - Invoked once a transmit is completed by the
730  * Axi DMA Tx channel.
731  * @napi:	Pointer to NAPI structure.
732  * @budget:	Max number of TX packets to process.
733  *
734  * Return: Number of TX packets processed.
735  *
736  * This function is invoked from the NAPI processing to notify the completion
737  * of transmit operation. It clears fields in the corresponding Tx BDs and
738  * unmaps the corresponding buffer so that CPU can regain ownership of the
739  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
740  * required.
741  */
axienet_tx_poll(struct napi_struct * napi,int budget)742 static int axienet_tx_poll(struct napi_struct *napi, int budget)
743 {
744 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
745 	struct net_device *ndev = lp->ndev;
746 	u32 size = 0;
747 	int packets;
748 
749 	packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget);
750 
751 	if (packets) {
752 		lp->tx_bd_ci += packets;
753 		if (lp->tx_bd_ci >= lp->tx_bd_num)
754 			lp->tx_bd_ci %= lp->tx_bd_num;
755 
756 		u64_stats_update_begin(&lp->tx_stat_sync);
757 		u64_stats_add(&lp->tx_packets, packets);
758 		u64_stats_add(&lp->tx_bytes, size);
759 		u64_stats_update_end(&lp->tx_stat_sync);
760 
761 		/* Matches barrier in axienet_start_xmit */
762 		smp_mb();
763 
764 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
765 			netif_wake_queue(ndev);
766 	}
767 
768 	if (packets < budget && napi_complete_done(napi, packets)) {
769 		/* Re-enable TX completion interrupts. This should
770 		 * cause an immediate interrupt if any TX packets are
771 		 * already pending.
772 		 */
773 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
774 	}
775 	return packets;
776 }
777 
778 /**
779  * axienet_start_xmit - Starts the transmission.
780  * @skb:	sk_buff pointer that contains data to be Txed.
781  * @ndev:	Pointer to net_device structure.
782  *
783  * Return: NETDEV_TX_OK, on success
784  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
785  *
786  * This function is invoked from upper layers to initiate transmission. The
787  * function uses the next available free BDs and populates their fields to
788  * start the transmission. Additionally if checksum offloading is supported,
789  * it populates AXI Stream Control fields with appropriate values.
790  */
791 static netdev_tx_t
axienet_start_xmit(struct sk_buff * skb,struct net_device * ndev)792 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
793 {
794 	u32 ii;
795 	u32 num_frag;
796 	u32 csum_start_off;
797 	u32 csum_index_off;
798 	skb_frag_t *frag;
799 	dma_addr_t tail_p, phys;
800 	u32 orig_tail_ptr, new_tail_ptr;
801 	struct axienet_local *lp = netdev_priv(ndev);
802 	struct axidma_bd *cur_p;
803 
804 	orig_tail_ptr = lp->tx_bd_tail;
805 	new_tail_ptr = orig_tail_ptr;
806 
807 	num_frag = skb_shinfo(skb)->nr_frags;
808 	cur_p = &lp->tx_bd_v[orig_tail_ptr];
809 
810 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
811 		/* Should not happen as last start_xmit call should have
812 		 * checked for sufficient space and queue should only be
813 		 * woken when sufficient space is available.
814 		 */
815 		netif_stop_queue(ndev);
816 		if (net_ratelimit())
817 			netdev_warn(ndev, "TX ring unexpectedly full\n");
818 		return NETDEV_TX_BUSY;
819 	}
820 
821 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
822 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
823 			/* Tx Full Checksum Offload Enabled */
824 			cur_p->app0 |= 2;
825 		} else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
826 			csum_start_off = skb_transport_offset(skb);
827 			csum_index_off = csum_start_off + skb->csum_offset;
828 			/* Tx Partial Checksum Offload Enabled */
829 			cur_p->app0 |= 1;
830 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
831 		}
832 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
833 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
834 	}
835 
836 	phys = dma_map_single(lp->dev, skb->data,
837 			      skb_headlen(skb), DMA_TO_DEVICE);
838 	if (unlikely(dma_mapping_error(lp->dev, phys))) {
839 		if (net_ratelimit())
840 			netdev_err(ndev, "TX DMA mapping error\n");
841 		ndev->stats.tx_dropped++;
842 		return NETDEV_TX_OK;
843 	}
844 	desc_set_phys_addr(lp, phys, cur_p);
845 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
846 
847 	for (ii = 0; ii < num_frag; ii++) {
848 		if (++new_tail_ptr >= lp->tx_bd_num)
849 			new_tail_ptr = 0;
850 		cur_p = &lp->tx_bd_v[new_tail_ptr];
851 		frag = &skb_shinfo(skb)->frags[ii];
852 		phys = dma_map_single(lp->dev,
853 				      skb_frag_address(frag),
854 				      skb_frag_size(frag),
855 				      DMA_TO_DEVICE);
856 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
857 			if (net_ratelimit())
858 				netdev_err(ndev, "TX DMA mapping error\n");
859 			ndev->stats.tx_dropped++;
860 			axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
861 					      true, NULL, 0);
862 			return NETDEV_TX_OK;
863 		}
864 		desc_set_phys_addr(lp, phys, cur_p);
865 		cur_p->cntrl = skb_frag_size(frag);
866 	}
867 
868 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
869 	cur_p->skb = skb;
870 
871 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
872 	if (++new_tail_ptr >= lp->tx_bd_num)
873 		new_tail_ptr = 0;
874 	WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
875 
876 	/* Start the transfer */
877 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
878 
879 	/* Stop queue if next transmit may not have space */
880 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
881 		netif_stop_queue(ndev);
882 
883 		/* Matches barrier in axienet_tx_poll */
884 		smp_mb();
885 
886 		/* Space might have just been freed - check again */
887 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
888 			netif_wake_queue(ndev);
889 	}
890 
891 	return NETDEV_TX_OK;
892 }
893 
894 /**
895  * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
896  * @napi:	Pointer to NAPI structure.
897  * @budget:	Max number of RX packets to process.
898  *
899  * Return: Number of RX packets processed.
900  */
axienet_rx_poll(struct napi_struct * napi,int budget)901 static int axienet_rx_poll(struct napi_struct *napi, int budget)
902 {
903 	u32 length;
904 	u32 csumstatus;
905 	u32 size = 0;
906 	int packets = 0;
907 	dma_addr_t tail_p = 0;
908 	struct axidma_bd *cur_p;
909 	struct sk_buff *skb, *new_skb;
910 	struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
911 
912 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
913 
914 	while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
915 		dma_addr_t phys;
916 
917 		/* Ensure we see complete descriptor update */
918 		dma_rmb();
919 
920 		skb = cur_p->skb;
921 		cur_p->skb = NULL;
922 
923 		/* skb could be NULL if a previous pass already received the
924 		 * packet for this slot in the ring, but failed to refill it
925 		 * with a newly allocated buffer. In this case, don't try to
926 		 * receive it again.
927 		 */
928 		if (likely(skb)) {
929 			length = cur_p->app4 & 0x0000FFFF;
930 
931 			phys = desc_get_phys_addr(lp, cur_p);
932 			dma_unmap_single(lp->dev, phys, lp->max_frm_size,
933 					 DMA_FROM_DEVICE);
934 
935 			skb_put(skb, length);
936 			skb->protocol = eth_type_trans(skb, lp->ndev);
937 			/*skb_checksum_none_assert(skb);*/
938 			skb->ip_summed = CHECKSUM_NONE;
939 
940 			/* if we're doing Rx csum offload, set it up */
941 			if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
942 				csumstatus = (cur_p->app2 &
943 					      XAE_FULL_CSUM_STATUS_MASK) >> 3;
944 				if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
945 				    csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
946 					skb->ip_summed = CHECKSUM_UNNECESSARY;
947 				}
948 			} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
949 				   skb->protocol == htons(ETH_P_IP) &&
950 				   skb->len > 64) {
951 				skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
952 				skb->ip_summed = CHECKSUM_COMPLETE;
953 			}
954 
955 			napi_gro_receive(napi, skb);
956 
957 			size += length;
958 			packets++;
959 		}
960 
961 		new_skb = napi_alloc_skb(napi, lp->max_frm_size);
962 		if (!new_skb)
963 			break;
964 
965 		phys = dma_map_single(lp->dev, new_skb->data,
966 				      lp->max_frm_size,
967 				      DMA_FROM_DEVICE);
968 		if (unlikely(dma_mapping_error(lp->dev, phys))) {
969 			if (net_ratelimit())
970 				netdev_err(lp->ndev, "RX DMA mapping error\n");
971 			dev_kfree_skb(new_skb);
972 			break;
973 		}
974 		desc_set_phys_addr(lp, phys, cur_p);
975 
976 		cur_p->cntrl = lp->max_frm_size;
977 		cur_p->status = 0;
978 		cur_p->skb = new_skb;
979 
980 		/* Only update tail_p to mark this slot as usable after it has
981 		 * been successfully refilled.
982 		 */
983 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
984 
985 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
986 			lp->rx_bd_ci = 0;
987 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
988 	}
989 
990 	u64_stats_update_begin(&lp->rx_stat_sync);
991 	u64_stats_add(&lp->rx_packets, packets);
992 	u64_stats_add(&lp->rx_bytes, size);
993 	u64_stats_update_end(&lp->rx_stat_sync);
994 
995 	if (tail_p)
996 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
997 
998 	if (packets < budget && napi_complete_done(napi, packets)) {
999 		/* Re-enable RX completion interrupts. This should
1000 		 * cause an immediate interrupt if any RX packets are
1001 		 * already pending.
1002 		 */
1003 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1004 	}
1005 	return packets;
1006 }
1007 
1008 /**
1009  * axienet_tx_irq - Tx Done Isr.
1010  * @irq:	irq number
1011  * @_ndev:	net_device pointer
1012  *
1013  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1014  *
1015  * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1016  * TX BD processing.
1017  */
axienet_tx_irq(int irq,void * _ndev)1018 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1019 {
1020 	unsigned int status;
1021 	struct net_device *ndev = _ndev;
1022 	struct axienet_local *lp = netdev_priv(ndev);
1023 
1024 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1025 
1026 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1027 		return IRQ_NONE;
1028 
1029 	axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1030 
1031 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1032 		netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1033 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1034 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1035 			   (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1036 		schedule_work(&lp->dma_err_task);
1037 	} else {
1038 		/* Disable further TX completion interrupts and schedule
1039 		 * NAPI to handle the completions.
1040 		 */
1041 		u32 cr = lp->tx_dma_cr;
1042 
1043 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1044 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1045 
1046 		napi_schedule(&lp->napi_tx);
1047 	}
1048 
1049 	return IRQ_HANDLED;
1050 }
1051 
1052 /**
1053  * axienet_rx_irq - Rx Isr.
1054  * @irq:	irq number
1055  * @_ndev:	net_device pointer
1056  *
1057  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1058  *
1059  * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1060  * processing.
1061  */
axienet_rx_irq(int irq,void * _ndev)1062 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1063 {
1064 	unsigned int status;
1065 	struct net_device *ndev = _ndev;
1066 	struct axienet_local *lp = netdev_priv(ndev);
1067 
1068 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1069 
1070 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1071 		return IRQ_NONE;
1072 
1073 	axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1074 
1075 	if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1076 		netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1077 		netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1078 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1079 			   (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1080 		schedule_work(&lp->dma_err_task);
1081 	} else {
1082 		/* Disable further RX completion interrupts and schedule
1083 		 * NAPI receive.
1084 		 */
1085 		u32 cr = lp->rx_dma_cr;
1086 
1087 		cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1088 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1089 
1090 		napi_schedule(&lp->napi_rx);
1091 	}
1092 
1093 	return IRQ_HANDLED;
1094 }
1095 
1096 /**
1097  * axienet_eth_irq - Ethernet core Isr.
1098  * @irq:	irq number
1099  * @_ndev:	net_device pointer
1100  *
1101  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1102  *
1103  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1104  */
axienet_eth_irq(int irq,void * _ndev)1105 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1106 {
1107 	struct net_device *ndev = _ndev;
1108 	struct axienet_local *lp = netdev_priv(ndev);
1109 	unsigned int pending;
1110 
1111 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1112 	if (!pending)
1113 		return IRQ_NONE;
1114 
1115 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1116 		ndev->stats.rx_missed_errors++;
1117 
1118 	if (pending & XAE_INT_RXRJECT_MASK)
1119 		ndev->stats.rx_frame_errors++;
1120 
1121 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1122 	return IRQ_HANDLED;
1123 }
1124 
1125 static void axienet_dma_err_handler(struct work_struct *work);
1126 
1127 /**
1128  * axienet_open - Driver open routine.
1129  * @ndev:	Pointer to net_device structure
1130  *
1131  * Return: 0, on success.
1132  *	    non-zero error value on failure
1133  *
1134  * This is the driver open routine. It calls phylink_start to start the
1135  * PHY device.
1136  * It also allocates interrupt service routines, enables the interrupt lines
1137  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1138  * descriptors are initialized.
1139  */
axienet_open(struct net_device * ndev)1140 static int axienet_open(struct net_device *ndev)
1141 {
1142 	int ret;
1143 	struct axienet_local *lp = netdev_priv(ndev);
1144 
1145 	dev_dbg(&ndev->dev, "axienet_open()\n");
1146 
1147 	/* When we do an Axi Ethernet reset, it resets the complete core
1148 	 * including the MDIO. MDIO must be disabled before resetting.
1149 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1150 	 */
1151 	axienet_lock_mii(lp);
1152 	ret = axienet_device_reset(ndev);
1153 	axienet_unlock_mii(lp);
1154 
1155 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1156 	if (ret) {
1157 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1158 		return ret;
1159 	}
1160 
1161 	phylink_start(lp->phylink);
1162 
1163 	/* Enable worker thread for Axi DMA error handling */
1164 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1165 
1166 	napi_enable(&lp->napi_rx);
1167 	napi_enable(&lp->napi_tx);
1168 
1169 	/* Enable interrupts for Axi DMA Tx */
1170 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1171 			  ndev->name, ndev);
1172 	if (ret)
1173 		goto err_tx_irq;
1174 	/* Enable interrupts for Axi DMA Rx */
1175 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1176 			  ndev->name, ndev);
1177 	if (ret)
1178 		goto err_rx_irq;
1179 	/* Enable interrupts for Axi Ethernet core (if defined) */
1180 	if (lp->eth_irq > 0) {
1181 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1182 				  ndev->name, ndev);
1183 		if (ret)
1184 			goto err_eth_irq;
1185 	}
1186 
1187 	return 0;
1188 
1189 err_eth_irq:
1190 	free_irq(lp->rx_irq, ndev);
1191 err_rx_irq:
1192 	free_irq(lp->tx_irq, ndev);
1193 err_tx_irq:
1194 	napi_disable(&lp->napi_tx);
1195 	napi_disable(&lp->napi_rx);
1196 	phylink_stop(lp->phylink);
1197 	phylink_disconnect_phy(lp->phylink);
1198 	cancel_work_sync(&lp->dma_err_task);
1199 	dev_err(lp->dev, "request_irq() failed\n");
1200 	return ret;
1201 }
1202 
1203 /**
1204  * axienet_stop - Driver stop routine.
1205  * @ndev:	Pointer to net_device structure
1206  *
1207  * Return: 0, on success.
1208  *
1209  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1210  * device. It also removes the interrupt handlers and disables the interrupts.
1211  * The Axi DMA Tx/Rx BDs are released.
1212  */
axienet_stop(struct net_device * ndev)1213 static int axienet_stop(struct net_device *ndev)
1214 {
1215 	struct axienet_local *lp = netdev_priv(ndev);
1216 
1217 	dev_dbg(&ndev->dev, "axienet_close()\n");
1218 
1219 	napi_disable(&lp->napi_tx);
1220 	napi_disable(&lp->napi_rx);
1221 
1222 	phylink_stop(lp->phylink);
1223 	phylink_disconnect_phy(lp->phylink);
1224 
1225 	axienet_setoptions(ndev, lp->options &
1226 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1227 
1228 	axienet_dma_stop(lp);
1229 
1230 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1231 
1232 	cancel_work_sync(&lp->dma_err_task);
1233 
1234 	if (lp->eth_irq > 0)
1235 		free_irq(lp->eth_irq, ndev);
1236 	free_irq(lp->tx_irq, ndev);
1237 	free_irq(lp->rx_irq, ndev);
1238 
1239 	axienet_dma_bd_release(ndev);
1240 	return 0;
1241 }
1242 
1243 /**
1244  * axienet_change_mtu - Driver change mtu routine.
1245  * @ndev:	Pointer to net_device structure
1246  * @new_mtu:	New mtu value to be applied
1247  *
1248  * Return: Always returns 0 (success).
1249  *
1250  * This is the change mtu driver routine. It checks if the Axi Ethernet
1251  * hardware supports jumbo frames before changing the mtu. This can be
1252  * called only when the device is not up.
1253  */
axienet_change_mtu(struct net_device * ndev,int new_mtu)1254 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1255 {
1256 	struct axienet_local *lp = netdev_priv(ndev);
1257 
1258 	if (netif_running(ndev))
1259 		return -EBUSY;
1260 
1261 	if ((new_mtu + VLAN_ETH_HLEN +
1262 		XAE_TRL_SIZE) > lp->rxmem)
1263 		return -EINVAL;
1264 
1265 	ndev->mtu = new_mtu;
1266 
1267 	return 0;
1268 }
1269 
1270 #ifdef CONFIG_NET_POLL_CONTROLLER
1271 /**
1272  * axienet_poll_controller - Axi Ethernet poll mechanism.
1273  * @ndev:	Pointer to net_device structure
1274  *
1275  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1276  * to polling the ISRs and are enabled back after the polling is done.
1277  */
axienet_poll_controller(struct net_device * ndev)1278 static void axienet_poll_controller(struct net_device *ndev)
1279 {
1280 	struct axienet_local *lp = netdev_priv(ndev);
1281 	disable_irq(lp->tx_irq);
1282 	disable_irq(lp->rx_irq);
1283 	axienet_rx_irq(lp->tx_irq, ndev);
1284 	axienet_tx_irq(lp->rx_irq, ndev);
1285 	enable_irq(lp->tx_irq);
1286 	enable_irq(lp->rx_irq);
1287 }
1288 #endif
1289 
axienet_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1290 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1291 {
1292 	struct axienet_local *lp = netdev_priv(dev);
1293 
1294 	if (!netif_running(dev))
1295 		return -EINVAL;
1296 
1297 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1298 }
1299 
1300 static void
axienet_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)1301 axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1302 {
1303 	struct axienet_local *lp = netdev_priv(dev);
1304 	unsigned int start;
1305 
1306 	netdev_stats_to_stats64(stats, &dev->stats);
1307 
1308 	do {
1309 		start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1310 		stats->rx_packets = u64_stats_read(&lp->rx_packets);
1311 		stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1312 	} while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1313 
1314 	do {
1315 		start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1316 		stats->tx_packets = u64_stats_read(&lp->tx_packets);
1317 		stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1318 	} while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1319 }
1320 
1321 static const struct net_device_ops axienet_netdev_ops = {
1322 	.ndo_open = axienet_open,
1323 	.ndo_stop = axienet_stop,
1324 	.ndo_start_xmit = axienet_start_xmit,
1325 	.ndo_get_stats64 = axienet_get_stats64,
1326 	.ndo_change_mtu	= axienet_change_mtu,
1327 	.ndo_set_mac_address = netdev_set_mac_address,
1328 	.ndo_validate_addr = eth_validate_addr,
1329 	.ndo_eth_ioctl = axienet_ioctl,
1330 	.ndo_set_rx_mode = axienet_set_multicast_list,
1331 #ifdef CONFIG_NET_POLL_CONTROLLER
1332 	.ndo_poll_controller = axienet_poll_controller,
1333 #endif
1334 };
1335 
1336 /**
1337  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1338  * @ndev:	Pointer to net_device structure
1339  * @ed:		Pointer to ethtool_drvinfo structure
1340  *
1341  * This implements ethtool command for getting the driver information.
1342  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1343  */
axienet_ethtools_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * ed)1344 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1345 					 struct ethtool_drvinfo *ed)
1346 {
1347 	strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1348 	strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1349 }
1350 
1351 /**
1352  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1353  *				   AxiEthernet core.
1354  * @ndev:	Pointer to net_device structure
1355  *
1356  * This implements ethtool command for getting the total register length
1357  * information.
1358  *
1359  * Return: the total regs length
1360  */
axienet_ethtools_get_regs_len(struct net_device * ndev)1361 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1362 {
1363 	return sizeof(u32) * AXIENET_REGS_N;
1364 }
1365 
1366 /**
1367  * axienet_ethtools_get_regs - Dump the contents of all registers present
1368  *			       in AxiEthernet core.
1369  * @ndev:	Pointer to net_device structure
1370  * @regs:	Pointer to ethtool_regs structure
1371  * @ret:	Void pointer used to return the contents of the registers.
1372  *
1373  * This implements ethtool command for getting the Axi Ethernet register dump.
1374  * Issue "ethtool -d ethX" to execute this function.
1375  */
axienet_ethtools_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * ret)1376 static void axienet_ethtools_get_regs(struct net_device *ndev,
1377 				      struct ethtool_regs *regs, void *ret)
1378 {
1379 	u32 *data = (u32 *)ret;
1380 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1381 	struct axienet_local *lp = netdev_priv(ndev);
1382 
1383 	regs->version = 0;
1384 	regs->len = len;
1385 
1386 	memset(data, 0, len);
1387 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1388 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1389 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1390 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1391 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1392 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1393 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1394 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1395 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1396 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1397 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1398 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1399 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1400 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1401 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1402 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1403 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1404 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1405 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1406 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1407 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1408 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1409 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1410 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1411 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1412 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1413 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1414 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1415 	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1416 	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1417 	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1418 	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1419 	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1420 	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1421 	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1422 	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1423 }
1424 
1425 static void
axienet_ethtools_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering,struct kernel_ethtool_ringparam * kernel_ering,struct netlink_ext_ack * extack)1426 axienet_ethtools_get_ringparam(struct net_device *ndev,
1427 			       struct ethtool_ringparam *ering,
1428 			       struct kernel_ethtool_ringparam *kernel_ering,
1429 			       struct netlink_ext_ack *extack)
1430 {
1431 	struct axienet_local *lp = netdev_priv(ndev);
1432 
1433 	ering->rx_max_pending = RX_BD_NUM_MAX;
1434 	ering->rx_mini_max_pending = 0;
1435 	ering->rx_jumbo_max_pending = 0;
1436 	ering->tx_max_pending = TX_BD_NUM_MAX;
1437 	ering->rx_pending = lp->rx_bd_num;
1438 	ering->rx_mini_pending = 0;
1439 	ering->rx_jumbo_pending = 0;
1440 	ering->tx_pending = lp->tx_bd_num;
1441 }
1442 
1443 static int
axienet_ethtools_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering,struct kernel_ethtool_ringparam * kernel_ering,struct netlink_ext_ack * extack)1444 axienet_ethtools_set_ringparam(struct net_device *ndev,
1445 			       struct ethtool_ringparam *ering,
1446 			       struct kernel_ethtool_ringparam *kernel_ering,
1447 			       struct netlink_ext_ack *extack)
1448 {
1449 	struct axienet_local *lp = netdev_priv(ndev);
1450 
1451 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1452 	    ering->rx_mini_pending ||
1453 	    ering->rx_jumbo_pending ||
1454 	    ering->tx_pending < TX_BD_NUM_MIN ||
1455 	    ering->tx_pending > TX_BD_NUM_MAX)
1456 		return -EINVAL;
1457 
1458 	if (netif_running(ndev))
1459 		return -EBUSY;
1460 
1461 	lp->rx_bd_num = ering->rx_pending;
1462 	lp->tx_bd_num = ering->tx_pending;
1463 	return 0;
1464 }
1465 
1466 /**
1467  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1468  *				     Tx and Rx paths.
1469  * @ndev:	Pointer to net_device structure
1470  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1471  *
1472  * This implements ethtool command for getting axi ethernet pause frame
1473  * setting. Issue "ethtool -a ethX" to execute this function.
1474  */
1475 static void
axienet_ethtools_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1476 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1477 				struct ethtool_pauseparam *epauseparm)
1478 {
1479 	struct axienet_local *lp = netdev_priv(ndev);
1480 
1481 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1482 }
1483 
1484 /**
1485  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1486  *				     settings.
1487  * @ndev:	Pointer to net_device structure
1488  * @epauseparm:Pointer to ethtool_pauseparam structure
1489  *
1490  * This implements ethtool command for enabling flow control on Rx and Tx
1491  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1492  * function.
1493  *
1494  * Return: 0 on success, -EFAULT if device is running
1495  */
1496 static int
axienet_ethtools_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1497 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1498 				struct ethtool_pauseparam *epauseparm)
1499 {
1500 	struct axienet_local *lp = netdev_priv(ndev);
1501 
1502 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1503 }
1504 
1505 /**
1506  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1507  * @ndev:	Pointer to net_device structure
1508  * @ecoalesce:	Pointer to ethtool_coalesce structure
1509  * @kernel_coal: ethtool CQE mode setting structure
1510  * @extack:	extack for reporting error messages
1511  *
1512  * This implements ethtool command for getting the DMA interrupt coalescing
1513  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1514  * execute this function.
1515  *
1516  * Return: 0 always
1517  */
1518 static int
axienet_ethtools_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1519 axienet_ethtools_get_coalesce(struct net_device *ndev,
1520 			      struct ethtool_coalesce *ecoalesce,
1521 			      struct kernel_ethtool_coalesce *kernel_coal,
1522 			      struct netlink_ext_ack *extack)
1523 {
1524 	struct axienet_local *lp = netdev_priv(ndev);
1525 
1526 	ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
1527 	ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
1528 	ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
1529 	ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
1530 	return 0;
1531 }
1532 
1533 /**
1534  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1535  * @ndev:	Pointer to net_device structure
1536  * @ecoalesce:	Pointer to ethtool_coalesce structure
1537  * @kernel_coal: ethtool CQE mode setting structure
1538  * @extack:	extack for reporting error messages
1539  *
1540  * This implements ethtool command for setting the DMA interrupt coalescing
1541  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1542  * prompt to execute this function.
1543  *
1544  * Return: 0, on success, Non-zero error value on failure.
1545  */
1546 static int
axienet_ethtools_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1547 axienet_ethtools_set_coalesce(struct net_device *ndev,
1548 			      struct ethtool_coalesce *ecoalesce,
1549 			      struct kernel_ethtool_coalesce *kernel_coal,
1550 			      struct netlink_ext_ack *extack)
1551 {
1552 	struct axienet_local *lp = netdev_priv(ndev);
1553 
1554 	if (netif_running(ndev)) {
1555 		netdev_err(ndev,
1556 			   "Please stop netif before applying configuration\n");
1557 		return -EFAULT;
1558 	}
1559 
1560 	if (ecoalesce->rx_max_coalesced_frames)
1561 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1562 	if (ecoalesce->rx_coalesce_usecs)
1563 		lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
1564 	if (ecoalesce->tx_max_coalesced_frames)
1565 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1566 	if (ecoalesce->tx_coalesce_usecs)
1567 		lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
1568 
1569 	return 0;
1570 }
1571 
1572 static int
axienet_ethtools_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)1573 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1574 				    struct ethtool_link_ksettings *cmd)
1575 {
1576 	struct axienet_local *lp = netdev_priv(ndev);
1577 
1578 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1579 }
1580 
1581 static int
axienet_ethtools_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)1582 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1583 				    const struct ethtool_link_ksettings *cmd)
1584 {
1585 	struct axienet_local *lp = netdev_priv(ndev);
1586 
1587 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1588 }
1589 
axienet_ethtools_nway_reset(struct net_device * dev)1590 static int axienet_ethtools_nway_reset(struct net_device *dev)
1591 {
1592 	struct axienet_local *lp = netdev_priv(dev);
1593 
1594 	return phylink_ethtool_nway_reset(lp->phylink);
1595 }
1596 
1597 static const struct ethtool_ops axienet_ethtool_ops = {
1598 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
1599 				     ETHTOOL_COALESCE_USECS,
1600 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1601 	.get_regs_len   = axienet_ethtools_get_regs_len,
1602 	.get_regs       = axienet_ethtools_get_regs,
1603 	.get_link       = ethtool_op_get_link,
1604 	.get_ringparam	= axienet_ethtools_get_ringparam,
1605 	.set_ringparam	= axienet_ethtools_set_ringparam,
1606 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1607 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1608 	.get_coalesce   = axienet_ethtools_get_coalesce,
1609 	.set_coalesce   = axienet_ethtools_set_coalesce,
1610 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1611 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1612 	.nway_reset	= axienet_ethtools_nway_reset,
1613 };
1614 
pcs_to_axienet_local(struct phylink_pcs * pcs)1615 static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
1616 {
1617 	return container_of(pcs, struct axienet_local, pcs);
1618 }
1619 
axienet_pcs_get_state(struct phylink_pcs * pcs,struct phylink_link_state * state)1620 static void axienet_pcs_get_state(struct phylink_pcs *pcs,
1621 				  struct phylink_link_state *state)
1622 {
1623 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1624 
1625 	phylink_mii_c22_pcs_get_state(pcs_phy, state);
1626 }
1627 
axienet_pcs_an_restart(struct phylink_pcs * pcs)1628 static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
1629 {
1630 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1631 
1632 	phylink_mii_c22_pcs_an_restart(pcs_phy);
1633 }
1634 
axienet_pcs_config(struct phylink_pcs * pcs,unsigned int neg_mode,phy_interface_t interface,const unsigned long * advertising,bool permit_pause_to_mac)1635 static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
1636 			      phy_interface_t interface,
1637 			      const unsigned long *advertising,
1638 			      bool permit_pause_to_mac)
1639 {
1640 	struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
1641 	struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
1642 	struct axienet_local *lp = netdev_priv(ndev);
1643 	int ret;
1644 
1645 	if (lp->switch_x_sgmii) {
1646 		ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
1647 				    interface == PHY_INTERFACE_MODE_SGMII ?
1648 					XLNX_MII_STD_SELECT_SGMII : 0);
1649 		if (ret < 0) {
1650 			netdev_warn(ndev,
1651 				    "Failed to switch PHY interface: %d\n",
1652 				    ret);
1653 			return ret;
1654 		}
1655 	}
1656 
1657 	ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
1658 					 neg_mode);
1659 	if (ret < 0)
1660 		netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
1661 
1662 	return ret;
1663 }
1664 
1665 static const struct phylink_pcs_ops axienet_pcs_ops = {
1666 	.pcs_get_state = axienet_pcs_get_state,
1667 	.pcs_config = axienet_pcs_config,
1668 	.pcs_an_restart = axienet_pcs_an_restart,
1669 };
1670 
axienet_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)1671 static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
1672 						  phy_interface_t interface)
1673 {
1674 	struct net_device *ndev = to_net_dev(config->dev);
1675 	struct axienet_local *lp = netdev_priv(ndev);
1676 
1677 	if (interface == PHY_INTERFACE_MODE_1000BASEX ||
1678 	    interface ==  PHY_INTERFACE_MODE_SGMII)
1679 		return &lp->pcs;
1680 
1681 	return NULL;
1682 }
1683 
axienet_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)1684 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1685 			       const struct phylink_link_state *state)
1686 {
1687 	/* nothing meaningful to do */
1688 }
1689 
axienet_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)1690 static void axienet_mac_link_down(struct phylink_config *config,
1691 				  unsigned int mode,
1692 				  phy_interface_t interface)
1693 {
1694 	/* nothing meaningful to do */
1695 }
1696 
axienet_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1697 static void axienet_mac_link_up(struct phylink_config *config,
1698 				struct phy_device *phy,
1699 				unsigned int mode, phy_interface_t interface,
1700 				int speed, int duplex,
1701 				bool tx_pause, bool rx_pause)
1702 {
1703 	struct net_device *ndev = to_net_dev(config->dev);
1704 	struct axienet_local *lp = netdev_priv(ndev);
1705 	u32 emmc_reg, fcc_reg;
1706 
1707 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1708 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1709 
1710 	switch (speed) {
1711 	case SPEED_1000:
1712 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1713 		break;
1714 	case SPEED_100:
1715 		emmc_reg |= XAE_EMMC_LINKSPD_100;
1716 		break;
1717 	case SPEED_10:
1718 		emmc_reg |= XAE_EMMC_LINKSPD_10;
1719 		break;
1720 	default:
1721 		dev_err(&ndev->dev,
1722 			"Speed other than 10, 100 or 1Gbps is not supported\n");
1723 		break;
1724 	}
1725 
1726 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1727 
1728 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1729 	if (tx_pause)
1730 		fcc_reg |= XAE_FCC_FCTX_MASK;
1731 	else
1732 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1733 	if (rx_pause)
1734 		fcc_reg |= XAE_FCC_FCRX_MASK;
1735 	else
1736 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1737 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1738 }
1739 
1740 static const struct phylink_mac_ops axienet_phylink_ops = {
1741 	.mac_select_pcs = axienet_mac_select_pcs,
1742 	.mac_config = axienet_mac_config,
1743 	.mac_link_down = axienet_mac_link_down,
1744 	.mac_link_up = axienet_mac_link_up,
1745 };
1746 
1747 /**
1748  * axienet_dma_err_handler - Work queue task for Axi DMA Error
1749  * @work:	pointer to work_struct
1750  *
1751  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1752  * Tx/Rx BDs.
1753  */
axienet_dma_err_handler(struct work_struct * work)1754 static void axienet_dma_err_handler(struct work_struct *work)
1755 {
1756 	u32 i;
1757 	u32 axienet_status;
1758 	struct axidma_bd *cur_p;
1759 	struct axienet_local *lp = container_of(work, struct axienet_local,
1760 						dma_err_task);
1761 	struct net_device *ndev = lp->ndev;
1762 
1763 	napi_disable(&lp->napi_tx);
1764 	napi_disable(&lp->napi_rx);
1765 
1766 	axienet_setoptions(ndev, lp->options &
1767 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1768 
1769 	axienet_dma_stop(lp);
1770 
1771 	for (i = 0; i < lp->tx_bd_num; i++) {
1772 		cur_p = &lp->tx_bd_v[i];
1773 		if (cur_p->cntrl) {
1774 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1775 
1776 			dma_unmap_single(lp->dev, addr,
1777 					 (cur_p->cntrl &
1778 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1779 					 DMA_TO_DEVICE);
1780 		}
1781 		if (cur_p->skb)
1782 			dev_kfree_skb_irq(cur_p->skb);
1783 		cur_p->phys = 0;
1784 		cur_p->phys_msb = 0;
1785 		cur_p->cntrl = 0;
1786 		cur_p->status = 0;
1787 		cur_p->app0 = 0;
1788 		cur_p->app1 = 0;
1789 		cur_p->app2 = 0;
1790 		cur_p->app3 = 0;
1791 		cur_p->app4 = 0;
1792 		cur_p->skb = NULL;
1793 	}
1794 
1795 	for (i = 0; i < lp->rx_bd_num; i++) {
1796 		cur_p = &lp->rx_bd_v[i];
1797 		cur_p->status = 0;
1798 		cur_p->app0 = 0;
1799 		cur_p->app1 = 0;
1800 		cur_p->app2 = 0;
1801 		cur_p->app3 = 0;
1802 		cur_p->app4 = 0;
1803 	}
1804 
1805 	lp->tx_bd_ci = 0;
1806 	lp->tx_bd_tail = 0;
1807 	lp->rx_bd_ci = 0;
1808 
1809 	axienet_dma_start(lp);
1810 
1811 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1812 	axienet_status &= ~XAE_RCW1_RX_MASK;
1813 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1814 
1815 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1816 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1817 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1818 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1819 		    XAE_INT_RECV_ERROR_MASK : 0);
1820 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1821 
1822 	/* Sync default options with HW but leave receiver and
1823 	 * transmitter disabled.
1824 	 */
1825 	axienet_setoptions(ndev, lp->options &
1826 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1827 	axienet_set_mac_address(ndev, NULL);
1828 	axienet_set_multicast_list(ndev);
1829 	axienet_setoptions(ndev, lp->options);
1830 	napi_enable(&lp->napi_rx);
1831 	napi_enable(&lp->napi_tx);
1832 }
1833 
1834 /**
1835  * axienet_probe - Axi Ethernet probe function.
1836  * @pdev:	Pointer to platform device structure.
1837  *
1838  * Return: 0, on success
1839  *	    Non-zero error value on failure.
1840  *
1841  * This is the probe routine for Axi Ethernet driver. This is called before
1842  * any other driver routines are invoked. It allocates and sets up the Ethernet
1843  * device. Parses through device tree and populates fields of
1844  * axienet_local. It registers the Ethernet device.
1845  */
axienet_probe(struct platform_device * pdev)1846 static int axienet_probe(struct platform_device *pdev)
1847 {
1848 	int ret;
1849 	struct device_node *np;
1850 	struct axienet_local *lp;
1851 	struct net_device *ndev;
1852 	struct resource *ethres;
1853 	u8 mac_addr[ETH_ALEN];
1854 	int addr_width = 32;
1855 	u32 value;
1856 
1857 	ndev = alloc_etherdev(sizeof(*lp));
1858 	if (!ndev)
1859 		return -ENOMEM;
1860 
1861 	platform_set_drvdata(pdev, ndev);
1862 
1863 	SET_NETDEV_DEV(ndev, &pdev->dev);
1864 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1865 	ndev->features = NETIF_F_SG;
1866 	ndev->netdev_ops = &axienet_netdev_ops;
1867 	ndev->ethtool_ops = &axienet_ethtool_ops;
1868 
1869 	/* MTU range: 64 - 9000 */
1870 	ndev->min_mtu = 64;
1871 	ndev->max_mtu = XAE_JUMBO_MTU;
1872 
1873 	lp = netdev_priv(ndev);
1874 	lp->ndev = ndev;
1875 	lp->dev = &pdev->dev;
1876 	lp->options = XAE_OPTION_DEFAULTS;
1877 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1878 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1879 
1880 	u64_stats_init(&lp->rx_stat_sync);
1881 	u64_stats_init(&lp->tx_stat_sync);
1882 
1883 	netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
1884 	netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
1885 
1886 	lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1887 	if (!lp->axi_clk) {
1888 		/* For backward compatibility, if named AXI clock is not present,
1889 		 * treat the first clock specified as the AXI clock.
1890 		 */
1891 		lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1892 	}
1893 	if (IS_ERR(lp->axi_clk)) {
1894 		ret = PTR_ERR(lp->axi_clk);
1895 		goto free_netdev;
1896 	}
1897 	ret = clk_prepare_enable(lp->axi_clk);
1898 	if (ret) {
1899 		dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1900 		goto free_netdev;
1901 	}
1902 
1903 	lp->misc_clks[0].id = "axis_clk";
1904 	lp->misc_clks[1].id = "ref_clk";
1905 	lp->misc_clks[2].id = "mgt_clk";
1906 
1907 	ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1908 	if (ret)
1909 		goto cleanup_clk;
1910 
1911 	ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1912 	if (ret)
1913 		goto cleanup_clk;
1914 
1915 	/* Map device registers */
1916 	lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1917 	if (IS_ERR(lp->regs)) {
1918 		ret = PTR_ERR(lp->regs);
1919 		goto cleanup_clk;
1920 	}
1921 	lp->regs_start = ethres->start;
1922 
1923 	/* Setup checksum offload, but default to off if not specified */
1924 	lp->features = 0;
1925 
1926 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1927 	if (!ret) {
1928 		switch (value) {
1929 		case 1:
1930 			lp->csum_offload_on_tx_path =
1931 				XAE_FEATURE_PARTIAL_TX_CSUM;
1932 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1933 			/* Can checksum TCP/UDP over IPv4. */
1934 			ndev->features |= NETIF_F_IP_CSUM;
1935 			break;
1936 		case 2:
1937 			lp->csum_offload_on_tx_path =
1938 				XAE_FEATURE_FULL_TX_CSUM;
1939 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1940 			/* Can checksum TCP/UDP over IPv4. */
1941 			ndev->features |= NETIF_F_IP_CSUM;
1942 			break;
1943 		default:
1944 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1945 		}
1946 	}
1947 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1948 	if (!ret) {
1949 		switch (value) {
1950 		case 1:
1951 			lp->csum_offload_on_rx_path =
1952 				XAE_FEATURE_PARTIAL_RX_CSUM;
1953 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1954 			break;
1955 		case 2:
1956 			lp->csum_offload_on_rx_path =
1957 				XAE_FEATURE_FULL_RX_CSUM;
1958 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1959 			break;
1960 		default:
1961 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1962 		}
1963 	}
1964 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1965 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1966 	 * we can enable jumbo option and start supporting jumbo frames.
1967 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1968 	 * the device-tree and accordingly set flags.
1969 	 */
1970 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1971 
1972 	lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1973 						   "xlnx,switch-x-sgmii");
1974 
1975 	/* Start with the proprietary, and broken phy_type */
1976 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1977 	if (!ret) {
1978 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1979 		switch (value) {
1980 		case XAE_PHY_TYPE_MII:
1981 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1982 			break;
1983 		case XAE_PHY_TYPE_GMII:
1984 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1985 			break;
1986 		case XAE_PHY_TYPE_RGMII_2_0:
1987 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1988 			break;
1989 		case XAE_PHY_TYPE_SGMII:
1990 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1991 			break;
1992 		case XAE_PHY_TYPE_1000BASE_X:
1993 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1994 			break;
1995 		default:
1996 			ret = -EINVAL;
1997 			goto cleanup_clk;
1998 		}
1999 	} else {
2000 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2001 		if (ret)
2002 			goto cleanup_clk;
2003 	}
2004 	if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2005 	    lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2006 		dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2007 		ret = -EINVAL;
2008 		goto cleanup_clk;
2009 	}
2010 
2011 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2012 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2013 	if (np) {
2014 		struct resource dmares;
2015 
2016 		ret = of_address_to_resource(np, 0, &dmares);
2017 		if (ret) {
2018 			dev_err(&pdev->dev,
2019 				"unable to get DMA resource\n");
2020 			of_node_put(np);
2021 			goto cleanup_clk;
2022 		}
2023 		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2024 						     &dmares);
2025 		lp->rx_irq = irq_of_parse_and_map(np, 1);
2026 		lp->tx_irq = irq_of_parse_and_map(np, 0);
2027 		of_node_put(np);
2028 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
2029 	} else {
2030 		/* Check for these resources directly on the Ethernet node. */
2031 		lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2032 		lp->rx_irq = platform_get_irq(pdev, 1);
2033 		lp->tx_irq = platform_get_irq(pdev, 0);
2034 		lp->eth_irq = platform_get_irq_optional(pdev, 2);
2035 	}
2036 	if (IS_ERR(lp->dma_regs)) {
2037 		dev_err(&pdev->dev, "could not map DMA regs\n");
2038 		ret = PTR_ERR(lp->dma_regs);
2039 		goto cleanup_clk;
2040 	}
2041 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2042 		dev_err(&pdev->dev, "could not determine irqs\n");
2043 		ret = -ENOMEM;
2044 		goto cleanup_clk;
2045 	}
2046 
2047 	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2048 	ret = __axienet_device_reset(lp);
2049 	if (ret)
2050 		goto cleanup_clk;
2051 
2052 	/* Autodetect the need for 64-bit DMA pointers.
2053 	 * When the IP is configured for a bus width bigger than 32 bits,
2054 	 * writing the MSB registers is mandatory, even if they are all 0.
2055 	 * We can detect this case by writing all 1's to one such register
2056 	 * and see if that sticks: when the IP is configured for 32 bits
2057 	 * only, those registers are RES0.
2058 	 * Those MSB registers were introduced in IP v7.1, which we check first.
2059 	 */
2060 	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2061 		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2062 
2063 		iowrite32(0x0, desc);
2064 		if (ioread32(desc) == 0) {	/* sanity check */
2065 			iowrite32(0xffffffff, desc);
2066 			if (ioread32(desc) > 0) {
2067 				lp->features |= XAE_FEATURE_DMA_64BIT;
2068 				addr_width = 64;
2069 				dev_info(&pdev->dev,
2070 					 "autodetected 64-bit DMA range\n");
2071 			}
2072 			iowrite32(0x0, desc);
2073 		}
2074 	}
2075 	if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2076 		dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2077 		ret = -EINVAL;
2078 		goto cleanup_clk;
2079 	}
2080 
2081 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2082 	if (ret) {
2083 		dev_err(&pdev->dev, "No suitable DMA available\n");
2084 		goto cleanup_clk;
2085 	}
2086 
2087 	/* Check for Ethernet core IRQ (optional) */
2088 	if (lp->eth_irq <= 0)
2089 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2090 
2091 	/* Retrieve the MAC address */
2092 	ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2093 	if (!ret) {
2094 		axienet_set_mac_address(ndev, mac_addr);
2095 	} else {
2096 		dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2097 			 ret);
2098 		axienet_set_mac_address(ndev, NULL);
2099 	}
2100 
2101 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2102 	lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2103 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2104 	lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2105 
2106 	ret = axienet_mdio_setup(lp);
2107 	if (ret)
2108 		dev_warn(&pdev->dev,
2109 			 "error registering MDIO bus: %d\n", ret);
2110 
2111 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2112 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2113 		np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2114 		if (!np) {
2115 			/* Deprecated: Always use "pcs-handle" for pcs_phy.
2116 			 * Falling back to "phy-handle" here is only for
2117 			 * backward compatibility with old device trees.
2118 			 */
2119 			np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2120 		}
2121 		if (!np) {
2122 			dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2123 			ret = -EINVAL;
2124 			goto cleanup_mdio;
2125 		}
2126 		lp->pcs_phy = of_mdio_find_device(np);
2127 		if (!lp->pcs_phy) {
2128 			ret = -EPROBE_DEFER;
2129 			of_node_put(np);
2130 			goto cleanup_mdio;
2131 		}
2132 		of_node_put(np);
2133 		lp->pcs.ops = &axienet_pcs_ops;
2134 		lp->pcs.neg_mode = true;
2135 		lp->pcs.poll = true;
2136 	}
2137 
2138 	lp->phylink_config.dev = &ndev->dev;
2139 	lp->phylink_config.type = PHYLINK_NETDEV;
2140 	lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2141 		MAC_10FD | MAC_100FD | MAC_1000FD;
2142 
2143 	__set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2144 	if (lp->switch_x_sgmii) {
2145 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2146 			  lp->phylink_config.supported_interfaces);
2147 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2148 			  lp->phylink_config.supported_interfaces);
2149 	}
2150 
2151 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2152 				     lp->phy_mode,
2153 				     &axienet_phylink_ops);
2154 	if (IS_ERR(lp->phylink)) {
2155 		ret = PTR_ERR(lp->phylink);
2156 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2157 		goto cleanup_mdio;
2158 	}
2159 
2160 	ret = register_netdev(lp->ndev);
2161 	if (ret) {
2162 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2163 		goto cleanup_phylink;
2164 	}
2165 
2166 	return 0;
2167 
2168 cleanup_phylink:
2169 	phylink_destroy(lp->phylink);
2170 
2171 cleanup_mdio:
2172 	if (lp->pcs_phy)
2173 		put_device(&lp->pcs_phy->dev);
2174 	if (lp->mii_bus)
2175 		axienet_mdio_teardown(lp);
2176 cleanup_clk:
2177 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2178 	clk_disable_unprepare(lp->axi_clk);
2179 
2180 free_netdev:
2181 	free_netdev(ndev);
2182 
2183 	return ret;
2184 }
2185 
axienet_remove(struct platform_device * pdev)2186 static int axienet_remove(struct platform_device *pdev)
2187 {
2188 	struct net_device *ndev = platform_get_drvdata(pdev);
2189 	struct axienet_local *lp = netdev_priv(ndev);
2190 
2191 	unregister_netdev(ndev);
2192 
2193 	if (lp->phylink)
2194 		phylink_destroy(lp->phylink);
2195 
2196 	if (lp->pcs_phy)
2197 		put_device(&lp->pcs_phy->dev);
2198 
2199 	axienet_mdio_teardown(lp);
2200 
2201 	clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2202 	clk_disable_unprepare(lp->axi_clk);
2203 
2204 	free_netdev(ndev);
2205 
2206 	return 0;
2207 }
2208 
axienet_shutdown(struct platform_device * pdev)2209 static void axienet_shutdown(struct platform_device *pdev)
2210 {
2211 	struct net_device *ndev = platform_get_drvdata(pdev);
2212 
2213 	rtnl_lock();
2214 	netif_device_detach(ndev);
2215 
2216 	if (netif_running(ndev))
2217 		dev_close(ndev);
2218 
2219 	rtnl_unlock();
2220 }
2221 
axienet_suspend(struct device * dev)2222 static int axienet_suspend(struct device *dev)
2223 {
2224 	struct net_device *ndev = dev_get_drvdata(dev);
2225 
2226 	if (!netif_running(ndev))
2227 		return 0;
2228 
2229 	netif_device_detach(ndev);
2230 
2231 	rtnl_lock();
2232 	axienet_stop(ndev);
2233 	rtnl_unlock();
2234 
2235 	return 0;
2236 }
2237 
axienet_resume(struct device * dev)2238 static int axienet_resume(struct device *dev)
2239 {
2240 	struct net_device *ndev = dev_get_drvdata(dev);
2241 
2242 	if (!netif_running(ndev))
2243 		return 0;
2244 
2245 	rtnl_lock();
2246 	axienet_open(ndev);
2247 	rtnl_unlock();
2248 
2249 	netif_device_attach(ndev);
2250 
2251 	return 0;
2252 }
2253 
2254 static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
2255 				axienet_suspend, axienet_resume);
2256 
2257 static struct platform_driver axienet_driver = {
2258 	.probe = axienet_probe,
2259 	.remove = axienet_remove,
2260 	.shutdown = axienet_shutdown,
2261 	.driver = {
2262 		 .name = "xilinx_axienet",
2263 		 .pm = &axienet_pm_ops,
2264 		 .of_match_table = axienet_of_match,
2265 	},
2266 };
2267 
2268 module_platform_driver(axienet_driver);
2269 
2270 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2271 MODULE_AUTHOR("Xilinx");
2272 MODULE_LICENSE("GPL");
2273