1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Texas Instruments ICSSG Industrial Ethernet Peripheral (IEP) Driver
4 *
5 * Copyright (C) 2023 Texas Instruments Incorporated - https://www.ti.com
6 *
7 */
8
9 #include <linux/bitops.h>
10 #include <linux/clk.h>
11 #include <linux/err.h>
12 #include <linux/io.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_platform.h>
16 #include <linux/platform_device.h>
17 #include <linux/timekeeping.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20
21 #include "icss_iep.h"
22
23 #define IEP_MAX_DEF_INC 0xf
24 #define IEP_MAX_COMPEN_INC 0xfff
25 #define IEP_MAX_COMPEN_COUNT 0xffffff
26
27 #define IEP_GLOBAL_CFG_CNT_ENABLE BIT(0)
28 #define IEP_GLOBAL_CFG_DEFAULT_INC_MASK GENMASK(7, 4)
29 #define IEP_GLOBAL_CFG_DEFAULT_INC_SHIFT 4
30 #define IEP_GLOBAL_CFG_COMPEN_INC_MASK GENMASK(19, 8)
31 #define IEP_GLOBAL_CFG_COMPEN_INC_SHIFT 8
32
33 #define IEP_GLOBAL_STATUS_CNT_OVF BIT(0)
34
35 #define IEP_CMP_CFG_SHADOW_EN BIT(17)
36 #define IEP_CMP_CFG_CMP0_RST_CNT_EN BIT(0)
37 #define IEP_CMP_CFG_CMP_EN(cmp) (GENMASK(16, 1) & (1 << ((cmp) + 1)))
38
39 #define IEP_CMP_STATUS(cmp) (1 << (cmp))
40
41 #define IEP_SYNC_CTRL_SYNC_EN BIT(0)
42 #define IEP_SYNC_CTRL_SYNC_N_EN(n) (GENMASK(2, 1) & (BIT(1) << (n)))
43
44 #define IEP_MIN_CMP 0
45 #define IEP_MAX_CMP 15
46
47 #define ICSS_IEP_64BIT_COUNTER_SUPPORT BIT(0)
48 #define ICSS_IEP_SLOW_COMPEN_REG_SUPPORT BIT(1)
49 #define ICSS_IEP_SHADOW_MODE_SUPPORT BIT(2)
50
51 #define LATCH_INDEX(ts_index) ((ts_index) + 6)
52 #define IEP_CAP_CFG_CAPNR_1ST_EVENT_EN(n) BIT(LATCH_INDEX(n))
53 #define IEP_CAP_CFG_CAP_ASYNC_EN(n) BIT(LATCH_INDEX(n) + 10)
54
55 enum {
56 ICSS_IEP_GLOBAL_CFG_REG,
57 ICSS_IEP_GLOBAL_STATUS_REG,
58 ICSS_IEP_COMPEN_REG,
59 ICSS_IEP_SLOW_COMPEN_REG,
60 ICSS_IEP_COUNT_REG0,
61 ICSS_IEP_COUNT_REG1,
62 ICSS_IEP_CAPTURE_CFG_REG,
63 ICSS_IEP_CAPTURE_STAT_REG,
64
65 ICSS_IEP_CAP6_RISE_REG0,
66 ICSS_IEP_CAP6_RISE_REG1,
67
68 ICSS_IEP_CAP7_RISE_REG0,
69 ICSS_IEP_CAP7_RISE_REG1,
70
71 ICSS_IEP_CMP_CFG_REG,
72 ICSS_IEP_CMP_STAT_REG,
73 ICSS_IEP_CMP0_REG0,
74 ICSS_IEP_CMP0_REG1,
75 ICSS_IEP_CMP1_REG0,
76 ICSS_IEP_CMP1_REG1,
77
78 ICSS_IEP_CMP8_REG0,
79 ICSS_IEP_CMP8_REG1,
80 ICSS_IEP_SYNC_CTRL_REG,
81 ICSS_IEP_SYNC0_STAT_REG,
82 ICSS_IEP_SYNC1_STAT_REG,
83 ICSS_IEP_SYNC_PWIDTH_REG,
84 ICSS_IEP_SYNC0_PERIOD_REG,
85 ICSS_IEP_SYNC1_DELAY_REG,
86 ICSS_IEP_SYNC_START_REG,
87 ICSS_IEP_MAX_REGS,
88 };
89
90 /**
91 * struct icss_iep_plat_data - Plat data to handle SoC variants
92 * @config: Regmap configuration data
93 * @reg_offs: register offsets to capture offset differences across SoCs
94 * @flags: Flags to represent IEP properties
95 */
96 struct icss_iep_plat_data {
97 struct regmap_config *config;
98 u32 reg_offs[ICSS_IEP_MAX_REGS];
99 u32 flags;
100 };
101
102 struct icss_iep {
103 struct device *dev;
104 void __iomem *base;
105 const struct icss_iep_plat_data *plat_data;
106 struct regmap *map;
107 struct device_node *client_np;
108 unsigned long refclk_freq;
109 int clk_tick_time; /* one refclk tick time in ns */
110 struct ptp_clock_info ptp_info;
111 struct ptp_clock *ptp_clock;
112 struct mutex ptp_clk_mutex; /* PHC access serializer */
113 spinlock_t irq_lock; /* CMP IRQ vs icss_iep_ptp_enable access */
114 u32 def_inc;
115 s16 slow_cmp_inc;
116 u32 slow_cmp_count;
117 const struct icss_iep_clockops *ops;
118 void *clockops_data;
119 u32 cycle_time_ns;
120 u32 perout_enabled;
121 bool pps_enabled;
122 int cap_cmp_irq;
123 u64 period;
124 u32 latch_enable;
125 };
126
127 /**
128 * icss_iep_get_count_hi() - Get the upper 32 bit IEP counter
129 * @iep: Pointer to structure representing IEP.
130 *
131 * Return: upper 32 bit IEP counter
132 */
icss_iep_get_count_hi(struct icss_iep * iep)133 int icss_iep_get_count_hi(struct icss_iep *iep)
134 {
135 u32 val = 0;
136
137 if (iep && (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT))
138 val = readl(iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG1]);
139
140 return val;
141 }
142 EXPORT_SYMBOL_GPL(icss_iep_get_count_hi);
143
144 /**
145 * icss_iep_get_count_low() - Get the lower 32 bit IEP counter
146 * @iep: Pointer to structure representing IEP.
147 *
148 * Return: lower 32 bit IEP counter
149 */
icss_iep_get_count_low(struct icss_iep * iep)150 int icss_iep_get_count_low(struct icss_iep *iep)
151 {
152 u32 val = 0;
153
154 if (iep)
155 val = readl(iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG0]);
156
157 return val;
158 }
159 EXPORT_SYMBOL_GPL(icss_iep_get_count_low);
160
161 /**
162 * icss_iep_get_ptp_clock_idx() - Get PTP clock index using IEP driver
163 * @iep: Pointer to structure representing IEP.
164 *
165 * Return: PTP clock index, -1 if not registered
166 */
icss_iep_get_ptp_clock_idx(struct icss_iep * iep)167 int icss_iep_get_ptp_clock_idx(struct icss_iep *iep)
168 {
169 if (!iep || !iep->ptp_clock)
170 return -1;
171 return ptp_clock_index(iep->ptp_clock);
172 }
173 EXPORT_SYMBOL_GPL(icss_iep_get_ptp_clock_idx);
174
icss_iep_set_counter(struct icss_iep * iep,u64 ns)175 static void icss_iep_set_counter(struct icss_iep *iep, u64 ns)
176 {
177 if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
178 writel(upper_32_bits(ns), iep->base +
179 iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG1]);
180 writel(lower_32_bits(ns), iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG0]);
181 }
182
183 static void icss_iep_update_to_next_boundary(struct icss_iep *iep, u64 start_ns);
184
185 /**
186 * icss_iep_settime() - Set time of the PTP clock using IEP driver
187 * @iep: Pointer to structure representing IEP.
188 * @ns: Time to be set in nanoseconds
189 *
190 * This API uses writel() instead of regmap_write() for write operations as
191 * regmap_write() is too slow and this API is time sensitive.
192 */
icss_iep_settime(struct icss_iep * iep,u64 ns)193 static void icss_iep_settime(struct icss_iep *iep, u64 ns)
194 {
195 unsigned long flags;
196
197 if (iep->ops && iep->ops->settime) {
198 iep->ops->settime(iep->clockops_data, ns);
199 return;
200 }
201
202 spin_lock_irqsave(&iep->irq_lock, flags);
203 if (iep->pps_enabled || iep->perout_enabled)
204 writel(0, iep->base + iep->plat_data->reg_offs[ICSS_IEP_SYNC_CTRL_REG]);
205
206 icss_iep_set_counter(iep, ns);
207
208 if (iep->pps_enabled || iep->perout_enabled) {
209 icss_iep_update_to_next_boundary(iep, ns);
210 writel(IEP_SYNC_CTRL_SYNC_N_EN(0) | IEP_SYNC_CTRL_SYNC_EN,
211 iep->base + iep->plat_data->reg_offs[ICSS_IEP_SYNC_CTRL_REG]);
212 }
213 spin_unlock_irqrestore(&iep->irq_lock, flags);
214 }
215
216 /**
217 * icss_iep_gettime() - Get time of the PTP clock using IEP driver
218 * @iep: Pointer to structure representing IEP.
219 * @sts: Pointer to structure representing PTP system timestamp.
220 *
221 * This API uses readl() instead of regmap_read() for read operations as
222 * regmap_read() is too slow and this API is time sensitive.
223 *
224 * Return: The current timestamp of the PTP clock using IEP driver
225 */
icss_iep_gettime(struct icss_iep * iep,struct ptp_system_timestamp * sts)226 static u64 icss_iep_gettime(struct icss_iep *iep,
227 struct ptp_system_timestamp *sts)
228 {
229 u32 ts_hi = 0, ts_lo;
230 unsigned long flags;
231
232 if (iep->ops && iep->ops->gettime)
233 return iep->ops->gettime(iep->clockops_data, sts);
234
235 /* use local_irq_x() to make it work for both RT/non-RT */
236 local_irq_save(flags);
237
238 /* no need to play with hi-lo, hi is latched when lo is read */
239 ptp_read_system_prets(sts);
240 ts_lo = readl(iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG0]);
241 ptp_read_system_postts(sts);
242 if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
243 ts_hi = readl(iep->base + iep->plat_data->reg_offs[ICSS_IEP_COUNT_REG1]);
244
245 local_irq_restore(flags);
246
247 return (u64)ts_lo | (u64)ts_hi << 32;
248 }
249
icss_iep_enable(struct icss_iep * iep)250 static void icss_iep_enable(struct icss_iep *iep)
251 {
252 regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_CFG_REG,
253 IEP_GLOBAL_CFG_CNT_ENABLE,
254 IEP_GLOBAL_CFG_CNT_ENABLE);
255 }
256
icss_iep_disable(struct icss_iep * iep)257 static void icss_iep_disable(struct icss_iep *iep)
258 {
259 regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_CFG_REG,
260 IEP_GLOBAL_CFG_CNT_ENABLE,
261 0);
262 }
263
icss_iep_enable_shadow_mode(struct icss_iep * iep)264 static void icss_iep_enable_shadow_mode(struct icss_iep *iep)
265 {
266 u32 cycle_time;
267 int cmp;
268
269 cycle_time = iep->cycle_time_ns - iep->def_inc;
270
271 icss_iep_disable(iep);
272
273 /* disable shadow mode */
274 regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
275 IEP_CMP_CFG_SHADOW_EN, 0);
276
277 /* enable shadow mode */
278 regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
279 IEP_CMP_CFG_SHADOW_EN, IEP_CMP_CFG_SHADOW_EN);
280
281 /* clear counters */
282 icss_iep_set_counter(iep, 0);
283
284 /* clear overflow status */
285 regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_STATUS_REG,
286 IEP_GLOBAL_STATUS_CNT_OVF,
287 IEP_GLOBAL_STATUS_CNT_OVF);
288
289 /* clear compare status */
290 for (cmp = IEP_MIN_CMP; cmp < IEP_MAX_CMP; cmp++) {
291 regmap_update_bits(iep->map, ICSS_IEP_CMP_STAT_REG,
292 IEP_CMP_STATUS(cmp), IEP_CMP_STATUS(cmp));
293 }
294
295 /* enable reset counter on CMP0 event */
296 regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
297 IEP_CMP_CFG_CMP0_RST_CNT_EN,
298 IEP_CMP_CFG_CMP0_RST_CNT_EN);
299 /* enable compare */
300 regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
301 IEP_CMP_CFG_CMP_EN(0),
302 IEP_CMP_CFG_CMP_EN(0));
303
304 /* set CMP0 value to cycle time */
305 regmap_write(iep->map, ICSS_IEP_CMP0_REG0, cycle_time);
306 if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
307 regmap_write(iep->map, ICSS_IEP_CMP0_REG1, cycle_time);
308
309 icss_iep_set_counter(iep, 0);
310 icss_iep_enable(iep);
311 }
312
icss_iep_set_default_inc(struct icss_iep * iep,u8 def_inc)313 static void icss_iep_set_default_inc(struct icss_iep *iep, u8 def_inc)
314 {
315 regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_CFG_REG,
316 IEP_GLOBAL_CFG_DEFAULT_INC_MASK,
317 def_inc << IEP_GLOBAL_CFG_DEFAULT_INC_SHIFT);
318 }
319
icss_iep_set_compensation_inc(struct icss_iep * iep,u16 compen_inc)320 static void icss_iep_set_compensation_inc(struct icss_iep *iep, u16 compen_inc)
321 {
322 struct device *dev = regmap_get_device(iep->map);
323
324 if (compen_inc > IEP_MAX_COMPEN_INC) {
325 dev_err(dev, "%s: too high compensation inc %d\n",
326 __func__, compen_inc);
327 compen_inc = IEP_MAX_COMPEN_INC;
328 }
329
330 regmap_update_bits(iep->map, ICSS_IEP_GLOBAL_CFG_REG,
331 IEP_GLOBAL_CFG_COMPEN_INC_MASK,
332 compen_inc << IEP_GLOBAL_CFG_COMPEN_INC_SHIFT);
333 }
334
icss_iep_set_compensation_count(struct icss_iep * iep,u32 compen_count)335 static void icss_iep_set_compensation_count(struct icss_iep *iep,
336 u32 compen_count)
337 {
338 struct device *dev = regmap_get_device(iep->map);
339
340 if (compen_count > IEP_MAX_COMPEN_COUNT) {
341 dev_err(dev, "%s: too high compensation count %d\n",
342 __func__, compen_count);
343 compen_count = IEP_MAX_COMPEN_COUNT;
344 }
345
346 regmap_write(iep->map, ICSS_IEP_COMPEN_REG, compen_count);
347 }
348
icss_iep_set_slow_compensation_count(struct icss_iep * iep,u32 compen_count)349 static void icss_iep_set_slow_compensation_count(struct icss_iep *iep,
350 u32 compen_count)
351 {
352 regmap_write(iep->map, ICSS_IEP_SLOW_COMPEN_REG, compen_count);
353 }
354
355 /* PTP PHC operations */
icss_iep_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)356 static int icss_iep_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
357 {
358 struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
359 s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
360 u32 cyc_count;
361 u16 cmp_inc;
362
363 mutex_lock(&iep->ptp_clk_mutex);
364
365 /* ppb is amount of frequency we want to adjust in 1GHz (billion)
366 * e.g. 100ppb means we need to speed up clock by 100Hz
367 * i.e. at end of 1 second (1 billion ns) clock time, we should be
368 * counting 100 more ns.
369 * We use IEP slow compensation to achieve continuous freq. adjustment.
370 * There are 2 parts. Cycle time and adjustment per cycle.
371 * Simplest case would be 1 sec Cycle time. Then adjustment
372 * pre cycle would be (def_inc + ppb) value.
373 * Cycle time will have to be chosen based on how worse the ppb is.
374 * e.g. smaller the ppb, cycle time has to be large.
375 * The minimum adjustment we can do is +-1ns per cycle so let's
376 * reduce the cycle time to get 1ns per cycle adjustment.
377 * 1ppb = 1sec cycle time & 1ns adjust
378 * 1000ppb = 1/1000 cycle time & 1ns adjust per cycle
379 */
380
381 if (iep->cycle_time_ns)
382 iep->slow_cmp_inc = iep->clk_tick_time; /* 4ns adj per cycle */
383 else
384 iep->slow_cmp_inc = 1; /* 1ns adjust per cycle */
385
386 if (ppb < 0) {
387 iep->slow_cmp_inc = -iep->slow_cmp_inc;
388 ppb = -ppb;
389 }
390
391 cyc_count = NSEC_PER_SEC; /* 1s cycle time @1GHz */
392 cyc_count /= ppb; /* cycle time per ppb */
393
394 /* slow_cmp_count is decremented every clock cycle, e.g. @250MHz */
395 if (!iep->cycle_time_ns)
396 cyc_count /= iep->clk_tick_time;
397 iep->slow_cmp_count = cyc_count;
398
399 /* iep->clk_tick_time is def_inc */
400 cmp_inc = iep->clk_tick_time + iep->slow_cmp_inc;
401 icss_iep_set_compensation_inc(iep, cmp_inc);
402 icss_iep_set_slow_compensation_count(iep, iep->slow_cmp_count);
403
404 mutex_unlock(&iep->ptp_clk_mutex);
405
406 return 0;
407 }
408
icss_iep_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)409 static int icss_iep_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
410 {
411 struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
412 s64 ns;
413
414 mutex_lock(&iep->ptp_clk_mutex);
415 if (iep->ops && iep->ops->adjtime) {
416 iep->ops->adjtime(iep->clockops_data, delta);
417 } else {
418 ns = icss_iep_gettime(iep, NULL);
419 ns += delta;
420 icss_iep_settime(iep, ns);
421 }
422 mutex_unlock(&iep->ptp_clk_mutex);
423
424 return 0;
425 }
426
icss_iep_ptp_gettimeex(struct ptp_clock_info * ptp,struct timespec64 * ts,struct ptp_system_timestamp * sts)427 static int icss_iep_ptp_gettimeex(struct ptp_clock_info *ptp,
428 struct timespec64 *ts,
429 struct ptp_system_timestamp *sts)
430 {
431 struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
432 u64 ns;
433
434 mutex_lock(&iep->ptp_clk_mutex);
435 ns = icss_iep_gettime(iep, sts);
436 *ts = ns_to_timespec64(ns);
437 mutex_unlock(&iep->ptp_clk_mutex);
438
439 return 0;
440 }
441
icss_iep_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)442 static int icss_iep_ptp_settime(struct ptp_clock_info *ptp,
443 const struct timespec64 *ts)
444 {
445 struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
446 u64 ns;
447
448 mutex_lock(&iep->ptp_clk_mutex);
449 ns = timespec64_to_ns(ts);
450 icss_iep_settime(iep, ns);
451 mutex_unlock(&iep->ptp_clk_mutex);
452
453 return 0;
454 }
455
icss_iep_update_to_next_boundary(struct icss_iep * iep,u64 start_ns)456 static void icss_iep_update_to_next_boundary(struct icss_iep *iep, u64 start_ns)
457 {
458 u64 ns, p_ns;
459 u32 offset;
460
461 ns = icss_iep_gettime(iep, NULL);
462 if (start_ns < ns)
463 start_ns = ns;
464 p_ns = iep->period;
465 /* Round up to next period boundary */
466 start_ns += p_ns - 1;
467 offset = do_div(start_ns, p_ns);
468 start_ns = start_ns * p_ns;
469 /* If it is too close to update, shift to next boundary */
470 if (p_ns - offset < 10)
471 start_ns += p_ns;
472
473 regmap_write(iep->map, ICSS_IEP_CMP1_REG0, lower_32_bits(start_ns));
474 if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
475 regmap_write(iep->map, ICSS_IEP_CMP1_REG1, upper_32_bits(start_ns));
476 }
477
icss_iep_perout_enable_hw(struct icss_iep * iep,struct ptp_perout_request * req,int on)478 static int icss_iep_perout_enable_hw(struct icss_iep *iep,
479 struct ptp_perout_request *req, int on)
480 {
481 int ret;
482 u64 cmp;
483
484 if (iep->ops && iep->ops->perout_enable) {
485 ret = iep->ops->perout_enable(iep->clockops_data, req, on, &cmp);
486 if (ret)
487 return ret;
488
489 if (on) {
490 /* Configure CMP */
491 regmap_write(iep->map, ICSS_IEP_CMP1_REG0, lower_32_bits(cmp));
492 if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
493 regmap_write(iep->map, ICSS_IEP_CMP1_REG1, upper_32_bits(cmp));
494 /* Configure SYNC, 1ms pulse width */
495 regmap_write(iep->map, ICSS_IEP_SYNC_PWIDTH_REG, 1000000);
496 regmap_write(iep->map, ICSS_IEP_SYNC0_PERIOD_REG, 0);
497 regmap_write(iep->map, ICSS_IEP_SYNC_START_REG, 0);
498 regmap_write(iep->map, ICSS_IEP_SYNC_CTRL_REG, 0); /* one-shot mode */
499 /* Enable CMP 1 */
500 regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
501 IEP_CMP_CFG_CMP_EN(1), IEP_CMP_CFG_CMP_EN(1));
502 } else {
503 /* Disable CMP 1 */
504 regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
505 IEP_CMP_CFG_CMP_EN(1), 0);
506
507 /* clear regs */
508 regmap_write(iep->map, ICSS_IEP_CMP1_REG0, 0);
509 if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
510 regmap_write(iep->map, ICSS_IEP_CMP1_REG1, 0);
511 }
512 } else {
513 if (on) {
514 u64 start_ns;
515
516 iep->period = ((u64)req->period.sec * NSEC_PER_SEC) +
517 req->period.nsec;
518 start_ns = ((u64)req->period.sec * NSEC_PER_SEC)
519 + req->period.nsec;
520 icss_iep_update_to_next_boundary(iep, start_ns);
521
522 /* Enable Sync in single shot mode */
523 regmap_write(iep->map, ICSS_IEP_SYNC_CTRL_REG,
524 IEP_SYNC_CTRL_SYNC_N_EN(0) | IEP_SYNC_CTRL_SYNC_EN);
525 /* Enable CMP 1 */
526 regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
527 IEP_CMP_CFG_CMP_EN(1), IEP_CMP_CFG_CMP_EN(1));
528 } else {
529 /* Disable CMP 1 */
530 regmap_update_bits(iep->map, ICSS_IEP_CMP_CFG_REG,
531 IEP_CMP_CFG_CMP_EN(1), 0);
532
533 /* clear CMP regs */
534 regmap_write(iep->map, ICSS_IEP_CMP1_REG0, 0);
535 if (iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT)
536 regmap_write(iep->map, ICSS_IEP_CMP1_REG1, 0);
537
538 /* Disable sync */
539 regmap_write(iep->map, ICSS_IEP_SYNC_CTRL_REG, 0);
540 }
541 }
542
543 return 0;
544 }
545
icss_iep_perout_enable(struct icss_iep * iep,struct ptp_perout_request * req,int on)546 static int icss_iep_perout_enable(struct icss_iep *iep,
547 struct ptp_perout_request *req, int on)
548 {
549 unsigned long flags;
550 int ret = 0;
551
552 mutex_lock(&iep->ptp_clk_mutex);
553
554 if (iep->pps_enabled) {
555 ret = -EBUSY;
556 goto exit;
557 }
558
559 if (iep->perout_enabled == !!on)
560 goto exit;
561
562 spin_lock_irqsave(&iep->irq_lock, flags);
563 ret = icss_iep_perout_enable_hw(iep, req, on);
564 if (!ret)
565 iep->perout_enabled = !!on;
566 spin_unlock_irqrestore(&iep->irq_lock, flags);
567
568 exit:
569 mutex_unlock(&iep->ptp_clk_mutex);
570
571 return ret;
572 }
573
icss_iep_pps_enable(struct icss_iep * iep,int on)574 static int icss_iep_pps_enable(struct icss_iep *iep, int on)
575 {
576 struct ptp_clock_request rq;
577 struct timespec64 ts;
578 unsigned long flags;
579 int ret = 0;
580 u64 ns;
581
582 mutex_lock(&iep->ptp_clk_mutex);
583
584 if (iep->perout_enabled) {
585 ret = -EBUSY;
586 goto exit;
587 }
588
589 if (iep->pps_enabled == !!on)
590 goto exit;
591
592 spin_lock_irqsave(&iep->irq_lock, flags);
593
594 rq.perout.index = 0;
595 if (on) {
596 ns = icss_iep_gettime(iep, NULL);
597 ts = ns_to_timespec64(ns);
598 rq.perout.period.sec = 1;
599 rq.perout.period.nsec = 0;
600 rq.perout.start.sec = ts.tv_sec + 2;
601 rq.perout.start.nsec = 0;
602 ret = icss_iep_perout_enable_hw(iep, &rq.perout, on);
603 } else {
604 ret = icss_iep_perout_enable_hw(iep, &rq.perout, on);
605 }
606
607 if (!ret)
608 iep->pps_enabled = !!on;
609
610 spin_unlock_irqrestore(&iep->irq_lock, flags);
611
612 exit:
613 mutex_unlock(&iep->ptp_clk_mutex);
614
615 return ret;
616 }
617
icss_iep_extts_enable(struct icss_iep * iep,u32 index,int on)618 static int icss_iep_extts_enable(struct icss_iep *iep, u32 index, int on)
619 {
620 u32 val, cap, ret = 0;
621
622 mutex_lock(&iep->ptp_clk_mutex);
623
624 if (iep->ops && iep->ops->extts_enable) {
625 ret = iep->ops->extts_enable(iep->clockops_data, index, on);
626 goto exit;
627 }
628
629 if (((iep->latch_enable & BIT(index)) >> index) == on)
630 goto exit;
631
632 regmap_read(iep->map, ICSS_IEP_CAPTURE_CFG_REG, &val);
633 cap = IEP_CAP_CFG_CAP_ASYNC_EN(index) | IEP_CAP_CFG_CAPNR_1ST_EVENT_EN(index);
634 if (on) {
635 val |= cap;
636 iep->latch_enable |= BIT(index);
637 } else {
638 val &= ~cap;
639 iep->latch_enable &= ~BIT(index);
640 }
641 regmap_write(iep->map, ICSS_IEP_CAPTURE_CFG_REG, val);
642
643 exit:
644 mutex_unlock(&iep->ptp_clk_mutex);
645
646 return ret;
647 }
648
icss_iep_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)649 static int icss_iep_ptp_enable(struct ptp_clock_info *ptp,
650 struct ptp_clock_request *rq, int on)
651 {
652 struct icss_iep *iep = container_of(ptp, struct icss_iep, ptp_info);
653
654 switch (rq->type) {
655 case PTP_CLK_REQ_PEROUT:
656 return icss_iep_perout_enable(iep, &rq->perout, on);
657 case PTP_CLK_REQ_PPS:
658 return icss_iep_pps_enable(iep, on);
659 case PTP_CLK_REQ_EXTTS:
660 return icss_iep_extts_enable(iep, rq->extts.index, on);
661 default:
662 break;
663 }
664
665 return -EOPNOTSUPP;
666 }
667
668 static struct ptp_clock_info icss_iep_ptp_info = {
669 .owner = THIS_MODULE,
670 .name = "ICSS IEP timer",
671 .max_adj = 10000000,
672 .adjfine = icss_iep_ptp_adjfine,
673 .adjtime = icss_iep_ptp_adjtime,
674 .gettimex64 = icss_iep_ptp_gettimeex,
675 .settime64 = icss_iep_ptp_settime,
676 .enable = icss_iep_ptp_enable,
677 };
678
icss_iep_get_idx(struct device_node * np,int idx)679 struct icss_iep *icss_iep_get_idx(struct device_node *np, int idx)
680 {
681 struct platform_device *pdev;
682 struct device_node *iep_np;
683 struct icss_iep *iep;
684
685 iep_np = of_parse_phandle(np, "ti,iep", idx);
686 if (!iep_np || !of_device_is_available(iep_np))
687 return ERR_PTR(-ENODEV);
688
689 pdev = of_find_device_by_node(iep_np);
690 of_node_put(iep_np);
691
692 if (!pdev)
693 /* probably IEP not yet probed */
694 return ERR_PTR(-EPROBE_DEFER);
695
696 iep = platform_get_drvdata(pdev);
697 if (!iep)
698 return ERR_PTR(-EPROBE_DEFER);
699
700 device_lock(iep->dev);
701 if (iep->client_np) {
702 device_unlock(iep->dev);
703 dev_err(iep->dev, "IEP is already acquired by %s",
704 iep->client_np->name);
705 return ERR_PTR(-EBUSY);
706 }
707 iep->client_np = np;
708 device_unlock(iep->dev);
709 get_device(iep->dev);
710
711 return iep;
712 }
713 EXPORT_SYMBOL_GPL(icss_iep_get_idx);
714
icss_iep_get(struct device_node * np)715 struct icss_iep *icss_iep_get(struct device_node *np)
716 {
717 return icss_iep_get_idx(np, 0);
718 }
719 EXPORT_SYMBOL_GPL(icss_iep_get);
720
icss_iep_put(struct icss_iep * iep)721 void icss_iep_put(struct icss_iep *iep)
722 {
723 device_lock(iep->dev);
724 iep->client_np = NULL;
725 device_unlock(iep->dev);
726 put_device(iep->dev);
727 }
728 EXPORT_SYMBOL_GPL(icss_iep_put);
729
icss_iep_init_fw(struct icss_iep * iep)730 void icss_iep_init_fw(struct icss_iep *iep)
731 {
732 /* start IEP for FW use in raw 64bit mode, no PTP support */
733 iep->clk_tick_time = iep->def_inc;
734 iep->cycle_time_ns = 0;
735 iep->ops = NULL;
736 iep->clockops_data = NULL;
737 icss_iep_set_default_inc(iep, iep->def_inc);
738 icss_iep_set_compensation_inc(iep, iep->def_inc);
739 icss_iep_set_compensation_count(iep, 0);
740 regmap_write(iep->map, ICSS_IEP_SYNC_PWIDTH_REG, iep->refclk_freq / 10); /* 100 ms pulse */
741 regmap_write(iep->map, ICSS_IEP_SYNC0_PERIOD_REG, 0);
742 if (iep->plat_data->flags & ICSS_IEP_SLOW_COMPEN_REG_SUPPORT)
743 icss_iep_set_slow_compensation_count(iep, 0);
744
745 icss_iep_enable(iep);
746 icss_iep_settime(iep, 0);
747 }
748 EXPORT_SYMBOL_GPL(icss_iep_init_fw);
749
icss_iep_exit_fw(struct icss_iep * iep)750 void icss_iep_exit_fw(struct icss_iep *iep)
751 {
752 icss_iep_disable(iep);
753 }
754 EXPORT_SYMBOL_GPL(icss_iep_exit_fw);
755
icss_iep_init(struct icss_iep * iep,const struct icss_iep_clockops * clkops,void * clockops_data,u32 cycle_time_ns)756 int icss_iep_init(struct icss_iep *iep, const struct icss_iep_clockops *clkops,
757 void *clockops_data, u32 cycle_time_ns)
758 {
759 int ret = 0;
760
761 iep->cycle_time_ns = cycle_time_ns;
762 iep->clk_tick_time = iep->def_inc;
763 iep->ops = clkops;
764 iep->clockops_data = clockops_data;
765 icss_iep_set_default_inc(iep, iep->def_inc);
766 icss_iep_set_compensation_inc(iep, iep->def_inc);
767 icss_iep_set_compensation_count(iep, 0);
768 regmap_write(iep->map, ICSS_IEP_SYNC_PWIDTH_REG, iep->refclk_freq / 10); /* 100 ms pulse */
769 regmap_write(iep->map, ICSS_IEP_SYNC0_PERIOD_REG, 0);
770 if (iep->plat_data->flags & ICSS_IEP_SLOW_COMPEN_REG_SUPPORT)
771 icss_iep_set_slow_compensation_count(iep, 0);
772
773 if (!(iep->plat_data->flags & ICSS_IEP_64BIT_COUNTER_SUPPORT) ||
774 !(iep->plat_data->flags & ICSS_IEP_SLOW_COMPEN_REG_SUPPORT))
775 goto skip_perout;
776
777 if (iep->ops && iep->ops->perout_enable) {
778 iep->ptp_info.n_per_out = 1;
779 iep->ptp_info.pps = 1;
780 }
781
782 if (iep->ops && iep->ops->extts_enable)
783 iep->ptp_info.n_ext_ts = 2;
784
785 skip_perout:
786 if (cycle_time_ns)
787 icss_iep_enable_shadow_mode(iep);
788 else
789 icss_iep_enable(iep);
790 icss_iep_settime(iep, ktime_get_real_ns());
791
792 iep->ptp_clock = ptp_clock_register(&iep->ptp_info, iep->dev);
793 if (IS_ERR(iep->ptp_clock)) {
794 ret = PTR_ERR(iep->ptp_clock);
795 iep->ptp_clock = NULL;
796 dev_err(iep->dev, "Failed to register ptp clk %d\n", ret);
797 }
798
799 return ret;
800 }
801 EXPORT_SYMBOL_GPL(icss_iep_init);
802
icss_iep_exit(struct icss_iep * iep)803 int icss_iep_exit(struct icss_iep *iep)
804 {
805 if (iep->ptp_clock) {
806 ptp_clock_unregister(iep->ptp_clock);
807 iep->ptp_clock = NULL;
808 }
809 icss_iep_disable(iep);
810
811 return 0;
812 }
813 EXPORT_SYMBOL_GPL(icss_iep_exit);
814
icss_iep_probe(struct platform_device * pdev)815 static int icss_iep_probe(struct platform_device *pdev)
816 {
817 struct device *dev = &pdev->dev;
818 struct icss_iep *iep;
819 struct clk *iep_clk;
820
821 iep = devm_kzalloc(dev, sizeof(*iep), GFP_KERNEL);
822 if (!iep)
823 return -ENOMEM;
824
825 iep->dev = dev;
826 iep->base = devm_platform_ioremap_resource(pdev, 0);
827 if (IS_ERR(iep->base))
828 return -ENODEV;
829
830 iep_clk = devm_clk_get(dev, NULL);
831 if (IS_ERR(iep_clk))
832 return PTR_ERR(iep_clk);
833
834 iep->refclk_freq = clk_get_rate(iep_clk);
835
836 iep->def_inc = NSEC_PER_SEC / iep->refclk_freq; /* ns per clock tick */
837 if (iep->def_inc > IEP_MAX_DEF_INC) {
838 dev_err(dev, "Failed to set def_inc %d. IEP_clock is too slow to be supported\n",
839 iep->def_inc);
840 return -EINVAL;
841 }
842
843 iep->plat_data = device_get_match_data(dev);
844 if (!iep->plat_data)
845 return -EINVAL;
846
847 iep->map = devm_regmap_init(dev, NULL, iep, iep->plat_data->config);
848 if (IS_ERR(iep->map)) {
849 dev_err(dev, "Failed to create regmap for IEP %ld\n",
850 PTR_ERR(iep->map));
851 return PTR_ERR(iep->map);
852 }
853
854 iep->ptp_info = icss_iep_ptp_info;
855 mutex_init(&iep->ptp_clk_mutex);
856 spin_lock_init(&iep->irq_lock);
857 dev_set_drvdata(dev, iep);
858 icss_iep_disable(iep);
859
860 return 0;
861 }
862
am654_icss_iep_valid_reg(struct device * dev,unsigned int reg)863 static bool am654_icss_iep_valid_reg(struct device *dev, unsigned int reg)
864 {
865 switch (reg) {
866 case ICSS_IEP_GLOBAL_CFG_REG ... ICSS_IEP_SYNC_START_REG:
867 return true;
868 default:
869 return false;
870 }
871
872 return false;
873 }
874
icss_iep_regmap_write(void * context,unsigned int reg,unsigned int val)875 static int icss_iep_regmap_write(void *context, unsigned int reg,
876 unsigned int val)
877 {
878 struct icss_iep *iep = context;
879
880 writel(val, iep->base + iep->plat_data->reg_offs[reg]);
881
882 return 0;
883 }
884
icss_iep_regmap_read(void * context,unsigned int reg,unsigned int * val)885 static int icss_iep_regmap_read(void *context, unsigned int reg,
886 unsigned int *val)
887 {
888 struct icss_iep *iep = context;
889
890 *val = readl(iep->base + iep->plat_data->reg_offs[reg]);
891
892 return 0;
893 }
894
895 static struct regmap_config am654_icss_iep_regmap_config = {
896 .name = "icss iep",
897 .reg_stride = 1,
898 .reg_write = icss_iep_regmap_write,
899 .reg_read = icss_iep_regmap_read,
900 .writeable_reg = am654_icss_iep_valid_reg,
901 .readable_reg = am654_icss_iep_valid_reg,
902 .fast_io = 1,
903 };
904
905 static const struct icss_iep_plat_data am654_icss_iep_plat_data = {
906 .flags = ICSS_IEP_64BIT_COUNTER_SUPPORT |
907 ICSS_IEP_SLOW_COMPEN_REG_SUPPORT |
908 ICSS_IEP_SHADOW_MODE_SUPPORT,
909 .reg_offs = {
910 [ICSS_IEP_GLOBAL_CFG_REG] = 0x00,
911 [ICSS_IEP_COMPEN_REG] = 0x08,
912 [ICSS_IEP_SLOW_COMPEN_REG] = 0x0C,
913 [ICSS_IEP_COUNT_REG0] = 0x10,
914 [ICSS_IEP_COUNT_REG1] = 0x14,
915 [ICSS_IEP_CAPTURE_CFG_REG] = 0x18,
916 [ICSS_IEP_CAPTURE_STAT_REG] = 0x1c,
917
918 [ICSS_IEP_CAP6_RISE_REG0] = 0x50,
919 [ICSS_IEP_CAP6_RISE_REG1] = 0x54,
920
921 [ICSS_IEP_CAP7_RISE_REG0] = 0x60,
922 [ICSS_IEP_CAP7_RISE_REG1] = 0x64,
923
924 [ICSS_IEP_CMP_CFG_REG] = 0x70,
925 [ICSS_IEP_CMP_STAT_REG] = 0x74,
926 [ICSS_IEP_CMP0_REG0] = 0x78,
927 [ICSS_IEP_CMP0_REG1] = 0x7c,
928 [ICSS_IEP_CMP1_REG0] = 0x80,
929 [ICSS_IEP_CMP1_REG1] = 0x84,
930
931 [ICSS_IEP_CMP8_REG0] = 0xc0,
932 [ICSS_IEP_CMP8_REG1] = 0xc4,
933 [ICSS_IEP_SYNC_CTRL_REG] = 0x180,
934 [ICSS_IEP_SYNC0_STAT_REG] = 0x188,
935 [ICSS_IEP_SYNC1_STAT_REG] = 0x18c,
936 [ICSS_IEP_SYNC_PWIDTH_REG] = 0x190,
937 [ICSS_IEP_SYNC0_PERIOD_REG] = 0x194,
938 [ICSS_IEP_SYNC1_DELAY_REG] = 0x198,
939 [ICSS_IEP_SYNC_START_REG] = 0x19c,
940 },
941 .config = &am654_icss_iep_regmap_config,
942 };
943
944 static const struct of_device_id icss_iep_of_match[] = {
945 {
946 .compatible = "ti,am654-icss-iep",
947 .data = &am654_icss_iep_plat_data,
948 },
949 {},
950 };
951 MODULE_DEVICE_TABLE(of, icss_iep_of_match);
952
953 static struct platform_driver icss_iep_driver = {
954 .driver = {
955 .name = "icss-iep",
956 .of_match_table = icss_iep_of_match,
957 },
958 .probe = icss_iep_probe,
959 };
960 module_platform_driver(icss_iep_driver);
961
962 MODULE_LICENSE("GPL");
963 MODULE_DESCRIPTION("TI ICSS IEP driver");
964 MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>");
965 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
966