1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "tx_common.h"
24 #include "workarounds.h"
25 #include "ef10_regs.h"
26
27 #ifdef EFX_USE_PIO
28
29 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
30 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
31
32 #endif /* EFX_USE_PIO */
33
efx_tx_get_copy_buffer(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer)34 static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
35 struct efx_tx_buffer *buffer)
36 {
37 unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
38 struct efx_buffer *page_buf =
39 &tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
40 unsigned int offset =
41 ((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
42
43 if (unlikely(!page_buf->addr) &&
44 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
45 GFP_ATOMIC))
46 return NULL;
47 buffer->dma_addr = page_buf->dma_addr + offset;
48 buffer->unmap_len = 0;
49 return (u8 *)page_buf->addr + offset;
50 }
51
efx_tx_get_copy_buffer_limited(struct efx_tx_queue * tx_queue,struct efx_tx_buffer * buffer,size_t len)52 u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
53 struct efx_tx_buffer *buffer, size_t len)
54 {
55 if (len > EFX_TX_CB_SIZE)
56 return NULL;
57 return efx_tx_get_copy_buffer(tx_queue, buffer);
58 }
59
efx_tx_maybe_stop_queue(struct efx_tx_queue * txq1)60 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
61 {
62 /* We need to consider all queues that the net core sees as one */
63 struct efx_nic *efx = txq1->efx;
64 struct efx_tx_queue *txq2;
65 unsigned int fill_level;
66
67 fill_level = efx_channel_tx_old_fill_level(txq1->channel);
68 if (likely(fill_level < efx->txq_stop_thresh))
69 return;
70
71 /* We used the stale old_read_count above, which gives us a
72 * pessimistic estimate of the fill level (which may even
73 * validly be >= efx->txq_entries). Now try again using
74 * read_count (more likely to be a cache miss).
75 *
76 * If we read read_count and then conditionally stop the
77 * queue, it is possible for the completion path to race with
78 * us and complete all outstanding descriptors in the middle,
79 * after which there will be no more completions to wake it.
80 * Therefore we stop the queue first, then read read_count
81 * (with a memory barrier to ensure the ordering), then
82 * restart the queue if the fill level turns out to be low
83 * enough.
84 */
85 netif_tx_stop_queue(txq1->core_txq);
86 smp_mb();
87 efx_for_each_channel_tx_queue(txq2, txq1->channel)
88 txq2->old_read_count = READ_ONCE(txq2->read_count);
89
90 fill_level = efx_channel_tx_old_fill_level(txq1->channel);
91 EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
92 if (likely(fill_level < efx->txq_stop_thresh)) {
93 smp_mb();
94 if (likely(!efx->loopback_selftest))
95 netif_tx_start_queue(txq1->core_txq);
96 }
97 }
98
efx_enqueue_skb_copy(struct efx_tx_queue * tx_queue,struct sk_buff * skb)99 static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
100 struct sk_buff *skb)
101 {
102 unsigned int copy_len = skb->len;
103 struct efx_tx_buffer *buffer;
104 u8 *copy_buffer;
105 int rc;
106
107 EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
108
109 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
110
111 copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
112 if (unlikely(!copy_buffer))
113 return -ENOMEM;
114
115 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
116 EFX_WARN_ON_PARANOID(rc);
117 buffer->len = copy_len;
118
119 buffer->skb = skb;
120 buffer->flags = EFX_TX_BUF_SKB;
121
122 ++tx_queue->insert_count;
123 return rc;
124 }
125
126 #ifdef EFX_USE_PIO
127
128 struct efx_short_copy_buffer {
129 int used;
130 u8 buf[L1_CACHE_BYTES];
131 };
132
133 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
134 * Advances piobuf pointer. Leaves additional data in the copy buffer.
135 */
efx_memcpy_toio_aligned(struct efx_nic * efx,u8 __iomem ** piobuf,u8 * data,int len,struct efx_short_copy_buffer * copy_buf)136 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
137 u8 *data, int len,
138 struct efx_short_copy_buffer *copy_buf)
139 {
140 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
141
142 __iowrite64_copy(*piobuf, data, block_len >> 3);
143 *piobuf += block_len;
144 len -= block_len;
145
146 if (len) {
147 data += block_len;
148 BUG_ON(copy_buf->used);
149 BUG_ON(len > sizeof(copy_buf->buf));
150 memcpy(copy_buf->buf, data, len);
151 copy_buf->used = len;
152 }
153 }
154
155 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
156 * Advances piobuf pointer. Leaves additional data in the copy buffer.
157 */
efx_memcpy_toio_aligned_cb(struct efx_nic * efx,u8 __iomem ** piobuf,u8 * data,int len,struct efx_short_copy_buffer * copy_buf)158 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
159 u8 *data, int len,
160 struct efx_short_copy_buffer *copy_buf)
161 {
162 if (copy_buf->used) {
163 /* if the copy buffer is partially full, fill it up and write */
164 int copy_to_buf =
165 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
166
167 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
168 copy_buf->used += copy_to_buf;
169
170 /* if we didn't fill it up then we're done for now */
171 if (copy_buf->used < sizeof(copy_buf->buf))
172 return;
173
174 __iowrite64_copy(*piobuf, copy_buf->buf,
175 sizeof(copy_buf->buf) >> 3);
176 *piobuf += sizeof(copy_buf->buf);
177 data += copy_to_buf;
178 len -= copy_to_buf;
179 copy_buf->used = 0;
180 }
181
182 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
183 }
184
efx_flush_copy_buffer(struct efx_nic * efx,u8 __iomem * piobuf,struct efx_short_copy_buffer * copy_buf)185 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
186 struct efx_short_copy_buffer *copy_buf)
187 {
188 /* if there's anything in it, write the whole buffer, including junk */
189 if (copy_buf->used)
190 __iowrite64_copy(piobuf, copy_buf->buf,
191 sizeof(copy_buf->buf) >> 3);
192 }
193
194 /* Traverse skb structure and copy fragments in to PIO buffer.
195 * Advances piobuf pointer.
196 */
efx_skb_copy_bits_to_pio(struct efx_nic * efx,struct sk_buff * skb,u8 __iomem ** piobuf,struct efx_short_copy_buffer * copy_buf)197 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
198 u8 __iomem **piobuf,
199 struct efx_short_copy_buffer *copy_buf)
200 {
201 int i;
202
203 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
204 copy_buf);
205
206 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
207 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
208 u8 *vaddr;
209
210 vaddr = kmap_local_page(skb_frag_page(f));
211
212 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
213 skb_frag_size(f), copy_buf);
214 kunmap_local(vaddr);
215 }
216
217 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
218 }
219
efx_enqueue_skb_pio(struct efx_tx_queue * tx_queue,struct sk_buff * skb)220 static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
221 struct sk_buff *skb)
222 {
223 struct efx_tx_buffer *buffer =
224 efx_tx_queue_get_insert_buffer(tx_queue);
225 u8 __iomem *piobuf = tx_queue->piobuf;
226
227 /* Copy to PIO buffer. Ensure the writes are padded to the end
228 * of a cache line, as this is required for write-combining to be
229 * effective on at least x86.
230 */
231
232 if (skb_shinfo(skb)->nr_frags) {
233 /* The size of the copy buffer will ensure all writes
234 * are the size of a cache line.
235 */
236 struct efx_short_copy_buffer copy_buf;
237
238 copy_buf.used = 0;
239
240 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
241 &piobuf, ©_buf);
242 efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf);
243 } else {
244 /* Pad the write to the size of a cache line.
245 * We can do this because we know the skb_shared_info struct is
246 * after the source, and the destination buffer is big enough.
247 */
248 BUILD_BUG_ON(L1_CACHE_BYTES >
249 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
250 __iowrite64_copy(tx_queue->piobuf, skb->data,
251 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
252 }
253
254 buffer->skb = skb;
255 buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
256
257 EFX_POPULATE_QWORD_5(buffer->option,
258 ESF_DZ_TX_DESC_IS_OPT, 1,
259 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
260 ESF_DZ_TX_PIO_CONT, 0,
261 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
262 ESF_DZ_TX_PIO_BUF_ADDR,
263 tx_queue->piobuf_offset);
264 ++tx_queue->insert_count;
265 return 0;
266 }
267
268 /* Decide whether we can use TX PIO, ie. write packet data directly into
269 * a buffer on the device. This can reduce latency at the expense of
270 * throughput, so we only do this if both hardware and software TX rings
271 * are empty, including all queues for the channel. This also ensures that
272 * only one packet at a time can be using the PIO buffer. If the xmit_more
273 * flag is set then we don't use this - there'll be another packet along
274 * shortly and we want to hold off the doorbell.
275 */
efx_tx_may_pio(struct efx_tx_queue * tx_queue)276 static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
277 {
278 struct efx_channel *channel = tx_queue->channel;
279
280 if (!tx_queue->piobuf)
281 return false;
282
283 EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
284
285 efx_for_each_channel_tx_queue(tx_queue, channel)
286 if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
287 return false;
288
289 return true;
290 }
291 #endif /* EFX_USE_PIO */
292
293 /* Send any pending traffic for a channel. xmit_more is shared across all
294 * queues for a channel, so we must check all of them.
295 */
efx_tx_send_pending(struct efx_channel * channel)296 static void efx_tx_send_pending(struct efx_channel *channel)
297 {
298 struct efx_tx_queue *q;
299
300 efx_for_each_channel_tx_queue(q, channel) {
301 if (q->xmit_pending)
302 efx_nic_push_buffers(q);
303 }
304 }
305
306 /*
307 * Add a socket buffer to a TX queue
308 *
309 * This maps all fragments of a socket buffer for DMA and adds them to
310 * the TX queue. The queue's insert pointer will be incremented by
311 * the number of fragments in the socket buffer.
312 *
313 * If any DMA mapping fails, any mapped fragments will be unmapped,
314 * the queue's insert pointer will be restored to its original value.
315 *
316 * This function is split out from efx_hard_start_xmit to allow the
317 * loopback test to direct packets via specific TX queues.
318 *
319 * Returns NETDEV_TX_OK.
320 * You must hold netif_tx_lock() to call this function.
321 */
__efx_enqueue_skb(struct efx_tx_queue * tx_queue,struct sk_buff * skb)322 netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
323 {
324 unsigned int old_insert_count = tx_queue->insert_count;
325 bool xmit_more = netdev_xmit_more();
326 bool data_mapped = false;
327 unsigned int segments;
328 unsigned int skb_len;
329 int rc;
330
331 skb_len = skb->len;
332 segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
333 if (segments == 1)
334 segments = 0; /* Don't use TSO for a single segment. */
335
336 /* Handle TSO first - it's *possible* (although unlikely) that we might
337 * be passed a packet to segment that's smaller than the copybreak/PIO
338 * size limit.
339 */
340 if (segments) {
341 switch (tx_queue->tso_version) {
342 case 1:
343 rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped);
344 break;
345 case 2:
346 rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped);
347 break;
348 case 0: /* No TSO on this queue, SW fallback needed */
349 default:
350 rc = -EINVAL;
351 break;
352 }
353 if (rc == -EINVAL) {
354 rc = efx_tx_tso_fallback(tx_queue, skb);
355 tx_queue->tso_fallbacks++;
356 if (rc == 0)
357 return 0;
358 }
359 if (rc)
360 goto err;
361 #ifdef EFX_USE_PIO
362 } else if (skb_len <= efx_piobuf_size && !xmit_more &&
363 efx_tx_may_pio(tx_queue)) {
364 /* Use PIO for short packets with an empty queue. */
365 if (efx_enqueue_skb_pio(tx_queue, skb))
366 goto err;
367 tx_queue->pio_packets++;
368 data_mapped = true;
369 #endif
370 } else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
371 /* Pad short packets or coalesce short fragmented packets. */
372 if (efx_enqueue_skb_copy(tx_queue, skb))
373 goto err;
374 tx_queue->cb_packets++;
375 data_mapped = true;
376 }
377
378 /* Map for DMA and create descriptors if we haven't done so already. */
379 if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
380 goto err;
381
382 efx_tx_maybe_stop_queue(tx_queue);
383
384 tx_queue->xmit_pending = true;
385
386 /* Pass off to hardware */
387 if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
388 efx_tx_send_pending(tx_queue->channel);
389
390 if (segments) {
391 tx_queue->tso_bursts++;
392 tx_queue->tso_packets += segments;
393 tx_queue->tx_packets += segments;
394 } else {
395 tx_queue->tx_packets++;
396 }
397
398 return NETDEV_TX_OK;
399
400
401 err:
402 efx_enqueue_unwind(tx_queue, old_insert_count);
403 dev_kfree_skb_any(skb);
404
405 /* If we're not expecting another transmit and we had something to push
406 * on this queue or a partner queue then we need to push here to get the
407 * previous packets out.
408 */
409 if (!xmit_more)
410 efx_tx_send_pending(tx_queue->channel);
411
412 return NETDEV_TX_OK;
413 }
414
415 /* Transmit a packet from an XDP buffer
416 *
417 * Returns number of packets sent on success, error code otherwise.
418 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
419 * (for XDP redirect).
420 */
efx_xdp_tx_buffers(struct efx_nic * efx,int n,struct xdp_frame ** xdpfs,bool flush)421 int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
422 bool flush)
423 {
424 struct efx_tx_buffer *tx_buffer;
425 struct efx_tx_queue *tx_queue;
426 struct xdp_frame *xdpf;
427 dma_addr_t dma_addr;
428 unsigned int len;
429 int space;
430 int cpu;
431 int i = 0;
432
433 if (unlikely(n && !xdpfs))
434 return -EINVAL;
435 if (unlikely(!n))
436 return 0;
437
438 cpu = raw_smp_processor_id();
439 if (unlikely(cpu >= efx->xdp_tx_queue_count))
440 return -EINVAL;
441
442 tx_queue = efx->xdp_tx_queues[cpu];
443 if (unlikely(!tx_queue))
444 return -EINVAL;
445
446 if (!tx_queue->initialised)
447 return -EINVAL;
448
449 if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
450 HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
451
452 /* If we're borrowing net stack queues we have to handle stop-restart
453 * or we might block the queue and it will be considered as frozen
454 */
455 if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
456 if (netif_tx_queue_stopped(tx_queue->core_txq))
457 goto unlock;
458 efx_tx_maybe_stop_queue(tx_queue);
459 }
460
461 /* Check for available space. We should never need multiple
462 * descriptors per frame.
463 */
464 space = efx->txq_entries +
465 tx_queue->read_count - tx_queue->insert_count;
466
467 for (i = 0; i < n; i++) {
468 xdpf = xdpfs[i];
469
470 if (i >= space)
471 break;
472
473 /* We'll want a descriptor for this tx. */
474 prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
475
476 len = xdpf->len;
477
478 /* Map for DMA. */
479 dma_addr = dma_map_single(&efx->pci_dev->dev,
480 xdpf->data, len,
481 DMA_TO_DEVICE);
482 if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
483 break;
484
485 /* Create descriptor and set up for unmapping DMA. */
486 tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
487 tx_buffer->xdpf = xdpf;
488 tx_buffer->flags = EFX_TX_BUF_XDP |
489 EFX_TX_BUF_MAP_SINGLE;
490 tx_buffer->dma_offset = 0;
491 tx_buffer->unmap_len = len;
492 tx_queue->tx_packets++;
493 }
494
495 /* Pass mapped frames to hardware. */
496 if (flush && i > 0)
497 efx_nic_push_buffers(tx_queue);
498
499 unlock:
500 if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
501 HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
502
503 return i == 0 ? -EIO : i;
504 }
505
506 /* Initiate a packet transmission. We use one channel per CPU
507 * (sharing when we have more CPUs than channels).
508 *
509 * Context: non-blocking.
510 * Should always return NETDEV_TX_OK and consume the skb.
511 */
efx_hard_start_xmit(struct sk_buff * skb,struct net_device * net_dev)512 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
513 struct net_device *net_dev)
514 {
515 struct efx_nic *efx = efx_netdev_priv(net_dev);
516 struct efx_tx_queue *tx_queue;
517 unsigned index, type;
518
519 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
520 index = skb_get_queue_mapping(skb);
521 type = efx_tx_csum_type_skb(skb);
522
523 /* PTP "event" packet */
524 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
525 ((efx_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
526 unlikely(efx_ptp_is_ptp_tx(efx, skb)))) {
527 /* There may be existing transmits on the channel that are
528 * waiting for this packet to trigger the doorbell write.
529 * We need to send the packets at this point.
530 */
531 efx_tx_send_pending(efx_get_tx_channel(efx, index));
532 return efx_ptp_tx(efx, skb);
533 }
534
535 tx_queue = efx_get_tx_queue(efx, index, type);
536 if (WARN_ON_ONCE(!tx_queue)) {
537 /* We don't have a TXQ of the right type.
538 * This should never happen, as we don't advertise offload
539 * features unless we can support them.
540 */
541 dev_kfree_skb_any(skb);
542 /* If we're not expecting another transmit and we had something to push
543 * on this queue or a partner queue then we need to push here to get the
544 * previous packets out.
545 */
546 if (!netdev_xmit_more())
547 efx_tx_send_pending(efx_get_tx_channel(efx, index));
548 return NETDEV_TX_OK;
549 }
550
551 return __efx_enqueue_skb(tx_queue, skb);
552 }
553
efx_xmit_done_single(struct efx_tx_queue * tx_queue)554 void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
555 {
556 unsigned int pkts_compl = 0, bytes_compl = 0;
557 unsigned int efv_pkts_compl = 0;
558 unsigned int read_ptr;
559 bool finished = false;
560
561 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
562
563 while (!finished) {
564 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
565
566 if (!efx_tx_buffer_in_use(buffer)) {
567 struct efx_nic *efx = tx_queue->efx;
568
569 netif_err(efx, hw, efx->net_dev,
570 "TX queue %d spurious single TX completion\n",
571 tx_queue->queue);
572 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
573 return;
574 }
575
576 /* Need to check the flag before dequeueing. */
577 if (buffer->flags & EFX_TX_BUF_SKB)
578 finished = true;
579 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
580 &efv_pkts_compl);
581
582 ++tx_queue->read_count;
583 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
584 }
585
586 tx_queue->pkts_compl += pkts_compl;
587 tx_queue->bytes_compl += bytes_compl;
588
589 EFX_WARN_ON_PARANOID(pkts_compl + efv_pkts_compl != 1);
590
591 efx_xmit_done_check_empty(tx_queue);
592 }
593
efx_init_tx_queue_core_txq(struct efx_tx_queue * tx_queue)594 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
595 {
596 struct efx_nic *efx = tx_queue->efx;
597
598 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
599 tx_queue->core_txq =
600 netdev_get_tx_queue(efx->net_dev,
601 tx_queue->channel->channel);
602 }
603