1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
5 */
6
7 #include "net_driver.h"
8 #include "rx_common.h"
9 #include "tx_common.h"
10 #include "ef10_regs.h"
11 #include "io.h"
12 #include "mcdi.h"
13 #include "mcdi_pcol.h"
14 #include "mcdi_port.h"
15 #include "mcdi_port_common.h"
16 #include "mcdi_functions.h"
17 #include "nic.h"
18 #include "mcdi_filters.h"
19 #include "workarounds.h"
20 #include "selftest.h"
21 #include "ef10_sriov.h"
22 #include <linux/in.h>
23 #include <linux/jhash.h>
24 #include <linux/wait.h>
25 #include <linux/workqueue.h>
26 #include <net/udp_tunnel.h>
27
28 /* Hardware control for EF10 architecture including 'Huntington'. */
29
30 #define EFX_EF10_DRVGEN_EV 7
31 enum {
32 EFX_EF10_TEST = 1,
33 EFX_EF10_REFILL,
34 };
35
36 /* VLAN list entry */
37 struct efx_ef10_vlan {
38 struct list_head list;
39 u16 vid;
40 };
41
42 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
43 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
44
efx_ef10_get_warm_boot_count(struct efx_nic * efx)45 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
46 {
47 efx_dword_t reg;
48
49 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
50 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
51 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
52 }
53
54 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
55 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
56 * bar; PFs use BAR 0/1 for memory.
57 */
efx_ef10_pf_mem_bar(struct efx_nic * efx)58 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
59 {
60 switch (efx->pci_dev->device) {
61 case 0x0b03: /* SFC9250 PF */
62 return 0;
63 default:
64 return 2;
65 }
66 }
67
68 /* All VFs use BAR 0/1 for memory */
efx_ef10_vf_mem_bar(struct efx_nic * efx)69 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
70 {
71 return 0;
72 }
73
efx_ef10_mem_map_size(struct efx_nic * efx)74 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
75 {
76 int bar;
77
78 bar = efx->type->mem_bar(efx);
79 return resource_size(&efx->pci_dev->resource[bar]);
80 }
81
efx_ef10_is_vf(struct efx_nic * efx)82 static bool efx_ef10_is_vf(struct efx_nic *efx)
83 {
84 return efx->type->is_vf;
85 }
86
87 #ifdef CONFIG_SFC_SRIOV
efx_ef10_get_vf_index(struct efx_nic * efx)88 static int efx_ef10_get_vf_index(struct efx_nic *efx)
89 {
90 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
91 struct efx_ef10_nic_data *nic_data = efx->nic_data;
92 size_t outlen;
93 int rc;
94
95 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
96 sizeof(outbuf), &outlen);
97 if (rc)
98 return rc;
99 if (outlen < sizeof(outbuf))
100 return -EIO;
101
102 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
103 return 0;
104 }
105 #endif
106
efx_ef10_init_datapath_caps(struct efx_nic * efx)107 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
108 {
109 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
110 struct efx_ef10_nic_data *nic_data = efx->nic_data;
111 size_t outlen;
112 int rc;
113
114 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
115
116 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
117 outbuf, sizeof(outbuf), &outlen);
118 if (rc)
119 return rc;
120 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
121 netif_err(efx, drv, efx->net_dev,
122 "unable to read datapath firmware capabilities\n");
123 return -EIO;
124 }
125
126 nic_data->datapath_caps =
127 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
128
129 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
130 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
131 GET_CAPABILITIES_V2_OUT_FLAGS2);
132 nic_data->piobuf_size = MCDI_WORD(outbuf,
133 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
134 } else {
135 nic_data->datapath_caps2 = 0;
136 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
137 }
138
139 /* record the DPCPU firmware IDs to determine VEB vswitching support.
140 */
141 nic_data->rx_dpcpu_fw_id =
142 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
143 nic_data->tx_dpcpu_fw_id =
144 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
145
146 if (!(nic_data->datapath_caps &
147 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
148 netif_err(efx, probe, efx->net_dev,
149 "current firmware does not support an RX prefix\n");
150 return -ENODEV;
151 }
152
153 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
154 u8 vi_window_mode = MCDI_BYTE(outbuf,
155 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
156
157 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
158 if (rc)
159 return rc;
160 } else {
161 /* keep default VI stride */
162 netif_dbg(efx, probe, efx->net_dev,
163 "firmware did not report VI window mode, assuming vi_stride = %u\n",
164 efx->vi_stride);
165 }
166
167 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 efx->num_mac_stats = MCDI_WORD(outbuf,
169 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
170 netif_dbg(efx, probe, efx->net_dev,
171 "firmware reports num_mac_stats = %u\n",
172 efx->num_mac_stats);
173 } else {
174 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
175 netif_dbg(efx, probe, efx->net_dev,
176 "firmware did not report num_mac_stats, assuming %u\n",
177 efx->num_mac_stats);
178 }
179
180 return 0;
181 }
182
efx_ef10_read_licensed_features(struct efx_nic * efx)183 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
184 {
185 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
186 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
187 struct efx_ef10_nic_data *nic_data = efx->nic_data;
188 size_t outlen;
189 int rc;
190
191 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
192 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
193 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
194 outbuf, sizeof(outbuf), &outlen);
195 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
196 return;
197
198 nic_data->licensed_features = MCDI_QWORD(outbuf,
199 LICENSING_V3_OUT_LICENSED_FEATURES);
200 }
201
efx_ef10_get_sysclk_freq(struct efx_nic * efx)202 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
203 {
204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
205 int rc;
206
207 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
208 outbuf, sizeof(outbuf), NULL);
209 if (rc)
210 return rc;
211 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
212 return rc > 0 ? rc : -ERANGE;
213 }
214
efx_ef10_get_timer_workarounds(struct efx_nic * efx)215 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
216 {
217 struct efx_ef10_nic_data *nic_data = efx->nic_data;
218 unsigned int implemented;
219 unsigned int enabled;
220 int rc;
221
222 nic_data->workaround_35388 = false;
223 nic_data->workaround_61265 = false;
224
225 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
226
227 if (rc == -ENOSYS) {
228 /* Firmware without GET_WORKAROUNDS - not a problem. */
229 rc = 0;
230 } else if (rc == 0) {
231 /* Bug61265 workaround is always enabled if implemented. */
232 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
233 nic_data->workaround_61265 = true;
234
235 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
236 nic_data->workaround_35388 = true;
237 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
238 /* Workaround is implemented but not enabled.
239 * Try to enable it.
240 */
241 rc = efx_mcdi_set_workaround(efx,
242 MC_CMD_WORKAROUND_BUG35388,
243 true, NULL);
244 if (rc == 0)
245 nic_data->workaround_35388 = true;
246 /* If we failed to set the workaround just carry on. */
247 rc = 0;
248 }
249 }
250
251 netif_dbg(efx, probe, efx->net_dev,
252 "workaround for bug 35388 is %sabled\n",
253 nic_data->workaround_35388 ? "en" : "dis");
254 netif_dbg(efx, probe, efx->net_dev,
255 "workaround for bug 61265 is %sabled\n",
256 nic_data->workaround_61265 ? "en" : "dis");
257
258 return rc;
259 }
260
efx_ef10_process_timer_config(struct efx_nic * efx,const efx_dword_t * data)261 static void efx_ef10_process_timer_config(struct efx_nic *efx,
262 const efx_dword_t *data)
263 {
264 unsigned int max_count;
265
266 if (EFX_EF10_WORKAROUND_61265(efx)) {
267 efx->timer_quantum_ns = MCDI_DWORD(data,
268 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
269 efx->timer_max_ns = MCDI_DWORD(data,
270 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
271 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
272 efx->timer_quantum_ns = MCDI_DWORD(data,
273 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
274 max_count = MCDI_DWORD(data,
275 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
276 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
277 } else {
278 efx->timer_quantum_ns = MCDI_DWORD(data,
279 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
280 max_count = MCDI_DWORD(data,
281 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
282 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
283 }
284
285 netif_dbg(efx, probe, efx->net_dev,
286 "got timer properties from MC: quantum %u ns; max %u ns\n",
287 efx->timer_quantum_ns, efx->timer_max_ns);
288 }
289
efx_ef10_get_timer_config(struct efx_nic * efx)290 static int efx_ef10_get_timer_config(struct efx_nic *efx)
291 {
292 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
293 int rc;
294
295 rc = efx_ef10_get_timer_workarounds(efx);
296 if (rc)
297 return rc;
298
299 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
300 outbuf, sizeof(outbuf), NULL);
301
302 if (rc == 0) {
303 efx_ef10_process_timer_config(efx, outbuf);
304 } else if (rc == -ENOSYS || rc == -EPERM) {
305 /* Not available - fall back to Huntington defaults. */
306 unsigned int quantum;
307
308 rc = efx_ef10_get_sysclk_freq(efx);
309 if (rc < 0)
310 return rc;
311
312 quantum = 1536000 / rc; /* 1536 cycles */
313 efx->timer_quantum_ns = quantum;
314 efx->timer_max_ns = efx->type->timer_period_max * quantum;
315 rc = 0;
316 } else {
317 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
318 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
319 NULL, 0, rc);
320 }
321
322 return rc;
323 }
324
efx_ef10_get_mac_address_pf(struct efx_nic * efx,u8 * mac_address)325 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
326 {
327 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
328 size_t outlen;
329 int rc;
330
331 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
332
333 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
334 outbuf, sizeof(outbuf), &outlen);
335 if (rc)
336 return rc;
337 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
338 return -EIO;
339
340 ether_addr_copy(mac_address,
341 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
342 return 0;
343 }
344
efx_ef10_get_mac_address_vf(struct efx_nic * efx,u8 * mac_address)345 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
346 {
347 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
348 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
349 size_t outlen;
350 int num_addrs, rc;
351
352 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
353 EVB_PORT_ID_ASSIGNED);
354 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
355 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
356
357 if (rc)
358 return rc;
359 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
360 return -EIO;
361
362 num_addrs = MCDI_DWORD(outbuf,
363 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
364
365 WARN_ON(num_addrs != 1);
366
367 ether_addr_copy(mac_address,
368 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
369
370 return 0;
371 }
372
link_control_flag_show(struct device * dev,struct device_attribute * attr,char * buf)373 static ssize_t link_control_flag_show(struct device *dev,
374 struct device_attribute *attr,
375 char *buf)
376 {
377 struct efx_nic *efx = dev_get_drvdata(dev);
378
379 return sprintf(buf, "%d\n",
380 ((efx->mcdi->fn_flags) &
381 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
382 ? 1 : 0);
383 }
384
primary_flag_show(struct device * dev,struct device_attribute * attr,char * buf)385 static ssize_t primary_flag_show(struct device *dev,
386 struct device_attribute *attr,
387 char *buf)
388 {
389 struct efx_nic *efx = dev_get_drvdata(dev);
390
391 return sprintf(buf, "%d\n",
392 ((efx->mcdi->fn_flags) &
393 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
394 ? 1 : 0);
395 }
396
efx_ef10_find_vlan(struct efx_nic * efx,u16 vid)397 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
398 {
399 struct efx_ef10_nic_data *nic_data = efx->nic_data;
400 struct efx_ef10_vlan *vlan;
401
402 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
403
404 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
405 if (vlan->vid == vid)
406 return vlan;
407 }
408
409 return NULL;
410 }
411
efx_ef10_add_vlan(struct efx_nic * efx,u16 vid)412 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
413 {
414 struct efx_ef10_nic_data *nic_data = efx->nic_data;
415 struct efx_ef10_vlan *vlan;
416 int rc;
417
418 mutex_lock(&nic_data->vlan_lock);
419
420 vlan = efx_ef10_find_vlan(efx, vid);
421 if (vlan) {
422 /* We add VID 0 on init. 8021q adds it on module init
423 * for all interfaces with VLAN filtring feature.
424 */
425 if (vid == 0)
426 goto done_unlock;
427 netif_warn(efx, drv, efx->net_dev,
428 "VLAN %u already added\n", vid);
429 rc = -EALREADY;
430 goto fail_exist;
431 }
432
433 rc = -ENOMEM;
434 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
435 if (!vlan)
436 goto fail_alloc;
437
438 vlan->vid = vid;
439
440 list_add_tail(&vlan->list, &nic_data->vlan_list);
441
442 if (efx->filter_state) {
443 mutex_lock(&efx->mac_lock);
444 down_write(&efx->filter_sem);
445 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
446 up_write(&efx->filter_sem);
447 mutex_unlock(&efx->mac_lock);
448 if (rc)
449 goto fail_filter_add_vlan;
450 }
451
452 done_unlock:
453 mutex_unlock(&nic_data->vlan_lock);
454 return 0;
455
456 fail_filter_add_vlan:
457 list_del(&vlan->list);
458 kfree(vlan);
459 fail_alloc:
460 fail_exist:
461 mutex_unlock(&nic_data->vlan_lock);
462 return rc;
463 }
464
efx_ef10_del_vlan_internal(struct efx_nic * efx,struct efx_ef10_vlan * vlan)465 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
466 struct efx_ef10_vlan *vlan)
467 {
468 struct efx_ef10_nic_data *nic_data = efx->nic_data;
469
470 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
471
472 if (efx->filter_state) {
473 down_write(&efx->filter_sem);
474 efx_mcdi_filter_del_vlan(efx, vlan->vid);
475 up_write(&efx->filter_sem);
476 }
477
478 list_del(&vlan->list);
479 kfree(vlan);
480 }
481
efx_ef10_del_vlan(struct efx_nic * efx,u16 vid)482 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
483 {
484 struct efx_ef10_nic_data *nic_data = efx->nic_data;
485 struct efx_ef10_vlan *vlan;
486 int rc = 0;
487
488 /* 8021q removes VID 0 on module unload for all interfaces
489 * with VLAN filtering feature. We need to keep it to receive
490 * untagged traffic.
491 */
492 if (vid == 0)
493 return 0;
494
495 mutex_lock(&nic_data->vlan_lock);
496
497 vlan = efx_ef10_find_vlan(efx, vid);
498 if (!vlan) {
499 netif_err(efx, drv, efx->net_dev,
500 "VLAN %u to be deleted not found\n", vid);
501 rc = -ENOENT;
502 } else {
503 efx_ef10_del_vlan_internal(efx, vlan);
504 }
505
506 mutex_unlock(&nic_data->vlan_lock);
507
508 return rc;
509 }
510
efx_ef10_cleanup_vlans(struct efx_nic * efx)511 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
512 {
513 struct efx_ef10_nic_data *nic_data = efx->nic_data;
514 struct efx_ef10_vlan *vlan, *next_vlan;
515
516 mutex_lock(&nic_data->vlan_lock);
517 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
518 efx_ef10_del_vlan_internal(efx, vlan);
519 mutex_unlock(&nic_data->vlan_lock);
520 }
521
522 static DEVICE_ATTR_RO(link_control_flag);
523 static DEVICE_ATTR_RO(primary_flag);
524
efx_ef10_probe(struct efx_nic * efx)525 static int efx_ef10_probe(struct efx_nic *efx)
526 {
527 struct efx_ef10_nic_data *nic_data;
528 int i, rc;
529
530 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
531 if (!nic_data)
532 return -ENOMEM;
533 efx->nic_data = nic_data;
534
535 /* we assume later that we can copy from this buffer in dwords */
536 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
537
538 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
539 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
540 if (rc)
541 goto fail1;
542
543 /* Get the MC's warm boot count. In case it's rebooting right
544 * now, be prepared to retry.
545 */
546 i = 0;
547 for (;;) {
548 rc = efx_ef10_get_warm_boot_count(efx);
549 if (rc >= 0)
550 break;
551 if (++i == 5)
552 goto fail2;
553 ssleep(1);
554 }
555 nic_data->warm_boot_count = rc;
556
557 /* In case we're recovering from a crash (kexec), we want to
558 * cancel any outstanding request by the previous user of this
559 * function. We send a special message using the least
560 * significant bits of the 'high' (doorbell) register.
561 */
562 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
563
564 rc = efx_mcdi_init(efx);
565 if (rc)
566 goto fail2;
567
568 mutex_init(&nic_data->udp_tunnels_lock);
569 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
570 nic_data->udp_tunnels[i].type =
571 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
572
573 /* Reset (most) configuration for this function */
574 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
575 if (rc)
576 goto fail3;
577
578 /* Enable event logging */
579 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
580 if (rc)
581 goto fail3;
582
583 rc = device_create_file(&efx->pci_dev->dev,
584 &dev_attr_link_control_flag);
585 if (rc)
586 goto fail3;
587
588 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
589 if (rc)
590 goto fail4;
591
592 rc = efx_get_pf_index(efx, &nic_data->pf_index);
593 if (rc)
594 goto fail5;
595
596 rc = efx_ef10_init_datapath_caps(efx);
597 if (rc < 0)
598 goto fail5;
599
600 efx_ef10_read_licensed_features(efx);
601
602 /* We can have one VI for each vi_stride-byte region.
603 * However, until we use TX option descriptors we need up to four
604 * TX queues per channel for different checksumming combinations.
605 */
606 if (nic_data->datapath_caps &
607 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
608 efx->tx_queues_per_channel = 4;
609 else
610 efx->tx_queues_per_channel = 2;
611 efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
612 if (!efx->max_vis) {
613 netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
614 rc = -EIO;
615 goto fail5;
616 }
617 efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
618 efx->max_vis / efx->tx_queues_per_channel);
619 efx->max_tx_channels = efx->max_channels;
620 if (WARN_ON(efx->max_channels == 0)) {
621 rc = -EIO;
622 goto fail5;
623 }
624
625 efx->rx_packet_len_offset =
626 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
627
628 if (nic_data->datapath_caps &
629 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
630 efx->net_dev->hw_features |= NETIF_F_RXFCS;
631
632 rc = efx_mcdi_port_get_number(efx);
633 if (rc < 0)
634 goto fail5;
635 efx->port_num = rc;
636
637 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
638 if (rc)
639 goto fail5;
640
641 rc = efx_ef10_get_timer_config(efx);
642 if (rc < 0)
643 goto fail5;
644
645 rc = efx_mcdi_mon_probe(efx);
646 if (rc && rc != -EPERM)
647 goto fail5;
648
649 efx_ptp_defer_probe_with_channel(efx);
650
651 #ifdef CONFIG_SFC_SRIOV
652 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
653 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
654 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
655
656 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
657 } else
658 #endif
659 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
660
661 INIT_LIST_HEAD(&nic_data->vlan_list);
662 mutex_init(&nic_data->vlan_lock);
663
664 /* Add unspecified VID to support VLAN filtering being disabled */
665 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
666 if (rc)
667 goto fail_add_vid_unspec;
668
669 /* If VLAN filtering is enabled, we need VID 0 to get untagged
670 * traffic. It is added automatically if 8021q module is loaded,
671 * but we can't rely on it since module may be not loaded.
672 */
673 rc = efx_ef10_add_vlan(efx, 0);
674 if (rc)
675 goto fail_add_vid_0;
676
677 if (nic_data->datapath_caps &
678 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
679 efx->mcdi->fn_flags &
680 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
681 efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
682
683 return 0;
684
685 fail_add_vid_0:
686 efx_ef10_cleanup_vlans(efx);
687 fail_add_vid_unspec:
688 mutex_destroy(&nic_data->vlan_lock);
689 efx_ptp_remove(efx);
690 efx_mcdi_mon_remove(efx);
691 fail5:
692 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
693 fail4:
694 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
695 fail3:
696 efx_mcdi_detach(efx);
697
698 mutex_lock(&nic_data->udp_tunnels_lock);
699 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
700 (void)efx_ef10_set_udp_tnl_ports(efx, true);
701 mutex_unlock(&nic_data->udp_tunnels_lock);
702 mutex_destroy(&nic_data->udp_tunnels_lock);
703
704 efx_mcdi_fini(efx);
705 fail2:
706 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
707 fail1:
708 kfree(nic_data);
709 efx->nic_data = NULL;
710 return rc;
711 }
712
713 #ifdef EFX_USE_PIO
714
efx_ef10_free_piobufs(struct efx_nic * efx)715 static void efx_ef10_free_piobufs(struct efx_nic *efx)
716 {
717 struct efx_ef10_nic_data *nic_data = efx->nic_data;
718 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
719 unsigned int i;
720 int rc;
721
722 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
723
724 for (i = 0; i < nic_data->n_piobufs; i++) {
725 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
726 nic_data->piobuf_handle[i]);
727 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
728 NULL, 0, NULL);
729 WARN_ON(rc);
730 }
731
732 nic_data->n_piobufs = 0;
733 }
734
efx_ef10_alloc_piobufs(struct efx_nic * efx,unsigned int n)735 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
736 {
737 struct efx_ef10_nic_data *nic_data = efx->nic_data;
738 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
739 unsigned int i;
740 size_t outlen;
741 int rc = 0;
742
743 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
744
745 for (i = 0; i < n; i++) {
746 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
747 outbuf, sizeof(outbuf), &outlen);
748 if (rc) {
749 /* Don't display the MC error if we didn't have space
750 * for a VF.
751 */
752 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
753 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
754 0, outbuf, outlen, rc);
755 break;
756 }
757 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
758 rc = -EIO;
759 break;
760 }
761 nic_data->piobuf_handle[i] =
762 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
763 netif_dbg(efx, probe, efx->net_dev,
764 "allocated PIO buffer %u handle %x\n", i,
765 nic_data->piobuf_handle[i]);
766 }
767
768 nic_data->n_piobufs = i;
769 if (rc)
770 efx_ef10_free_piobufs(efx);
771 return rc;
772 }
773
efx_ef10_link_piobufs(struct efx_nic * efx)774 static int efx_ef10_link_piobufs(struct efx_nic *efx)
775 {
776 struct efx_ef10_nic_data *nic_data = efx->nic_data;
777 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
778 struct efx_channel *channel;
779 struct efx_tx_queue *tx_queue;
780 unsigned int offset, index;
781 int rc;
782
783 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
784 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
785
786 /* Link a buffer to each VI in the write-combining mapping */
787 for (index = 0; index < nic_data->n_piobufs; ++index) {
788 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
789 nic_data->piobuf_handle[index]);
790 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
791 nic_data->pio_write_vi_base + index);
792 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
793 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
794 NULL, 0, NULL);
795 if (rc) {
796 netif_err(efx, drv, efx->net_dev,
797 "failed to link VI %u to PIO buffer %u (%d)\n",
798 nic_data->pio_write_vi_base + index, index,
799 rc);
800 goto fail;
801 }
802 netif_dbg(efx, probe, efx->net_dev,
803 "linked VI %u to PIO buffer %u\n",
804 nic_data->pio_write_vi_base + index, index);
805 }
806
807 /* Link a buffer to each TX queue */
808 efx_for_each_channel(channel, efx) {
809 /* Extra channels, even those with TXQs (PTP), do not require
810 * PIO resources.
811 */
812 if (!channel->type->want_pio ||
813 channel->channel >= efx->xdp_channel_offset)
814 continue;
815
816 efx_for_each_channel_tx_queue(tx_queue, channel) {
817 /* We assign the PIO buffers to queues in
818 * reverse order to allow for the following
819 * special case.
820 */
821 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
822 tx_queue->channel->channel - 1) *
823 efx_piobuf_size);
824 index = offset / nic_data->piobuf_size;
825 offset = offset % nic_data->piobuf_size;
826
827 /* When the host page size is 4K, the first
828 * host page in the WC mapping may be within
829 * the same VI page as the last TX queue. We
830 * can only link one buffer to each VI.
831 */
832 if (tx_queue->queue == nic_data->pio_write_vi_base) {
833 BUG_ON(index != 0);
834 rc = 0;
835 } else {
836 MCDI_SET_DWORD(inbuf,
837 LINK_PIOBUF_IN_PIOBUF_HANDLE,
838 nic_data->piobuf_handle[index]);
839 MCDI_SET_DWORD(inbuf,
840 LINK_PIOBUF_IN_TXQ_INSTANCE,
841 tx_queue->queue);
842 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
843 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
844 NULL, 0, NULL);
845 }
846
847 if (rc) {
848 /* This is non-fatal; the TX path just
849 * won't use PIO for this queue
850 */
851 netif_err(efx, drv, efx->net_dev,
852 "failed to link VI %u to PIO buffer %u (%d)\n",
853 tx_queue->queue, index, rc);
854 tx_queue->piobuf = NULL;
855 } else {
856 tx_queue->piobuf =
857 nic_data->pio_write_base +
858 index * efx->vi_stride + offset;
859 tx_queue->piobuf_offset = offset;
860 netif_dbg(efx, probe, efx->net_dev,
861 "linked VI %u to PIO buffer %u offset %x addr %p\n",
862 tx_queue->queue, index,
863 tx_queue->piobuf_offset,
864 tx_queue->piobuf);
865 }
866 }
867 }
868
869 return 0;
870
871 fail:
872 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
873 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
874 */
875 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
876 while (index--) {
877 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
878 nic_data->pio_write_vi_base + index);
879 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
880 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
881 NULL, 0, NULL);
882 }
883 return rc;
884 }
885
efx_ef10_forget_old_piobufs(struct efx_nic * efx)886 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
887 {
888 struct efx_channel *channel;
889 struct efx_tx_queue *tx_queue;
890
891 /* All our existing PIO buffers went away */
892 efx_for_each_channel(channel, efx)
893 efx_for_each_channel_tx_queue(tx_queue, channel)
894 tx_queue->piobuf = NULL;
895 }
896
897 #else /* !EFX_USE_PIO */
898
efx_ef10_alloc_piobufs(struct efx_nic * efx,unsigned int n)899 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
900 {
901 return n == 0 ? 0 : -ENOBUFS;
902 }
903
efx_ef10_link_piobufs(struct efx_nic * efx)904 static int efx_ef10_link_piobufs(struct efx_nic *efx)
905 {
906 return 0;
907 }
908
efx_ef10_free_piobufs(struct efx_nic * efx)909 static void efx_ef10_free_piobufs(struct efx_nic *efx)
910 {
911 }
912
efx_ef10_forget_old_piobufs(struct efx_nic * efx)913 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
914 {
915 }
916
917 #endif /* EFX_USE_PIO */
918
efx_ef10_remove(struct efx_nic * efx)919 static void efx_ef10_remove(struct efx_nic *efx)
920 {
921 struct efx_ef10_nic_data *nic_data = efx->nic_data;
922 int rc;
923
924 #ifdef CONFIG_SFC_SRIOV
925 struct efx_ef10_nic_data *nic_data_pf;
926 struct pci_dev *pci_dev_pf;
927 struct efx_nic *efx_pf;
928 struct ef10_vf *vf;
929
930 if (efx->pci_dev->is_virtfn) {
931 pci_dev_pf = efx->pci_dev->physfn;
932 if (pci_dev_pf) {
933 efx_pf = pci_get_drvdata(pci_dev_pf);
934 nic_data_pf = efx_pf->nic_data;
935 vf = nic_data_pf->vf + nic_data->vf_index;
936 vf->efx = NULL;
937 } else
938 netif_info(efx, drv, efx->net_dev,
939 "Could not get the PF id from VF\n");
940 }
941 #endif
942
943 efx_ef10_cleanup_vlans(efx);
944 mutex_destroy(&nic_data->vlan_lock);
945
946 efx_ptp_remove(efx);
947
948 efx_mcdi_mon_remove(efx);
949
950 efx_mcdi_rx_free_indir_table(efx);
951
952 if (nic_data->wc_membase)
953 iounmap(nic_data->wc_membase);
954
955 rc = efx_mcdi_free_vis(efx);
956 WARN_ON(rc != 0);
957
958 if (!nic_data->must_restore_piobufs)
959 efx_ef10_free_piobufs(efx);
960
961 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
962 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
963
964 efx_mcdi_detach(efx);
965
966 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
967 mutex_lock(&nic_data->udp_tunnels_lock);
968 (void)efx_ef10_set_udp_tnl_ports(efx, true);
969 mutex_unlock(&nic_data->udp_tunnels_lock);
970
971 mutex_destroy(&nic_data->udp_tunnels_lock);
972
973 efx_mcdi_fini(efx);
974 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
975 kfree(nic_data);
976 }
977
efx_ef10_probe_pf(struct efx_nic * efx)978 static int efx_ef10_probe_pf(struct efx_nic *efx)
979 {
980 return efx_ef10_probe(efx);
981 }
982
efx_ef10_vadaptor_query(struct efx_nic * efx,unsigned int port_id,u32 * port_flags,u32 * vadaptor_flags,unsigned int * vlan_tags)983 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
984 u32 *port_flags, u32 *vadaptor_flags,
985 unsigned int *vlan_tags)
986 {
987 struct efx_ef10_nic_data *nic_data = efx->nic_data;
988 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
989 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
990 size_t outlen;
991 int rc;
992
993 if (nic_data->datapath_caps &
994 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
995 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
996 port_id);
997
998 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
999 outbuf, sizeof(outbuf), &outlen);
1000 if (rc)
1001 return rc;
1002
1003 if (outlen < sizeof(outbuf)) {
1004 rc = -EIO;
1005 return rc;
1006 }
1007 }
1008
1009 if (port_flags)
1010 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011 if (vadaptor_flags)
1012 *vadaptor_flags =
1013 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014 if (vlan_tags)
1015 *vlan_tags =
1016 MCDI_DWORD(outbuf,
1017 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019 return 0;
1020 }
1021
efx_ef10_vadaptor_alloc(struct efx_nic * efx,unsigned int port_id)1022 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023 {
1024 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028 NULL, 0, NULL);
1029 }
1030
efx_ef10_vadaptor_free(struct efx_nic * efx,unsigned int port_id)1031 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032 {
1033 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037 NULL, 0, NULL);
1038 }
1039
efx_ef10_vport_add_mac(struct efx_nic * efx,unsigned int port_id,const u8 * mac)1040 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041 unsigned int port_id, const u8 *mac)
1042 {
1043 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049 sizeof(inbuf), NULL, 0, NULL);
1050 }
1051
efx_ef10_vport_del_mac(struct efx_nic * efx,unsigned int port_id,const u8 * mac)1052 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053 unsigned int port_id, const u8 *mac)
1054 {
1055 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061 sizeof(inbuf), NULL, 0, NULL);
1062 }
1063
1064 #ifdef CONFIG_SFC_SRIOV
efx_ef10_probe_vf(struct efx_nic * efx)1065 static int efx_ef10_probe_vf(struct efx_nic *efx)
1066 {
1067 int rc;
1068 struct pci_dev *pci_dev_pf;
1069
1070 /* If the parent PF has no VF data structure, it doesn't know about this
1071 * VF so fail probe. The VF needs to be re-created. This can happen
1072 * if the PF driver was unloaded while any VF was assigned to a guest
1073 * (using Xen, only).
1074 */
1075 pci_dev_pf = efx->pci_dev->physfn;
1076 if (pci_dev_pf) {
1077 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080 if (!nic_data_pf->vf) {
1081 netif_info(efx, drv, efx->net_dev,
1082 "The VF cannot link to its parent PF; "
1083 "please destroy and re-create the VF\n");
1084 return -EBUSY;
1085 }
1086 }
1087
1088 rc = efx_ef10_probe(efx);
1089 if (rc)
1090 return rc;
1091
1092 rc = efx_ef10_get_vf_index(efx);
1093 if (rc)
1094 goto fail;
1095
1096 if (efx->pci_dev->is_virtfn) {
1097 if (efx->pci_dev->physfn) {
1098 struct efx_nic *efx_pf =
1099 pci_get_drvdata(efx->pci_dev->physfn);
1100 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103 nic_data_p->vf[nic_data->vf_index].efx = efx;
1104 nic_data_p->vf[nic_data->vf_index].pci_dev =
1105 efx->pci_dev;
1106 } else
1107 netif_info(efx, drv, efx->net_dev,
1108 "Could not get the PF id from VF\n");
1109 }
1110
1111 return 0;
1112
1113 fail:
1114 efx_ef10_remove(efx);
1115 return rc;
1116 }
1117 #else
efx_ef10_probe_vf(struct efx_nic * efx)1118 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119 {
1120 return 0;
1121 }
1122 #endif
1123
efx_ef10_alloc_vis(struct efx_nic * efx,unsigned int min_vis,unsigned int max_vis)1124 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125 unsigned int min_vis, unsigned int max_vis)
1126 {
1127 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128
1129 return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130 &nic_data->n_allocated_vis);
1131 }
1132
1133 /* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
efx_ef10_dimension_resources(struct efx_nic * efx)1136 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137 {
1138 unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139 efx_separate_tx_channels ? 2 : 1);
1140 unsigned int channel_vis, pio_write_vi_base, max_vis;
1141 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142 unsigned int uc_mem_map_size, wc_mem_map_size;
1143 void __iomem *membase;
1144 int rc;
1145
1146 channel_vis = max(efx->n_channels,
1147 ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148 efx->tx_queues_per_channel) +
1149 efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150 if (efx->max_vis && efx->max_vis < channel_vis) {
1151 netif_dbg(efx, drv, efx->net_dev,
1152 "Reducing channel VIs from %u to %u\n",
1153 channel_vis, efx->max_vis);
1154 channel_vis = efx->max_vis;
1155 }
1156
1157 #ifdef EFX_USE_PIO
1158 /* Try to allocate PIO buffers if wanted and if the full
1159 * number of PIO buffers would be sufficient to allocate one
1160 * copy-buffer per TX channel. Failure is non-fatal, as there
1161 * are only a small number of PIO buffers shared between all
1162 * functions of the controller.
1163 */
1164 if (efx_piobuf_size != 0 &&
1165 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166 efx->n_tx_channels) {
1167 unsigned int n_piobufs =
1168 DIV_ROUND_UP(efx->n_tx_channels,
1169 nic_data->piobuf_size / efx_piobuf_size);
1170
1171 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172 if (rc == -ENOSPC)
1173 netif_dbg(efx, probe, efx->net_dev,
1174 "out of PIO buffers; cannot allocate more\n");
1175 else if (rc == -EPERM)
1176 netif_dbg(efx, probe, efx->net_dev,
1177 "not permitted to allocate PIO buffers\n");
1178 else if (rc)
1179 netif_err(efx, probe, efx->net_dev,
1180 "failed to allocate PIO buffers (%d)\n", rc);
1181 else
1182 netif_dbg(efx, probe, efx->net_dev,
1183 "allocated %u PIO buffers\n", n_piobufs);
1184 }
1185 #else
1186 nic_data->n_piobufs = 0;
1187 #endif
1188
1189 /* PIO buffers should be mapped with write-combining enabled,
1190 * and we want to make single UC and WC mappings rather than
1191 * several of each (in fact that's the only option if host
1192 * page size is >4K). So we may allocate some extra VIs just
1193 * for writing PIO buffers through.
1194 *
1195 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196 * first 4K of the next VI. Then the WC mapping begins with
1197 * the remainder of this last VI.
1198 */
1199 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200 ER_DZ_TX_PIOBUF);
1201 if (nic_data->n_piobufs) {
1202 /* pio_write_vi_base rounds down to give the number of complete
1203 * VIs inside the UC mapping.
1204 */
1205 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207 nic_data->n_piobufs) *
1208 efx->vi_stride) -
1209 uc_mem_map_size);
1210 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211 } else {
1212 pio_write_vi_base = 0;
1213 wc_mem_map_size = 0;
1214 max_vis = channel_vis;
1215 }
1216
1217 /* In case the last attached driver failed to free VIs, do it now */
1218 rc = efx_mcdi_free_vis(efx);
1219 if (rc != 0)
1220 return rc;
1221
1222 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223 if (rc != 0)
1224 return rc;
1225
1226 if (nic_data->n_allocated_vis < channel_vis) {
1227 netif_info(efx, drv, efx->net_dev,
1228 "Could not allocate enough VIs to satisfy RSS"
1229 " requirements. Performance may not be optimal.\n");
1230 /* We didn't get the VIs to populate our channels.
1231 * We could keep what we got but then we'd have more
1232 * interrupts than we need.
1233 * Instead calculate new max_channels and restart
1234 */
1235 efx->max_channels = nic_data->n_allocated_vis;
1236 efx->max_tx_channels =
1237 nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239 efx_mcdi_free_vis(efx);
1240 return -EAGAIN;
1241 }
1242
1243 /* If we didn't get enough VIs to map all the PIO buffers, free the
1244 * PIO buffers
1245 */
1246 if (nic_data->n_piobufs &&
1247 nic_data->n_allocated_vis <
1248 pio_write_vi_base + nic_data->n_piobufs) {
1249 netif_dbg(efx, probe, efx->net_dev,
1250 "%u VIs are not sufficient to map %u PIO buffers\n",
1251 nic_data->n_allocated_vis, nic_data->n_piobufs);
1252 efx_ef10_free_piobufs(efx);
1253 }
1254
1255 /* Shrink the original UC mapping of the memory BAR */
1256 membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257 if (!membase) {
1258 netif_err(efx, probe, efx->net_dev,
1259 "could not shrink memory BAR to %x\n",
1260 uc_mem_map_size);
1261 return -ENOMEM;
1262 }
1263 iounmap(efx->membase);
1264 efx->membase = membase;
1265
1266 /* Set up the WC mapping if needed */
1267 if (wc_mem_map_size) {
1268 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269 uc_mem_map_size,
1270 wc_mem_map_size);
1271 if (!nic_data->wc_membase) {
1272 netif_err(efx, probe, efx->net_dev,
1273 "could not allocate WC mapping of size %x\n",
1274 wc_mem_map_size);
1275 return -ENOMEM;
1276 }
1277 nic_data->pio_write_vi_base = pio_write_vi_base;
1278 nic_data->pio_write_base =
1279 nic_data->wc_membase +
1280 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281 uc_mem_map_size);
1282
1283 rc = efx_ef10_link_piobufs(efx);
1284 if (rc)
1285 efx_ef10_free_piobufs(efx);
1286 }
1287
1288 netif_dbg(efx, probe, efx->net_dev,
1289 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290 &efx->membase_phys, efx->membase, uc_mem_map_size,
1291 nic_data->wc_membase, wc_mem_map_size);
1292
1293 return 0;
1294 }
1295
efx_ef10_fini_nic(struct efx_nic * efx)1296 static void efx_ef10_fini_nic(struct efx_nic *efx)
1297 {
1298 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300 spin_lock_bh(&efx->stats_lock);
1301 kfree(nic_data->mc_stats);
1302 nic_data->mc_stats = NULL;
1303 spin_unlock_bh(&efx->stats_lock);
1304 }
1305
efx_ef10_init_nic(struct efx_nic * efx)1306 static int efx_ef10_init_nic(struct efx_nic *efx)
1307 {
1308 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309 struct net_device *net_dev = efx->net_dev;
1310 netdev_features_t tun_feats, tso_feats;
1311 int rc;
1312
1313 if (nic_data->must_check_datapath_caps) {
1314 rc = efx_ef10_init_datapath_caps(efx);
1315 if (rc)
1316 return rc;
1317 nic_data->must_check_datapath_caps = false;
1318 }
1319
1320 if (efx->must_realloc_vis) {
1321 /* We cannot let the number of VIs change now */
1322 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323 nic_data->n_allocated_vis);
1324 if (rc)
1325 return rc;
1326 efx->must_realloc_vis = false;
1327 }
1328
1329 nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330 GFP_KERNEL);
1331 if (!nic_data->mc_stats)
1332 return -ENOMEM;
1333
1334 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336 if (rc == 0) {
1337 rc = efx_ef10_link_piobufs(efx);
1338 if (rc)
1339 efx_ef10_free_piobufs(efx);
1340 }
1341
1342 /* Log an error on failure, but this is non-fatal.
1343 * Permission errors are less important - we've presumably
1344 * had the PIO buffer licence removed.
1345 */
1346 if (rc == -EPERM)
1347 netif_dbg(efx, drv, efx->net_dev,
1348 "not permitted to restore PIO buffers\n");
1349 else if (rc)
1350 netif_err(efx, drv, efx->net_dev,
1351 "failed to restore PIO buffers (%d)\n", rc);
1352 nic_data->must_restore_piobufs = false;
1353 }
1354
1355 /* encap features might change during reset if fw variant changed */
1356 if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357 net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358 else
1359 net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1360
1361 tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363 tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365 if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366 /* If this is first nic_init, or if it is a reset and a new fw
1367 * variant has added new features, enable them by default.
1368 * If the features are not new, maintain their current value.
1369 */
1370 if (!(net_dev->hw_features & tun_feats))
1371 net_dev->features |= tun_feats;
1372 net_dev->hw_enc_features |= tun_feats | tso_feats;
1373 net_dev->hw_features |= tun_feats;
1374 } else {
1375 net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376 net_dev->hw_features &= ~tun_feats;
1377 net_dev->features &= ~tun_feats;
1378 }
1379
1380 /* don't fail init if RSS setup doesn't work */
1381 rc = efx->type->rx_push_rss_config(efx, false,
1382 efx->rss_context.rx_indir_table, NULL);
1383
1384 return 0;
1385 }
1386
efx_ef10_table_reset_mc_allocations(struct efx_nic * efx)1387 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388 {
1389 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390 #ifdef CONFIG_SFC_SRIOV
1391 unsigned int i;
1392 #endif
1393
1394 /* All our allocations have been reset */
1395 efx->must_realloc_vis = true;
1396 efx_mcdi_filter_table_reset_mc_allocations(efx);
1397 nic_data->must_restore_piobufs = true;
1398 efx_ef10_forget_old_piobufs(efx);
1399 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401 /* Driver-created vswitches and vports must be re-created */
1402 nic_data->must_probe_vswitching = true;
1403 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404 #ifdef CONFIG_SFC_SRIOV
1405 if (nic_data->vf)
1406 for (i = 0; i < efx->vf_count; i++)
1407 nic_data->vf[i].vport_id = 0;
1408 #endif
1409 }
1410
efx_ef10_map_reset_reason(enum reset_type reason)1411 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412 {
1413 if (reason == RESET_TYPE_MC_FAILURE)
1414 return RESET_TYPE_DATAPATH;
1415
1416 return efx_mcdi_map_reset_reason(reason);
1417 }
1418
efx_ef10_map_reset_flags(u32 * flags)1419 static int efx_ef10_map_reset_flags(u32 *flags)
1420 {
1421 enum {
1422 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423 ETH_RESET_SHARED_SHIFT),
1424 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427 ETH_RESET_SHARED_SHIFT)
1428 };
1429
1430 /* We assume for now that our PCI function is permitted to
1431 * reset everything.
1432 */
1433
1434 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435 *flags &= ~EF10_RESET_MC;
1436 return RESET_TYPE_WORLD;
1437 }
1438
1439 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440 *flags &= ~EF10_RESET_PORT;
1441 return RESET_TYPE_ALL;
1442 }
1443
1444 /* no invisible reset implemented */
1445
1446 return -EINVAL;
1447 }
1448
efx_ef10_reset(struct efx_nic * efx,enum reset_type reset_type)1449 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450 {
1451 int rc = efx_mcdi_reset(efx, reset_type);
1452
1453 /* Unprivileged functions return -EPERM, but need to return success
1454 * here so that the datapath is brought back up.
1455 */
1456 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457 rc = 0;
1458
1459 /* If it was a port reset, trigger reallocation of MC resources.
1460 * Note that on an MC reset nothing needs to be done now because we'll
1461 * detect the MC reset later and handle it then.
1462 * For an FLR, we never get an MC reset event, but the MC has reset all
1463 * resources assigned to us, so we have to trigger reallocation now.
1464 */
1465 if ((reset_type == RESET_TYPE_ALL ||
1466 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467 efx_ef10_table_reset_mc_allocations(efx);
1468 return rc;
1469 }
1470
1471 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1472 [EF10_STAT_ ## ext_name] = \
1473 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1475 [EF10_STAT_ ## int_name] = \
1476 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477 #define EF10_OTHER_STAT(ext_name) \
1478 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1479
1480 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498 EF10_OTHER_STAT(port_rx_good_bytes),
1499 EF10_OTHER_STAT(port_rx_bad_bytes),
1500 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523 EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576 };
1577
1578 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1579 (1ULL << EF10_STAT_port_tx_packets) | \
1580 (1ULL << EF10_STAT_port_tx_pause) | \
1581 (1ULL << EF10_STAT_port_tx_unicast) | \
1582 (1ULL << EF10_STAT_port_tx_multicast) | \
1583 (1ULL << EF10_STAT_port_tx_broadcast) | \
1584 (1ULL << EF10_STAT_port_rx_bytes) | \
1585 (1ULL << \
1586 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1588 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1589 (1ULL << EF10_STAT_port_rx_packets) | \
1590 (1ULL << EF10_STAT_port_rx_good) | \
1591 (1ULL << EF10_STAT_port_rx_bad) | \
1592 (1ULL << EF10_STAT_port_rx_pause) | \
1593 (1ULL << EF10_STAT_port_rx_control) | \
1594 (1ULL << EF10_STAT_port_rx_unicast) | \
1595 (1ULL << EF10_STAT_port_rx_multicast) | \
1596 (1ULL << EF10_STAT_port_rx_broadcast) | \
1597 (1ULL << EF10_STAT_port_rx_lt64) | \
1598 (1ULL << EF10_STAT_port_rx_64) | \
1599 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1600 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1601 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1602 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1606 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607 (1ULL << EF10_STAT_port_rx_overflow) | \
1608 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1610 (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1618 (1ULL << EF10_STAT_port_tx_lt64) | \
1619 (1ULL << EF10_STAT_port_tx_64) | \
1620 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632 (1ULL << EF10_STAT_port_rx_length_error))
1633
1634 /* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1638 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1639 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1640 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1641 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1642 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1643 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1644 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1645 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1646 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1647 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1648 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1649 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656 #define EF10_FEC_STAT_MASK ( \
1657 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1658 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1659 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1660 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1661 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1662 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669 #define EF10_CTPIO_STAT_MASK ( \
1670 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1671 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1672 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1673 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1674 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1675 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1676 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1677 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1678 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1679 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1680 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1681 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1682 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1683 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1684 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1685 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
efx_ef10_raw_stat_mask(struct efx_nic * efx)1687 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688 {
1689 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693 if (!(efx->mcdi->fn_flags &
1694 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695 return 0;
1696
1697 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699 /* 8000 series have everything even at 40G */
1700 if (nic_data->datapath_caps2 &
1701 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703 } else {
1704 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705 }
1706
1707 if (nic_data->datapath_caps &
1708 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711 return raw_mask;
1712 }
1713
efx_ef10_get_stat_mask(struct efx_nic * efx,unsigned long * mask)1714 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715 {
1716 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717 u64 raw_mask[2];
1718
1719 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721 /* Only show vadaptor stats when EVB capability is present */
1722 if (nic_data->datapath_caps &
1723 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726 } else {
1727 raw_mask[1] = 0;
1728 }
1729 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731 raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733 /* CTPIO stats appear in V3. Only show them on devices that actually
1734 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735 * and we may be reporting the stats for the underlying port.
1736 */
1737 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738 (nic_data->datapath_caps2 &
1739 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742 #if BITS_PER_LONG == 64
1743 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744 mask[0] = raw_mask[0];
1745 mask[1] = raw_mask[1];
1746 #else
1747 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748 mask[0] = raw_mask[0] & 0xffffffff;
1749 mask[1] = raw_mask[0] >> 32;
1750 mask[2] = raw_mask[1] & 0xffffffff;
1751 #endif
1752 }
1753
efx_ef10_describe_stats(struct efx_nic * efx,u8 * names)1754 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755 {
1756 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758 efx_ef10_get_stat_mask(efx, mask);
1759 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760 mask, names);
1761 }
1762
efx_ef10_get_fec_stats(struct efx_nic * efx,struct ethtool_fec_stats * fec_stats)1763 static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1764 struct ethtool_fec_stats *fec_stats)
1765 {
1766 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768 u64 *stats = nic_data->stats;
1769
1770 efx_ef10_get_stat_mask(efx, mask);
1771 if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1772 fec_stats->corrected_blocks.total =
1773 stats[EF10_STAT_fec_corrected_errors];
1774 if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1775 fec_stats->uncorrectable_blocks.total =
1776 stats[EF10_STAT_fec_uncorrected_errors];
1777 }
1778
efx_ef10_update_stats_common(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)1779 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1780 struct rtnl_link_stats64 *core_stats)
1781 {
1782 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1783 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1784 u64 *stats = nic_data->stats;
1785 size_t stats_count = 0, index;
1786
1787 efx_ef10_get_stat_mask(efx, mask);
1788
1789 if (full_stats) {
1790 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1791 if (efx_ef10_stat_desc[index].name) {
1792 *full_stats++ = stats[index];
1793 ++stats_count;
1794 }
1795 }
1796 }
1797
1798 if (!core_stats)
1799 return stats_count;
1800
1801 if (nic_data->datapath_caps &
1802 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1803 /* Use vadaptor stats. */
1804 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1805 stats[EF10_STAT_rx_multicast] +
1806 stats[EF10_STAT_rx_broadcast];
1807 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1808 stats[EF10_STAT_tx_multicast] +
1809 stats[EF10_STAT_tx_broadcast];
1810 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1811 stats[EF10_STAT_rx_multicast_bytes] +
1812 stats[EF10_STAT_rx_broadcast_bytes];
1813 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1814 stats[EF10_STAT_tx_multicast_bytes] +
1815 stats[EF10_STAT_tx_broadcast_bytes];
1816 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1817 stats[GENERIC_STAT_rx_noskb_drops];
1818 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1819 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1820 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1821 core_stats->rx_errors = core_stats->rx_crc_errors;
1822 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1823 } else {
1824 /* Use port stats. */
1825 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1826 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1827 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1828 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1829 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1830 stats[GENERIC_STAT_rx_nodesc_trunc] +
1831 stats[GENERIC_STAT_rx_noskb_drops];
1832 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1833 core_stats->rx_length_errors =
1834 stats[EF10_STAT_port_rx_gtjumbo] +
1835 stats[EF10_STAT_port_rx_length_error];
1836 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1837 core_stats->rx_frame_errors =
1838 stats[EF10_STAT_port_rx_align_error];
1839 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1840 core_stats->rx_errors = (core_stats->rx_length_errors +
1841 core_stats->rx_crc_errors +
1842 core_stats->rx_frame_errors);
1843 }
1844
1845 return stats_count;
1846 }
1847
efx_ef10_update_stats_pf(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)1848 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1849 struct rtnl_link_stats64 *core_stats)
1850 {
1851 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1852 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1853 u64 *stats = nic_data->stats;
1854
1855 efx_ef10_get_stat_mask(efx, mask);
1856
1857 /* If NIC was fini'd (probably resetting), then we can't read
1858 * updated stats right now.
1859 */
1860 if (nic_data->mc_stats) {
1861 efx_nic_copy_stats(efx, nic_data->mc_stats);
1862 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1863 mask, stats, nic_data->mc_stats, false);
1864 }
1865
1866 /* Update derived statistics */
1867 efx_nic_fix_nodesc_drop_stat(efx,
1868 &stats[EF10_STAT_port_rx_nodesc_drops]);
1869 /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872 * Here we calculate port_rx_good_bytes.
1873 */
1874 stats[EF10_STAT_port_rx_good_bytes] =
1875 stats[EF10_STAT_port_rx_bytes] -
1876 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1877
1878 /* The asynchronous reads used to calculate RX_BAD_BYTES in
1879 * MC Firmware are done such that we should not see an increase in
1880 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881 * does mean that the stat can decrease at times. Here we do not
1882 * update the stat unless it has increased or has gone to zero
1883 * (In the case of the NIC rebooting).
1884 * Please see Bug 33781 for a discussion of why things work this way.
1885 */
1886 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1887 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1888 efx_update_sw_stats(efx, stats);
1889
1890 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1891 }
1892
efx_ef10_try_update_nic_stats_vf(struct efx_nic * efx)1893 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1894 __must_hold(&efx->stats_lock)
1895 {
1896 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1897 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1898 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1899 __le64 generation_start, generation_end;
1900 u64 *stats = nic_data->stats;
1901 u32 dma_len = efx->num_mac_stats * sizeof(u64);
1902 struct efx_buffer stats_buf;
1903 __le64 *dma_stats;
1904 int rc;
1905
1906 spin_unlock_bh(&efx->stats_lock);
1907
1908 efx_ef10_get_stat_mask(efx, mask);
1909
1910 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1911 if (rc) {
1912 spin_lock_bh(&efx->stats_lock);
1913 return rc;
1914 }
1915
1916 dma_stats = stats_buf.addr;
1917 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1918
1919 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1920 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1921 MAC_STATS_IN_DMA, 1);
1922 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1923 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1924
1925 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1926 NULL, 0, NULL);
1927 spin_lock_bh(&efx->stats_lock);
1928 if (rc) {
1929 /* Expect ENOENT if DMA queues have not been set up */
1930 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1931 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1932 sizeof(inbuf), NULL, 0, rc);
1933 goto out;
1934 }
1935
1936 generation_end = dma_stats[efx->num_mac_stats - 1];
1937 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1938 WARN_ON_ONCE(1);
1939 goto out;
1940 }
1941 rmb();
1942 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1943 stats, stats_buf.addr, false);
1944 rmb();
1945 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1946 if (generation_end != generation_start) {
1947 rc = -EAGAIN;
1948 goto out;
1949 }
1950
1951 efx_update_sw_stats(efx, stats);
1952 out:
1953 /* releasing a DMA coherent buffer with BH disabled can panic */
1954 spin_unlock_bh(&efx->stats_lock);
1955 efx_nic_free_buffer(efx, &stats_buf);
1956 spin_lock_bh(&efx->stats_lock);
1957 return rc;
1958 }
1959
efx_ef10_update_stats_vf(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)1960 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1961 struct rtnl_link_stats64 *core_stats)
1962 {
1963 if (efx_ef10_try_update_nic_stats_vf(efx))
1964 return 0;
1965
1966 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1967 }
1968
efx_ef10_update_stats_atomic_vf(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)1969 static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1970 struct rtnl_link_stats64 *core_stats)
1971 {
1972 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1973
1974 /* In atomic context, cannot update HW stats. Just update the
1975 * software stats and return so the caller can continue.
1976 */
1977 efx_update_sw_stats(efx, nic_data->stats);
1978 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1979 }
1980
efx_ef10_push_irq_moderation(struct efx_channel * channel)1981 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1982 {
1983 struct efx_nic *efx = channel->efx;
1984 unsigned int mode, usecs;
1985 efx_dword_t timer_cmd;
1986
1987 if (channel->irq_moderation_us) {
1988 mode = 3;
1989 usecs = channel->irq_moderation_us;
1990 } else {
1991 mode = 0;
1992 usecs = 0;
1993 }
1994
1995 if (EFX_EF10_WORKAROUND_61265(efx)) {
1996 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1997 unsigned int ns = usecs * 1000;
1998
1999 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2000 channel->channel);
2001 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2002 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2003 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2004
2005 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2006 inbuf, sizeof(inbuf), 0, NULL, 0);
2007 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
2008 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2009
2010 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2011 EFE_DD_EVQ_IND_TIMER_FLAGS,
2012 ERF_DD_EVQ_IND_TIMER_MODE, mode,
2013 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2014 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2015 channel->channel);
2016 } else {
2017 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2018
2019 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2020 ERF_DZ_TC_TIMER_VAL, ticks,
2021 ERF_FZ_TC_TMR_REL_VAL, ticks);
2022 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2023 channel->channel);
2024 }
2025 }
2026
efx_ef10_get_wol_vf(struct efx_nic * efx,struct ethtool_wolinfo * wol)2027 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2028 struct ethtool_wolinfo *wol) {}
2029
efx_ef10_set_wol_vf(struct efx_nic * efx,u32 type)2030 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2031 {
2032 return -EOPNOTSUPP;
2033 }
2034
efx_ef10_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)2035 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2036 {
2037 wol->supported = 0;
2038 wol->wolopts = 0;
2039 memset(&wol->sopass, 0, sizeof(wol->sopass));
2040 }
2041
efx_ef10_set_wol(struct efx_nic * efx,u32 type)2042 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2043 {
2044 if (type != 0)
2045 return -EINVAL;
2046 return 0;
2047 }
2048
efx_ef10_mcdi_request(struct efx_nic * efx,const efx_dword_t * hdr,size_t hdr_len,const efx_dword_t * sdu,size_t sdu_len)2049 static void efx_ef10_mcdi_request(struct efx_nic *efx,
2050 const efx_dword_t *hdr, size_t hdr_len,
2051 const efx_dword_t *sdu, size_t sdu_len)
2052 {
2053 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054 u8 *pdu = nic_data->mcdi_buf.addr;
2055
2056 memcpy(pdu, hdr, hdr_len);
2057 memcpy(pdu + hdr_len, sdu, sdu_len);
2058 wmb();
2059
2060 /* The hardware provides 'low' and 'high' (doorbell) registers
2061 * for passing the 64-bit address of an MCDI request to
2062 * firmware. However the dwords are swapped by firmware. The
2063 * least significant bits of the doorbell are then 0 for all
2064 * MCDI requests due to alignment.
2065 */
2066 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2067 ER_DZ_MC_DB_LWRD);
2068 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2069 ER_DZ_MC_DB_HWRD);
2070 }
2071
efx_ef10_mcdi_poll_response(struct efx_nic * efx)2072 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2073 {
2074 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2075 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2076
2077 rmb();
2078 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2079 }
2080
2081 static void
efx_ef10_mcdi_read_response(struct efx_nic * efx,efx_dword_t * outbuf,size_t offset,size_t outlen)2082 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2083 size_t offset, size_t outlen)
2084 {
2085 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2086 const u8 *pdu = nic_data->mcdi_buf.addr;
2087
2088 memcpy(outbuf, pdu + offset, outlen);
2089 }
2090
efx_ef10_mcdi_reboot_detected(struct efx_nic * efx)2091 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2092 {
2093 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094
2095 /* All our allocations have been reset */
2096 efx_ef10_table_reset_mc_allocations(efx);
2097
2098 /* The datapath firmware might have been changed */
2099 nic_data->must_check_datapath_caps = true;
2100
2101 /* MAC statistics have been cleared on the NIC; clear the local
2102 * statistic that we update with efx_update_diff_stat().
2103 */
2104 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2105 }
2106
efx_ef10_mcdi_poll_reboot(struct efx_nic * efx)2107 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2108 {
2109 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2110 int rc;
2111
2112 rc = efx_ef10_get_warm_boot_count(efx);
2113 if (rc < 0) {
2114 /* The firmware is presumably in the process of
2115 * rebooting. However, we are supposed to report each
2116 * reboot just once, so we must only do that once we
2117 * can read and store the updated warm boot count.
2118 */
2119 return 0;
2120 }
2121
2122 if (rc == nic_data->warm_boot_count)
2123 return 0;
2124
2125 nic_data->warm_boot_count = rc;
2126 efx_ef10_mcdi_reboot_detected(efx);
2127
2128 return -EIO;
2129 }
2130
2131 /* Handle an MSI interrupt
2132 *
2133 * Handle an MSI hardware interrupt. This routine schedules event
2134 * queue processing. No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2137 */
efx_ef10_msi_interrupt(int irq,void * dev_id)2138 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2139 {
2140 struct efx_msi_context *context = dev_id;
2141 struct efx_nic *efx = context->efx;
2142
2143 netif_vdbg(efx, intr, efx->net_dev,
2144 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2145
2146 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2147 /* Note test interrupts */
2148 if (context->index == efx->irq_level)
2149 efx->last_irq_cpu = raw_smp_processor_id();
2150
2151 /* Schedule processing of the channel */
2152 efx_schedule_channel_irq(efx->channel[context->index]);
2153 }
2154
2155 return IRQ_HANDLED;
2156 }
2157
efx_ef10_legacy_interrupt(int irq,void * dev_id)2158 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2159 {
2160 struct efx_nic *efx = dev_id;
2161 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2162 struct efx_channel *channel;
2163 efx_dword_t reg;
2164 u32 queues;
2165
2166 /* Read the ISR which also ACKs the interrupts */
2167 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
2168 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2169
2170 if (queues == 0)
2171 return IRQ_NONE;
2172
2173 if (likely(soft_enabled)) {
2174 /* Note test interrupts */
2175 if (queues & (1U << efx->irq_level))
2176 efx->last_irq_cpu = raw_smp_processor_id();
2177
2178 efx_for_each_channel(channel, efx) {
2179 if (queues & 1)
2180 efx_schedule_channel_irq(channel);
2181 queues >>= 1;
2182 }
2183 }
2184
2185 netif_vdbg(efx, intr, efx->net_dev,
2186 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2187 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2188
2189 return IRQ_HANDLED;
2190 }
2191
efx_ef10_irq_test_generate(struct efx_nic * efx)2192 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2193 {
2194 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2195
2196 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2197 NULL) == 0)
2198 return -ENOTSUPP;
2199
2200 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2201
2202 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2203 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2204 inbuf, sizeof(inbuf), NULL, 0, NULL);
2205 }
2206
efx_ef10_tx_probe(struct efx_tx_queue * tx_queue)2207 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2208 {
2209 /* low two bits of label are what we want for type */
2210 BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2211 tx_queue->type = tx_queue->label & 3;
2212 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
2213 (tx_queue->ptr_mask + 1) *
2214 sizeof(efx_qword_t),
2215 GFP_KERNEL);
2216 }
2217
2218 /* This writes to the TX_DESC_WPTR and also pushes data */
efx_ef10_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)2219 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2220 const efx_qword_t *txd)
2221 {
2222 unsigned int write_ptr;
2223 efx_oword_t reg;
2224
2225 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2226 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2227 reg.qword[0] = *txd;
2228 efx_writeo_page(tx_queue->efx, ®,
2229 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2230 }
2231
2232 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2233 */
efx_ef10_tx_tso_desc(struct efx_tx_queue * tx_queue,struct sk_buff * skb,bool * data_mapped)2234 int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2235 bool *data_mapped)
2236 {
2237 struct efx_tx_buffer *buffer;
2238 u16 inner_ipv4_id = 0;
2239 u16 outer_ipv4_id = 0;
2240 struct tcphdr *tcp;
2241 struct iphdr *ip;
2242 u16 ip_tot_len;
2243 u32 seqnum;
2244 u32 mss;
2245
2246 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2247
2248 mss = skb_shinfo(skb)->gso_size;
2249
2250 if (unlikely(mss < 4)) {
2251 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2252 return -EINVAL;
2253 }
2254
2255 if (skb->encapsulation) {
2256 if (!tx_queue->tso_encap)
2257 return -EINVAL;
2258 ip = ip_hdr(skb);
2259 if (ip->version == 4)
2260 outer_ipv4_id = ntohs(ip->id);
2261
2262 ip = inner_ip_hdr(skb);
2263 tcp = inner_tcp_hdr(skb);
2264 } else {
2265 ip = ip_hdr(skb);
2266 tcp = tcp_hdr(skb);
2267 }
2268
2269 /* 8000-series EF10 hardware requires that IP Total Length be
2270 * greater than or equal to the value it will have in each segment
2271 * (which is at most mss + 208 + TCP header length), but also less
2272 * than (0x10000 - inner_network_header). Otherwise the TCP
2273 * checksum calculation will be broken for encapsulated packets.
2274 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275 * first requirement unless the MSS is ridiculously large (which
2276 * should be impossible as the driver max MTU is 9216); it is
2277 * guaranteed to satisfy the second as we only attempt TSO if
2278 * inner_network_header <= 208.
2279 */
2280 ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2281 EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2282 (tcp->doff << 2u) > ip_tot_len);
2283
2284 if (ip->version == 4) {
2285 ip->tot_len = htons(ip_tot_len);
2286 ip->check = 0;
2287 inner_ipv4_id = ntohs(ip->id);
2288 } else {
2289 ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2290 }
2291
2292 seqnum = ntohl(tcp->seq);
2293
2294 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2295
2296 buffer->flags = EFX_TX_BUF_OPTION;
2297 buffer->len = 0;
2298 buffer->unmap_len = 0;
2299 EFX_POPULATE_QWORD_5(buffer->option,
2300 ESF_DZ_TX_DESC_IS_OPT, 1,
2301 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2302 ESF_DZ_TX_TSO_OPTION_TYPE,
2303 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2304 ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2305 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2306 );
2307 ++tx_queue->insert_count;
2308
2309 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2310
2311 buffer->flags = EFX_TX_BUF_OPTION;
2312 buffer->len = 0;
2313 buffer->unmap_len = 0;
2314 EFX_POPULATE_QWORD_5(buffer->option,
2315 ESF_DZ_TX_DESC_IS_OPT, 1,
2316 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2317 ESF_DZ_TX_TSO_OPTION_TYPE,
2318 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2319 ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2320 ESF_DZ_TX_TSO_TCP_MSS, mss
2321 );
2322 ++tx_queue->insert_count;
2323
2324 return 0;
2325 }
2326
efx_ef10_tso_versions(struct efx_nic * efx)2327 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2328 {
2329 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2330 u32 tso_versions = 0;
2331
2332 if (nic_data->datapath_caps &
2333 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2334 tso_versions |= BIT(1);
2335 if (nic_data->datapath_caps2 &
2336 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2337 tso_versions |= BIT(2);
2338 return tso_versions;
2339 }
2340
efx_ef10_tx_init(struct efx_tx_queue * tx_queue)2341 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2342 {
2343 bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2344 bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2345 struct efx_channel *channel = tx_queue->channel;
2346 struct efx_nic *efx = tx_queue->efx;
2347 struct efx_ef10_nic_data *nic_data;
2348 efx_qword_t *txd;
2349 int rc;
2350
2351 nic_data = efx->nic_data;
2352
2353 /* Only attempt to enable TX timestamping if we have the license for it,
2354 * otherwise TXQ init will fail
2355 */
2356 if (!(nic_data->licensed_features &
2357 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2358 tx_queue->timestamping = false;
2359 /* Disable sync events on this channel. */
2360 if (efx->type->ptp_set_ts_sync_events)
2361 efx->type->ptp_set_ts_sync_events(efx, false, false);
2362 }
2363
2364 /* TSOv2 is a limited resource that can only be configured on a limited
2365 * number of queues. TSO without checksum offload is not really a thing,
2366 * so we only enable it for those queues.
2367 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2368 * for XDP tx.
2369 */
2370 if (efx_has_cap(efx, TX_TSO_V2)) {
2371 if ((csum_offload || inner_csum) &&
2372 !tx_queue->timestamping && !tx_queue->xdp_tx) {
2373 tx_queue->tso_version = 2;
2374 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2375 channel->channel);
2376 }
2377 } else if (efx_has_cap(efx, TX_TSO)) {
2378 tx_queue->tso_version = 1;
2379 }
2380
2381 rc = efx_mcdi_tx_init(tx_queue);
2382 if (rc)
2383 goto fail;
2384
2385 /* A previous user of this TX queue might have set us up the
2386 * bomb by writing a descriptor to the TX push collector but
2387 * not the doorbell. (Each collector belongs to a port, not a
2388 * queue or function, so cannot easily be reset.) We must
2389 * attempt to push a no-op descriptor in its place.
2390 */
2391 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2392 tx_queue->insert_count = 1;
2393 txd = efx_tx_desc(tx_queue, 0);
2394 EFX_POPULATE_QWORD_7(*txd,
2395 ESF_DZ_TX_DESC_IS_OPT, true,
2396 ESF_DZ_TX_OPTION_TYPE,
2397 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2398 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2399 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2400 ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2401 ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2402 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2403 tx_queue->write_count = 1;
2404
2405 if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2406 tx_queue->tso_encap = true;
2407
2408 wmb();
2409 efx_ef10_push_tx_desc(tx_queue, txd);
2410
2411 return;
2412
2413 fail:
2414 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2415 tx_queue->queue);
2416 }
2417
2418 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_ef10_notify_tx_desc(struct efx_tx_queue * tx_queue)2419 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2420 {
2421 unsigned int write_ptr;
2422 efx_dword_t reg;
2423
2424 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2426 efx_writed_page(tx_queue->efx, ®,
2427 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2428 }
2429
2430 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2431
efx_ef10_tx_limit_len(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned int len)2432 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2433 dma_addr_t dma_addr, unsigned int len)
2434 {
2435 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2436 /* If we need to break across multiple descriptors we should
2437 * stop at a page boundary. This assumes the length limit is
2438 * greater than the page size.
2439 */
2440 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2441
2442 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2443 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2444 }
2445
2446 return len;
2447 }
2448
efx_ef10_tx_write(struct efx_tx_queue * tx_queue)2449 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2450 {
2451 unsigned int old_write_count = tx_queue->write_count;
2452 struct efx_tx_buffer *buffer;
2453 unsigned int write_ptr;
2454 efx_qword_t *txd;
2455
2456 tx_queue->xmit_pending = false;
2457 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2458 return;
2459
2460 do {
2461 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2462 buffer = &tx_queue->buffer[write_ptr];
2463 txd = efx_tx_desc(tx_queue, write_ptr);
2464 ++tx_queue->write_count;
2465
2466 /* Create TX descriptor ring entry */
2467 if (buffer->flags & EFX_TX_BUF_OPTION) {
2468 *txd = buffer->option;
2469 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2470 /* PIO descriptor */
2471 tx_queue->packet_write_count = tx_queue->write_count;
2472 } else {
2473 tx_queue->packet_write_count = tx_queue->write_count;
2474 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2475 EFX_POPULATE_QWORD_3(
2476 *txd,
2477 ESF_DZ_TX_KER_CONT,
2478 buffer->flags & EFX_TX_BUF_CONT,
2479 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2480 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2481 }
2482 } while (tx_queue->write_count != tx_queue->insert_count);
2483
2484 wmb(); /* Ensure descriptors are written before they are fetched */
2485
2486 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2487 txd = efx_tx_desc(tx_queue,
2488 old_write_count & tx_queue->ptr_mask);
2489 efx_ef10_push_tx_desc(tx_queue, txd);
2490 ++tx_queue->pushes;
2491 } else {
2492 efx_ef10_notify_tx_desc(tx_queue);
2493 }
2494 }
2495
efx_ef10_probe_multicast_chaining(struct efx_nic * efx)2496 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2497 {
2498 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2499 unsigned int enabled, implemented;
2500 bool want_workaround_26807;
2501 int rc;
2502
2503 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2504 if (rc == -ENOSYS) {
2505 /* GET_WORKAROUNDS was implemented before this workaround,
2506 * thus it must be unavailable in this firmware.
2507 */
2508 nic_data->workaround_26807 = false;
2509 return 0;
2510 }
2511 if (rc)
2512 return rc;
2513 want_workaround_26807 =
2514 implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2515 nic_data->workaround_26807 =
2516 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2517
2518 if (want_workaround_26807 && !nic_data->workaround_26807) {
2519 unsigned int flags;
2520
2521 rc = efx_mcdi_set_workaround(efx,
2522 MC_CMD_WORKAROUND_BUG26807,
2523 true, &flags);
2524 if (!rc) {
2525 if (flags &
2526 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2527 netif_info(efx, drv, efx->net_dev,
2528 "other functions on NIC have been reset\n");
2529
2530 /* With MCFW v4.6.x and earlier, the
2531 * boot count will have incremented,
2532 * so re-read the warm_boot_count
2533 * value now to ensure this function
2534 * doesn't think it has changed next
2535 * time it checks.
2536 */
2537 rc = efx_ef10_get_warm_boot_count(efx);
2538 if (rc >= 0) {
2539 nic_data->warm_boot_count = rc;
2540 rc = 0;
2541 }
2542 }
2543 nic_data->workaround_26807 = true;
2544 } else if (rc == -EPERM) {
2545 rc = 0;
2546 }
2547 }
2548 return rc;
2549 }
2550
efx_ef10_filter_table_probe(struct efx_nic * efx)2551 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2552 {
2553 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2554 int rc = efx_ef10_probe_multicast_chaining(efx);
2555 struct efx_mcdi_filter_vlan *vlan;
2556
2557 if (rc)
2558 return rc;
2559 down_write(&efx->filter_sem);
2560 rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2561
2562 if (rc)
2563 goto out_unlock;
2564
2565 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2566 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2567 if (rc)
2568 goto fail_add_vlan;
2569 }
2570 goto out_unlock;
2571
2572 fail_add_vlan:
2573 efx_mcdi_filter_table_remove(efx);
2574 out_unlock:
2575 up_write(&efx->filter_sem);
2576 return rc;
2577 }
2578
efx_ef10_filter_table_remove(struct efx_nic * efx)2579 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2580 {
2581 down_write(&efx->filter_sem);
2582 efx_mcdi_filter_table_remove(efx);
2583 up_write(&efx->filter_sem);
2584 }
2585
2586 /* This creates an entry in the RX descriptor queue */
2587 static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned int index)2588 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2589 {
2590 struct efx_rx_buffer *rx_buf;
2591 efx_qword_t *rxd;
2592
2593 rxd = efx_rx_desc(rx_queue, index);
2594 rx_buf = efx_rx_buffer(rx_queue, index);
2595 EFX_POPULATE_QWORD_2(*rxd,
2596 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2597 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2598 }
2599
efx_ef10_rx_write(struct efx_rx_queue * rx_queue)2600 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2601 {
2602 struct efx_nic *efx = rx_queue->efx;
2603 unsigned int write_count;
2604 efx_dword_t reg;
2605
2606 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607 write_count = rx_queue->added_count & ~7;
2608 if (rx_queue->notified_count == write_count)
2609 return;
2610
2611 do
2612 efx_ef10_build_rx_desc(
2613 rx_queue,
2614 rx_queue->notified_count & rx_queue->ptr_mask);
2615 while (++rx_queue->notified_count != write_count);
2616
2617 wmb();
2618 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2619 write_count & rx_queue->ptr_mask);
2620 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
2621 efx_rx_queue_index(rx_queue));
2622 }
2623
2624 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2625
efx_ef10_rx_defer_refill(struct efx_rx_queue * rx_queue)2626 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2627 {
2628 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2629 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2630 efx_qword_t event;
2631
2632 EFX_POPULATE_QWORD_2(event,
2633 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2634 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2635
2636 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2637
2638 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639 * already swapped the data to little-endian order.
2640 */
2641 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2642 sizeof(efx_qword_t));
2643
2644 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2645 inbuf, sizeof(inbuf), 0,
2646 efx_ef10_rx_defer_refill_complete, 0);
2647 }
2648
2649 static void
efx_ef10_rx_defer_refill_complete(struct efx_nic * efx,unsigned long cookie,int rc,efx_dword_t * outbuf,size_t outlen_actual)2650 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2651 int rc, efx_dword_t *outbuf,
2652 size_t outlen_actual)
2653 {
2654 /* nothing to do */
2655 }
2656
efx_ef10_ev_init(struct efx_channel * channel)2657 static int efx_ef10_ev_init(struct efx_channel *channel)
2658 {
2659 struct efx_nic *efx = channel->efx;
2660 struct efx_ef10_nic_data *nic_data;
2661 bool use_v2, cut_thru;
2662
2663 nic_data = efx->nic_data;
2664 use_v2 = nic_data->datapath_caps2 &
2665 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2666 cut_thru = !(nic_data->datapath_caps &
2667 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2668 return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2669 }
2670
efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue * rx_queue,unsigned int rx_queue_label)2671 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2672 unsigned int rx_queue_label)
2673 {
2674 struct efx_nic *efx = rx_queue->efx;
2675
2676 netif_info(efx, hw, efx->net_dev,
2677 "rx event arrived on queue %d labeled as queue %u\n",
2678 efx_rx_queue_index(rx_queue), rx_queue_label);
2679
2680 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2681 }
2682
2683 static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue * rx_queue,unsigned int actual,unsigned int expected)2684 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2685 unsigned int actual, unsigned int expected)
2686 {
2687 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2688 struct efx_nic *efx = rx_queue->efx;
2689
2690 netif_info(efx, hw, efx->net_dev,
2691 "dropped %d events (index=%d expected=%d)\n",
2692 dropped, actual, expected);
2693
2694 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2695 }
2696
2697 /* partially received RX was aborted. clean up. */
efx_ef10_handle_rx_abort(struct efx_rx_queue * rx_queue)2698 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2699 {
2700 unsigned int rx_desc_ptr;
2701
2702 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2703 "scattered RX aborted (dropping %u buffers)\n",
2704 rx_queue->scatter_n);
2705
2706 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2707
2708 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2709 0, EFX_RX_PKT_DISCARD);
2710
2711 rx_queue->removed_count += rx_queue->scatter_n;
2712 rx_queue->scatter_n = 0;
2713 rx_queue->scatter_len = 0;
2714 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2715 }
2716
efx_ef10_handle_rx_event_errors(struct efx_channel * channel,unsigned int n_packets,unsigned int rx_encap_hdr,unsigned int rx_l3_class,unsigned int rx_l4_class,const efx_qword_t * event)2717 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2718 unsigned int n_packets,
2719 unsigned int rx_encap_hdr,
2720 unsigned int rx_l3_class,
2721 unsigned int rx_l4_class,
2722 const efx_qword_t *event)
2723 {
2724 struct efx_nic *efx = channel->efx;
2725 bool handled = false;
2726
2727 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2728 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2729 if (!efx->loopback_selftest)
2730 channel->n_rx_eth_crc_err += n_packets;
2731 return EFX_RX_PKT_DISCARD;
2732 }
2733 handled = true;
2734 }
2735 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2736 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2737 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2738 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2739 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2740 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2741 netdev_WARN(efx->net_dev,
2742 "invalid class for RX_IPCKSUM_ERR: event="
2743 EFX_QWORD_FMT "\n",
2744 EFX_QWORD_VAL(*event));
2745 if (!efx->loopback_selftest)
2746 *(rx_encap_hdr ?
2747 &channel->n_rx_outer_ip_hdr_chksum_err :
2748 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2749 return 0;
2750 }
2751 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2752 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2753 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2754 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2755 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2756 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2757 netdev_WARN(efx->net_dev,
2758 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2759 EFX_QWORD_FMT "\n",
2760 EFX_QWORD_VAL(*event));
2761 if (!efx->loopback_selftest)
2762 *(rx_encap_hdr ?
2763 &channel->n_rx_outer_tcp_udp_chksum_err :
2764 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2765 return 0;
2766 }
2767 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2768 if (unlikely(!rx_encap_hdr))
2769 netdev_WARN(efx->net_dev,
2770 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2771 EFX_QWORD_FMT "\n",
2772 EFX_QWORD_VAL(*event));
2773 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2775 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2776 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2777 netdev_WARN(efx->net_dev,
2778 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2779 EFX_QWORD_FMT "\n",
2780 EFX_QWORD_VAL(*event));
2781 if (!efx->loopback_selftest)
2782 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2783 return 0;
2784 }
2785 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2786 if (unlikely(!rx_encap_hdr))
2787 netdev_WARN(efx->net_dev,
2788 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2789 EFX_QWORD_FMT "\n",
2790 EFX_QWORD_VAL(*event));
2791 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2792 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2793 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2794 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2795 netdev_WARN(efx->net_dev,
2796 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2797 EFX_QWORD_FMT "\n",
2798 EFX_QWORD_VAL(*event));
2799 if (!efx->loopback_selftest)
2800 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2801 return 0;
2802 }
2803
2804 WARN_ON(!handled); /* No error bits were recognised */
2805 return 0;
2806 }
2807
efx_ef10_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)2808 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2809 const efx_qword_t *event)
2810 {
2811 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2812 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2813 unsigned int n_descs, n_packets, i;
2814 struct efx_nic *efx = channel->efx;
2815 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2816 struct efx_rx_queue *rx_queue;
2817 efx_qword_t errors;
2818 bool rx_cont;
2819 u16 flags = 0;
2820
2821 if (unlikely(READ_ONCE(efx->reset_pending)))
2822 return 0;
2823
2824 /* Basic packet information */
2825 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2826 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2827 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2828 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2829 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2830 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2831 rx_encap_hdr =
2832 nic_data->datapath_caps &
2833 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2834 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2835 ESE_EZ_ENCAP_HDR_NONE;
2836
2837 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2838 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2839 EFX_QWORD_FMT "\n",
2840 EFX_QWORD_VAL(*event));
2841
2842 rx_queue = efx_channel_get_rx_queue(channel);
2843
2844 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2845 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2846
2847 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2848 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2849
2850 if (n_descs != rx_queue->scatter_n + 1) {
2851 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2852
2853 /* detect rx abort */
2854 if (unlikely(n_descs == rx_queue->scatter_n)) {
2855 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2856 netdev_WARN(efx->net_dev,
2857 "invalid RX abort: scatter_n=%u event="
2858 EFX_QWORD_FMT "\n",
2859 rx_queue->scatter_n,
2860 EFX_QWORD_VAL(*event));
2861 efx_ef10_handle_rx_abort(rx_queue);
2862 return 0;
2863 }
2864
2865 /* Check that RX completion merging is valid, i.e.
2866 * the current firmware supports it and this is a
2867 * non-scattered packet.
2868 */
2869 if (!(nic_data->datapath_caps &
2870 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2871 rx_queue->scatter_n != 0 || rx_cont) {
2872 efx_ef10_handle_rx_bad_lbits(
2873 rx_queue, next_ptr_lbits,
2874 (rx_queue->removed_count +
2875 rx_queue->scatter_n + 1) &
2876 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2877 return 0;
2878 }
2879
2880 /* Merged completion for multiple non-scattered packets */
2881 rx_queue->scatter_n = 1;
2882 rx_queue->scatter_len = 0;
2883 n_packets = n_descs;
2884 ++channel->n_rx_merge_events;
2885 channel->n_rx_merge_packets += n_packets;
2886 flags |= EFX_RX_PKT_PREFIX_LEN;
2887 } else {
2888 ++rx_queue->scatter_n;
2889 rx_queue->scatter_len += rx_bytes;
2890 if (rx_cont)
2891 return 0;
2892 n_packets = 1;
2893 }
2894
2895 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2896 ESF_DZ_RX_IPCKSUM_ERR, 1,
2897 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2898 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2899 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2900 EFX_AND_QWORD(errors, *event, errors);
2901 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2902 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2903 rx_encap_hdr,
2904 rx_l3_class, rx_l4_class,
2905 event);
2906 } else {
2907 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2908 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2909
2910 switch (rx_encap_hdr) {
2911 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2912 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2913 if (tcpudp)
2914 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2915 break;
2916 case ESE_EZ_ENCAP_HDR_GRE:
2917 case ESE_EZ_ENCAP_HDR_NONE:
2918 if (tcpudp)
2919 flags |= EFX_RX_PKT_CSUMMED;
2920 break;
2921 default:
2922 netdev_WARN(efx->net_dev,
2923 "unknown encapsulation type: event="
2924 EFX_QWORD_FMT "\n",
2925 EFX_QWORD_VAL(*event));
2926 }
2927 }
2928
2929 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2930 flags |= EFX_RX_PKT_TCP;
2931
2932 channel->irq_mod_score += 2 * n_packets;
2933
2934 /* Handle received packet(s) */
2935 for (i = 0; i < n_packets; i++) {
2936 efx_rx_packet(rx_queue,
2937 rx_queue->removed_count & rx_queue->ptr_mask,
2938 rx_queue->scatter_n, rx_queue->scatter_len,
2939 flags);
2940 rx_queue->removed_count += rx_queue->scatter_n;
2941 }
2942
2943 rx_queue->scatter_n = 0;
2944 rx_queue->scatter_len = 0;
2945
2946 return n_packets;
2947 }
2948
efx_ef10_extract_event_ts(efx_qword_t * event)2949 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2950 {
2951 u32 tstamp;
2952
2953 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2954 tstamp <<= 16;
2955 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2956
2957 return tstamp;
2958 }
2959
2960 static int
efx_ef10_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)2961 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2962 {
2963 struct efx_nic *efx = channel->efx;
2964 struct efx_tx_queue *tx_queue;
2965 unsigned int tx_ev_desc_ptr;
2966 unsigned int tx_ev_q_label;
2967 unsigned int tx_ev_type;
2968 int work_done;
2969 u64 ts_part;
2970
2971 if (unlikely(READ_ONCE(efx->reset_pending)))
2972 return 0;
2973
2974 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2975 return 0;
2976
2977 /* Get the transmit queue */
2978 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2979 tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2980
2981 if (!tx_queue->timestamping) {
2982 /* Transmit completion */
2983 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2984 return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2985 }
2986
2987 /* Transmit timestamps are only available for 8XXX series. They result
2988 * in up to three events per packet. These occur in order, and are:
2989 * - the normal completion event (may be omitted)
2990 * - the low part of the timestamp
2991 * - the high part of the timestamp
2992 *
2993 * It's possible for multiple completion events to appear before the
2994 * corresponding timestamps. So we can for example get:
2995 * COMP N
2996 * COMP N+1
2997 * TS_LO N
2998 * TS_HI N
2999 * TS_LO N+1
3000 * TS_HI N+1
3001 *
3002 * In addition it's also possible for the adjacent completions to be
3003 * merged, so we may not see COMP N above. As such, the completion
3004 * events are not very useful here.
3005 *
3006 * Each part of the timestamp is itself split across two 16 bit
3007 * fields in the event.
3008 */
3009 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3010 work_done = 0;
3011
3012 switch (tx_ev_type) {
3013 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3014 /* Ignore this event - see above. */
3015 break;
3016
3017 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3018 ts_part = efx_ef10_extract_event_ts(event);
3019 tx_queue->completed_timestamp_minor = ts_part;
3020 break;
3021
3022 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3023 ts_part = efx_ef10_extract_event_ts(event);
3024 tx_queue->completed_timestamp_major = ts_part;
3025
3026 efx_xmit_done_single(tx_queue);
3027 work_done = 1;
3028 break;
3029
3030 default:
3031 netif_err(efx, hw, efx->net_dev,
3032 "channel %d unknown tx event type %d (data "
3033 EFX_QWORD_FMT ")\n",
3034 channel->channel, tx_ev_type,
3035 EFX_QWORD_VAL(*event));
3036 break;
3037 }
3038
3039 return work_done;
3040 }
3041
3042 static void
efx_ef10_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)3043 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3044 {
3045 struct efx_nic *efx = channel->efx;
3046 int subcode;
3047
3048 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3049
3050 switch (subcode) {
3051 case ESE_DZ_DRV_TIMER_EV:
3052 case ESE_DZ_DRV_WAKE_UP_EV:
3053 break;
3054 case ESE_DZ_DRV_START_UP_EV:
3055 /* event queue init complete. ok. */
3056 break;
3057 default:
3058 netif_err(efx, hw, efx->net_dev,
3059 "channel %d unknown driver event type %d"
3060 " (data " EFX_QWORD_FMT ")\n",
3061 channel->channel, subcode,
3062 EFX_QWORD_VAL(*event));
3063
3064 }
3065 }
3066
efx_ef10_handle_driver_generated_event(struct efx_channel * channel,efx_qword_t * event)3067 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3068 efx_qword_t *event)
3069 {
3070 struct efx_nic *efx = channel->efx;
3071 u32 subcode;
3072
3073 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3074
3075 switch (subcode) {
3076 case EFX_EF10_TEST:
3077 channel->event_test_cpu = raw_smp_processor_id();
3078 break;
3079 case EFX_EF10_REFILL:
3080 /* The queue must be empty, so we won't receive any rx
3081 * events, so efx_process_channel() won't refill the
3082 * queue. Refill it here
3083 */
3084 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3085 break;
3086 default:
3087 netif_err(efx, hw, efx->net_dev,
3088 "channel %d unknown driver event type %u"
3089 " (data " EFX_QWORD_FMT ")\n",
3090 channel->channel, (unsigned) subcode,
3091 EFX_QWORD_VAL(*event));
3092 }
3093 }
3094
3095 #define EFX_NAPI_MAX_TX 512
3096
efx_ef10_ev_process(struct efx_channel * channel,int quota)3097 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3098 {
3099 struct efx_nic *efx = channel->efx;
3100 efx_qword_t event, *p_event;
3101 unsigned int read_ptr;
3102 int spent_tx = 0;
3103 int spent = 0;
3104 int ev_code;
3105
3106 if (quota <= 0)
3107 return spent;
3108
3109 read_ptr = channel->eventq_read_ptr;
3110
3111 for (;;) {
3112 p_event = efx_event(channel, read_ptr);
3113 event = *p_event;
3114
3115 if (!efx_event_present(&event))
3116 break;
3117
3118 EFX_SET_QWORD(*p_event);
3119
3120 ++read_ptr;
3121
3122 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3123
3124 netif_vdbg(efx, drv, efx->net_dev,
3125 "processing event on %d " EFX_QWORD_FMT "\n",
3126 channel->channel, EFX_QWORD_VAL(event));
3127
3128 switch (ev_code) {
3129 case ESE_DZ_EV_CODE_MCDI_EV:
3130 efx_mcdi_process_event(channel, &event);
3131 break;
3132 case ESE_DZ_EV_CODE_RX_EV:
3133 spent += efx_ef10_handle_rx_event(channel, &event);
3134 if (spent >= quota) {
3135 /* XXX can we split a merged event to
3136 * avoid going over-quota?
3137 */
3138 spent = quota;
3139 goto out;
3140 }
3141 break;
3142 case ESE_DZ_EV_CODE_TX_EV:
3143 spent_tx += efx_ef10_handle_tx_event(channel, &event);
3144 if (spent_tx >= EFX_NAPI_MAX_TX) {
3145 spent = quota;
3146 goto out;
3147 }
3148 break;
3149 case ESE_DZ_EV_CODE_DRIVER_EV:
3150 efx_ef10_handle_driver_event(channel, &event);
3151 if (++spent == quota)
3152 goto out;
3153 break;
3154 case EFX_EF10_DRVGEN_EV:
3155 efx_ef10_handle_driver_generated_event(channel, &event);
3156 break;
3157 default:
3158 netif_err(efx, hw, efx->net_dev,
3159 "channel %d unknown event type %d"
3160 " (data " EFX_QWORD_FMT ")\n",
3161 channel->channel, ev_code,
3162 EFX_QWORD_VAL(event));
3163 }
3164 }
3165
3166 out:
3167 channel->eventq_read_ptr = read_ptr;
3168 return spent;
3169 }
3170
efx_ef10_ev_read_ack(struct efx_channel * channel)3171 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3172 {
3173 struct efx_nic *efx = channel->efx;
3174 efx_dword_t rptr;
3175
3176 if (EFX_EF10_WORKAROUND_35388(efx)) {
3177 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3178 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3179 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3180 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3181
3182 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3183 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3184 ERF_DD_EVQ_IND_RPTR,
3185 (channel->eventq_read_ptr &
3186 channel->eventq_mask) >>
3187 ERF_DD_EVQ_IND_RPTR_WIDTH);
3188 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3189 channel->channel);
3190 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3191 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3192 ERF_DD_EVQ_IND_RPTR,
3193 channel->eventq_read_ptr &
3194 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3195 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3196 channel->channel);
3197 } else {
3198 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3199 channel->eventq_read_ptr &
3200 channel->eventq_mask);
3201 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3202 }
3203 }
3204
efx_ef10_ev_test_generate(struct efx_channel * channel)3205 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3206 {
3207 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3208 struct efx_nic *efx = channel->efx;
3209 efx_qword_t event;
3210 int rc;
3211
3212 EFX_POPULATE_QWORD_2(event,
3213 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3214 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3215
3216 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3217
3218 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219 * already swapped the data to little-endian order.
3220 */
3221 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3222 sizeof(efx_qword_t));
3223
3224 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3225 NULL, 0, NULL);
3226 if (rc != 0)
3227 goto fail;
3228
3229 return;
3230
3231 fail:
3232 WARN_ON(true);
3233 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3234 }
3235
efx_ef10_prepare_flr(struct efx_nic * efx)3236 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3237 {
3238 atomic_set(&efx->active_queues, 0);
3239 }
3240
efx_ef10_vport_set_mac_address(struct efx_nic * efx)3241 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3242 {
3243 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3244 u8 mac_old[ETH_ALEN];
3245 int rc, rc2;
3246
3247 /* Only reconfigure a PF-created vport */
3248 if (is_zero_ether_addr(nic_data->vport_mac))
3249 return 0;
3250
3251 efx_device_detach_sync(efx);
3252 efx_net_stop(efx->net_dev);
3253 efx_ef10_filter_table_remove(efx);
3254
3255 rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3256 if (rc)
3257 goto restore_filters;
3258
3259 ether_addr_copy(mac_old, nic_data->vport_mac);
3260 rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3261 nic_data->vport_mac);
3262 if (rc)
3263 goto restore_vadaptor;
3264
3265 rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3266 efx->net_dev->dev_addr);
3267 if (!rc) {
3268 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3269 } else {
3270 rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3271 if (rc2) {
3272 /* Failed to add original MAC, so clear vport_mac */
3273 eth_zero_addr(nic_data->vport_mac);
3274 goto reset_nic;
3275 }
3276 }
3277
3278 restore_vadaptor:
3279 rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3280 if (rc2)
3281 goto reset_nic;
3282 restore_filters:
3283 rc2 = efx_ef10_filter_table_probe(efx);
3284 if (rc2)
3285 goto reset_nic;
3286
3287 rc2 = efx_net_open(efx->net_dev);
3288 if (rc2)
3289 goto reset_nic;
3290
3291 efx_device_attach_if_not_resetting(efx);
3292
3293 return rc;
3294
3295 reset_nic:
3296 netif_err(efx, drv, efx->net_dev,
3297 "Failed to restore when changing MAC address - scheduling reset\n");
3298 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3299
3300 return rc ? rc : rc2;
3301 }
3302
efx_ef10_set_mac_address(struct efx_nic * efx)3303 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3304 {
3305 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3306 bool was_enabled = efx->port_enabled;
3307 int rc;
3308
3309 #ifdef CONFIG_SFC_SRIOV
3310 /* If this function is a VF and we have access to the parent PF,
3311 * then use the PF control path to attempt to change the VF MAC address.
3312 */
3313 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3314 struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3315 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3316 u8 mac[ETH_ALEN];
3317
3318 /* net_dev->dev_addr can be zeroed by efx_net_stop in
3319 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
3320 */
3321 ether_addr_copy(mac, efx->net_dev->dev_addr);
3322
3323 rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3324 if (!rc)
3325 return 0;
3326
3327 netif_dbg(efx, drv, efx->net_dev,
3328 "Updating VF mac via PF failed (%d), setting directly\n",
3329 rc);
3330 }
3331 #endif
3332
3333 efx_device_detach_sync(efx);
3334 efx_net_stop(efx->net_dev);
3335
3336 mutex_lock(&efx->mac_lock);
3337 efx_ef10_filter_table_remove(efx);
3338
3339 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3340 efx->net_dev->dev_addr);
3341 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3342 efx->vport_id);
3343 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3344 sizeof(inbuf), NULL, 0, NULL);
3345
3346 efx_ef10_filter_table_probe(efx);
3347 mutex_unlock(&efx->mac_lock);
3348
3349 if (was_enabled)
3350 efx_net_open(efx->net_dev);
3351 efx_device_attach_if_not_resetting(efx);
3352
3353 if (rc == -EPERM) {
3354 netif_err(efx, drv, efx->net_dev,
3355 "Cannot change MAC address; use sfboot to enable"
3356 " mac-spoofing on this interface\n");
3357 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3358 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359 * fall-back to the method of changing the MAC address on the
3360 * vport. This only applies to PFs because such versions of
3361 * MCFW do not support VFs.
3362 */
3363 rc = efx_ef10_vport_set_mac_address(efx);
3364 } else if (rc) {
3365 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3366 sizeof(inbuf), NULL, 0, rc);
3367 }
3368
3369 return rc;
3370 }
3371
efx_ef10_mac_reconfigure(struct efx_nic * efx,bool mtu_only)3372 static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3373 {
3374 WARN_ON(!mutex_is_locked(&efx->mac_lock));
3375
3376 efx_mcdi_filter_sync_rx_mode(efx);
3377
3378 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3379 return efx_mcdi_set_mtu(efx);
3380 return efx_mcdi_set_mac(efx);
3381 }
3382
efx_ef10_start_bist(struct efx_nic * efx,u32 bist_type)3383 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3384 {
3385 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3386
3387 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3388 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3389 NULL, 0, NULL);
3390 }
3391
3392 /* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3395 */
efx_ef10_poll_bist(struct efx_nic * efx)3396 static int efx_ef10_poll_bist(struct efx_nic *efx)
3397 {
3398 int rc;
3399 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3400 size_t outlen;
3401 u32 result;
3402
3403 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3404 outbuf, sizeof(outbuf), &outlen);
3405 if (rc != 0)
3406 return rc;
3407
3408 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3409 return -EIO;
3410
3411 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3412 switch (result) {
3413 case MC_CMD_POLL_BIST_PASSED:
3414 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3415 return 0;
3416 case MC_CMD_POLL_BIST_TIMEOUT:
3417 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3418 return -EIO;
3419 case MC_CMD_POLL_BIST_FAILED:
3420 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3421 return -EIO;
3422 default:
3423 netif_err(efx, hw, efx->net_dev,
3424 "BIST returned unknown result %u", result);
3425 return -EIO;
3426 }
3427 }
3428
efx_ef10_run_bist(struct efx_nic * efx,u32 bist_type)3429 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3430 {
3431 int rc;
3432
3433 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3434
3435 rc = efx_ef10_start_bist(efx, bist_type);
3436 if (rc != 0)
3437 return rc;
3438
3439 return efx_ef10_poll_bist(efx);
3440 }
3441
3442 static int
efx_ef10_test_chip(struct efx_nic * efx,struct efx_self_tests * tests)3443 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3444 {
3445 int rc, rc2;
3446
3447 efx_reset_down(efx, RESET_TYPE_WORLD);
3448
3449 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3450 NULL, 0, NULL, 0, NULL);
3451 if (rc != 0)
3452 goto out;
3453
3454 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3455 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3456
3457 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3458
3459 out:
3460 if (rc == -EPERM)
3461 rc = 0;
3462 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3463 return rc ? rc : rc2;
3464 }
3465
3466 #ifdef CONFIG_SFC_MTD
3467
3468 struct efx_ef10_nvram_type_info {
3469 u16 type, type_mask;
3470 u8 port;
3471 const char *name;
3472 };
3473
3474 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3475 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3476 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3477 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3478 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3479 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3480 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3481 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3482 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3483 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3484 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3485 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3486 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
3487 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
3488 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
3489 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
3490 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
3491 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
3492 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
3493 };
3494 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3495
efx_ef10_mtd_probe_partition(struct efx_nic * efx,struct efx_mcdi_mtd_partition * part,unsigned int type,unsigned long * found)3496 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3497 struct efx_mcdi_mtd_partition *part,
3498 unsigned int type,
3499 unsigned long *found)
3500 {
3501 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3502 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3503 const struct efx_ef10_nvram_type_info *info;
3504 size_t size, erase_size, outlen;
3505 int type_idx = 0;
3506 bool protected;
3507 int rc;
3508
3509 for (type_idx = 0; ; type_idx++) {
3510 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3511 return -ENODEV;
3512 info = efx_ef10_nvram_types + type_idx;
3513 if ((type & ~info->type_mask) == info->type)
3514 break;
3515 }
3516 if (info->port != efx_port_num(efx))
3517 return -ENODEV;
3518
3519 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3520 if (rc)
3521 return rc;
3522 if (protected &&
3523 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3524 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3525 /* Hide protected partitions that don't provide defaults. */
3526 return -ENODEV;
3527
3528 if (protected)
3529 /* Protected partitions are read only. */
3530 erase_size = 0;
3531
3532 /* If we've already exposed a partition of this type, hide this
3533 * duplicate. All operations on MTDs are keyed by the type anyway,
3534 * so we can't act on the duplicate.
3535 */
3536 if (__test_and_set_bit(type_idx, found))
3537 return -EEXIST;
3538
3539 part->nvram_type = type;
3540
3541 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3542 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3543 outbuf, sizeof(outbuf), &outlen);
3544 if (rc)
3545 return rc;
3546 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3547 return -EIO;
3548 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3549 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3550 part->fw_subtype = MCDI_DWORD(outbuf,
3551 NVRAM_METADATA_OUT_SUBTYPE);
3552
3553 part->common.dev_type_name = "EF10 NVRAM manager";
3554 part->common.type_name = info->name;
3555
3556 part->common.mtd.type = MTD_NORFLASH;
3557 part->common.mtd.flags = MTD_CAP_NORFLASH;
3558 part->common.mtd.size = size;
3559 part->common.mtd.erasesize = erase_size;
3560 /* sfc_status is read-only */
3561 if (!erase_size)
3562 part->common.mtd.flags |= MTD_NO_ERASE;
3563
3564 return 0;
3565 }
3566
efx_ef10_mtd_probe(struct efx_nic * efx)3567 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3568 {
3569 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3570 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3571 struct efx_mcdi_mtd_partition *parts;
3572 size_t outlen, n_parts_total, i, n_parts;
3573 unsigned int type;
3574 int rc;
3575
3576 ASSERT_RTNL();
3577
3578 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3579 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3580 outbuf, sizeof(outbuf), &outlen);
3581 if (rc)
3582 return rc;
3583 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3584 return -EIO;
3585
3586 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3587 if (n_parts_total >
3588 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3589 return -EIO;
3590
3591 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3592 if (!parts)
3593 return -ENOMEM;
3594
3595 n_parts = 0;
3596 for (i = 0; i < n_parts_total; i++) {
3597 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3598 i);
3599 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3600 found);
3601 if (rc == -EEXIST || rc == -ENODEV)
3602 continue;
3603 if (rc)
3604 goto fail;
3605 n_parts++;
3606 }
3607
3608 if (!n_parts) {
3609 kfree(parts);
3610 return 0;
3611 }
3612
3613 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3614 fail:
3615 if (rc)
3616 kfree(parts);
3617 return rc;
3618 }
3619
3620 #endif /* CONFIG_SFC_MTD */
3621
efx_ef10_ptp_write_host_time(struct efx_nic * efx,u32 host_time)3622 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3623 {
3624 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3625 }
3626
efx_ef10_ptp_write_host_time_vf(struct efx_nic * efx,u32 host_time)3627 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3628 u32 host_time) {}
3629
efx_ef10_rx_enable_timestamping(struct efx_channel * channel,bool temp)3630 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3631 bool temp)
3632 {
3633 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3634 int rc;
3635
3636 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3637 channel->sync_events_state == SYNC_EVENTS_VALID ||
3638 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3639 return 0;
3640 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3641
3642 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3643 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3645 channel->channel);
3646
3647 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3648 inbuf, sizeof(inbuf), NULL, 0, NULL);
3649
3650 if (rc != 0)
3651 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652 SYNC_EVENTS_DISABLED;
3653
3654 return rc;
3655 }
3656
efx_ef10_rx_disable_timestamping(struct efx_channel * channel,bool temp)3657 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3658 bool temp)
3659 {
3660 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3661 int rc;
3662
3663 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3664 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3665 return 0;
3666 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3667 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3668 return 0;
3669 }
3670 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3671 SYNC_EVENTS_DISABLED;
3672
3673 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3674 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3675 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3676 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3677 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3678 channel->channel);
3679
3680 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3681 inbuf, sizeof(inbuf), NULL, 0, NULL);
3682
3683 return rc;
3684 }
3685
efx_ef10_ptp_set_ts_sync_events(struct efx_nic * efx,bool en,bool temp)3686 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3687 bool temp)
3688 {
3689 int (*set)(struct efx_channel *channel, bool temp);
3690 struct efx_channel *channel;
3691
3692 set = en ?
3693 efx_ef10_rx_enable_timestamping :
3694 efx_ef10_rx_disable_timestamping;
3695
3696 channel = efx_ptp_channel(efx);
3697 if (channel) {
3698 int rc = set(channel, temp);
3699 if (en && rc != 0) {
3700 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3701 return rc;
3702 }
3703 }
3704
3705 return 0;
3706 }
3707
efx_ef10_ptp_set_ts_config_vf(struct efx_nic * efx,struct hwtstamp_config * init)3708 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3709 struct hwtstamp_config *init)
3710 {
3711 return -EOPNOTSUPP;
3712 }
3713
efx_ef10_ptp_set_ts_config(struct efx_nic * efx,struct hwtstamp_config * init)3714 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3715 struct hwtstamp_config *init)
3716 {
3717 int rc;
3718
3719 switch (init->rx_filter) {
3720 case HWTSTAMP_FILTER_NONE:
3721 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3722 /* if TX timestamping is still requested then leave PTP on */
3723 return efx_ptp_change_mode(efx,
3724 init->tx_type != HWTSTAMP_TX_OFF, 0);
3725 case HWTSTAMP_FILTER_ALL:
3726 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3727 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3728 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3729 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3730 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3731 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3732 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3733 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3734 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3735 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3736 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3737 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3738 case HWTSTAMP_FILTER_NTP_ALL:
3739 init->rx_filter = HWTSTAMP_FILTER_ALL;
3740 rc = efx_ptp_change_mode(efx, true, 0);
3741 if (!rc)
3742 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3743 if (rc)
3744 efx_ptp_change_mode(efx, false, 0);
3745 return rc;
3746 default:
3747 return -ERANGE;
3748 }
3749 }
3750
efx_ef10_get_phys_port_id(struct efx_nic * efx,struct netdev_phys_item_id * ppid)3751 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3752 struct netdev_phys_item_id *ppid)
3753 {
3754 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3755
3756 if (!is_valid_ether_addr(nic_data->port_id))
3757 return -EOPNOTSUPP;
3758
3759 ppid->id_len = ETH_ALEN;
3760 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3761
3762 return 0;
3763 }
3764
efx_ef10_vlan_rx_add_vid(struct efx_nic * efx,__be16 proto,u16 vid)3765 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3766 {
3767 if (proto != htons(ETH_P_8021Q))
3768 return -EINVAL;
3769
3770 return efx_ef10_add_vlan(efx, vid);
3771 }
3772
efx_ef10_vlan_rx_kill_vid(struct efx_nic * efx,__be16 proto,u16 vid)3773 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3774 {
3775 if (proto != htons(ETH_P_8021Q))
3776 return -EINVAL;
3777
3778 return efx_ef10_del_vlan(efx, vid);
3779 }
3780
3781 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3785 */
efx_ef10_set_udp_tnl_ports(struct efx_nic * efx,bool unloading)3786 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3787 {
3788 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3790 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3791 bool will_reset = false;
3792 size_t num_entries = 0;
3793 size_t inlen, outlen;
3794 size_t i;
3795 int rc;
3796 efx_dword_t flags_and_num_entries;
3797
3798 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3799
3800 nic_data->udp_tunnels_dirty = false;
3801
3802 if (!(nic_data->datapath_caps &
3803 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3804 efx_device_attach_if_not_resetting(efx);
3805 return 0;
3806 }
3807
3808 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3809 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3810
3811 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3812 if (nic_data->udp_tunnels[i].type !=
3813 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3814 efx_dword_t entry;
3815
3816 EFX_POPULATE_DWORD_2(entry,
3817 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3818 ntohs(nic_data->udp_tunnels[i].port),
3819 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3820 nic_data->udp_tunnels[i].type);
3821 *_MCDI_ARRAY_DWORD(inbuf,
3822 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3823 num_entries++) = entry;
3824 }
3825 }
3826
3827 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3828 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3829 EFX_WORD_1_LBN);
3830 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3831 EFX_WORD_1_WIDTH);
3832 EFX_POPULATE_DWORD_2(flags_and_num_entries,
3833 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3834 !!unloading,
3835 EFX_WORD_1, num_entries);
3836 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3837 flags_and_num_entries;
3838
3839 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3840
3841 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3842 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3843 if (rc == -EIO) {
3844 /* Most likely the MC rebooted due to another function also
3845 * setting its tunnel port list. Mark the tunnel port list as
3846 * dirty, so it will be pushed upon coming up from the reboot.
3847 */
3848 nic_data->udp_tunnels_dirty = true;
3849 return 0;
3850 }
3851
3852 if (rc) {
3853 /* expected not available on unprivileged functions */
3854 if (rc != -EPERM)
3855 netif_warn(efx, drv, efx->net_dev,
3856 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3857 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3858 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3859 netif_info(efx, drv, efx->net_dev,
3860 "Rebooting MC due to UDP tunnel port list change\n");
3861 will_reset = true;
3862 if (unloading)
3863 /* Delay for the MC reset to complete. This will make
3864 * unloading other functions a bit smoother. This is a
3865 * race, but the other unload will work whichever way
3866 * it goes, this just avoids an unnecessary error
3867 * message.
3868 */
3869 msleep(100);
3870 }
3871 if (!will_reset && !unloading) {
3872 /* The caller will have detached, relying on the MC reset to
3873 * trigger a re-attach. Since there won't be an MC reset, we
3874 * have to do the attach ourselves.
3875 */
3876 efx_device_attach_if_not_resetting(efx);
3877 }
3878
3879 return rc;
3880 }
3881
efx_ef10_udp_tnl_push_ports(struct efx_nic * efx)3882 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3883 {
3884 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3885 int rc = 0;
3886
3887 mutex_lock(&nic_data->udp_tunnels_lock);
3888 if (nic_data->udp_tunnels_dirty) {
3889 /* Make sure all TX are stopped while we modify the table, else
3890 * we might race against an efx_features_check().
3891 */
3892 efx_device_detach_sync(efx);
3893 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894 }
3895 mutex_unlock(&nic_data->udp_tunnels_lock);
3896 return rc;
3897 }
3898
efx_ef10_udp_tnl_set_port(struct net_device * dev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3899 static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3900 unsigned int table, unsigned int entry,
3901 struct udp_tunnel_info *ti)
3902 {
3903 struct efx_nic *efx = efx_netdev_priv(dev);
3904 struct efx_ef10_nic_data *nic_data;
3905 int efx_tunnel_type, rc;
3906
3907 if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3908 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3909 else
3910 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3911
3912 nic_data = efx->nic_data;
3913 if (!(nic_data->datapath_caps &
3914 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3915 return -EOPNOTSUPP;
3916
3917 mutex_lock(&nic_data->udp_tunnels_lock);
3918 /* Make sure all TX are stopped while we add to the table, else we
3919 * might race against an efx_features_check().
3920 */
3921 efx_device_detach_sync(efx);
3922 nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3923 nic_data->udp_tunnels[entry].port = ti->port;
3924 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3925 mutex_unlock(&nic_data->udp_tunnels_lock);
3926
3927 return rc;
3928 }
3929
3930 /* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table. However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3934 */
efx_ef10_udp_tnl_has_port(struct efx_nic * efx,__be16 port)3935 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3936 {
3937 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3938 size_t i;
3939
3940 if (!(nic_data->datapath_caps &
3941 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942 return false;
3943
3944 if (nic_data->udp_tunnels_dirty)
3945 /* SW table may not match HW state, so just assume we can't
3946 * use any UDP tunnel offloads.
3947 */
3948 return false;
3949
3950 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3951 if (nic_data->udp_tunnels[i].type !=
3952 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3953 nic_data->udp_tunnels[i].port == port)
3954 return true;
3955
3956 return false;
3957 }
3958
efx_ef10_udp_tnl_unset_port(struct net_device * dev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3959 static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3960 unsigned int table, unsigned int entry,
3961 struct udp_tunnel_info *ti)
3962 {
3963 struct efx_nic *efx = efx_netdev_priv(dev);
3964 struct efx_ef10_nic_data *nic_data;
3965 int rc;
3966
3967 nic_data = efx->nic_data;
3968
3969 mutex_lock(&nic_data->udp_tunnels_lock);
3970 /* Make sure all TX are stopped while we remove from the table, else we
3971 * might race against an efx_features_check().
3972 */
3973 efx_device_detach_sync(efx);
3974 nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3975 nic_data->udp_tunnels[entry].port = 0;
3976 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3977 mutex_unlock(&nic_data->udp_tunnels_lock);
3978
3979 return rc;
3980 }
3981
3982 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3983 .set_port = efx_ef10_udp_tnl_set_port,
3984 .unset_port = efx_ef10_udp_tnl_unset_port,
3985 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3986 .tables = {
3987 {
3988 .n_entries = 16,
3989 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3990 UDP_TUNNEL_TYPE_GENEVE,
3991 },
3992 },
3993 };
3994
3995 /* EF10 may have multiple datapath firmware variants within a
3996 * single version. Report which variants are running.
3997 */
efx_ef10_print_additional_fwver(struct efx_nic * efx,char * buf,size_t len)3998 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3999 size_t len)
4000 {
4001 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4002
4003 return scnprintf(buf, len, " rx%x tx%x",
4004 nic_data->rx_dpcpu_fw_id,
4005 nic_data->tx_dpcpu_fw_id);
4006 }
4007
ef10_check_caps(const struct efx_nic * efx,u8 flag,u32 offset)4008 static unsigned int ef10_check_caps(const struct efx_nic *efx,
4009 u8 flag,
4010 u32 offset)
4011 {
4012 const struct efx_ef10_nic_data *nic_data = efx->nic_data;
4013
4014 switch (offset) {
4015 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4016 return nic_data->datapath_caps & BIT_ULL(flag);
4017 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4018 return nic_data->datapath_caps2 & BIT_ULL(flag);
4019 default:
4020 return 0;
4021 }
4022 }
4023
efx_ef10_recycle_ring_size(const struct efx_nic * efx)4024 static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4025 {
4026 unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4027
4028 /* There is no difference between PFs and VFs. The side is based on
4029 * the maximum link speed of a given NIC.
4030 */
4031 switch (efx->pci_dev->device & 0xfff) {
4032 case 0x0903: /* Farmingdale can do up to 10G */
4033 break;
4034 case 0x0923: /* Greenport can do up to 40G */
4035 case 0x0a03: /* Medford can do up to 40G */
4036 ret *= 4;
4037 break;
4038 default: /* Medford2 can do up to 100G */
4039 ret *= 10;
4040 }
4041
4042 if (IS_ENABLED(CONFIG_PPC64))
4043 ret *= 4;
4044
4045 return ret;
4046 }
4047
4048 #define EF10_OFFLOAD_FEATURES \
4049 (NETIF_F_IP_CSUM | \
4050 NETIF_F_HW_VLAN_CTAG_FILTER | \
4051 NETIF_F_IPV6_CSUM | \
4052 NETIF_F_RXHASH | \
4053 NETIF_F_NTUPLE | \
4054 NETIF_F_SG | \
4055 NETIF_F_RXCSUM | \
4056 NETIF_F_RXALL)
4057
4058 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4059 .is_vf = true,
4060 .mem_bar = efx_ef10_vf_mem_bar,
4061 .mem_map_size = efx_ef10_mem_map_size,
4062 .probe = efx_ef10_probe_vf,
4063 .remove = efx_ef10_remove,
4064 .dimension_resources = efx_ef10_dimension_resources,
4065 .init = efx_ef10_init_nic,
4066 .fini = efx_ef10_fini_nic,
4067 .map_reset_reason = efx_ef10_map_reset_reason,
4068 .map_reset_flags = efx_ef10_map_reset_flags,
4069 .reset = efx_ef10_reset,
4070 .probe_port = efx_mcdi_port_probe,
4071 .remove_port = efx_mcdi_port_remove,
4072 .fini_dmaq = efx_fini_dmaq,
4073 .prepare_flr = efx_ef10_prepare_flr,
4074 .finish_flr = efx_port_dummy_op_void,
4075 .describe_stats = efx_ef10_describe_stats,
4076 .update_stats = efx_ef10_update_stats_vf,
4077 .update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4078 .start_stats = efx_port_dummy_op_void,
4079 .pull_stats = efx_port_dummy_op_void,
4080 .stop_stats = efx_port_dummy_op_void,
4081 .push_irq_moderation = efx_ef10_push_irq_moderation,
4082 .reconfigure_mac = efx_ef10_mac_reconfigure,
4083 .check_mac_fault = efx_mcdi_mac_check_fault,
4084 .reconfigure_port = efx_mcdi_port_reconfigure,
4085 .get_wol = efx_ef10_get_wol_vf,
4086 .set_wol = efx_ef10_set_wol_vf,
4087 .resume_wol = efx_port_dummy_op_void,
4088 .mcdi_request = efx_ef10_mcdi_request,
4089 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4090 .mcdi_read_response = efx_ef10_mcdi_read_response,
4091 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4092 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4093 .irq_enable_master = efx_port_dummy_op_void,
4094 .irq_test_generate = efx_ef10_irq_test_generate,
4095 .irq_disable_non_ev = efx_port_dummy_op_void,
4096 .irq_handle_msi = efx_ef10_msi_interrupt,
4097 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4098 .tx_probe = efx_ef10_tx_probe,
4099 .tx_init = efx_ef10_tx_init,
4100 .tx_remove = efx_mcdi_tx_remove,
4101 .tx_write = efx_ef10_tx_write,
4102 .tx_limit_len = efx_ef10_tx_limit_len,
4103 .tx_enqueue = __efx_enqueue_skb,
4104 .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4105 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4106 .rx_probe = efx_mcdi_rx_probe,
4107 .rx_init = efx_mcdi_rx_init,
4108 .rx_remove = efx_mcdi_rx_remove,
4109 .rx_write = efx_ef10_rx_write,
4110 .rx_defer_refill = efx_ef10_rx_defer_refill,
4111 .rx_packet = __efx_rx_packet,
4112 .ev_probe = efx_mcdi_ev_probe,
4113 .ev_init = efx_ef10_ev_init,
4114 .ev_fini = efx_mcdi_ev_fini,
4115 .ev_remove = efx_mcdi_ev_remove,
4116 .ev_process = efx_ef10_ev_process,
4117 .ev_read_ack = efx_ef10_ev_read_ack,
4118 .ev_test_generate = efx_ef10_ev_test_generate,
4119 .filter_table_probe = efx_ef10_filter_table_probe,
4120 .filter_table_restore = efx_mcdi_filter_table_restore,
4121 .filter_table_remove = efx_ef10_filter_table_remove,
4122 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4123 .filter_insert = efx_mcdi_filter_insert,
4124 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4125 .filter_get_safe = efx_mcdi_filter_get_safe,
4126 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4127 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4128 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4129 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4130 #ifdef CONFIG_RFS_ACCEL
4131 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4132 #endif
4133 #ifdef CONFIG_SFC_MTD
4134 .mtd_probe = efx_port_dummy_op_int,
4135 #endif
4136 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4137 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4138 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140 #ifdef CONFIG_SFC_SRIOV
4141 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4142 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4143 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4144 #endif
4145 .get_mac_address = efx_ef10_get_mac_address_vf,
4146 .set_mac_address = efx_ef10_set_mac_address,
4147
4148 .get_phys_port_id = efx_ef10_get_phys_port_id,
4149 .revision = EFX_REV_HUNT_A0,
4150 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4151 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4152 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4153 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4154 .can_rx_scatter = true,
4155 .always_rx_scatter = true,
4156 .min_interrupt_mode = EFX_INT_MODE_MSIX,
4157 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4158 .offload_features = EF10_OFFLOAD_FEATURES,
4159 .mcdi_max_ver = 2,
4160 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4161 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4162 1 << HWTSTAMP_FILTER_ALL,
4163 .rx_hash_key_size = 40,
4164 .check_caps = ef10_check_caps,
4165 .print_additional_fwver = efx_ef10_print_additional_fwver,
4166 .sensor_event = efx_mcdi_sensor_event,
4167 .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4168 };
4169
4170 const struct efx_nic_type efx_hunt_a0_nic_type = {
4171 .is_vf = false,
4172 .mem_bar = efx_ef10_pf_mem_bar,
4173 .mem_map_size = efx_ef10_mem_map_size,
4174 .probe = efx_ef10_probe_pf,
4175 .remove = efx_ef10_remove,
4176 .dimension_resources = efx_ef10_dimension_resources,
4177 .init = efx_ef10_init_nic,
4178 .fini = efx_ef10_fini_nic,
4179 .map_reset_reason = efx_ef10_map_reset_reason,
4180 .map_reset_flags = efx_ef10_map_reset_flags,
4181 .reset = efx_ef10_reset,
4182 .probe_port = efx_mcdi_port_probe,
4183 .remove_port = efx_mcdi_port_remove,
4184 .fini_dmaq = efx_fini_dmaq,
4185 .prepare_flr = efx_ef10_prepare_flr,
4186 .finish_flr = efx_port_dummy_op_void,
4187 .describe_stats = efx_ef10_describe_stats,
4188 .update_stats = efx_ef10_update_stats_pf,
4189 .start_stats = efx_mcdi_mac_start_stats,
4190 .pull_stats = efx_mcdi_mac_pull_stats,
4191 .stop_stats = efx_mcdi_mac_stop_stats,
4192 .push_irq_moderation = efx_ef10_push_irq_moderation,
4193 .reconfigure_mac = efx_ef10_mac_reconfigure,
4194 .check_mac_fault = efx_mcdi_mac_check_fault,
4195 .reconfigure_port = efx_mcdi_port_reconfigure,
4196 .get_wol = efx_ef10_get_wol,
4197 .set_wol = efx_ef10_set_wol,
4198 .resume_wol = efx_port_dummy_op_void,
4199 .get_fec_stats = efx_ef10_get_fec_stats,
4200 .test_chip = efx_ef10_test_chip,
4201 .test_nvram = efx_mcdi_nvram_test_all,
4202 .mcdi_request = efx_ef10_mcdi_request,
4203 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4204 .mcdi_read_response = efx_ef10_mcdi_read_response,
4205 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4206 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4207 .irq_enable_master = efx_port_dummy_op_void,
4208 .irq_test_generate = efx_ef10_irq_test_generate,
4209 .irq_disable_non_ev = efx_port_dummy_op_void,
4210 .irq_handle_msi = efx_ef10_msi_interrupt,
4211 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4212 .tx_probe = efx_ef10_tx_probe,
4213 .tx_init = efx_ef10_tx_init,
4214 .tx_remove = efx_mcdi_tx_remove,
4215 .tx_write = efx_ef10_tx_write,
4216 .tx_limit_len = efx_ef10_tx_limit_len,
4217 .tx_enqueue = __efx_enqueue_skb,
4218 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4219 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4220 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4221 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4222 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4223 .rx_probe = efx_mcdi_rx_probe,
4224 .rx_init = efx_mcdi_rx_init,
4225 .rx_remove = efx_mcdi_rx_remove,
4226 .rx_write = efx_ef10_rx_write,
4227 .rx_defer_refill = efx_ef10_rx_defer_refill,
4228 .rx_packet = __efx_rx_packet,
4229 .ev_probe = efx_mcdi_ev_probe,
4230 .ev_init = efx_ef10_ev_init,
4231 .ev_fini = efx_mcdi_ev_fini,
4232 .ev_remove = efx_mcdi_ev_remove,
4233 .ev_process = efx_ef10_ev_process,
4234 .ev_read_ack = efx_ef10_ev_read_ack,
4235 .ev_test_generate = efx_ef10_ev_test_generate,
4236 .filter_table_probe = efx_ef10_filter_table_probe,
4237 .filter_table_restore = efx_mcdi_filter_table_restore,
4238 .filter_table_remove = efx_ef10_filter_table_remove,
4239 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4240 .filter_insert = efx_mcdi_filter_insert,
4241 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4242 .filter_get_safe = efx_mcdi_filter_get_safe,
4243 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4244 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4245 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4246 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4247 #ifdef CONFIG_RFS_ACCEL
4248 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4249 #endif
4250 #ifdef CONFIG_SFC_MTD
4251 .mtd_probe = efx_ef10_mtd_probe,
4252 .mtd_rename = efx_mcdi_mtd_rename,
4253 .mtd_read = efx_mcdi_mtd_read,
4254 .mtd_erase = efx_mcdi_mtd_erase,
4255 .mtd_write = efx_mcdi_mtd_write,
4256 .mtd_sync = efx_mcdi_mtd_sync,
4257 #endif
4258 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4259 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4260 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4261 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4262 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4263 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4264 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4265 #ifdef CONFIG_SFC_SRIOV
4266 .sriov_configure = efx_ef10_sriov_configure,
4267 .sriov_init = efx_ef10_sriov_init,
4268 .sriov_fini = efx_ef10_sriov_fini,
4269 .sriov_wanted = efx_ef10_sriov_wanted,
4270 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4271 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4272 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4273 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4274 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4275 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4276 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4277 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4278 #endif
4279 .get_mac_address = efx_ef10_get_mac_address_pf,
4280 .set_mac_address = efx_ef10_set_mac_address,
4281 .tso_versions = efx_ef10_tso_versions,
4282
4283 .get_phys_port_id = efx_ef10_get_phys_port_id,
4284 .revision = EFX_REV_HUNT_A0,
4285 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4286 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4287 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4288 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4289 .can_rx_scatter = true,
4290 .always_rx_scatter = true,
4291 .option_descriptors = true,
4292 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4293 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4294 .offload_features = EF10_OFFLOAD_FEATURES,
4295 .mcdi_max_ver = 2,
4296 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4297 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4298 1 << HWTSTAMP_FILTER_ALL,
4299 .rx_hash_key_size = 40,
4300 .check_caps = ef10_check_caps,
4301 .print_additional_fwver = efx_ef10_print_additional_fwver,
4302 .sensor_event = efx_mcdi_sensor_event,
4303 .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4304 };
4305