1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include <linux/vmalloc.h>
5 
6 #include "ice_common.h"
7 
8 /**
9  * ice_aq_read_nvm
10  * @hw: pointer to the HW struct
11  * @module_typeid: module pointer location in words from the NVM beginning
12  * @offset: byte offset from the module beginning
13  * @length: length of the section to be read (in bytes from the offset)
14  * @data: command buffer (size [bytes] = length)
15  * @last_command: tells if this is the last command in a series
16  * @read_shadow_ram: tell if this is a shadow RAM read
17  * @cd: pointer to command details structure or NULL
18  *
19  * Read the NVM using the admin queue commands (0x0701)
20  */
21 static int
ice_aq_read_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,bool read_shadow_ram,struct ice_sq_cd * cd)22 ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
23 		void *data, bool last_command, bool read_shadow_ram,
24 		struct ice_sq_cd *cd)
25 {
26 	struct ice_aq_desc desc;
27 	struct ice_aqc_nvm *cmd;
28 
29 	cmd = &desc.params.nvm;
30 
31 	if (offset > ICE_AQC_NVM_MAX_OFFSET)
32 		return -EINVAL;
33 
34 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
35 
36 	if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
37 		cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
38 
39 	/* If this is the last command in a series, set the proper flag. */
40 	if (last_command)
41 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
42 	cmd->module_typeid = cpu_to_le16(module_typeid);
43 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
44 	cmd->offset_high = (offset >> 16) & 0xFF;
45 	cmd->length = cpu_to_le16(length);
46 
47 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
48 }
49 
50 /**
51  * ice_read_flat_nvm - Read portion of NVM by flat offset
52  * @hw: pointer to the HW struct
53  * @offset: offset from beginning of NVM
54  * @length: (in) number of bytes to read; (out) number of bytes actually read
55  * @data: buffer to return data in (sized to fit the specified length)
56  * @read_shadow_ram: if true, read from shadow RAM instead of NVM
57  *
58  * Reads a portion of the NVM, as a flat memory space. This function correctly
59  * breaks read requests across Shadow RAM sectors and ensures that no single
60  * read request exceeds the maximum 4KB read for a single AdminQ command.
61  *
62  * Returns a status code on failure. Note that the data pointer may be
63  * partially updated if some reads succeed before a failure.
64  */
65 int
ice_read_flat_nvm(struct ice_hw * hw,u32 offset,u32 * length,u8 * data,bool read_shadow_ram)66 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
67 		  bool read_shadow_ram)
68 {
69 	u32 inlen = *length;
70 	u32 bytes_read = 0;
71 	bool last_cmd;
72 	int status;
73 
74 	*length = 0;
75 
76 	/* Verify the length of the read if this is for the Shadow RAM */
77 	if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
78 		ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n");
79 		return -EINVAL;
80 	}
81 
82 	do {
83 		u32 read_size, sector_offset;
84 
85 		/* ice_aq_read_nvm cannot read more than 4KB at a time.
86 		 * Additionally, a read from the Shadow RAM may not cross over
87 		 * a sector boundary. Conveniently, the sector size is also
88 		 * 4KB.
89 		 */
90 		sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
91 		read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
92 				  inlen - bytes_read);
93 
94 		last_cmd = !(bytes_read + read_size < inlen);
95 
96 		status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
97 					 offset, read_size,
98 					 data + bytes_read, last_cmd,
99 					 read_shadow_ram, NULL);
100 		if (status)
101 			break;
102 
103 		bytes_read += read_size;
104 		offset += read_size;
105 	} while (!last_cmd);
106 
107 	*length = bytes_read;
108 	return status;
109 }
110 
111 /**
112  * ice_aq_update_nvm
113  * @hw: pointer to the HW struct
114  * @module_typeid: module pointer location in words from the NVM beginning
115  * @offset: byte offset from the module beginning
116  * @length: length of the section to be written (in bytes from the offset)
117  * @data: command buffer (size [bytes] = length)
118  * @last_command: tells if this is the last command in a series
119  * @command_flags: command parameters
120  * @cd: pointer to command details structure or NULL
121  *
122  * Update the NVM using the admin queue commands (0x0703)
123  */
124 int
ice_aq_update_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,u8 command_flags,struct ice_sq_cd * cd)125 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
126 		  u16 length, void *data, bool last_command, u8 command_flags,
127 		  struct ice_sq_cd *cd)
128 {
129 	struct ice_aq_desc desc;
130 	struct ice_aqc_nvm *cmd;
131 
132 	cmd = &desc.params.nvm;
133 
134 	/* In offset the highest byte must be zeroed. */
135 	if (offset & 0xFF000000)
136 		return -EINVAL;
137 
138 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
139 
140 	cmd->cmd_flags |= command_flags;
141 
142 	/* If this is the last command in a series, set the proper flag. */
143 	if (last_command)
144 		cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
145 	cmd->module_typeid = cpu_to_le16(module_typeid);
146 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
147 	cmd->offset_high = (offset >> 16) & 0xFF;
148 	cmd->length = cpu_to_le16(length);
149 
150 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
151 
152 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
153 }
154 
155 /**
156  * ice_aq_erase_nvm
157  * @hw: pointer to the HW struct
158  * @module_typeid: module pointer location in words from the NVM beginning
159  * @cd: pointer to command details structure or NULL
160  *
161  * Erase the NVM sector using the admin queue commands (0x0702)
162  */
ice_aq_erase_nvm(struct ice_hw * hw,u16 module_typeid,struct ice_sq_cd * cd)163 int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
164 {
165 	struct ice_aq_desc desc;
166 	struct ice_aqc_nvm *cmd;
167 
168 	cmd = &desc.params.nvm;
169 
170 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
171 
172 	cmd->module_typeid = cpu_to_le16(module_typeid);
173 	cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
174 	cmd->offset_low = 0;
175 	cmd->offset_high = 0;
176 
177 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
178 }
179 
180 /**
181  * ice_read_sr_word_aq - Reads Shadow RAM via AQ
182  * @hw: pointer to the HW structure
183  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
184  * @data: word read from the Shadow RAM
185  *
186  * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
187  */
ice_read_sr_word_aq(struct ice_hw * hw,u16 offset,u16 * data)188 static int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
189 {
190 	u32 bytes = sizeof(u16);
191 	__le16 data_local;
192 	int status;
193 
194 	/* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
195 	 * Shadow RAM sector restrictions necessary when reading from the NVM.
196 	 */
197 	status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
198 				   (__force u8 *)&data_local, true);
199 	if (status)
200 		return status;
201 
202 	*data = le16_to_cpu(data_local);
203 	return 0;
204 }
205 
206 /**
207  * ice_acquire_nvm - Generic request for acquiring the NVM ownership
208  * @hw: pointer to the HW structure
209  * @access: NVM access type (read or write)
210  *
211  * This function will request NVM ownership.
212  */
ice_acquire_nvm(struct ice_hw * hw,enum ice_aq_res_access_type access)213 int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
214 {
215 	if (hw->flash.blank_nvm_mode)
216 		return 0;
217 
218 	return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
219 }
220 
221 /**
222  * ice_release_nvm - Generic request for releasing the NVM ownership
223  * @hw: pointer to the HW structure
224  *
225  * This function will release NVM ownership.
226  */
ice_release_nvm(struct ice_hw * hw)227 void ice_release_nvm(struct ice_hw *hw)
228 {
229 	if (hw->flash.blank_nvm_mode)
230 		return;
231 
232 	ice_release_res(hw, ICE_NVM_RES_ID);
233 }
234 
235 /**
236  * ice_get_flash_bank_offset - Get offset into requested flash bank
237  * @hw: pointer to the HW structure
238  * @bank: whether to read from the active or inactive flash bank
239  * @module: the module to read from
240  *
241  * Based on the module, lookup the module offset from the beginning of the
242  * flash.
243  *
244  * Returns the flash offset. Note that a value of zero is invalid and must be
245  * treated as an error.
246  */
ice_get_flash_bank_offset(struct ice_hw * hw,enum ice_bank_select bank,u16 module)247 static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
248 {
249 	struct ice_bank_info *banks = &hw->flash.banks;
250 	enum ice_flash_bank active_bank;
251 	bool second_bank_active;
252 	u32 offset, size;
253 
254 	switch (module) {
255 	case ICE_SR_1ST_NVM_BANK_PTR:
256 		offset = banks->nvm_ptr;
257 		size = banks->nvm_size;
258 		active_bank = banks->nvm_bank;
259 		break;
260 	case ICE_SR_1ST_OROM_BANK_PTR:
261 		offset = banks->orom_ptr;
262 		size = banks->orom_size;
263 		active_bank = banks->orom_bank;
264 		break;
265 	case ICE_SR_NETLIST_BANK_PTR:
266 		offset = banks->netlist_ptr;
267 		size = banks->netlist_size;
268 		active_bank = banks->netlist_bank;
269 		break;
270 	default:
271 		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
272 		return 0;
273 	}
274 
275 	switch (active_bank) {
276 	case ICE_1ST_FLASH_BANK:
277 		second_bank_active = false;
278 		break;
279 	case ICE_2ND_FLASH_BANK:
280 		second_bank_active = true;
281 		break;
282 	default:
283 		ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
284 			  active_bank);
285 		return 0;
286 	}
287 
288 	/* The second flash bank is stored immediately following the first
289 	 * bank. Based on whether the 1st or 2nd bank is active, and whether
290 	 * we want the active or inactive bank, calculate the desired offset.
291 	 */
292 	switch (bank) {
293 	case ICE_ACTIVE_FLASH_BANK:
294 		return offset + (second_bank_active ? size : 0);
295 	case ICE_INACTIVE_FLASH_BANK:
296 		return offset + (second_bank_active ? 0 : size);
297 	}
298 
299 	ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
300 	return 0;
301 }
302 
303 /**
304  * ice_read_flash_module - Read a word from one of the main NVM modules
305  * @hw: pointer to the HW structure
306  * @bank: which bank of the module to read
307  * @module: the module to read
308  * @offset: the offset into the module in bytes
309  * @data: storage for the word read from the flash
310  * @length: bytes of data to read
311  *
312  * Read data from the specified flash module. The bank parameter indicates
313  * whether or not to read from the active bank or the inactive bank of that
314  * module.
315  *
316  * The word will be read using flat NVM access, and relies on the
317  * hw->flash.banks data being setup by ice_determine_active_flash_banks()
318  * during initialization.
319  */
320 static int
ice_read_flash_module(struct ice_hw * hw,enum ice_bank_select bank,u16 module,u32 offset,u8 * data,u32 length)321 ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
322 		      u32 offset, u8 *data, u32 length)
323 {
324 	int status;
325 	u32 start;
326 
327 	start = ice_get_flash_bank_offset(hw, bank, module);
328 	if (!start) {
329 		ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
330 			  module);
331 		return -EINVAL;
332 	}
333 
334 	status = ice_acquire_nvm(hw, ICE_RES_READ);
335 	if (status)
336 		return status;
337 
338 	status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
339 
340 	ice_release_nvm(hw);
341 
342 	return status;
343 }
344 
345 /**
346  * ice_read_nvm_module - Read from the active main NVM module
347  * @hw: pointer to the HW structure
348  * @bank: whether to read from active or inactive NVM module
349  * @offset: offset into the NVM module to read, in words
350  * @data: storage for returned word value
351  *
352  * Read the specified word from the active NVM module. This includes the CSS
353  * header at the start of the NVM module.
354  */
355 static int
ice_read_nvm_module(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)356 ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
357 {
358 	__le16 data_local;
359 	int status;
360 
361 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
362 				       (__force u8 *)&data_local, sizeof(u16));
363 	if (!status)
364 		*data = le16_to_cpu(data_local);
365 
366 	return status;
367 }
368 
369 /**
370  * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
371  * @hw: pointer to the HW structure
372  * @bank: whether to read from the active or inactive NVM module
373  * @offset: offset into the Shadow RAM copy to read, in words
374  * @data: storage for returned word value
375  *
376  * Read the specified word from the copy of the Shadow RAM found in the
377  * specified NVM module.
378  */
379 static int
ice_read_nvm_sr_copy(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)380 ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
381 {
382 	return ice_read_nvm_module(hw, bank, ICE_NVM_SR_COPY_WORD_OFFSET + offset, data);
383 }
384 
385 /**
386  * ice_read_netlist_module - Read data from the netlist module area
387  * @hw: pointer to the HW structure
388  * @bank: whether to read from the active or inactive module
389  * @offset: offset into the netlist to read from
390  * @data: storage for returned word value
391  *
392  * Read a word from the specified netlist bank.
393  */
394 static int
ice_read_netlist_module(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)395 ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
396 {
397 	__le16 data_local;
398 	int status;
399 
400 	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16),
401 				       (__force u8 *)&data_local, sizeof(u16));
402 	if (!status)
403 		*data = le16_to_cpu(data_local);
404 
405 	return status;
406 }
407 
408 /**
409  * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
410  * @hw: pointer to the HW structure
411  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
412  * @data: word read from the Shadow RAM
413  *
414  * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
415  */
ice_read_sr_word(struct ice_hw * hw,u16 offset,u16 * data)416 int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
417 {
418 	int status;
419 
420 	status = ice_acquire_nvm(hw, ICE_RES_READ);
421 	if (!status) {
422 		status = ice_read_sr_word_aq(hw, offset, data);
423 		ice_release_nvm(hw);
424 	}
425 
426 	return status;
427 }
428 
429 /**
430  * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
431  * @hw: pointer to hardware structure
432  * @module_tlv: pointer to module TLV to return
433  * @module_tlv_len: pointer to module TLV length to return
434  * @module_type: module type requested
435  *
436  * Finds the requested sub module TLV type from the Preserved Field
437  * Area (PFA) and returns the TLV pointer and length. The caller can
438  * use these to read the variable length TLV value.
439  */
440 int
ice_get_pfa_module_tlv(struct ice_hw * hw,u16 * module_tlv,u16 * module_tlv_len,u16 module_type)441 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
442 		       u16 module_type)
443 {
444 	u16 pfa_len, pfa_ptr;
445 	u16 next_tlv;
446 	int status;
447 
448 	status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
449 	if (status) {
450 		ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
451 		return status;
452 	}
453 	status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
454 	if (status) {
455 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
456 		return status;
457 	}
458 	/* Starting with first TLV after PFA length, iterate through the list
459 	 * of TLVs to find the requested one.
460 	 */
461 	next_tlv = pfa_ptr + 1;
462 	while (next_tlv < pfa_ptr + pfa_len) {
463 		u16 tlv_sub_module_type;
464 		u16 tlv_len;
465 
466 		/* Read TLV type */
467 		status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
468 		if (status) {
469 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
470 			break;
471 		}
472 		/* Read TLV length */
473 		status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
474 		if (status) {
475 			ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
476 			break;
477 		}
478 		if (tlv_sub_module_type == module_type) {
479 			if (tlv_len) {
480 				*module_tlv = next_tlv;
481 				*module_tlv_len = tlv_len;
482 				return 0;
483 			}
484 			return -EINVAL;
485 		}
486 		/* Check next TLV, i.e. current TLV pointer + length + 2 words
487 		 * (for current TLV's type and length)
488 		 */
489 		next_tlv = next_tlv + tlv_len + 2;
490 	}
491 	/* Module does not exist */
492 	return -ENOENT;
493 }
494 
495 /**
496  * ice_read_pba_string - Reads part number string from NVM
497  * @hw: pointer to hardware structure
498  * @pba_num: stores the part number string from the NVM
499  * @pba_num_size: part number string buffer length
500  *
501  * Reads the part number string from the NVM.
502  */
ice_read_pba_string(struct ice_hw * hw,u8 * pba_num,u32 pba_num_size)503 int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
504 {
505 	u16 pba_tlv, pba_tlv_len;
506 	u16 pba_word, pba_size;
507 	int status;
508 	u16 i;
509 
510 	status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
511 					ICE_SR_PBA_BLOCK_PTR);
512 	if (status) {
513 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
514 		return status;
515 	}
516 
517 	/* pba_size is the next word */
518 	status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
519 	if (status) {
520 		ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
521 		return status;
522 	}
523 
524 	if (pba_tlv_len < pba_size) {
525 		ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
526 		return -EINVAL;
527 	}
528 
529 	/* Subtract one to get PBA word count (PBA Size word is included in
530 	 * total size)
531 	 */
532 	pba_size--;
533 	if (pba_num_size < (((u32)pba_size * 2) + 1)) {
534 		ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
535 		return -EINVAL;
536 	}
537 
538 	for (i = 0; i < pba_size; i++) {
539 		status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
540 		if (status) {
541 			ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
542 			return status;
543 		}
544 
545 		pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
546 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
547 	}
548 	pba_num[(pba_size * 2)] = '\0';
549 
550 	return status;
551 }
552 
553 /**
554  * ice_get_nvm_ver_info - Read NVM version information
555  * @hw: pointer to the HW struct
556  * @bank: whether to read from the active or inactive flash bank
557  * @nvm: pointer to NVM info structure
558  *
559  * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
560  * in the NVM info structure.
561  */
562 static int
ice_get_nvm_ver_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_nvm_info * nvm)563 ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
564 {
565 	u16 eetrack_lo, eetrack_hi, ver;
566 	int status;
567 
568 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
569 	if (status) {
570 		ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
571 		return status;
572 	}
573 
574 	nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
575 	nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
576 
577 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
578 	if (status) {
579 		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
580 		return status;
581 	}
582 	status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
583 	if (status) {
584 		ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
585 		return status;
586 	}
587 
588 	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
589 
590 	return 0;
591 }
592 
593 /**
594  * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
595  * @hw: pointer to the HW structure
596  * @nvm: storage for Option ROM version information
597  *
598  * Reads the NVM EETRACK ID, Map version, and security revision of the
599  * inactive NVM bank. Used to access version data for a pending update that
600  * has not yet been activated.
601  */
ice_get_inactive_nvm_ver(struct ice_hw * hw,struct ice_nvm_info * nvm)602 int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
603 {
604 	return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
605 }
606 
607 /**
608  * ice_get_orom_civd_data - Get the combo version information from Option ROM
609  * @hw: pointer to the HW struct
610  * @bank: whether to read from the active or inactive flash module
611  * @civd: storage for the Option ROM CIVD data.
612  *
613  * Searches through the Option ROM flash contents to locate the CIVD data for
614  * the image.
615  */
616 static int
ice_get_orom_civd_data(struct ice_hw * hw,enum ice_bank_select bank,struct ice_orom_civd_info * civd)617 ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
618 		       struct ice_orom_civd_info *civd)
619 {
620 	u8 *orom_data;
621 	int status;
622 	u32 offset;
623 
624 	/* The CIVD section is located in the Option ROM aligned to 512 bytes.
625 	 * The first 4 bytes must contain the ASCII characters "$CIV".
626 	 * A simple modulo 256 sum of all of the bytes of the structure must
627 	 * equal 0.
628 	 *
629 	 * The exact location is unknown and varies between images but is
630 	 * usually somewhere in the middle of the bank. We need to scan the
631 	 * Option ROM bank to locate it.
632 	 *
633 	 * It's significantly faster to read the entire Option ROM up front
634 	 * using the maximum page size, than to read each possible location
635 	 * with a separate firmware command.
636 	 */
637 	orom_data = vzalloc(hw->flash.banks.orom_size);
638 	if (!orom_data)
639 		return -ENOMEM;
640 
641 	status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
642 				       orom_data, hw->flash.banks.orom_size);
643 	if (status) {
644 		vfree(orom_data);
645 		ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n");
646 		return status;
647 	}
648 
649 	/* Scan the memory buffer to locate the CIVD data section */
650 	for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
651 		struct ice_orom_civd_info *tmp;
652 		u8 sum = 0, i;
653 
654 		tmp = (struct ice_orom_civd_info *)&orom_data[offset];
655 
656 		/* Skip forward until we find a matching signature */
657 		if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
658 			continue;
659 
660 		ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n",
661 			  offset);
662 
663 		/* Verify that the simple checksum is zero */
664 		for (i = 0; i < sizeof(*tmp); i++)
665 			sum += ((u8 *)tmp)[i];
666 
667 		if (sum) {
668 			ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
669 				  sum);
670 			goto err_invalid_checksum;
671 		}
672 
673 		*civd = *tmp;
674 		vfree(orom_data);
675 		return 0;
676 	}
677 
678 	ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n");
679 
680 err_invalid_checksum:
681 	vfree(orom_data);
682 	return -EIO;
683 }
684 
685 /**
686  * ice_get_orom_ver_info - Read Option ROM version information
687  * @hw: pointer to the HW struct
688  * @bank: whether to read from the active or inactive flash module
689  * @orom: pointer to Option ROM info structure
690  *
691  * Read Option ROM version and security revision from the Option ROM flash
692  * section.
693  */
694 static int
ice_get_orom_ver_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_orom_info * orom)695 ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
696 {
697 	struct ice_orom_civd_info civd;
698 	u32 combo_ver;
699 	int status;
700 
701 	status = ice_get_orom_civd_data(hw, bank, &civd);
702 	if (status) {
703 		ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
704 		return status;
705 	}
706 
707 	combo_ver = le32_to_cpu(civd.combo_ver);
708 
709 	orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT);
710 	orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
711 	orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT);
712 
713 	return 0;
714 }
715 
716 /**
717  * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
718  * @hw: pointer to the HW structure
719  * @orom: storage for Option ROM version information
720  *
721  * Reads the Option ROM version and security revision data for the inactive
722  * section of flash. Used to access version data for a pending update that has
723  * not yet been activated.
724  */
ice_get_inactive_orom_ver(struct ice_hw * hw,struct ice_orom_info * orom)725 int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
726 {
727 	return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
728 }
729 
730 /**
731  * ice_get_netlist_info
732  * @hw: pointer to the HW struct
733  * @bank: whether to read from the active or inactive flash bank
734  * @netlist: pointer to netlist version info structure
735  *
736  * Get the netlist version information from the requested bank. Reads the Link
737  * Topology section to find the Netlist ID block and extract the relevant
738  * information into the netlist version structure.
739  */
740 static int
ice_get_netlist_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_netlist_info * netlist)741 ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
742 		     struct ice_netlist_info *netlist)
743 {
744 	u16 module_id, length, node_count, i;
745 	u16 *id_blk;
746 	int status;
747 
748 	status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id);
749 	if (status)
750 		return status;
751 
752 	if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
753 		ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
754 			  ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
755 		return -EIO;
756 	}
757 
758 	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length);
759 	if (status)
760 		return status;
761 
762 	/* sanity check that we have at least enough words to store the netlist ID block */
763 	if (length < ICE_NETLIST_ID_BLK_SIZE) {
764 		ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n",
765 			  ICE_NETLIST_ID_BLK_SIZE, length);
766 		return -EIO;
767 	}
768 
769 	status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count);
770 	if (status)
771 		return status;
772 	node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
773 
774 	id_blk = kcalloc(ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
775 	if (!id_blk)
776 		return -ENOMEM;
777 
778 	/* Read out the entire Netlist ID Block at once. */
779 	status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
780 				       ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16),
781 				       (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16));
782 	if (status)
783 		goto exit_error;
784 
785 	for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
786 		id_blk[i] = le16_to_cpu(((__force __le16 *)id_blk)[i]);
787 
788 	netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
789 			 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
790 	netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
791 			 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
792 	netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
793 			id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
794 	netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
795 		       id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
796 	netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
797 	/* Read the left most 4 bytes of SHA */
798 	netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
799 			id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
800 
801 exit_error:
802 	kfree(id_blk);
803 
804 	return status;
805 }
806 
807 /**
808  * ice_get_inactive_netlist_ver
809  * @hw: pointer to the HW struct
810  * @netlist: pointer to netlist version info structure
811  *
812  * Read the netlist version data from the inactive netlist bank. Used to
813  * extract version data of a pending flash update in order to display the
814  * version data.
815  */
ice_get_inactive_netlist_ver(struct ice_hw * hw,struct ice_netlist_info * netlist)816 int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist)
817 {
818 	return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist);
819 }
820 
821 /**
822  * ice_discover_flash_size - Discover the available flash size.
823  * @hw: pointer to the HW struct
824  *
825  * The device flash could be up to 16MB in size. However, it is possible that
826  * the actual size is smaller. Use bisection to determine the accessible size
827  * of flash memory.
828  */
ice_discover_flash_size(struct ice_hw * hw)829 static int ice_discover_flash_size(struct ice_hw *hw)
830 {
831 	u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
832 	int status;
833 
834 	status = ice_acquire_nvm(hw, ICE_RES_READ);
835 	if (status)
836 		return status;
837 
838 	while ((max_size - min_size) > 1) {
839 		u32 offset = (max_size + min_size) / 2;
840 		u32 len = 1;
841 		u8 data;
842 
843 		status = ice_read_flat_nvm(hw, offset, &len, &data, false);
844 		if (status == -EIO &&
845 		    hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
846 			ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
847 				  __func__, offset);
848 			status = 0;
849 			max_size = offset;
850 		} else if (!status) {
851 			ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
852 				  __func__, offset);
853 			min_size = offset;
854 		} else {
855 			/* an unexpected error occurred */
856 			goto err_read_flat_nvm;
857 		}
858 	}
859 
860 	ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
861 
862 	hw->flash.flash_size = max_size;
863 
864 err_read_flat_nvm:
865 	ice_release_nvm(hw);
866 
867 	return status;
868 }
869 
870 /**
871  * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
872  * @hw: pointer to the HW structure
873  * @offset: the word offset of the Shadow RAM word to read
874  * @pointer: pointer value read from Shadow RAM
875  *
876  * Read the given Shadow RAM word, and convert it to a pointer value specified
877  * in bytes. This function assumes the specified offset is a valid pointer
878  * word.
879  *
880  * Each pointer word specifies whether it is stored in word size or 4KB
881  * sector size by using the highest bit. The reported pointer value will be in
882  * bytes, intended for flat NVM reads.
883  */
ice_read_sr_pointer(struct ice_hw * hw,u16 offset,u32 * pointer)884 static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
885 {
886 	int status;
887 	u16 value;
888 
889 	status = ice_read_sr_word(hw, offset, &value);
890 	if (status)
891 		return status;
892 
893 	/* Determine if the pointer is in 4KB or word units */
894 	if (value & ICE_SR_NVM_PTR_4KB_UNITS)
895 		*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
896 	else
897 		*pointer = value * 2;
898 
899 	return 0;
900 }
901 
902 /**
903  * ice_read_sr_area_size - Read an area size from a Shadow RAM word
904  * @hw: pointer to the HW structure
905  * @offset: the word offset of the Shadow RAM to read
906  * @size: size value read from the Shadow RAM
907  *
908  * Read the given Shadow RAM word, and convert it to an area size value
909  * specified in bytes. This function assumes the specified offset is a valid
910  * area size word.
911  *
912  * Each area size word is specified in 4KB sector units. This function reports
913  * the size in bytes, intended for flat NVM reads.
914  */
ice_read_sr_area_size(struct ice_hw * hw,u16 offset,u32 * size)915 static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
916 {
917 	int status;
918 	u16 value;
919 
920 	status = ice_read_sr_word(hw, offset, &value);
921 	if (status)
922 		return status;
923 
924 	/* Area sizes are always specified in 4KB units */
925 	*size = value * 4 * 1024;
926 
927 	return 0;
928 }
929 
930 /**
931  * ice_determine_active_flash_banks - Discover active bank for each module
932  * @hw: pointer to the HW struct
933  *
934  * Read the Shadow RAM control word and determine which banks are active for
935  * the NVM, OROM, and Netlist modules. Also read and calculate the associated
936  * pointer and size. These values are then cached into the ice_flash_info
937  * structure for later use in order to calculate the correct offset to read
938  * from the active module.
939  */
ice_determine_active_flash_banks(struct ice_hw * hw)940 static int ice_determine_active_flash_banks(struct ice_hw *hw)
941 {
942 	struct ice_bank_info *banks = &hw->flash.banks;
943 	u16 ctrl_word;
944 	int status;
945 
946 	status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
947 	if (status) {
948 		ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
949 		return status;
950 	}
951 
952 	/* Check that the control word indicates validity */
953 	if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) {
954 		ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
955 		return -EIO;
956 	}
957 
958 	if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
959 		banks->nvm_bank = ICE_1ST_FLASH_BANK;
960 	else
961 		banks->nvm_bank = ICE_2ND_FLASH_BANK;
962 
963 	if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
964 		banks->orom_bank = ICE_1ST_FLASH_BANK;
965 	else
966 		banks->orom_bank = ICE_2ND_FLASH_BANK;
967 
968 	if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
969 		banks->netlist_bank = ICE_1ST_FLASH_BANK;
970 	else
971 		banks->netlist_bank = ICE_2ND_FLASH_BANK;
972 
973 	status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
974 	if (status) {
975 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
976 		return status;
977 	}
978 
979 	status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
980 	if (status) {
981 		ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
982 		return status;
983 	}
984 
985 	status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
986 	if (status) {
987 		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
988 		return status;
989 	}
990 
991 	status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
992 	if (status) {
993 		ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
994 		return status;
995 	}
996 
997 	status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
998 	if (status) {
999 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
1000 		return status;
1001 	}
1002 
1003 	status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
1004 	if (status) {
1005 		ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
1006 		return status;
1007 	}
1008 
1009 	return 0;
1010 }
1011 
1012 /**
1013  * ice_init_nvm - initializes NVM setting
1014  * @hw: pointer to the HW struct
1015  *
1016  * This function reads and populates NVM settings such as Shadow RAM size,
1017  * max_timeout, and blank_nvm_mode
1018  */
ice_init_nvm(struct ice_hw * hw)1019 int ice_init_nvm(struct ice_hw *hw)
1020 {
1021 	struct ice_flash_info *flash = &hw->flash;
1022 	u32 fla, gens_stat;
1023 	u8 sr_size;
1024 	int status;
1025 
1026 	/* The SR size is stored regardless of the NVM programming mode
1027 	 * as the blank mode may be used in the factory line.
1028 	 */
1029 	gens_stat = rd32(hw, GLNVM_GENS);
1030 	sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
1031 
1032 	/* Switching to words (sr_size contains power of 2) */
1033 	flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
1034 
1035 	/* Check if we are in the normal or blank NVM programming mode */
1036 	fla = rd32(hw, GLNVM_FLA);
1037 	if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
1038 		flash->blank_nvm_mode = false;
1039 	} else {
1040 		/* Blank programming mode */
1041 		flash->blank_nvm_mode = true;
1042 		ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
1043 		return -EIO;
1044 	}
1045 
1046 	status = ice_discover_flash_size(hw);
1047 	if (status) {
1048 		ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
1049 		return status;
1050 	}
1051 
1052 	status = ice_determine_active_flash_banks(hw);
1053 	if (status) {
1054 		ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
1055 		return status;
1056 	}
1057 
1058 	status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
1059 	if (status) {
1060 		ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
1061 		return status;
1062 	}
1063 
1064 	status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
1065 	if (status)
1066 		ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
1067 
1068 	/* read the netlist version information */
1069 	status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist);
1070 	if (status)
1071 		ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  * ice_nvm_validate_checksum
1078  * @hw: pointer to the HW struct
1079  *
1080  * Verify NVM PFA checksum validity (0x0706)
1081  */
ice_nvm_validate_checksum(struct ice_hw * hw)1082 int ice_nvm_validate_checksum(struct ice_hw *hw)
1083 {
1084 	struct ice_aqc_nvm_checksum *cmd;
1085 	struct ice_aq_desc desc;
1086 	int status;
1087 
1088 	status = ice_acquire_nvm(hw, ICE_RES_READ);
1089 	if (status)
1090 		return status;
1091 
1092 	cmd = &desc.params.nvm_checksum;
1093 
1094 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
1095 	cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
1096 
1097 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1098 	ice_release_nvm(hw);
1099 
1100 	if (!status)
1101 		if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
1102 			status = -EIO;
1103 
1104 	return status;
1105 }
1106 
1107 /**
1108  * ice_nvm_write_activate
1109  * @hw: pointer to the HW struct
1110  * @cmd_flags: flags for write activate command
1111  * @response_flags: response indicators from firmware
1112  *
1113  * Update the control word with the required banks' validity bits
1114  * and dumps the Shadow RAM to flash (0x0707)
1115  *
1116  * cmd_flags controls which banks to activate, the preservation level to use
1117  * when activating the NVM bank, and whether an EMP reset is required for
1118  * activation.
1119  *
1120  * Note that the 16bit cmd_flags value is split between two separate 1 byte
1121  * flag values in the descriptor.
1122  *
1123  * On successful return of the firmware command, the response_flags variable
1124  * is updated with the flags reported by firmware indicating certain status,
1125  * such as whether EMP reset is enabled.
1126  */
ice_nvm_write_activate(struct ice_hw * hw,u16 cmd_flags,u8 * response_flags)1127 int ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags)
1128 {
1129 	struct ice_aqc_nvm *cmd;
1130 	struct ice_aq_desc desc;
1131 	int err;
1132 
1133 	cmd = &desc.params.nvm;
1134 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
1135 
1136 	cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
1137 	cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF);
1138 
1139 	err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1140 	if (!err && response_flags)
1141 		*response_flags = cmd->cmd_flags;
1142 
1143 	return err;
1144 }
1145 
1146 /**
1147  * ice_aq_nvm_update_empr
1148  * @hw: pointer to the HW struct
1149  *
1150  * Update empr (0x0709). This command allows SW to
1151  * request an EMPR to activate new FW.
1152  */
ice_aq_nvm_update_empr(struct ice_hw * hw)1153 int ice_aq_nvm_update_empr(struct ice_hw *hw)
1154 {
1155 	struct ice_aq_desc desc;
1156 
1157 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
1158 
1159 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1160 }
1161 
1162 /* ice_nvm_set_pkg_data
1163  * @hw: pointer to the HW struct
1164  * @del_pkg_data_flag: If is set then the current pkg_data store by FW
1165  *		       is deleted.
1166  *		       If bit is set to 1, then buffer should be size 0.
1167  * @data: pointer to buffer
1168  * @length: length of the buffer
1169  * @cd: pointer to command details structure or NULL
1170  *
1171  * Set package data (0x070A). This command is equivalent to the reception
1172  * of a PLDM FW Update GetPackageData cmd. This command should be sent
1173  * as part of the NVM update as the first cmd in the flow.
1174  */
1175 
1176 int
ice_nvm_set_pkg_data(struct ice_hw * hw,bool del_pkg_data_flag,u8 * data,u16 length,struct ice_sq_cd * cd)1177 ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
1178 		     u16 length, struct ice_sq_cd *cd)
1179 {
1180 	struct ice_aqc_nvm_pkg_data *cmd;
1181 	struct ice_aq_desc desc;
1182 
1183 	if (length != 0 && !data)
1184 		return -EINVAL;
1185 
1186 	cmd = &desc.params.pkg_data;
1187 
1188 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
1189 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1190 
1191 	if (del_pkg_data_flag)
1192 		cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
1193 
1194 	return ice_aq_send_cmd(hw, &desc, data, length, cd);
1195 }
1196 
1197 /* ice_nvm_pass_component_tbl
1198  * @hw: pointer to the HW struct
1199  * @data: pointer to buffer
1200  * @length: length of the buffer
1201  * @transfer_flag: parameter for determining stage of the update
1202  * @comp_response: a pointer to the response from the 0x070B AQC.
1203  * @comp_response_code: a pointer to the response code from the 0x070B AQC.
1204  * @cd: pointer to command details structure or NULL
1205  *
1206  * Pass component table (0x070B). This command is equivalent to the reception
1207  * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
1208  * per component. It can be only sent after Set Package Data cmd and before
1209  * actual update. FW will assume these commands are going to be sent until
1210  * the TransferFlag is set to End or StartAndEnd.
1211  */
1212 
1213 int
ice_nvm_pass_component_tbl(struct ice_hw * hw,u8 * data,u16 length,u8 transfer_flag,u8 * comp_response,u8 * comp_response_code,struct ice_sq_cd * cd)1214 ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
1215 			   u8 transfer_flag, u8 *comp_response,
1216 			   u8 *comp_response_code, struct ice_sq_cd *cd)
1217 {
1218 	struct ice_aqc_nvm_pass_comp_tbl *cmd;
1219 	struct ice_aq_desc desc;
1220 	int status;
1221 
1222 	if (!data || !comp_response || !comp_response_code)
1223 		return -EINVAL;
1224 
1225 	cmd = &desc.params.pass_comp_tbl;
1226 
1227 	ice_fill_dflt_direct_cmd_desc(&desc,
1228 				      ice_aqc_opc_nvm_pass_component_tbl);
1229 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1230 
1231 	cmd->transfer_flag = transfer_flag;
1232 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
1233 
1234 	if (!status) {
1235 		*comp_response = cmd->component_response;
1236 		*comp_response_code = cmd->component_response_code;
1237 	}
1238 	return status;
1239 }
1240