1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include <linux/vmalloc.h>
5
6 #include "ice_common.h"
7
8 /**
9 * ice_aq_read_nvm
10 * @hw: pointer to the HW struct
11 * @module_typeid: module pointer location in words from the NVM beginning
12 * @offset: byte offset from the module beginning
13 * @length: length of the section to be read (in bytes from the offset)
14 * @data: command buffer (size [bytes] = length)
15 * @last_command: tells if this is the last command in a series
16 * @read_shadow_ram: tell if this is a shadow RAM read
17 * @cd: pointer to command details structure or NULL
18 *
19 * Read the NVM using the admin queue commands (0x0701)
20 */
21 static int
ice_aq_read_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,bool read_shadow_ram,struct ice_sq_cd * cd)22 ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
23 void *data, bool last_command, bool read_shadow_ram,
24 struct ice_sq_cd *cd)
25 {
26 struct ice_aq_desc desc;
27 struct ice_aqc_nvm *cmd;
28
29 cmd = &desc.params.nvm;
30
31 if (offset > ICE_AQC_NVM_MAX_OFFSET)
32 return -EINVAL;
33
34 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
35
36 if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
37 cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
38
39 /* If this is the last command in a series, set the proper flag. */
40 if (last_command)
41 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
42 cmd->module_typeid = cpu_to_le16(module_typeid);
43 cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
44 cmd->offset_high = (offset >> 16) & 0xFF;
45 cmd->length = cpu_to_le16(length);
46
47 return ice_aq_send_cmd(hw, &desc, data, length, cd);
48 }
49
50 /**
51 * ice_read_flat_nvm - Read portion of NVM by flat offset
52 * @hw: pointer to the HW struct
53 * @offset: offset from beginning of NVM
54 * @length: (in) number of bytes to read; (out) number of bytes actually read
55 * @data: buffer to return data in (sized to fit the specified length)
56 * @read_shadow_ram: if true, read from shadow RAM instead of NVM
57 *
58 * Reads a portion of the NVM, as a flat memory space. This function correctly
59 * breaks read requests across Shadow RAM sectors and ensures that no single
60 * read request exceeds the maximum 4KB read for a single AdminQ command.
61 *
62 * Returns a status code on failure. Note that the data pointer may be
63 * partially updated if some reads succeed before a failure.
64 */
65 int
ice_read_flat_nvm(struct ice_hw * hw,u32 offset,u32 * length,u8 * data,bool read_shadow_ram)66 ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
67 bool read_shadow_ram)
68 {
69 u32 inlen = *length;
70 u32 bytes_read = 0;
71 bool last_cmd;
72 int status;
73
74 *length = 0;
75
76 /* Verify the length of the read if this is for the Shadow RAM */
77 if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
78 ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n");
79 return -EINVAL;
80 }
81
82 do {
83 u32 read_size, sector_offset;
84
85 /* ice_aq_read_nvm cannot read more than 4KB at a time.
86 * Additionally, a read from the Shadow RAM may not cross over
87 * a sector boundary. Conveniently, the sector size is also
88 * 4KB.
89 */
90 sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
91 read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
92 inlen - bytes_read);
93
94 last_cmd = !(bytes_read + read_size < inlen);
95
96 status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
97 offset, read_size,
98 data + bytes_read, last_cmd,
99 read_shadow_ram, NULL);
100 if (status)
101 break;
102
103 bytes_read += read_size;
104 offset += read_size;
105 } while (!last_cmd);
106
107 *length = bytes_read;
108 return status;
109 }
110
111 /**
112 * ice_aq_update_nvm
113 * @hw: pointer to the HW struct
114 * @module_typeid: module pointer location in words from the NVM beginning
115 * @offset: byte offset from the module beginning
116 * @length: length of the section to be written (in bytes from the offset)
117 * @data: command buffer (size [bytes] = length)
118 * @last_command: tells if this is the last command in a series
119 * @command_flags: command parameters
120 * @cd: pointer to command details structure or NULL
121 *
122 * Update the NVM using the admin queue commands (0x0703)
123 */
124 int
ice_aq_update_nvm(struct ice_hw * hw,u16 module_typeid,u32 offset,u16 length,void * data,bool last_command,u8 command_flags,struct ice_sq_cd * cd)125 ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
126 u16 length, void *data, bool last_command, u8 command_flags,
127 struct ice_sq_cd *cd)
128 {
129 struct ice_aq_desc desc;
130 struct ice_aqc_nvm *cmd;
131
132 cmd = &desc.params.nvm;
133
134 /* In offset the highest byte must be zeroed. */
135 if (offset & 0xFF000000)
136 return -EINVAL;
137
138 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
139
140 cmd->cmd_flags |= command_flags;
141
142 /* If this is the last command in a series, set the proper flag. */
143 if (last_command)
144 cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
145 cmd->module_typeid = cpu_to_le16(module_typeid);
146 cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
147 cmd->offset_high = (offset >> 16) & 0xFF;
148 cmd->length = cpu_to_le16(length);
149
150 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
151
152 return ice_aq_send_cmd(hw, &desc, data, length, cd);
153 }
154
155 /**
156 * ice_aq_erase_nvm
157 * @hw: pointer to the HW struct
158 * @module_typeid: module pointer location in words from the NVM beginning
159 * @cd: pointer to command details structure or NULL
160 *
161 * Erase the NVM sector using the admin queue commands (0x0702)
162 */
ice_aq_erase_nvm(struct ice_hw * hw,u16 module_typeid,struct ice_sq_cd * cd)163 int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
164 {
165 struct ice_aq_desc desc;
166 struct ice_aqc_nvm *cmd;
167
168 cmd = &desc.params.nvm;
169
170 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
171
172 cmd->module_typeid = cpu_to_le16(module_typeid);
173 cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
174 cmd->offset_low = 0;
175 cmd->offset_high = 0;
176
177 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
178 }
179
180 /**
181 * ice_read_sr_word_aq - Reads Shadow RAM via AQ
182 * @hw: pointer to the HW structure
183 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
184 * @data: word read from the Shadow RAM
185 *
186 * Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
187 */
ice_read_sr_word_aq(struct ice_hw * hw,u16 offset,u16 * data)188 static int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
189 {
190 u32 bytes = sizeof(u16);
191 __le16 data_local;
192 int status;
193
194 /* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
195 * Shadow RAM sector restrictions necessary when reading from the NVM.
196 */
197 status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
198 (__force u8 *)&data_local, true);
199 if (status)
200 return status;
201
202 *data = le16_to_cpu(data_local);
203 return 0;
204 }
205
206 /**
207 * ice_acquire_nvm - Generic request for acquiring the NVM ownership
208 * @hw: pointer to the HW structure
209 * @access: NVM access type (read or write)
210 *
211 * This function will request NVM ownership.
212 */
ice_acquire_nvm(struct ice_hw * hw,enum ice_aq_res_access_type access)213 int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
214 {
215 if (hw->flash.blank_nvm_mode)
216 return 0;
217
218 return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
219 }
220
221 /**
222 * ice_release_nvm - Generic request for releasing the NVM ownership
223 * @hw: pointer to the HW structure
224 *
225 * This function will release NVM ownership.
226 */
ice_release_nvm(struct ice_hw * hw)227 void ice_release_nvm(struct ice_hw *hw)
228 {
229 if (hw->flash.blank_nvm_mode)
230 return;
231
232 ice_release_res(hw, ICE_NVM_RES_ID);
233 }
234
235 /**
236 * ice_get_flash_bank_offset - Get offset into requested flash bank
237 * @hw: pointer to the HW structure
238 * @bank: whether to read from the active or inactive flash bank
239 * @module: the module to read from
240 *
241 * Based on the module, lookup the module offset from the beginning of the
242 * flash.
243 *
244 * Returns the flash offset. Note that a value of zero is invalid and must be
245 * treated as an error.
246 */
ice_get_flash_bank_offset(struct ice_hw * hw,enum ice_bank_select bank,u16 module)247 static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
248 {
249 struct ice_bank_info *banks = &hw->flash.banks;
250 enum ice_flash_bank active_bank;
251 bool second_bank_active;
252 u32 offset, size;
253
254 switch (module) {
255 case ICE_SR_1ST_NVM_BANK_PTR:
256 offset = banks->nvm_ptr;
257 size = banks->nvm_size;
258 active_bank = banks->nvm_bank;
259 break;
260 case ICE_SR_1ST_OROM_BANK_PTR:
261 offset = banks->orom_ptr;
262 size = banks->orom_size;
263 active_bank = banks->orom_bank;
264 break;
265 case ICE_SR_NETLIST_BANK_PTR:
266 offset = banks->netlist_ptr;
267 size = banks->netlist_size;
268 active_bank = banks->netlist_bank;
269 break;
270 default:
271 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
272 return 0;
273 }
274
275 switch (active_bank) {
276 case ICE_1ST_FLASH_BANK:
277 second_bank_active = false;
278 break;
279 case ICE_2ND_FLASH_BANK:
280 second_bank_active = true;
281 break;
282 default:
283 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
284 active_bank);
285 return 0;
286 }
287
288 /* The second flash bank is stored immediately following the first
289 * bank. Based on whether the 1st or 2nd bank is active, and whether
290 * we want the active or inactive bank, calculate the desired offset.
291 */
292 switch (bank) {
293 case ICE_ACTIVE_FLASH_BANK:
294 return offset + (second_bank_active ? size : 0);
295 case ICE_INACTIVE_FLASH_BANK:
296 return offset + (second_bank_active ? 0 : size);
297 }
298
299 ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
300 return 0;
301 }
302
303 /**
304 * ice_read_flash_module - Read a word from one of the main NVM modules
305 * @hw: pointer to the HW structure
306 * @bank: which bank of the module to read
307 * @module: the module to read
308 * @offset: the offset into the module in bytes
309 * @data: storage for the word read from the flash
310 * @length: bytes of data to read
311 *
312 * Read data from the specified flash module. The bank parameter indicates
313 * whether or not to read from the active bank or the inactive bank of that
314 * module.
315 *
316 * The word will be read using flat NVM access, and relies on the
317 * hw->flash.banks data being setup by ice_determine_active_flash_banks()
318 * during initialization.
319 */
320 static int
ice_read_flash_module(struct ice_hw * hw,enum ice_bank_select bank,u16 module,u32 offset,u8 * data,u32 length)321 ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
322 u32 offset, u8 *data, u32 length)
323 {
324 int status;
325 u32 start;
326
327 start = ice_get_flash_bank_offset(hw, bank, module);
328 if (!start) {
329 ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
330 module);
331 return -EINVAL;
332 }
333
334 status = ice_acquire_nvm(hw, ICE_RES_READ);
335 if (status)
336 return status;
337
338 status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
339
340 ice_release_nvm(hw);
341
342 return status;
343 }
344
345 /**
346 * ice_read_nvm_module - Read from the active main NVM module
347 * @hw: pointer to the HW structure
348 * @bank: whether to read from active or inactive NVM module
349 * @offset: offset into the NVM module to read, in words
350 * @data: storage for returned word value
351 *
352 * Read the specified word from the active NVM module. This includes the CSS
353 * header at the start of the NVM module.
354 */
355 static int
ice_read_nvm_module(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)356 ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
357 {
358 __le16 data_local;
359 int status;
360
361 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
362 (__force u8 *)&data_local, sizeof(u16));
363 if (!status)
364 *data = le16_to_cpu(data_local);
365
366 return status;
367 }
368
369 /**
370 * ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
371 * @hw: pointer to the HW structure
372 * @bank: whether to read from the active or inactive NVM module
373 * @offset: offset into the Shadow RAM copy to read, in words
374 * @data: storage for returned word value
375 *
376 * Read the specified word from the copy of the Shadow RAM found in the
377 * specified NVM module.
378 */
379 static int
ice_read_nvm_sr_copy(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)380 ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
381 {
382 return ice_read_nvm_module(hw, bank, ICE_NVM_SR_COPY_WORD_OFFSET + offset, data);
383 }
384
385 /**
386 * ice_read_netlist_module - Read data from the netlist module area
387 * @hw: pointer to the HW structure
388 * @bank: whether to read from the active or inactive module
389 * @offset: offset into the netlist to read from
390 * @data: storage for returned word value
391 *
392 * Read a word from the specified netlist bank.
393 */
394 static int
ice_read_netlist_module(struct ice_hw * hw,enum ice_bank_select bank,u32 offset,u16 * data)395 ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
396 {
397 __le16 data_local;
398 int status;
399
400 status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16),
401 (__force u8 *)&data_local, sizeof(u16));
402 if (!status)
403 *data = le16_to_cpu(data_local);
404
405 return status;
406 }
407
408 /**
409 * ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
410 * @hw: pointer to the HW structure
411 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
412 * @data: word read from the Shadow RAM
413 *
414 * Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
415 */
ice_read_sr_word(struct ice_hw * hw,u16 offset,u16 * data)416 int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
417 {
418 int status;
419
420 status = ice_acquire_nvm(hw, ICE_RES_READ);
421 if (!status) {
422 status = ice_read_sr_word_aq(hw, offset, data);
423 ice_release_nvm(hw);
424 }
425
426 return status;
427 }
428
429 /**
430 * ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
431 * @hw: pointer to hardware structure
432 * @module_tlv: pointer to module TLV to return
433 * @module_tlv_len: pointer to module TLV length to return
434 * @module_type: module type requested
435 *
436 * Finds the requested sub module TLV type from the Preserved Field
437 * Area (PFA) and returns the TLV pointer and length. The caller can
438 * use these to read the variable length TLV value.
439 */
440 int
ice_get_pfa_module_tlv(struct ice_hw * hw,u16 * module_tlv,u16 * module_tlv_len,u16 module_type)441 ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
442 u16 module_type)
443 {
444 u16 pfa_len, pfa_ptr;
445 u16 next_tlv;
446 int status;
447
448 status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
449 if (status) {
450 ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
451 return status;
452 }
453 status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
454 if (status) {
455 ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
456 return status;
457 }
458 /* Starting with first TLV after PFA length, iterate through the list
459 * of TLVs to find the requested one.
460 */
461 next_tlv = pfa_ptr + 1;
462 while (next_tlv < pfa_ptr + pfa_len) {
463 u16 tlv_sub_module_type;
464 u16 tlv_len;
465
466 /* Read TLV type */
467 status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
468 if (status) {
469 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
470 break;
471 }
472 /* Read TLV length */
473 status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
474 if (status) {
475 ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
476 break;
477 }
478 if (tlv_sub_module_type == module_type) {
479 if (tlv_len) {
480 *module_tlv = next_tlv;
481 *module_tlv_len = tlv_len;
482 return 0;
483 }
484 return -EINVAL;
485 }
486 /* Check next TLV, i.e. current TLV pointer + length + 2 words
487 * (for current TLV's type and length)
488 */
489 next_tlv = next_tlv + tlv_len + 2;
490 }
491 /* Module does not exist */
492 return -ENOENT;
493 }
494
495 /**
496 * ice_read_pba_string - Reads part number string from NVM
497 * @hw: pointer to hardware structure
498 * @pba_num: stores the part number string from the NVM
499 * @pba_num_size: part number string buffer length
500 *
501 * Reads the part number string from the NVM.
502 */
ice_read_pba_string(struct ice_hw * hw,u8 * pba_num,u32 pba_num_size)503 int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
504 {
505 u16 pba_tlv, pba_tlv_len;
506 u16 pba_word, pba_size;
507 int status;
508 u16 i;
509
510 status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
511 ICE_SR_PBA_BLOCK_PTR);
512 if (status) {
513 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
514 return status;
515 }
516
517 /* pba_size is the next word */
518 status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
519 if (status) {
520 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
521 return status;
522 }
523
524 if (pba_tlv_len < pba_size) {
525 ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
526 return -EINVAL;
527 }
528
529 /* Subtract one to get PBA word count (PBA Size word is included in
530 * total size)
531 */
532 pba_size--;
533 if (pba_num_size < (((u32)pba_size * 2) + 1)) {
534 ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
535 return -EINVAL;
536 }
537
538 for (i = 0; i < pba_size; i++) {
539 status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
540 if (status) {
541 ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
542 return status;
543 }
544
545 pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
546 pba_num[(i * 2) + 1] = pba_word & 0xFF;
547 }
548 pba_num[(pba_size * 2)] = '\0';
549
550 return status;
551 }
552
553 /**
554 * ice_get_nvm_ver_info - Read NVM version information
555 * @hw: pointer to the HW struct
556 * @bank: whether to read from the active or inactive flash bank
557 * @nvm: pointer to NVM info structure
558 *
559 * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
560 * in the NVM info structure.
561 */
562 static int
ice_get_nvm_ver_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_nvm_info * nvm)563 ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
564 {
565 u16 eetrack_lo, eetrack_hi, ver;
566 int status;
567
568 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
569 if (status) {
570 ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
571 return status;
572 }
573
574 nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
575 nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
576
577 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
578 if (status) {
579 ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
580 return status;
581 }
582 status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
583 if (status) {
584 ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
585 return status;
586 }
587
588 nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
589
590 return 0;
591 }
592
593 /**
594 * ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
595 * @hw: pointer to the HW structure
596 * @nvm: storage for Option ROM version information
597 *
598 * Reads the NVM EETRACK ID, Map version, and security revision of the
599 * inactive NVM bank. Used to access version data for a pending update that
600 * has not yet been activated.
601 */
ice_get_inactive_nvm_ver(struct ice_hw * hw,struct ice_nvm_info * nvm)602 int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
603 {
604 return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
605 }
606
607 /**
608 * ice_get_orom_civd_data - Get the combo version information from Option ROM
609 * @hw: pointer to the HW struct
610 * @bank: whether to read from the active or inactive flash module
611 * @civd: storage for the Option ROM CIVD data.
612 *
613 * Searches through the Option ROM flash contents to locate the CIVD data for
614 * the image.
615 */
616 static int
ice_get_orom_civd_data(struct ice_hw * hw,enum ice_bank_select bank,struct ice_orom_civd_info * civd)617 ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
618 struct ice_orom_civd_info *civd)
619 {
620 u8 *orom_data;
621 int status;
622 u32 offset;
623
624 /* The CIVD section is located in the Option ROM aligned to 512 bytes.
625 * The first 4 bytes must contain the ASCII characters "$CIV".
626 * A simple modulo 256 sum of all of the bytes of the structure must
627 * equal 0.
628 *
629 * The exact location is unknown and varies between images but is
630 * usually somewhere in the middle of the bank. We need to scan the
631 * Option ROM bank to locate it.
632 *
633 * It's significantly faster to read the entire Option ROM up front
634 * using the maximum page size, than to read each possible location
635 * with a separate firmware command.
636 */
637 orom_data = vzalloc(hw->flash.banks.orom_size);
638 if (!orom_data)
639 return -ENOMEM;
640
641 status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
642 orom_data, hw->flash.banks.orom_size);
643 if (status) {
644 vfree(orom_data);
645 ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n");
646 return status;
647 }
648
649 /* Scan the memory buffer to locate the CIVD data section */
650 for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
651 struct ice_orom_civd_info *tmp;
652 u8 sum = 0, i;
653
654 tmp = (struct ice_orom_civd_info *)&orom_data[offset];
655
656 /* Skip forward until we find a matching signature */
657 if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
658 continue;
659
660 ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n",
661 offset);
662
663 /* Verify that the simple checksum is zero */
664 for (i = 0; i < sizeof(*tmp); i++)
665 sum += ((u8 *)tmp)[i];
666
667 if (sum) {
668 ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
669 sum);
670 goto err_invalid_checksum;
671 }
672
673 *civd = *tmp;
674 vfree(orom_data);
675 return 0;
676 }
677
678 ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n");
679
680 err_invalid_checksum:
681 vfree(orom_data);
682 return -EIO;
683 }
684
685 /**
686 * ice_get_orom_ver_info - Read Option ROM version information
687 * @hw: pointer to the HW struct
688 * @bank: whether to read from the active or inactive flash module
689 * @orom: pointer to Option ROM info structure
690 *
691 * Read Option ROM version and security revision from the Option ROM flash
692 * section.
693 */
694 static int
ice_get_orom_ver_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_orom_info * orom)695 ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
696 {
697 struct ice_orom_civd_info civd;
698 u32 combo_ver;
699 int status;
700
701 status = ice_get_orom_civd_data(hw, bank, &civd);
702 if (status) {
703 ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
704 return status;
705 }
706
707 combo_ver = le32_to_cpu(civd.combo_ver);
708
709 orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT);
710 orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
711 orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT);
712
713 return 0;
714 }
715
716 /**
717 * ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
718 * @hw: pointer to the HW structure
719 * @orom: storage for Option ROM version information
720 *
721 * Reads the Option ROM version and security revision data for the inactive
722 * section of flash. Used to access version data for a pending update that has
723 * not yet been activated.
724 */
ice_get_inactive_orom_ver(struct ice_hw * hw,struct ice_orom_info * orom)725 int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
726 {
727 return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
728 }
729
730 /**
731 * ice_get_netlist_info
732 * @hw: pointer to the HW struct
733 * @bank: whether to read from the active or inactive flash bank
734 * @netlist: pointer to netlist version info structure
735 *
736 * Get the netlist version information from the requested bank. Reads the Link
737 * Topology section to find the Netlist ID block and extract the relevant
738 * information into the netlist version structure.
739 */
740 static int
ice_get_netlist_info(struct ice_hw * hw,enum ice_bank_select bank,struct ice_netlist_info * netlist)741 ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
742 struct ice_netlist_info *netlist)
743 {
744 u16 module_id, length, node_count, i;
745 u16 *id_blk;
746 int status;
747
748 status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id);
749 if (status)
750 return status;
751
752 if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
753 ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
754 ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
755 return -EIO;
756 }
757
758 status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length);
759 if (status)
760 return status;
761
762 /* sanity check that we have at least enough words to store the netlist ID block */
763 if (length < ICE_NETLIST_ID_BLK_SIZE) {
764 ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n",
765 ICE_NETLIST_ID_BLK_SIZE, length);
766 return -EIO;
767 }
768
769 status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count);
770 if (status)
771 return status;
772 node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
773
774 id_blk = kcalloc(ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
775 if (!id_blk)
776 return -ENOMEM;
777
778 /* Read out the entire Netlist ID Block at once. */
779 status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
780 ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16),
781 (u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16));
782 if (status)
783 goto exit_error;
784
785 for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
786 id_blk[i] = le16_to_cpu(((__force __le16 *)id_blk)[i]);
787
788 netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
789 id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
790 netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
791 id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
792 netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
793 id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
794 netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
795 id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
796 netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
797 /* Read the left most 4 bytes of SHA */
798 netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
799 id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
800
801 exit_error:
802 kfree(id_blk);
803
804 return status;
805 }
806
807 /**
808 * ice_get_inactive_netlist_ver
809 * @hw: pointer to the HW struct
810 * @netlist: pointer to netlist version info structure
811 *
812 * Read the netlist version data from the inactive netlist bank. Used to
813 * extract version data of a pending flash update in order to display the
814 * version data.
815 */
ice_get_inactive_netlist_ver(struct ice_hw * hw,struct ice_netlist_info * netlist)816 int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist)
817 {
818 return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist);
819 }
820
821 /**
822 * ice_discover_flash_size - Discover the available flash size.
823 * @hw: pointer to the HW struct
824 *
825 * The device flash could be up to 16MB in size. However, it is possible that
826 * the actual size is smaller. Use bisection to determine the accessible size
827 * of flash memory.
828 */
ice_discover_flash_size(struct ice_hw * hw)829 static int ice_discover_flash_size(struct ice_hw *hw)
830 {
831 u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
832 int status;
833
834 status = ice_acquire_nvm(hw, ICE_RES_READ);
835 if (status)
836 return status;
837
838 while ((max_size - min_size) > 1) {
839 u32 offset = (max_size + min_size) / 2;
840 u32 len = 1;
841 u8 data;
842
843 status = ice_read_flat_nvm(hw, offset, &len, &data, false);
844 if (status == -EIO &&
845 hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
846 ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
847 __func__, offset);
848 status = 0;
849 max_size = offset;
850 } else if (!status) {
851 ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
852 __func__, offset);
853 min_size = offset;
854 } else {
855 /* an unexpected error occurred */
856 goto err_read_flat_nvm;
857 }
858 }
859
860 ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
861
862 hw->flash.flash_size = max_size;
863
864 err_read_flat_nvm:
865 ice_release_nvm(hw);
866
867 return status;
868 }
869
870 /**
871 * ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
872 * @hw: pointer to the HW structure
873 * @offset: the word offset of the Shadow RAM word to read
874 * @pointer: pointer value read from Shadow RAM
875 *
876 * Read the given Shadow RAM word, and convert it to a pointer value specified
877 * in bytes. This function assumes the specified offset is a valid pointer
878 * word.
879 *
880 * Each pointer word specifies whether it is stored in word size or 4KB
881 * sector size by using the highest bit. The reported pointer value will be in
882 * bytes, intended for flat NVM reads.
883 */
ice_read_sr_pointer(struct ice_hw * hw,u16 offset,u32 * pointer)884 static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
885 {
886 int status;
887 u16 value;
888
889 status = ice_read_sr_word(hw, offset, &value);
890 if (status)
891 return status;
892
893 /* Determine if the pointer is in 4KB or word units */
894 if (value & ICE_SR_NVM_PTR_4KB_UNITS)
895 *pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
896 else
897 *pointer = value * 2;
898
899 return 0;
900 }
901
902 /**
903 * ice_read_sr_area_size - Read an area size from a Shadow RAM word
904 * @hw: pointer to the HW structure
905 * @offset: the word offset of the Shadow RAM to read
906 * @size: size value read from the Shadow RAM
907 *
908 * Read the given Shadow RAM word, and convert it to an area size value
909 * specified in bytes. This function assumes the specified offset is a valid
910 * area size word.
911 *
912 * Each area size word is specified in 4KB sector units. This function reports
913 * the size in bytes, intended for flat NVM reads.
914 */
ice_read_sr_area_size(struct ice_hw * hw,u16 offset,u32 * size)915 static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
916 {
917 int status;
918 u16 value;
919
920 status = ice_read_sr_word(hw, offset, &value);
921 if (status)
922 return status;
923
924 /* Area sizes are always specified in 4KB units */
925 *size = value * 4 * 1024;
926
927 return 0;
928 }
929
930 /**
931 * ice_determine_active_flash_banks - Discover active bank for each module
932 * @hw: pointer to the HW struct
933 *
934 * Read the Shadow RAM control word and determine which banks are active for
935 * the NVM, OROM, and Netlist modules. Also read and calculate the associated
936 * pointer and size. These values are then cached into the ice_flash_info
937 * structure for later use in order to calculate the correct offset to read
938 * from the active module.
939 */
ice_determine_active_flash_banks(struct ice_hw * hw)940 static int ice_determine_active_flash_banks(struct ice_hw *hw)
941 {
942 struct ice_bank_info *banks = &hw->flash.banks;
943 u16 ctrl_word;
944 int status;
945
946 status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
947 if (status) {
948 ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
949 return status;
950 }
951
952 /* Check that the control word indicates validity */
953 if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) {
954 ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
955 return -EIO;
956 }
957
958 if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
959 banks->nvm_bank = ICE_1ST_FLASH_BANK;
960 else
961 banks->nvm_bank = ICE_2ND_FLASH_BANK;
962
963 if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
964 banks->orom_bank = ICE_1ST_FLASH_BANK;
965 else
966 banks->orom_bank = ICE_2ND_FLASH_BANK;
967
968 if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
969 banks->netlist_bank = ICE_1ST_FLASH_BANK;
970 else
971 banks->netlist_bank = ICE_2ND_FLASH_BANK;
972
973 status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
974 if (status) {
975 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
976 return status;
977 }
978
979 status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
980 if (status) {
981 ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
982 return status;
983 }
984
985 status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
986 if (status) {
987 ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
988 return status;
989 }
990
991 status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
992 if (status) {
993 ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
994 return status;
995 }
996
997 status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
998 if (status) {
999 ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
1000 return status;
1001 }
1002
1003 status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
1004 if (status) {
1005 ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
1006 return status;
1007 }
1008
1009 return 0;
1010 }
1011
1012 /**
1013 * ice_init_nvm - initializes NVM setting
1014 * @hw: pointer to the HW struct
1015 *
1016 * This function reads and populates NVM settings such as Shadow RAM size,
1017 * max_timeout, and blank_nvm_mode
1018 */
ice_init_nvm(struct ice_hw * hw)1019 int ice_init_nvm(struct ice_hw *hw)
1020 {
1021 struct ice_flash_info *flash = &hw->flash;
1022 u32 fla, gens_stat;
1023 u8 sr_size;
1024 int status;
1025
1026 /* The SR size is stored regardless of the NVM programming mode
1027 * as the blank mode may be used in the factory line.
1028 */
1029 gens_stat = rd32(hw, GLNVM_GENS);
1030 sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
1031
1032 /* Switching to words (sr_size contains power of 2) */
1033 flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
1034
1035 /* Check if we are in the normal or blank NVM programming mode */
1036 fla = rd32(hw, GLNVM_FLA);
1037 if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
1038 flash->blank_nvm_mode = false;
1039 } else {
1040 /* Blank programming mode */
1041 flash->blank_nvm_mode = true;
1042 ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
1043 return -EIO;
1044 }
1045
1046 status = ice_discover_flash_size(hw);
1047 if (status) {
1048 ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
1049 return status;
1050 }
1051
1052 status = ice_determine_active_flash_banks(hw);
1053 if (status) {
1054 ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
1055 return status;
1056 }
1057
1058 status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
1059 if (status) {
1060 ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
1061 return status;
1062 }
1063
1064 status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
1065 if (status)
1066 ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
1067
1068 /* read the netlist version information */
1069 status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist);
1070 if (status)
1071 ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
1072
1073 return 0;
1074 }
1075
1076 /**
1077 * ice_nvm_validate_checksum
1078 * @hw: pointer to the HW struct
1079 *
1080 * Verify NVM PFA checksum validity (0x0706)
1081 */
ice_nvm_validate_checksum(struct ice_hw * hw)1082 int ice_nvm_validate_checksum(struct ice_hw *hw)
1083 {
1084 struct ice_aqc_nvm_checksum *cmd;
1085 struct ice_aq_desc desc;
1086 int status;
1087
1088 status = ice_acquire_nvm(hw, ICE_RES_READ);
1089 if (status)
1090 return status;
1091
1092 cmd = &desc.params.nvm_checksum;
1093
1094 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
1095 cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
1096
1097 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1098 ice_release_nvm(hw);
1099
1100 if (!status)
1101 if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
1102 status = -EIO;
1103
1104 return status;
1105 }
1106
1107 /**
1108 * ice_nvm_write_activate
1109 * @hw: pointer to the HW struct
1110 * @cmd_flags: flags for write activate command
1111 * @response_flags: response indicators from firmware
1112 *
1113 * Update the control word with the required banks' validity bits
1114 * and dumps the Shadow RAM to flash (0x0707)
1115 *
1116 * cmd_flags controls which banks to activate, the preservation level to use
1117 * when activating the NVM bank, and whether an EMP reset is required for
1118 * activation.
1119 *
1120 * Note that the 16bit cmd_flags value is split between two separate 1 byte
1121 * flag values in the descriptor.
1122 *
1123 * On successful return of the firmware command, the response_flags variable
1124 * is updated with the flags reported by firmware indicating certain status,
1125 * such as whether EMP reset is enabled.
1126 */
ice_nvm_write_activate(struct ice_hw * hw,u16 cmd_flags,u8 * response_flags)1127 int ice_nvm_write_activate(struct ice_hw *hw, u16 cmd_flags, u8 *response_flags)
1128 {
1129 struct ice_aqc_nvm *cmd;
1130 struct ice_aq_desc desc;
1131 int err;
1132
1133 cmd = &desc.params.nvm;
1134 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
1135
1136 cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
1137 cmd->offset_high = (u8)((cmd_flags >> 8) & 0xFF);
1138
1139 err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1140 if (!err && response_flags)
1141 *response_flags = cmd->cmd_flags;
1142
1143 return err;
1144 }
1145
1146 /**
1147 * ice_aq_nvm_update_empr
1148 * @hw: pointer to the HW struct
1149 *
1150 * Update empr (0x0709). This command allows SW to
1151 * request an EMPR to activate new FW.
1152 */
ice_aq_nvm_update_empr(struct ice_hw * hw)1153 int ice_aq_nvm_update_empr(struct ice_hw *hw)
1154 {
1155 struct ice_aq_desc desc;
1156
1157 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
1158
1159 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1160 }
1161
1162 /* ice_nvm_set_pkg_data
1163 * @hw: pointer to the HW struct
1164 * @del_pkg_data_flag: If is set then the current pkg_data store by FW
1165 * is deleted.
1166 * If bit is set to 1, then buffer should be size 0.
1167 * @data: pointer to buffer
1168 * @length: length of the buffer
1169 * @cd: pointer to command details structure or NULL
1170 *
1171 * Set package data (0x070A). This command is equivalent to the reception
1172 * of a PLDM FW Update GetPackageData cmd. This command should be sent
1173 * as part of the NVM update as the first cmd in the flow.
1174 */
1175
1176 int
ice_nvm_set_pkg_data(struct ice_hw * hw,bool del_pkg_data_flag,u8 * data,u16 length,struct ice_sq_cd * cd)1177 ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
1178 u16 length, struct ice_sq_cd *cd)
1179 {
1180 struct ice_aqc_nvm_pkg_data *cmd;
1181 struct ice_aq_desc desc;
1182
1183 if (length != 0 && !data)
1184 return -EINVAL;
1185
1186 cmd = &desc.params.pkg_data;
1187
1188 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
1189 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1190
1191 if (del_pkg_data_flag)
1192 cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
1193
1194 return ice_aq_send_cmd(hw, &desc, data, length, cd);
1195 }
1196
1197 /* ice_nvm_pass_component_tbl
1198 * @hw: pointer to the HW struct
1199 * @data: pointer to buffer
1200 * @length: length of the buffer
1201 * @transfer_flag: parameter for determining stage of the update
1202 * @comp_response: a pointer to the response from the 0x070B AQC.
1203 * @comp_response_code: a pointer to the response code from the 0x070B AQC.
1204 * @cd: pointer to command details structure or NULL
1205 *
1206 * Pass component table (0x070B). This command is equivalent to the reception
1207 * of a PLDM FW Update PassComponentTable cmd. This command should be sent once
1208 * per component. It can be only sent after Set Package Data cmd and before
1209 * actual update. FW will assume these commands are going to be sent until
1210 * the TransferFlag is set to End or StartAndEnd.
1211 */
1212
1213 int
ice_nvm_pass_component_tbl(struct ice_hw * hw,u8 * data,u16 length,u8 transfer_flag,u8 * comp_response,u8 * comp_response_code,struct ice_sq_cd * cd)1214 ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
1215 u8 transfer_flag, u8 *comp_response,
1216 u8 *comp_response_code, struct ice_sq_cd *cd)
1217 {
1218 struct ice_aqc_nvm_pass_comp_tbl *cmd;
1219 struct ice_aq_desc desc;
1220 int status;
1221
1222 if (!data || !comp_response || !comp_response_code)
1223 return -EINVAL;
1224
1225 cmd = &desc.params.pass_comp_tbl;
1226
1227 ice_fill_dflt_direct_cmd_desc(&desc,
1228 ice_aqc_opc_nvm_pass_component_tbl);
1229 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1230
1231 cmd->transfer_flag = transfer_flag;
1232 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
1233
1234 if (!status) {
1235 *comp_response = cmd->component_response;
1236 *comp_response_code = cmd->component_response_code;
1237 }
1238 return status;
1239 }
1240