1 // SPDX-License-Identifier: GPL-2.0
2 // CAN bus driver for Bosch M_CAN controller
3 // Copyright (C) 2014 Freescale Semiconductor, Inc.
4 // Dong Aisheng <b29396@freescale.com>
5 // Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7 /* Bosch M_CAN user manual can be obtained from:
8 * https://github.com/linux-can/can-doc/tree/master/m_can
9 */
10
11 #include <linux/bitfield.h>
12 #include <linux/can/dev.h>
13 #include <linux/ethtool.h>
14 #include <linux/hrtimer.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26
27 #include "m_can.h"
28
29 /* registers definition */
30 enum m_can_reg {
31 M_CAN_CREL = 0x0,
32 M_CAN_ENDN = 0x4,
33 M_CAN_CUST = 0x8,
34 M_CAN_DBTP = 0xc,
35 M_CAN_TEST = 0x10,
36 M_CAN_RWD = 0x14,
37 M_CAN_CCCR = 0x18,
38 M_CAN_NBTP = 0x1c,
39 M_CAN_TSCC = 0x20,
40 M_CAN_TSCV = 0x24,
41 M_CAN_TOCC = 0x28,
42 M_CAN_TOCV = 0x2c,
43 M_CAN_ECR = 0x40,
44 M_CAN_PSR = 0x44,
45 /* TDCR Register only available for version >=3.1.x */
46 M_CAN_TDCR = 0x48,
47 M_CAN_IR = 0x50,
48 M_CAN_IE = 0x54,
49 M_CAN_ILS = 0x58,
50 M_CAN_ILE = 0x5c,
51 M_CAN_GFC = 0x80,
52 M_CAN_SIDFC = 0x84,
53 M_CAN_XIDFC = 0x88,
54 M_CAN_XIDAM = 0x90,
55 M_CAN_HPMS = 0x94,
56 M_CAN_NDAT1 = 0x98,
57 M_CAN_NDAT2 = 0x9c,
58 M_CAN_RXF0C = 0xa0,
59 M_CAN_RXF0S = 0xa4,
60 M_CAN_RXF0A = 0xa8,
61 M_CAN_RXBC = 0xac,
62 M_CAN_RXF1C = 0xb0,
63 M_CAN_RXF1S = 0xb4,
64 M_CAN_RXF1A = 0xb8,
65 M_CAN_RXESC = 0xbc,
66 M_CAN_TXBC = 0xc0,
67 M_CAN_TXFQS = 0xc4,
68 M_CAN_TXESC = 0xc8,
69 M_CAN_TXBRP = 0xcc,
70 M_CAN_TXBAR = 0xd0,
71 M_CAN_TXBCR = 0xd4,
72 M_CAN_TXBTO = 0xd8,
73 M_CAN_TXBCF = 0xdc,
74 M_CAN_TXBTIE = 0xe0,
75 M_CAN_TXBCIE = 0xe4,
76 M_CAN_TXEFC = 0xf0,
77 M_CAN_TXEFS = 0xf4,
78 M_CAN_TXEFA = 0xf8,
79 };
80
81 /* message ram configuration data length */
82 #define MRAM_CFG_LEN 8
83
84 /* Core Release Register (CREL) */
85 #define CREL_REL_MASK GENMASK(31, 28)
86 #define CREL_STEP_MASK GENMASK(27, 24)
87 #define CREL_SUBSTEP_MASK GENMASK(23, 20)
88
89 /* Data Bit Timing & Prescaler Register (DBTP) */
90 #define DBTP_TDC BIT(23)
91 #define DBTP_DBRP_MASK GENMASK(20, 16)
92 #define DBTP_DTSEG1_MASK GENMASK(12, 8)
93 #define DBTP_DTSEG2_MASK GENMASK(7, 4)
94 #define DBTP_DSJW_MASK GENMASK(3, 0)
95
96 /* Transmitter Delay Compensation Register (TDCR) */
97 #define TDCR_TDCO_MASK GENMASK(14, 8)
98 #define TDCR_TDCF_MASK GENMASK(6, 0)
99
100 /* Test Register (TEST) */
101 #define TEST_LBCK BIT(4)
102
103 /* CC Control Register (CCCR) */
104 #define CCCR_TXP BIT(14)
105 #define CCCR_TEST BIT(7)
106 #define CCCR_DAR BIT(6)
107 #define CCCR_MON BIT(5)
108 #define CCCR_CSR BIT(4)
109 #define CCCR_CSA BIT(3)
110 #define CCCR_ASM BIT(2)
111 #define CCCR_CCE BIT(1)
112 #define CCCR_INIT BIT(0)
113 /* for version 3.0.x */
114 #define CCCR_CMR_MASK GENMASK(11, 10)
115 #define CCCR_CMR_CANFD 0x1
116 #define CCCR_CMR_CANFD_BRS 0x2
117 #define CCCR_CMR_CAN 0x3
118 #define CCCR_CME_MASK GENMASK(9, 8)
119 #define CCCR_CME_CAN 0
120 #define CCCR_CME_CANFD 0x1
121 #define CCCR_CME_CANFD_BRS 0x2
122 /* for version >=3.1.x */
123 #define CCCR_EFBI BIT(13)
124 #define CCCR_PXHD BIT(12)
125 #define CCCR_BRSE BIT(9)
126 #define CCCR_FDOE BIT(8)
127 /* for version >=3.2.x */
128 #define CCCR_NISO BIT(15)
129 /* for version >=3.3.x */
130 #define CCCR_WMM BIT(11)
131 #define CCCR_UTSU BIT(10)
132
133 /* Nominal Bit Timing & Prescaler Register (NBTP) */
134 #define NBTP_NSJW_MASK GENMASK(31, 25)
135 #define NBTP_NBRP_MASK GENMASK(24, 16)
136 #define NBTP_NTSEG1_MASK GENMASK(15, 8)
137 #define NBTP_NTSEG2_MASK GENMASK(6, 0)
138
139 /* Timestamp Counter Configuration Register (TSCC) */
140 #define TSCC_TCP_MASK GENMASK(19, 16)
141 #define TSCC_TSS_MASK GENMASK(1, 0)
142 #define TSCC_TSS_DISABLE 0x0
143 #define TSCC_TSS_INTERNAL 0x1
144 #define TSCC_TSS_EXTERNAL 0x2
145
146 /* Timestamp Counter Value Register (TSCV) */
147 #define TSCV_TSC_MASK GENMASK(15, 0)
148
149 /* Error Counter Register (ECR) */
150 #define ECR_RP BIT(15)
151 #define ECR_REC_MASK GENMASK(14, 8)
152 #define ECR_TEC_MASK GENMASK(7, 0)
153
154 /* Protocol Status Register (PSR) */
155 #define PSR_BO BIT(7)
156 #define PSR_EW BIT(6)
157 #define PSR_EP BIT(5)
158 #define PSR_LEC_MASK GENMASK(2, 0)
159 #define PSR_DLEC_MASK GENMASK(10, 8)
160
161 /* Interrupt Register (IR) */
162 #define IR_ALL_INT 0xffffffff
163
164 /* Renamed bits for versions > 3.1.x */
165 #define IR_ARA BIT(29)
166 #define IR_PED BIT(28)
167 #define IR_PEA BIT(27)
168
169 /* Bits for version 3.0.x */
170 #define IR_STE BIT(31)
171 #define IR_FOE BIT(30)
172 #define IR_ACKE BIT(29)
173 #define IR_BE BIT(28)
174 #define IR_CRCE BIT(27)
175 #define IR_WDI BIT(26)
176 #define IR_BO BIT(25)
177 #define IR_EW BIT(24)
178 #define IR_EP BIT(23)
179 #define IR_ELO BIT(22)
180 #define IR_BEU BIT(21)
181 #define IR_BEC BIT(20)
182 #define IR_DRX BIT(19)
183 #define IR_TOO BIT(18)
184 #define IR_MRAF BIT(17)
185 #define IR_TSW BIT(16)
186 #define IR_TEFL BIT(15)
187 #define IR_TEFF BIT(14)
188 #define IR_TEFW BIT(13)
189 #define IR_TEFN BIT(12)
190 #define IR_TFE BIT(11)
191 #define IR_TCF BIT(10)
192 #define IR_TC BIT(9)
193 #define IR_HPM BIT(8)
194 #define IR_RF1L BIT(7)
195 #define IR_RF1F BIT(6)
196 #define IR_RF1W BIT(5)
197 #define IR_RF1N BIT(4)
198 #define IR_RF0L BIT(3)
199 #define IR_RF0F BIT(2)
200 #define IR_RF0W BIT(1)
201 #define IR_RF0N BIT(0)
202 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
203
204 /* Interrupts for version 3.0.x */
205 #define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206 #define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 IR_RF0L)
209 #define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
210
211 /* Interrupts for version >= 3.1.x */
212 #define IR_ERR_LEC_31X (IR_PED | IR_PEA)
213 #define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 IR_RF0L)
216 #define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
217
218 /* Interrupt Line Select (ILS) */
219 #define ILS_ALL_INT0 0x0
220 #define ILS_ALL_INT1 0xFFFFFFFF
221
222 /* Interrupt Line Enable (ILE) */
223 #define ILE_EINT1 BIT(1)
224 #define ILE_EINT0 BIT(0)
225
226 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227 #define RXFC_FWM_MASK GENMASK(30, 24)
228 #define RXFC_FS_MASK GENMASK(22, 16)
229
230 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231 #define RXFS_RFL BIT(25)
232 #define RXFS_FF BIT(24)
233 #define RXFS_FPI_MASK GENMASK(21, 16)
234 #define RXFS_FGI_MASK GENMASK(13, 8)
235 #define RXFS_FFL_MASK GENMASK(6, 0)
236
237 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238 #define RXESC_RBDS_MASK GENMASK(10, 8)
239 #define RXESC_F1DS_MASK GENMASK(6, 4)
240 #define RXESC_F0DS_MASK GENMASK(2, 0)
241 #define RXESC_64B 0x7
242
243 /* Tx Buffer Configuration (TXBC) */
244 #define TXBC_TFQS_MASK GENMASK(29, 24)
245 #define TXBC_NDTB_MASK GENMASK(21, 16)
246
247 /* Tx FIFO/Queue Status (TXFQS) */
248 #define TXFQS_TFQF BIT(21)
249 #define TXFQS_TFQPI_MASK GENMASK(20, 16)
250 #define TXFQS_TFGI_MASK GENMASK(12, 8)
251 #define TXFQS_TFFL_MASK GENMASK(5, 0)
252
253 /* Tx Buffer Element Size Configuration (TXESC) */
254 #define TXESC_TBDS_MASK GENMASK(2, 0)
255 #define TXESC_TBDS_64B 0x7
256
257 /* Tx Event FIFO Configuration (TXEFC) */
258 #define TXEFC_EFS_MASK GENMASK(21, 16)
259
260 /* Tx Event FIFO Status (TXEFS) */
261 #define TXEFS_TEFL BIT(25)
262 #define TXEFS_EFF BIT(24)
263 #define TXEFS_EFGI_MASK GENMASK(12, 8)
264 #define TXEFS_EFFL_MASK GENMASK(5, 0)
265
266 /* Tx Event FIFO Acknowledge (TXEFA) */
267 #define TXEFA_EFAI_MASK GENMASK(4, 0)
268
269 /* Message RAM Configuration (in bytes) */
270 #define SIDF_ELEMENT_SIZE 4
271 #define XIDF_ELEMENT_SIZE 8
272 #define RXF0_ELEMENT_SIZE 72
273 #define RXF1_ELEMENT_SIZE 72
274 #define RXB_ELEMENT_SIZE 72
275 #define TXE_ELEMENT_SIZE 8
276 #define TXB_ELEMENT_SIZE 72
277
278 /* Message RAM Elements */
279 #define M_CAN_FIFO_ID 0x0
280 #define M_CAN_FIFO_DLC 0x4
281 #define M_CAN_FIFO_DATA 0x8
282
283 /* Rx Buffer Element */
284 /* R0 */
285 #define RX_BUF_ESI BIT(31)
286 #define RX_BUF_XTD BIT(30)
287 #define RX_BUF_RTR BIT(29)
288 /* R1 */
289 #define RX_BUF_ANMF BIT(31)
290 #define RX_BUF_FDF BIT(21)
291 #define RX_BUF_BRS BIT(20)
292 #define RX_BUF_RXTS_MASK GENMASK(15, 0)
293
294 /* Tx Buffer Element */
295 /* T0 */
296 #define TX_BUF_ESI BIT(31)
297 #define TX_BUF_XTD BIT(30)
298 #define TX_BUF_RTR BIT(29)
299 /* T1 */
300 #define TX_BUF_EFC BIT(23)
301 #define TX_BUF_FDF BIT(21)
302 #define TX_BUF_BRS BIT(20)
303 #define TX_BUF_MM_MASK GENMASK(31, 24)
304 #define TX_BUF_DLC_MASK GENMASK(19, 16)
305
306 /* Tx event FIFO Element */
307 /* E1 */
308 #define TX_EVENT_MM_MASK GENMASK(31, 24)
309 #define TX_EVENT_TXTS_MASK GENMASK(15, 0)
310
311 /* Hrtimer polling interval */
312 #define HRTIMER_POLL_INTERVAL_MS 1
313
314 /* The ID and DLC registers are adjacent in M_CAN FIFO memory,
315 * and we can save a (potentially slow) bus round trip by combining
316 * reads and writes to them.
317 */
318 struct id_and_dlc {
319 u32 id;
320 u32 dlc;
321 };
322
m_can_read(struct m_can_classdev * cdev,enum m_can_reg reg)323 static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324 {
325 return cdev->ops->read_reg(cdev, reg);
326 }
327
m_can_write(struct m_can_classdev * cdev,enum m_can_reg reg,u32 val)328 static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329 u32 val)
330 {
331 cdev->ops->write_reg(cdev, reg, val);
332 }
333
334 static int
m_can_fifo_read(struct m_can_classdev * cdev,u32 fgi,unsigned int offset,void * val,size_t val_count)335 m_can_fifo_read(struct m_can_classdev *cdev,
336 u32 fgi, unsigned int offset, void *val, size_t val_count)
337 {
338 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
339 offset;
340
341 if (val_count == 0)
342 return 0;
343
344 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
345 }
346
347 static int
m_can_fifo_write(struct m_can_classdev * cdev,u32 fpi,unsigned int offset,const void * val,size_t val_count)348 m_can_fifo_write(struct m_can_classdev *cdev,
349 u32 fpi, unsigned int offset, const void *val, size_t val_count)
350 {
351 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
352 offset;
353
354 if (val_count == 0)
355 return 0;
356
357 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
358 }
359
m_can_fifo_write_no_off(struct m_can_classdev * cdev,u32 fpi,u32 val)360 static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
361 u32 fpi, u32 val)
362 {
363 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
364 }
365
366 static int
m_can_txe_fifo_read(struct m_can_classdev * cdev,u32 fgi,u32 offset,u32 * val)367 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
368 {
369 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
370 offset;
371
372 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
373 }
374
_m_can_tx_fifo_full(u32 txfqs)375 static inline bool _m_can_tx_fifo_full(u32 txfqs)
376 {
377 return !!(txfqs & TXFQS_TFQF);
378 }
379
m_can_tx_fifo_full(struct m_can_classdev * cdev)380 static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
381 {
382 return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS));
383 }
384
m_can_config_endisable(struct m_can_classdev * cdev,bool enable)385 static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
386 {
387 u32 cccr = m_can_read(cdev, M_CAN_CCCR);
388 u32 timeout = 10;
389 u32 val = 0;
390
391 /* Clear the Clock stop request if it was set */
392 if (cccr & CCCR_CSR)
393 cccr &= ~CCCR_CSR;
394
395 if (enable) {
396 /* enable m_can configuration */
397 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
398 udelay(5);
399 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
400 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
401 } else {
402 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
403 }
404
405 /* there's a delay for module initialization */
406 if (enable)
407 val = CCCR_INIT | CCCR_CCE;
408
409 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
410 if (timeout == 0) {
411 netdev_warn(cdev->net, "Failed to init module\n");
412 return;
413 }
414 timeout--;
415 udelay(1);
416 }
417 }
418
m_can_enable_all_interrupts(struct m_can_classdev * cdev)419 static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
420 {
421 /* Only interrupt line 0 is used in this driver */
422 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
423 }
424
m_can_disable_all_interrupts(struct m_can_classdev * cdev)425 static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
426 {
427 m_can_write(cdev, M_CAN_ILE, 0x0);
428 }
429
430 /* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
431 * width.
432 */
m_can_get_timestamp(struct m_can_classdev * cdev)433 static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
434 {
435 u32 tscv;
436 u32 tsc;
437
438 tscv = m_can_read(cdev, M_CAN_TSCV);
439 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
440
441 return (tsc << 16);
442 }
443
m_can_clean(struct net_device * net)444 static void m_can_clean(struct net_device *net)
445 {
446 struct m_can_classdev *cdev = netdev_priv(net);
447
448 if (cdev->tx_skb) {
449 int putidx = 0;
450
451 net->stats.tx_errors++;
452 if (cdev->version > 30)
453 putidx = FIELD_GET(TXFQS_TFQPI_MASK,
454 m_can_read(cdev, M_CAN_TXFQS));
455
456 can_free_echo_skb(cdev->net, putidx, NULL);
457 cdev->tx_skb = NULL;
458 }
459 }
460
461 /* For peripherals, pass skb to rx-offload, which will push skb from
462 * napi. For non-peripherals, RX is done in napi already, so push
463 * directly. timestamp is used to ensure good skb ordering in
464 * rx-offload and is ignored for non-peripherals.
465 */
m_can_receive_skb(struct m_can_classdev * cdev,struct sk_buff * skb,u32 timestamp)466 static void m_can_receive_skb(struct m_can_classdev *cdev,
467 struct sk_buff *skb,
468 u32 timestamp)
469 {
470 if (cdev->is_peripheral) {
471 struct net_device_stats *stats = &cdev->net->stats;
472 int err;
473
474 err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
475 timestamp);
476 if (err)
477 stats->rx_fifo_errors++;
478 } else {
479 netif_receive_skb(skb);
480 }
481 }
482
m_can_read_fifo(struct net_device * dev,u32 fgi)483 static int m_can_read_fifo(struct net_device *dev, u32 fgi)
484 {
485 struct net_device_stats *stats = &dev->stats;
486 struct m_can_classdev *cdev = netdev_priv(dev);
487 struct canfd_frame *cf;
488 struct sk_buff *skb;
489 struct id_and_dlc fifo_header;
490 u32 timestamp = 0;
491 int err;
492
493 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
494 if (err)
495 goto out_fail;
496
497 if (fifo_header.dlc & RX_BUF_FDF)
498 skb = alloc_canfd_skb(dev, &cf);
499 else
500 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
501 if (!skb) {
502 stats->rx_dropped++;
503 return 0;
504 }
505
506 if (fifo_header.dlc & RX_BUF_FDF)
507 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
508 else
509 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
510
511 if (fifo_header.id & RX_BUF_XTD)
512 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
513 else
514 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
515
516 if (fifo_header.id & RX_BUF_ESI) {
517 cf->flags |= CANFD_ESI;
518 netdev_dbg(dev, "ESI Error\n");
519 }
520
521 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
522 cf->can_id |= CAN_RTR_FLAG;
523 } else {
524 if (fifo_header.dlc & RX_BUF_BRS)
525 cf->flags |= CANFD_BRS;
526
527 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
528 cf->data, DIV_ROUND_UP(cf->len, 4));
529 if (err)
530 goto out_free_skb;
531
532 stats->rx_bytes += cf->len;
533 }
534 stats->rx_packets++;
535
536 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
537
538 m_can_receive_skb(cdev, skb, timestamp);
539
540 return 0;
541
542 out_free_skb:
543 kfree_skb(skb);
544 out_fail:
545 netdev_err(dev, "FIFO read returned %d\n", err);
546 return err;
547 }
548
m_can_do_rx_poll(struct net_device * dev,int quota)549 static int m_can_do_rx_poll(struct net_device *dev, int quota)
550 {
551 struct m_can_classdev *cdev = netdev_priv(dev);
552 u32 pkts = 0;
553 u32 rxfs;
554 u32 rx_count;
555 u32 fgi;
556 int ack_fgi = -1;
557 int i;
558 int err = 0;
559
560 rxfs = m_can_read(cdev, M_CAN_RXF0S);
561 if (!(rxfs & RXFS_FFL_MASK)) {
562 netdev_dbg(dev, "no messages in fifo0\n");
563 return 0;
564 }
565
566 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
567 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
568
569 for (i = 0; i < rx_count && quota > 0; ++i) {
570 err = m_can_read_fifo(dev, fgi);
571 if (err)
572 break;
573
574 quota--;
575 pkts++;
576 ack_fgi = fgi;
577 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
578 }
579
580 if (ack_fgi != -1)
581 m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
582
583 if (err)
584 return err;
585
586 return pkts;
587 }
588
m_can_handle_lost_msg(struct net_device * dev)589 static int m_can_handle_lost_msg(struct net_device *dev)
590 {
591 struct m_can_classdev *cdev = netdev_priv(dev);
592 struct net_device_stats *stats = &dev->stats;
593 struct sk_buff *skb;
594 struct can_frame *frame;
595 u32 timestamp = 0;
596
597 netdev_err(dev, "msg lost in rxf0\n");
598
599 stats->rx_errors++;
600 stats->rx_over_errors++;
601
602 skb = alloc_can_err_skb(dev, &frame);
603 if (unlikely(!skb))
604 return 0;
605
606 frame->can_id |= CAN_ERR_CRTL;
607 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
608
609 if (cdev->is_peripheral)
610 timestamp = m_can_get_timestamp(cdev);
611
612 m_can_receive_skb(cdev, skb, timestamp);
613
614 return 1;
615 }
616
m_can_handle_lec_err(struct net_device * dev,enum m_can_lec_type lec_type)617 static int m_can_handle_lec_err(struct net_device *dev,
618 enum m_can_lec_type lec_type)
619 {
620 struct m_can_classdev *cdev = netdev_priv(dev);
621 struct net_device_stats *stats = &dev->stats;
622 struct can_frame *cf;
623 struct sk_buff *skb;
624 u32 timestamp = 0;
625
626 cdev->can.can_stats.bus_error++;
627 stats->rx_errors++;
628
629 /* propagate the error condition to the CAN stack */
630 skb = alloc_can_err_skb(dev, &cf);
631 if (unlikely(!skb))
632 return 0;
633
634 /* check for 'last error code' which tells us the
635 * type of the last error to occur on the CAN bus
636 */
637 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
638
639 switch (lec_type) {
640 case LEC_STUFF_ERROR:
641 netdev_dbg(dev, "stuff error\n");
642 cf->data[2] |= CAN_ERR_PROT_STUFF;
643 break;
644 case LEC_FORM_ERROR:
645 netdev_dbg(dev, "form error\n");
646 cf->data[2] |= CAN_ERR_PROT_FORM;
647 break;
648 case LEC_ACK_ERROR:
649 netdev_dbg(dev, "ack error\n");
650 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
651 break;
652 case LEC_BIT1_ERROR:
653 netdev_dbg(dev, "bit1 error\n");
654 cf->data[2] |= CAN_ERR_PROT_BIT1;
655 break;
656 case LEC_BIT0_ERROR:
657 netdev_dbg(dev, "bit0 error\n");
658 cf->data[2] |= CAN_ERR_PROT_BIT0;
659 break;
660 case LEC_CRC_ERROR:
661 netdev_dbg(dev, "CRC error\n");
662 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
663 break;
664 default:
665 break;
666 }
667
668 if (cdev->is_peripheral)
669 timestamp = m_can_get_timestamp(cdev);
670
671 m_can_receive_skb(cdev, skb, timestamp);
672
673 return 1;
674 }
675
__m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)676 static int __m_can_get_berr_counter(const struct net_device *dev,
677 struct can_berr_counter *bec)
678 {
679 struct m_can_classdev *cdev = netdev_priv(dev);
680 unsigned int ecr;
681
682 ecr = m_can_read(cdev, M_CAN_ECR);
683 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
684 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
685
686 return 0;
687 }
688
m_can_clk_start(struct m_can_classdev * cdev)689 static int m_can_clk_start(struct m_can_classdev *cdev)
690 {
691 if (cdev->pm_clock_support == 0)
692 return 0;
693
694 return pm_runtime_resume_and_get(cdev->dev);
695 }
696
m_can_clk_stop(struct m_can_classdev * cdev)697 static void m_can_clk_stop(struct m_can_classdev *cdev)
698 {
699 if (cdev->pm_clock_support)
700 pm_runtime_put_sync(cdev->dev);
701 }
702
m_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)703 static int m_can_get_berr_counter(const struct net_device *dev,
704 struct can_berr_counter *bec)
705 {
706 struct m_can_classdev *cdev = netdev_priv(dev);
707 int err;
708
709 err = m_can_clk_start(cdev);
710 if (err)
711 return err;
712
713 __m_can_get_berr_counter(dev, bec);
714
715 m_can_clk_stop(cdev);
716
717 return 0;
718 }
719
m_can_handle_state_change(struct net_device * dev,enum can_state new_state)720 static int m_can_handle_state_change(struct net_device *dev,
721 enum can_state new_state)
722 {
723 struct m_can_classdev *cdev = netdev_priv(dev);
724 struct can_frame *cf;
725 struct sk_buff *skb;
726 struct can_berr_counter bec;
727 unsigned int ecr;
728 u32 timestamp = 0;
729
730 switch (new_state) {
731 case CAN_STATE_ERROR_WARNING:
732 /* error warning state */
733 cdev->can.can_stats.error_warning++;
734 cdev->can.state = CAN_STATE_ERROR_WARNING;
735 break;
736 case CAN_STATE_ERROR_PASSIVE:
737 /* error passive state */
738 cdev->can.can_stats.error_passive++;
739 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
740 break;
741 case CAN_STATE_BUS_OFF:
742 /* bus-off state */
743 cdev->can.state = CAN_STATE_BUS_OFF;
744 m_can_disable_all_interrupts(cdev);
745 cdev->can.can_stats.bus_off++;
746 can_bus_off(dev);
747 break;
748 default:
749 break;
750 }
751
752 /* propagate the error condition to the CAN stack */
753 skb = alloc_can_err_skb(dev, &cf);
754 if (unlikely(!skb))
755 return 0;
756
757 __m_can_get_berr_counter(dev, &bec);
758
759 switch (new_state) {
760 case CAN_STATE_ERROR_WARNING:
761 /* error warning state */
762 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
763 cf->data[1] = (bec.txerr > bec.rxerr) ?
764 CAN_ERR_CRTL_TX_WARNING :
765 CAN_ERR_CRTL_RX_WARNING;
766 cf->data[6] = bec.txerr;
767 cf->data[7] = bec.rxerr;
768 break;
769 case CAN_STATE_ERROR_PASSIVE:
770 /* error passive state */
771 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
772 ecr = m_can_read(cdev, M_CAN_ECR);
773 if (ecr & ECR_RP)
774 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
775 if (bec.txerr > 127)
776 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
777 cf->data[6] = bec.txerr;
778 cf->data[7] = bec.rxerr;
779 break;
780 case CAN_STATE_BUS_OFF:
781 /* bus-off state */
782 cf->can_id |= CAN_ERR_BUSOFF;
783 break;
784 default:
785 break;
786 }
787
788 if (cdev->is_peripheral)
789 timestamp = m_can_get_timestamp(cdev);
790
791 m_can_receive_skb(cdev, skb, timestamp);
792
793 return 1;
794 }
795
m_can_handle_state_errors(struct net_device * dev,u32 psr)796 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
797 {
798 struct m_can_classdev *cdev = netdev_priv(dev);
799 int work_done = 0;
800
801 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
802 netdev_dbg(dev, "entered error warning state\n");
803 work_done += m_can_handle_state_change(dev,
804 CAN_STATE_ERROR_WARNING);
805 }
806
807 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
808 netdev_dbg(dev, "entered error passive state\n");
809 work_done += m_can_handle_state_change(dev,
810 CAN_STATE_ERROR_PASSIVE);
811 }
812
813 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
814 netdev_dbg(dev, "entered error bus off state\n");
815 work_done += m_can_handle_state_change(dev,
816 CAN_STATE_BUS_OFF);
817 }
818
819 return work_done;
820 }
821
m_can_handle_other_err(struct net_device * dev,u32 irqstatus)822 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
823 {
824 if (irqstatus & IR_WDI)
825 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
826 if (irqstatus & IR_BEU)
827 netdev_err(dev, "Bit Error Uncorrected\n");
828 if (irqstatus & IR_BEC)
829 netdev_err(dev, "Bit Error Corrected\n");
830 if (irqstatus & IR_TOO)
831 netdev_err(dev, "Timeout reached\n");
832 if (irqstatus & IR_MRAF)
833 netdev_err(dev, "Message RAM access failure occurred\n");
834 }
835
is_lec_err(u8 lec)836 static inline bool is_lec_err(u8 lec)
837 {
838 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
839 }
840
m_can_is_protocol_err(u32 irqstatus)841 static inline bool m_can_is_protocol_err(u32 irqstatus)
842 {
843 return irqstatus & IR_ERR_LEC_31X;
844 }
845
m_can_handle_protocol_error(struct net_device * dev,u32 irqstatus)846 static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
847 {
848 struct net_device_stats *stats = &dev->stats;
849 struct m_can_classdev *cdev = netdev_priv(dev);
850 struct can_frame *cf;
851 struct sk_buff *skb;
852 u32 timestamp = 0;
853
854 /* propagate the error condition to the CAN stack */
855 skb = alloc_can_err_skb(dev, &cf);
856
857 /* update tx error stats since there is protocol error */
858 stats->tx_errors++;
859
860 /* update arbitration lost status */
861 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
862 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
863 cdev->can.can_stats.arbitration_lost++;
864 if (skb) {
865 cf->can_id |= CAN_ERR_LOSTARB;
866 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
867 }
868 }
869
870 if (unlikely(!skb)) {
871 netdev_dbg(dev, "allocation of skb failed\n");
872 return 0;
873 }
874
875 if (cdev->is_peripheral)
876 timestamp = m_can_get_timestamp(cdev);
877
878 m_can_receive_skb(cdev, skb, timestamp);
879
880 return 1;
881 }
882
m_can_handle_bus_errors(struct net_device * dev,u32 irqstatus,u32 psr)883 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
884 u32 psr)
885 {
886 struct m_can_classdev *cdev = netdev_priv(dev);
887 int work_done = 0;
888
889 if (irqstatus & IR_RF0L)
890 work_done += m_can_handle_lost_msg(dev);
891
892 /* handle lec errors on the bus */
893 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
894 u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
895 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
896
897 if (is_lec_err(lec)) {
898 netdev_dbg(dev, "Arbitration phase error detected\n");
899 work_done += m_can_handle_lec_err(dev, lec);
900 }
901
902 if (is_lec_err(dlec)) {
903 netdev_dbg(dev, "Data phase error detected\n");
904 work_done += m_can_handle_lec_err(dev, dlec);
905 }
906 }
907
908 /* handle protocol errors in arbitration phase */
909 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
910 m_can_is_protocol_err(irqstatus))
911 work_done += m_can_handle_protocol_error(dev, irqstatus);
912
913 /* other unproccessed error interrupts */
914 m_can_handle_other_err(dev, irqstatus);
915
916 return work_done;
917 }
918
m_can_rx_handler(struct net_device * dev,int quota,u32 irqstatus)919 static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
920 {
921 struct m_can_classdev *cdev = netdev_priv(dev);
922 int rx_work_or_err;
923 int work_done = 0;
924
925 if (!irqstatus)
926 goto end;
927
928 /* Errata workaround for issue "Needless activation of MRAF irq"
929 * During frame reception while the MCAN is in Error Passive state
930 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
931 * it may happen that MCAN_IR.MRAF is set although there was no
932 * Message RAM access failure.
933 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
934 * The Message RAM Access Failure interrupt routine needs to check
935 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
936 * In this case, reset MCAN_IR.MRAF. No further action is required.
937 */
938 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
939 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
940 struct can_berr_counter bec;
941
942 __m_can_get_berr_counter(dev, &bec);
943 if (bec.rxerr == 127) {
944 m_can_write(cdev, M_CAN_IR, IR_MRAF);
945 irqstatus &= ~IR_MRAF;
946 }
947 }
948
949 if (irqstatus & IR_ERR_STATE)
950 work_done += m_can_handle_state_errors(dev,
951 m_can_read(cdev, M_CAN_PSR));
952
953 if (irqstatus & IR_ERR_BUS_30X)
954 work_done += m_can_handle_bus_errors(dev, irqstatus,
955 m_can_read(cdev, M_CAN_PSR));
956
957 if (irqstatus & IR_RF0N) {
958 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
959 if (rx_work_or_err < 0)
960 return rx_work_or_err;
961
962 work_done += rx_work_or_err;
963 }
964 end:
965 return work_done;
966 }
967
m_can_rx_peripheral(struct net_device * dev,u32 irqstatus)968 static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
969 {
970 struct m_can_classdev *cdev = netdev_priv(dev);
971 int work_done;
972
973 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);
974
975 /* Don't re-enable interrupts if the driver had a fatal error
976 * (e.g., FIFO read failure).
977 */
978 if (work_done < 0)
979 m_can_disable_all_interrupts(cdev);
980
981 return work_done;
982 }
983
m_can_poll(struct napi_struct * napi,int quota)984 static int m_can_poll(struct napi_struct *napi, int quota)
985 {
986 struct net_device *dev = napi->dev;
987 struct m_can_classdev *cdev = netdev_priv(dev);
988 int work_done;
989 u32 irqstatus;
990
991 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
992
993 work_done = m_can_rx_handler(dev, quota, irqstatus);
994
995 /* Don't re-enable interrupts if the driver had a fatal error
996 * (e.g., FIFO read failure).
997 */
998 if (work_done >= 0 && work_done < quota) {
999 napi_complete_done(napi, work_done);
1000 m_can_enable_all_interrupts(cdev);
1001 }
1002
1003 return work_done;
1004 }
1005
1006 /* Echo tx skb and update net stats. Peripherals use rx-offload for
1007 * echo. timestamp is used for peripherals to ensure correct ordering
1008 * by rx-offload, and is ignored for non-peripherals.
1009 */
m_can_tx_update_stats(struct m_can_classdev * cdev,unsigned int msg_mark,u32 timestamp)1010 static void m_can_tx_update_stats(struct m_can_classdev *cdev,
1011 unsigned int msg_mark,
1012 u32 timestamp)
1013 {
1014 struct net_device *dev = cdev->net;
1015 struct net_device_stats *stats = &dev->stats;
1016
1017 if (cdev->is_peripheral)
1018 stats->tx_bytes +=
1019 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1020 msg_mark,
1021 timestamp,
1022 NULL);
1023 else
1024 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
1025
1026 stats->tx_packets++;
1027 }
1028
m_can_echo_tx_event(struct net_device * dev)1029 static int m_can_echo_tx_event(struct net_device *dev)
1030 {
1031 u32 txe_count = 0;
1032 u32 m_can_txefs;
1033 u32 fgi = 0;
1034 int ack_fgi = -1;
1035 int i = 0;
1036 int err = 0;
1037 unsigned int msg_mark;
1038
1039 struct m_can_classdev *cdev = netdev_priv(dev);
1040
1041 /* read tx event fifo status */
1042 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1043
1044 /* Get Tx Event fifo element count */
1045 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1046 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1047
1048 /* Get and process all sent elements */
1049 for (i = 0; i < txe_count; i++) {
1050 u32 txe, timestamp = 0;
1051
1052 /* get message marker, timestamp */
1053 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1054 if (err) {
1055 netdev_err(dev, "TXE FIFO read returned %d\n", err);
1056 break;
1057 }
1058
1059 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1060 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1061
1062 ack_fgi = fgi;
1063 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1064
1065 /* update stats */
1066 m_can_tx_update_stats(cdev, msg_mark, timestamp);
1067 }
1068
1069 if (ack_fgi != -1)
1070 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1071 ack_fgi));
1072
1073 return err;
1074 }
1075
m_can_isr(int irq,void * dev_id)1076 static irqreturn_t m_can_isr(int irq, void *dev_id)
1077 {
1078 struct net_device *dev = (struct net_device *)dev_id;
1079 struct m_can_classdev *cdev = netdev_priv(dev);
1080 u32 ir;
1081
1082 if (pm_runtime_suspended(cdev->dev))
1083 return IRQ_NONE;
1084 ir = m_can_read(cdev, M_CAN_IR);
1085 if (!ir)
1086 return IRQ_NONE;
1087
1088 /* ACK all irqs */
1089 m_can_write(cdev, M_CAN_IR, ir);
1090
1091 if (cdev->ops->clear_interrupts)
1092 cdev->ops->clear_interrupts(cdev);
1093
1094 /* schedule NAPI in case of
1095 * - rx IRQ
1096 * - state change IRQ
1097 * - bus error IRQ and bus error reporting
1098 */
1099 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
1100 cdev->irqstatus = ir;
1101 if (!cdev->is_peripheral) {
1102 m_can_disable_all_interrupts(cdev);
1103 napi_schedule(&cdev->napi);
1104 } else if (m_can_rx_peripheral(dev, ir) < 0) {
1105 goto out_fail;
1106 }
1107 }
1108
1109 if (cdev->version == 30) {
1110 if (ir & IR_TC) {
1111 /* Transmission Complete Interrupt*/
1112 u32 timestamp = 0;
1113
1114 if (cdev->is_peripheral)
1115 timestamp = m_can_get_timestamp(cdev);
1116 m_can_tx_update_stats(cdev, 0, timestamp);
1117 netif_wake_queue(dev);
1118 }
1119 } else {
1120 if (ir & IR_TEFN) {
1121 /* New TX FIFO Element arrived */
1122 if (m_can_echo_tx_event(dev) != 0)
1123 goto out_fail;
1124
1125 if (netif_queue_stopped(dev) &&
1126 !m_can_tx_fifo_full(cdev))
1127 netif_wake_queue(dev);
1128 }
1129 }
1130
1131 if (cdev->is_peripheral)
1132 can_rx_offload_threaded_irq_finish(&cdev->offload);
1133
1134 return IRQ_HANDLED;
1135
1136 out_fail:
1137 m_can_disable_all_interrupts(cdev);
1138 return IRQ_HANDLED;
1139 }
1140
1141 static const struct can_bittiming_const m_can_bittiming_const_30X = {
1142 .name = KBUILD_MODNAME,
1143 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1144 .tseg1_max = 64,
1145 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1146 .tseg2_max = 16,
1147 .sjw_max = 16,
1148 .brp_min = 1,
1149 .brp_max = 1024,
1150 .brp_inc = 1,
1151 };
1152
1153 static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1154 .name = KBUILD_MODNAME,
1155 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1156 .tseg1_max = 16,
1157 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1158 .tseg2_max = 8,
1159 .sjw_max = 4,
1160 .brp_min = 1,
1161 .brp_max = 32,
1162 .brp_inc = 1,
1163 };
1164
1165 static const struct can_bittiming_const m_can_bittiming_const_31X = {
1166 .name = KBUILD_MODNAME,
1167 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1168 .tseg1_max = 256,
1169 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1170 .tseg2_max = 128,
1171 .sjw_max = 128,
1172 .brp_min = 1,
1173 .brp_max = 512,
1174 .brp_inc = 1,
1175 };
1176
1177 static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1178 .name = KBUILD_MODNAME,
1179 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1180 .tseg1_max = 32,
1181 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1182 .tseg2_max = 16,
1183 .sjw_max = 16,
1184 .brp_min = 1,
1185 .brp_max = 32,
1186 .brp_inc = 1,
1187 };
1188
m_can_set_bittiming(struct net_device * dev)1189 static int m_can_set_bittiming(struct net_device *dev)
1190 {
1191 struct m_can_classdev *cdev = netdev_priv(dev);
1192 const struct can_bittiming *bt = &cdev->can.bittiming;
1193 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1194 u16 brp, sjw, tseg1, tseg2;
1195 u32 reg_btp;
1196
1197 brp = bt->brp - 1;
1198 sjw = bt->sjw - 1;
1199 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1200 tseg2 = bt->phase_seg2 - 1;
1201 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1202 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1203 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1204 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1205 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1206
1207 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1208 reg_btp = 0;
1209 brp = dbt->brp - 1;
1210 sjw = dbt->sjw - 1;
1211 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1212 tseg2 = dbt->phase_seg2 - 1;
1213
1214 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1215 * This is mentioned in the "Bit Time Requirements for CAN FD"
1216 * paper presented at the International CAN Conference 2013
1217 */
1218 if (dbt->bitrate > 2500000) {
1219 u32 tdco, ssp;
1220
1221 /* Use the same value of secondary sampling point
1222 * as the data sampling point
1223 */
1224 ssp = dbt->sample_point;
1225
1226 /* Equation based on Bosch's M_CAN User Manual's
1227 * Transmitter Delay Compensation Section
1228 */
1229 tdco = (cdev->can.clock.freq / 1000) *
1230 ssp / dbt->bitrate;
1231
1232 /* Max valid TDCO value is 127 */
1233 if (tdco > 127) {
1234 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1235 tdco);
1236 tdco = 127;
1237 }
1238
1239 reg_btp |= DBTP_TDC;
1240 m_can_write(cdev, M_CAN_TDCR,
1241 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1242 }
1243
1244 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1245 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1246 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1247 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1248
1249 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1250 }
1251
1252 return 0;
1253 }
1254
1255 /* Configure M_CAN chip:
1256 * - set rx buffer/fifo element size
1257 * - configure rx fifo
1258 * - accept non-matching frame into fifo 0
1259 * - configure tx buffer
1260 * - >= v3.1.x: TX FIFO is used
1261 * - configure mode
1262 * - setup bittiming
1263 * - configure timestamp generation
1264 */
m_can_chip_config(struct net_device * dev)1265 static int m_can_chip_config(struct net_device *dev)
1266 {
1267 struct m_can_classdev *cdev = netdev_priv(dev);
1268 u32 interrupts = IR_ALL_INT;
1269 u32 cccr, test;
1270 int err;
1271
1272 err = m_can_init_ram(cdev);
1273 if (err) {
1274 dev_err(cdev->dev, "Message RAM configuration failed\n");
1275 return err;
1276 }
1277
1278 /* Disable unused interrupts */
1279 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE |
1280 IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N |
1281 IR_RF0F | IR_RF0W);
1282
1283 m_can_config_endisable(cdev, true);
1284
1285 /* RX Buffer/FIFO Element Size 64 bytes data field */
1286 m_can_write(cdev, M_CAN_RXESC,
1287 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1288 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1289 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1290
1291 /* Accept Non-matching Frames Into FIFO 0 */
1292 m_can_write(cdev, M_CAN_GFC, 0x0);
1293
1294 if (cdev->version == 30) {
1295 /* only support one Tx Buffer currently */
1296 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1297 cdev->mcfg[MRAM_TXB].off);
1298 } else {
1299 /* TX FIFO is used for newer IP Core versions */
1300 m_can_write(cdev, M_CAN_TXBC,
1301 FIELD_PREP(TXBC_TFQS_MASK,
1302 cdev->mcfg[MRAM_TXB].num) |
1303 cdev->mcfg[MRAM_TXB].off);
1304 }
1305
1306 /* support 64 bytes payload */
1307 m_can_write(cdev, M_CAN_TXESC,
1308 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1309
1310 /* TX Event FIFO */
1311 if (cdev->version == 30) {
1312 m_can_write(cdev, M_CAN_TXEFC,
1313 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1314 cdev->mcfg[MRAM_TXE].off);
1315 } else {
1316 /* Full TX Event FIFO is used */
1317 m_can_write(cdev, M_CAN_TXEFC,
1318 FIELD_PREP(TXEFC_EFS_MASK,
1319 cdev->mcfg[MRAM_TXE].num) |
1320 cdev->mcfg[MRAM_TXE].off);
1321 }
1322
1323 /* rx fifo configuration, blocking mode, fifo size 1 */
1324 m_can_write(cdev, M_CAN_RXF0C,
1325 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1326 cdev->mcfg[MRAM_RXF0].off);
1327
1328 m_can_write(cdev, M_CAN_RXF1C,
1329 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1330 cdev->mcfg[MRAM_RXF1].off);
1331
1332 cccr = m_can_read(cdev, M_CAN_CCCR);
1333 test = m_can_read(cdev, M_CAN_TEST);
1334 test &= ~TEST_LBCK;
1335 if (cdev->version == 30) {
1336 /* Version 3.0.x */
1337
1338 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1339 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1340 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1341
1342 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1343 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1344
1345 } else {
1346 /* Version 3.1.x or 3.2.x */
1347 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1348 CCCR_NISO | CCCR_DAR);
1349
1350 /* Only 3.2.x has NISO Bit implemented */
1351 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1352 cccr |= CCCR_NISO;
1353
1354 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1355 cccr |= (CCCR_BRSE | CCCR_FDOE);
1356 }
1357
1358 /* Loopback Mode */
1359 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1360 cccr |= CCCR_TEST | CCCR_MON;
1361 test |= TEST_LBCK;
1362 }
1363
1364 /* Enable Monitoring (all versions) */
1365 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1366 cccr |= CCCR_MON;
1367
1368 /* Disable Auto Retransmission (all versions) */
1369 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1370 cccr |= CCCR_DAR;
1371
1372 /* Write config */
1373 m_can_write(cdev, M_CAN_CCCR, cccr);
1374 m_can_write(cdev, M_CAN_TEST, test);
1375
1376 /* Enable interrupts */
1377 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1378 if (cdev->version == 30)
1379 interrupts &= ~(IR_ERR_LEC_30X);
1380 else
1381 interrupts &= ~(IR_ERR_LEC_31X);
1382 }
1383 m_can_write(cdev, M_CAN_IE, interrupts);
1384
1385 /* route all interrupts to INT0 */
1386 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1387
1388 /* set bittiming params */
1389 m_can_set_bittiming(dev);
1390
1391 /* enable internal timestamp generation, with a prescaler of 16. The
1392 * prescaler is applied to the nominal bit timing
1393 */
1394 m_can_write(cdev, M_CAN_TSCC,
1395 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1396 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1397
1398 m_can_config_endisable(cdev, false);
1399
1400 if (cdev->ops->init)
1401 cdev->ops->init(cdev);
1402
1403 return 0;
1404 }
1405
m_can_start(struct net_device * dev)1406 static int m_can_start(struct net_device *dev)
1407 {
1408 struct m_can_classdev *cdev = netdev_priv(dev);
1409 int ret;
1410
1411 /* basic m_can configuration */
1412 ret = m_can_chip_config(dev);
1413 if (ret)
1414 return ret;
1415
1416 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1417
1418 m_can_enable_all_interrupts(cdev);
1419
1420 if (!dev->irq) {
1421 dev_dbg(cdev->dev, "Start hrtimer\n");
1422 hrtimer_start(&cdev->hrtimer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
1423 HRTIMER_MODE_REL_PINNED);
1424 }
1425
1426 return 0;
1427 }
1428
m_can_set_mode(struct net_device * dev,enum can_mode mode)1429 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1430 {
1431 switch (mode) {
1432 case CAN_MODE_START:
1433 m_can_clean(dev);
1434 m_can_start(dev);
1435 netif_wake_queue(dev);
1436 break;
1437 default:
1438 return -EOPNOTSUPP;
1439 }
1440
1441 return 0;
1442 }
1443
1444 /* Checks core release number of M_CAN
1445 * returns 0 if an unsupported device is detected
1446 * else it returns the release and step coded as:
1447 * return value = 10 * <release> + 1 * <step>
1448 */
m_can_check_core_release(struct m_can_classdev * cdev)1449 static int m_can_check_core_release(struct m_can_classdev *cdev)
1450 {
1451 u32 crel_reg;
1452 u8 rel;
1453 u8 step;
1454 int res;
1455
1456 /* Read Core Release Version and split into version number
1457 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1458 */
1459 crel_reg = m_can_read(cdev, M_CAN_CREL);
1460 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1461 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1462
1463 if (rel == 3) {
1464 /* M_CAN v3.x.y: create return value */
1465 res = 30 + step;
1466 } else {
1467 /* Unsupported M_CAN version */
1468 res = 0;
1469 }
1470
1471 return res;
1472 }
1473
1474 /* Selectable Non ISO support only in version 3.2.x
1475 * This function checks if the bit is writable.
1476 */
m_can_niso_supported(struct m_can_classdev * cdev)1477 static bool m_can_niso_supported(struct m_can_classdev *cdev)
1478 {
1479 u32 cccr_reg, cccr_poll = 0;
1480 int niso_timeout = -ETIMEDOUT;
1481 int i;
1482
1483 m_can_config_endisable(cdev, true);
1484 cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1485 cccr_reg |= CCCR_NISO;
1486 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1487
1488 for (i = 0; i <= 10; i++) {
1489 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1490 if (cccr_poll == cccr_reg) {
1491 niso_timeout = 0;
1492 break;
1493 }
1494
1495 usleep_range(1, 5);
1496 }
1497
1498 /* Clear NISO */
1499 cccr_reg &= ~(CCCR_NISO);
1500 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1501
1502 m_can_config_endisable(cdev, false);
1503
1504 /* return false if time out (-ETIMEDOUT), else return true */
1505 return !niso_timeout;
1506 }
1507
m_can_dev_setup(struct m_can_classdev * cdev)1508 static int m_can_dev_setup(struct m_can_classdev *cdev)
1509 {
1510 struct net_device *dev = cdev->net;
1511 int m_can_version, err;
1512
1513 m_can_version = m_can_check_core_release(cdev);
1514 /* return if unsupported version */
1515 if (!m_can_version) {
1516 dev_err(cdev->dev, "Unsupported version number: %2d",
1517 m_can_version);
1518 return -EINVAL;
1519 }
1520
1521 if (!cdev->is_peripheral)
1522 netif_napi_add(dev, &cdev->napi, m_can_poll);
1523
1524 /* Shared properties of all M_CAN versions */
1525 cdev->version = m_can_version;
1526 cdev->can.do_set_mode = m_can_set_mode;
1527 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1528
1529 /* Set M_CAN supported operations */
1530 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1531 CAN_CTRLMODE_LISTENONLY |
1532 CAN_CTRLMODE_BERR_REPORTING |
1533 CAN_CTRLMODE_FD |
1534 CAN_CTRLMODE_ONE_SHOT;
1535
1536 /* Set properties depending on M_CAN version */
1537 switch (cdev->version) {
1538 case 30:
1539 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1540 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1541 if (err)
1542 return err;
1543 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1544 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1545 break;
1546 case 31:
1547 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1548 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1549 if (err)
1550 return err;
1551 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1552 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1553 break;
1554 case 32:
1555 case 33:
1556 /* Support both MCAN version v3.2.x and v3.3.0 */
1557 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1558 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1559
1560 cdev->can.ctrlmode_supported |=
1561 (m_can_niso_supported(cdev) ?
1562 CAN_CTRLMODE_FD_NON_ISO : 0);
1563 break;
1564 default:
1565 dev_err(cdev->dev, "Unsupported version number: %2d",
1566 cdev->version);
1567 return -EINVAL;
1568 }
1569
1570 if (cdev->ops->init)
1571 cdev->ops->init(cdev);
1572
1573 return 0;
1574 }
1575
m_can_stop(struct net_device * dev)1576 static void m_can_stop(struct net_device *dev)
1577 {
1578 struct m_can_classdev *cdev = netdev_priv(dev);
1579
1580 if (!dev->irq) {
1581 dev_dbg(cdev->dev, "Stop hrtimer\n");
1582 hrtimer_cancel(&cdev->hrtimer);
1583 }
1584
1585 /* disable all interrupts */
1586 m_can_disable_all_interrupts(cdev);
1587
1588 /* Set init mode to disengage from the network */
1589 m_can_config_endisable(cdev, true);
1590
1591 /* set the state as STOPPED */
1592 cdev->can.state = CAN_STATE_STOPPED;
1593 }
1594
m_can_close(struct net_device * dev)1595 static int m_can_close(struct net_device *dev)
1596 {
1597 struct m_can_classdev *cdev = netdev_priv(dev);
1598
1599 netif_stop_queue(dev);
1600
1601 if (!cdev->is_peripheral)
1602 napi_disable(&cdev->napi);
1603
1604 m_can_stop(dev);
1605 m_can_clk_stop(cdev);
1606 free_irq(dev->irq, dev);
1607
1608 if (cdev->is_peripheral) {
1609 cdev->tx_skb = NULL;
1610 destroy_workqueue(cdev->tx_wq);
1611 cdev->tx_wq = NULL;
1612 can_rx_offload_disable(&cdev->offload);
1613 }
1614
1615 close_candev(dev);
1616
1617 phy_power_off(cdev->transceiver);
1618
1619 return 0;
1620 }
1621
m_can_next_echo_skb_occupied(struct net_device * dev,int putidx)1622 static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1623 {
1624 struct m_can_classdev *cdev = netdev_priv(dev);
1625 /*get wrap around for loopback skb index */
1626 unsigned int wrap = cdev->can.echo_skb_max;
1627 int next_idx;
1628
1629 /* calculate next index */
1630 next_idx = (++putidx >= wrap ? 0 : putidx);
1631
1632 /* check if occupied */
1633 return !!cdev->can.echo_skb[next_idx];
1634 }
1635
m_can_tx_handler(struct m_can_classdev * cdev)1636 static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1637 {
1638 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1639 struct net_device *dev = cdev->net;
1640 struct sk_buff *skb = cdev->tx_skb;
1641 struct id_and_dlc fifo_header;
1642 u32 cccr, fdflags;
1643 u32 txfqs;
1644 int err;
1645 int putidx;
1646
1647 cdev->tx_skb = NULL;
1648
1649 /* Generate ID field for TX buffer Element */
1650 /* Common to all supported M_CAN versions */
1651 if (cf->can_id & CAN_EFF_FLAG) {
1652 fifo_header.id = cf->can_id & CAN_EFF_MASK;
1653 fifo_header.id |= TX_BUF_XTD;
1654 } else {
1655 fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1656 }
1657
1658 if (cf->can_id & CAN_RTR_FLAG)
1659 fifo_header.id |= TX_BUF_RTR;
1660
1661 if (cdev->version == 30) {
1662 netif_stop_queue(dev);
1663
1664 fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
1665
1666 /* Write the frame ID, DLC, and payload to the FIFO element. */
1667 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
1668 if (err)
1669 goto out_fail;
1670
1671 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1672 cf->data, DIV_ROUND_UP(cf->len, 4));
1673 if (err)
1674 goto out_fail;
1675
1676 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1677 cccr = m_can_read(cdev, M_CAN_CCCR);
1678 cccr &= ~CCCR_CMR_MASK;
1679 if (can_is_canfd_skb(skb)) {
1680 if (cf->flags & CANFD_BRS)
1681 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1682 CCCR_CMR_CANFD_BRS);
1683 else
1684 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1685 CCCR_CMR_CANFD);
1686 } else {
1687 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1688 }
1689 m_can_write(cdev, M_CAN_CCCR, cccr);
1690 }
1691 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1692
1693 can_put_echo_skb(skb, dev, 0, 0);
1694
1695 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1696 /* End of xmit function for version 3.0.x */
1697 } else {
1698 /* Transmit routine for version >= v3.1.x */
1699
1700 txfqs = m_can_read(cdev, M_CAN_TXFQS);
1701
1702 /* Check if FIFO full */
1703 if (_m_can_tx_fifo_full(txfqs)) {
1704 /* This shouldn't happen */
1705 netif_stop_queue(dev);
1706 netdev_warn(dev,
1707 "TX queue active although FIFO is full.");
1708
1709 if (cdev->is_peripheral) {
1710 kfree_skb(skb);
1711 dev->stats.tx_dropped++;
1712 return NETDEV_TX_OK;
1713 } else {
1714 return NETDEV_TX_BUSY;
1715 }
1716 }
1717
1718 /* get put index for frame */
1719 putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs);
1720
1721 /* Construct DLC Field, with CAN-FD configuration.
1722 * Use the put index of the fifo as the message marker,
1723 * used in the TX interrupt for sending the correct echo frame.
1724 */
1725
1726 /* get CAN FD configuration of frame */
1727 fdflags = 0;
1728 if (can_is_canfd_skb(skb)) {
1729 fdflags |= TX_BUF_FDF;
1730 if (cf->flags & CANFD_BRS)
1731 fdflags |= TX_BUF_BRS;
1732 }
1733
1734 fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1735 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1736 fdflags | TX_BUF_EFC;
1737 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
1738 if (err)
1739 goto out_fail;
1740
1741 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
1742 cf->data, DIV_ROUND_UP(cf->len, 4));
1743 if (err)
1744 goto out_fail;
1745
1746 /* Push loopback echo.
1747 * Will be looped back on TX interrupt based on message marker
1748 */
1749 can_put_echo_skb(skb, dev, putidx, 0);
1750
1751 /* Enable TX FIFO element to start transfer */
1752 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1753
1754 /* stop network queue if fifo full */
1755 if (m_can_tx_fifo_full(cdev) ||
1756 m_can_next_echo_skb_occupied(dev, putidx))
1757 netif_stop_queue(dev);
1758 }
1759
1760 return NETDEV_TX_OK;
1761
1762 out_fail:
1763 netdev_err(dev, "FIFO write returned %d\n", err);
1764 m_can_disable_all_interrupts(cdev);
1765 return NETDEV_TX_BUSY;
1766 }
1767
m_can_tx_work_queue(struct work_struct * ws)1768 static void m_can_tx_work_queue(struct work_struct *ws)
1769 {
1770 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1771 tx_work);
1772
1773 m_can_tx_handler(cdev);
1774 }
1775
m_can_start_xmit(struct sk_buff * skb,struct net_device * dev)1776 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1777 struct net_device *dev)
1778 {
1779 struct m_can_classdev *cdev = netdev_priv(dev);
1780
1781 if (can_dev_dropped_skb(dev, skb))
1782 return NETDEV_TX_OK;
1783
1784 if (cdev->is_peripheral) {
1785 if (cdev->tx_skb) {
1786 netdev_err(dev, "hard_xmit called while tx busy\n");
1787 return NETDEV_TX_BUSY;
1788 }
1789
1790 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1791 m_can_clean(dev);
1792 } else {
1793 /* Need to stop the queue to avoid numerous requests
1794 * from being sent. Suggested improvement is to create
1795 * a queueing mechanism that will queue the skbs and
1796 * process them in order.
1797 */
1798 cdev->tx_skb = skb;
1799 netif_stop_queue(cdev->net);
1800 queue_work(cdev->tx_wq, &cdev->tx_work);
1801 }
1802 } else {
1803 cdev->tx_skb = skb;
1804 return m_can_tx_handler(cdev);
1805 }
1806
1807 return NETDEV_TX_OK;
1808 }
1809
hrtimer_callback(struct hrtimer * timer)1810 static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
1811 {
1812 struct m_can_classdev *cdev = container_of(timer, struct
1813 m_can_classdev, hrtimer);
1814
1815 m_can_isr(0, cdev->net);
1816
1817 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
1818
1819 return HRTIMER_RESTART;
1820 }
1821
m_can_open(struct net_device * dev)1822 static int m_can_open(struct net_device *dev)
1823 {
1824 struct m_can_classdev *cdev = netdev_priv(dev);
1825 int err;
1826
1827 err = phy_power_on(cdev->transceiver);
1828 if (err)
1829 return err;
1830
1831 err = m_can_clk_start(cdev);
1832 if (err)
1833 goto out_phy_power_off;
1834
1835 /* open the can device */
1836 err = open_candev(dev);
1837 if (err) {
1838 netdev_err(dev, "failed to open can device\n");
1839 goto exit_disable_clks;
1840 }
1841
1842 if (cdev->is_peripheral)
1843 can_rx_offload_enable(&cdev->offload);
1844
1845 /* register interrupt handler */
1846 if (cdev->is_peripheral) {
1847 cdev->tx_skb = NULL;
1848 cdev->tx_wq = alloc_workqueue("mcan_wq",
1849 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1850 if (!cdev->tx_wq) {
1851 err = -ENOMEM;
1852 goto out_wq_fail;
1853 }
1854
1855 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1856
1857 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1858 IRQF_ONESHOT,
1859 dev->name, dev);
1860 } else if (dev->irq) {
1861 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1862 dev);
1863 }
1864
1865 if (err < 0) {
1866 netdev_err(dev, "failed to request interrupt\n");
1867 goto exit_irq_fail;
1868 }
1869
1870 /* start the m_can controller */
1871 err = m_can_start(dev);
1872 if (err)
1873 goto exit_irq_fail;
1874
1875 if (!cdev->is_peripheral)
1876 napi_enable(&cdev->napi);
1877
1878 netif_start_queue(dev);
1879
1880 return 0;
1881
1882 exit_irq_fail:
1883 if (cdev->is_peripheral)
1884 destroy_workqueue(cdev->tx_wq);
1885 out_wq_fail:
1886 if (cdev->is_peripheral)
1887 can_rx_offload_disable(&cdev->offload);
1888 close_candev(dev);
1889 exit_disable_clks:
1890 m_can_clk_stop(cdev);
1891 out_phy_power_off:
1892 phy_power_off(cdev->transceiver);
1893 return err;
1894 }
1895
1896 static const struct net_device_ops m_can_netdev_ops = {
1897 .ndo_open = m_can_open,
1898 .ndo_stop = m_can_close,
1899 .ndo_start_xmit = m_can_start_xmit,
1900 .ndo_change_mtu = can_change_mtu,
1901 };
1902
1903 static const struct ethtool_ops m_can_ethtool_ops = {
1904 .get_ts_info = ethtool_op_get_ts_info,
1905 };
1906
register_m_can_dev(struct net_device * dev)1907 static int register_m_can_dev(struct net_device *dev)
1908 {
1909 dev->flags |= IFF_ECHO; /* we support local echo */
1910 dev->netdev_ops = &m_can_netdev_ops;
1911 dev->ethtool_ops = &m_can_ethtool_ops;
1912
1913 return register_candev(dev);
1914 }
1915
m_can_check_mram_cfg(struct m_can_classdev * cdev,u32 mram_max_size)1916 int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
1917 {
1918 u32 total_size;
1919
1920 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
1921 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1922 if (total_size > mram_max_size) {
1923 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
1924 total_size, mram_max_size);
1925 return -EINVAL;
1926 }
1927
1928 return 0;
1929 }
1930 EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
1931
m_can_of_parse_mram(struct m_can_classdev * cdev,const u32 * mram_config_vals)1932 static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1933 const u32 *mram_config_vals)
1934 {
1935 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1936 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1937 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1938 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1939 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1940 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1941 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1942 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1943 FIELD_MAX(RXFC_FS_MASK);
1944 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1945 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1946 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1947 FIELD_MAX(RXFC_FS_MASK);
1948 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1949 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1950 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1951 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1952 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1953 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1954 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1955 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1956 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1957 FIELD_MAX(TXBC_NDTB_MASK);
1958
1959 dev_dbg(cdev->dev,
1960 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1961 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1962 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1963 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1964 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1965 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1966 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1967 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1968 }
1969
m_can_init_ram(struct m_can_classdev * cdev)1970 int m_can_init_ram(struct m_can_classdev *cdev)
1971 {
1972 int end, i, start;
1973 int err = 0;
1974
1975 /* initialize the entire Message RAM in use to avoid possible
1976 * ECC/parity checksum errors when reading an uninitialized buffer
1977 */
1978 start = cdev->mcfg[MRAM_SIDF].off;
1979 end = cdev->mcfg[MRAM_TXB].off +
1980 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1981
1982 for (i = start; i < end; i += 4) {
1983 err = m_can_fifo_write_no_off(cdev, i, 0x0);
1984 if (err)
1985 break;
1986 }
1987
1988 return err;
1989 }
1990 EXPORT_SYMBOL_GPL(m_can_init_ram);
1991
m_can_class_get_clocks(struct m_can_classdev * cdev)1992 int m_can_class_get_clocks(struct m_can_classdev *cdev)
1993 {
1994 int ret = 0;
1995
1996 cdev->hclk = devm_clk_get(cdev->dev, "hclk");
1997 cdev->cclk = devm_clk_get(cdev->dev, "cclk");
1998
1999 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2000 dev_err(cdev->dev, "no clock found\n");
2001 ret = -ENODEV;
2002 }
2003
2004 return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2007
m_can_class_allocate_dev(struct device * dev,int sizeof_priv)2008 struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2009 int sizeof_priv)
2010 {
2011 struct m_can_classdev *class_dev = NULL;
2012 u32 mram_config_vals[MRAM_CFG_LEN];
2013 struct net_device *net_dev;
2014 u32 tx_fifo_size;
2015 int ret;
2016
2017 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2018 "bosch,mram-cfg",
2019 mram_config_vals,
2020 sizeof(mram_config_vals) / 4);
2021 if (ret) {
2022 dev_err(dev, "Could not get Message RAM configuration.");
2023 goto out;
2024 }
2025
2026 /* Get TX FIFO size
2027 * Defines the total amount of echo buffers for loopback
2028 */
2029 tx_fifo_size = mram_config_vals[7];
2030
2031 /* allocate the m_can device */
2032 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2033 if (!net_dev) {
2034 dev_err(dev, "Failed to allocate CAN device");
2035 goto out;
2036 }
2037
2038 class_dev = netdev_priv(net_dev);
2039 class_dev->net = net_dev;
2040 class_dev->dev = dev;
2041 SET_NETDEV_DEV(net_dev, dev);
2042
2043 m_can_of_parse_mram(class_dev, mram_config_vals);
2044 out:
2045 return class_dev;
2046 }
2047 EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2048
m_can_class_free_dev(struct net_device * net)2049 void m_can_class_free_dev(struct net_device *net)
2050 {
2051 free_candev(net);
2052 }
2053 EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2054
m_can_class_register(struct m_can_classdev * cdev)2055 int m_can_class_register(struct m_can_classdev *cdev)
2056 {
2057 int ret;
2058
2059 if (cdev->pm_clock_support) {
2060 ret = m_can_clk_start(cdev);
2061 if (ret)
2062 return ret;
2063 }
2064
2065 if (cdev->is_peripheral) {
2066 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2067 NAPI_POLL_WEIGHT);
2068 if (ret)
2069 goto clk_disable;
2070 }
2071
2072 if (!cdev->net->irq)
2073 cdev->hrtimer.function = &hrtimer_callback;
2074
2075 ret = m_can_dev_setup(cdev);
2076 if (ret)
2077 goto rx_offload_del;
2078
2079 ret = register_m_can_dev(cdev->net);
2080 if (ret) {
2081 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2082 cdev->net->name, ret);
2083 goto rx_offload_del;
2084 }
2085
2086 of_can_transceiver(cdev->net);
2087
2088 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2089 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2090
2091 /* Probe finished
2092 * Stop clocks. They will be reactivated once the M_CAN device is opened
2093 */
2094 m_can_clk_stop(cdev);
2095
2096 return 0;
2097
2098 rx_offload_del:
2099 if (cdev->is_peripheral)
2100 can_rx_offload_del(&cdev->offload);
2101 clk_disable:
2102 m_can_clk_stop(cdev);
2103
2104 return ret;
2105 }
2106 EXPORT_SYMBOL_GPL(m_can_class_register);
2107
m_can_class_unregister(struct m_can_classdev * cdev)2108 void m_can_class_unregister(struct m_can_classdev *cdev)
2109 {
2110 if (cdev->is_peripheral)
2111 can_rx_offload_del(&cdev->offload);
2112 unregister_candev(cdev->net);
2113 }
2114 EXPORT_SYMBOL_GPL(m_can_class_unregister);
2115
m_can_class_suspend(struct device * dev)2116 int m_can_class_suspend(struct device *dev)
2117 {
2118 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2119 struct net_device *ndev = cdev->net;
2120
2121 if (netif_running(ndev)) {
2122 netif_stop_queue(ndev);
2123 netif_device_detach(ndev);
2124 m_can_stop(ndev);
2125 m_can_clk_stop(cdev);
2126 }
2127
2128 pinctrl_pm_select_sleep_state(dev);
2129
2130 cdev->can.state = CAN_STATE_SLEEPING;
2131
2132 return 0;
2133 }
2134 EXPORT_SYMBOL_GPL(m_can_class_suspend);
2135
m_can_class_resume(struct device * dev)2136 int m_can_class_resume(struct device *dev)
2137 {
2138 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2139 struct net_device *ndev = cdev->net;
2140
2141 pinctrl_pm_select_default_state(dev);
2142
2143 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2144
2145 if (netif_running(ndev)) {
2146 int ret;
2147
2148 ret = m_can_clk_start(cdev);
2149 if (ret)
2150 return ret;
2151 ret = m_can_start(ndev);
2152 if (ret) {
2153 m_can_clk_stop(cdev);
2154
2155 return ret;
2156 }
2157
2158 netif_device_attach(ndev);
2159 netif_start_queue(ndev);
2160 }
2161
2162 return 0;
2163 }
2164 EXPORT_SYMBOL_GPL(m_can_class_resume);
2165
2166 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2167 MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2168 MODULE_LICENSE("GPL v2");
2169 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2170