1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * lm75.c - Part of lm_sensors, Linux kernel modules for hardware
4  *	 monitoring
5  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/jiffies.h>
12 #include <linux/i2c.h>
13 #include <linux/hwmon.h>
14 #include <linux/hwmon-sysfs.h>
15 #include <linux/err.h>
16 #include <linux/of.h>
17 #include <linux/regmap.h>
18 #include <linux/util_macros.h>
19 #include <linux/regulator/consumer.h>
20 #include "lm75.h"
21 
22 /*
23  * This driver handles the LM75 and compatible digital temperature sensors.
24  */
25 
26 enum lm75_type {		/* keep sorted in alphabetical order */
27 	adt75,
28 	at30ts74,
29 	ds1775,
30 	ds75,
31 	ds7505,
32 	g751,
33 	lm75,
34 	lm75a,
35 	lm75b,
36 	max6625,
37 	max6626,
38 	max31725,
39 	mcp980x,
40 	pct2075,
41 	stds75,
42 	stlm75,
43 	tcn75,
44 	tmp100,
45 	tmp101,
46 	tmp105,
47 	tmp112,
48 	tmp175,
49 	tmp275,
50 	tmp75,
51 	tmp75b,
52 	tmp75c,
53 	tmp1075,
54 };
55 
56 /**
57  * struct lm75_params - lm75 configuration parameters.
58  * @set_mask:		Bits to set in configuration register when configuring
59  *			the chip.
60  * @clr_mask:		Bits to clear in configuration register when configuring
61  *			the chip.
62  * @default_resolution:	Default number of bits to represent the temperature
63  *			value.
64  * @resolution_limits:	Limit register resolution. Optional. Should be set if
65  *			the resolution of limit registers does not match the
66  *			resolution of the temperature register.
67  * @resolutions:	List of resolutions associated with sample times.
68  *			Optional. Should be set if num_sample_times is larger
69  *			than 1, and if the resolution changes with sample times.
70  *			If set, number of entries must match num_sample_times.
71  * @default_sample_time:Sample time to be set by default.
72  * @num_sample_times:	Number of possible sample times to be set. Optional.
73  *			Should be set if the number of sample times is larger
74  *			than one.
75  * @sample_times:	All the possible sample times to be set. Mandatory if
76  *			num_sample_times is larger than 1. If set, number of
77  *			entries must match num_sample_times.
78  */
79 
80 struct lm75_params {
81 	u8			set_mask;
82 	u8			clr_mask;
83 	u8			default_resolution;
84 	u8			resolution_limits;
85 	const u8		*resolutions;
86 	unsigned int		default_sample_time;
87 	u8			num_sample_times;
88 	const unsigned int	*sample_times;
89 };
90 
91 /* Addresses scanned */
92 static const unsigned short normal_i2c[] = { 0x48, 0x49, 0x4a, 0x4b, 0x4c,
93 					0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
94 
95 /* The LM75 registers */
96 #define LM75_REG_TEMP		0x00
97 #define LM75_REG_CONF		0x01
98 #define LM75_REG_HYST		0x02
99 #define LM75_REG_MAX		0x03
100 #define PCT2075_REG_IDLE	0x04
101 
102 /* Each client has this additional data */
103 struct lm75_data {
104 	struct i2c_client		*client;
105 	struct regmap			*regmap;
106 	struct regulator		*vs;
107 	u8				orig_conf;
108 	u8				current_conf;
109 	u8				resolution;	/* In bits, 9 to 16 */
110 	unsigned int			sample_time;	/* In ms */
111 	enum lm75_type			kind;
112 	const struct lm75_params	*params;
113 };
114 
115 /*-----------------------------------------------------------------------*/
116 
117 static const u8 lm75_sample_set_masks[] = { 0 << 5, 1 << 5, 2 << 5, 3 << 5 };
118 
119 #define LM75_SAMPLE_CLEAR_MASK	(3 << 5)
120 
121 /* The structure below stores the configuration values of the supported devices.
122  * In case of being supported multiple configurations, the default one must
123  * always be the first element of the array
124  */
125 static const struct lm75_params device_params[] = {
126 	[adt75] = {
127 		.clr_mask = 1 << 5,	/* not one-shot mode */
128 		.default_resolution = 12,
129 		.default_sample_time = MSEC_PER_SEC / 10,
130 	},
131 	[at30ts74] = {
132 		.set_mask = 3 << 5,	/* 12-bit mode*/
133 		.default_resolution = 12,
134 		.default_sample_time = 200,
135 		.num_sample_times = 4,
136 		.sample_times = (unsigned int []){ 25, 50, 100, 200 },
137 		.resolutions = (u8 []) {9, 10, 11, 12 },
138 	},
139 	[ds1775] = {
140 		.clr_mask = 3 << 5,
141 		.set_mask = 2 << 5,	/* 11-bit mode */
142 		.default_resolution = 11,
143 		.default_sample_time = 500,
144 		.num_sample_times = 4,
145 		.sample_times = (unsigned int []){ 125, 250, 500, 1000 },
146 		.resolutions = (u8 []) {9, 10, 11, 12 },
147 	},
148 	[ds75] = {
149 		.clr_mask = 3 << 5,
150 		.set_mask = 2 << 5,	/* 11-bit mode */
151 		.default_resolution = 11,
152 		.default_sample_time = 600,
153 		.num_sample_times = 4,
154 		.sample_times = (unsigned int []){ 150, 300, 600, 1200 },
155 		.resolutions = (u8 []) {9, 10, 11, 12 },
156 	},
157 	[stds75] = {
158 		.clr_mask = 3 << 5,
159 		.set_mask = 2 << 5,	/* 11-bit mode */
160 		.default_resolution = 11,
161 		.default_sample_time = 600,
162 		.num_sample_times = 4,
163 		.sample_times = (unsigned int []){ 150, 300, 600, 1200 },
164 		.resolutions = (u8 []) {9, 10, 11, 12 },
165 	},
166 	[stlm75] = {
167 		.default_resolution = 9,
168 		.default_sample_time = MSEC_PER_SEC / 6,
169 	},
170 	[ds7505] = {
171 		.set_mask = 3 << 5,	/* 12-bit mode*/
172 		.default_resolution = 12,
173 		.default_sample_time = 200,
174 		.num_sample_times = 4,
175 		.sample_times = (unsigned int []){ 25, 50, 100, 200 },
176 		.resolutions = (u8 []) {9, 10, 11, 12 },
177 	},
178 	[g751] = {
179 		.default_resolution = 9,
180 		.default_sample_time = MSEC_PER_SEC / 10,
181 	},
182 	[lm75] = {
183 		.default_resolution = 9,
184 		.default_sample_time = MSEC_PER_SEC / 10,
185 	},
186 	[lm75a] = {
187 		.default_resolution = 9,
188 		.default_sample_time = MSEC_PER_SEC / 10,
189 	},
190 	[lm75b] = {
191 		.default_resolution = 11,
192 		.default_sample_time = MSEC_PER_SEC / 10,
193 	},
194 	[max6625] = {
195 		.default_resolution = 9,
196 		.default_sample_time = MSEC_PER_SEC / 7,
197 	},
198 	[max6626] = {
199 		.default_resolution = 12,
200 		.default_sample_time = MSEC_PER_SEC / 7,
201 		.resolution_limits = 9,
202 	},
203 	[max31725] = {
204 		.default_resolution = 16,
205 		.default_sample_time = MSEC_PER_SEC / 20,
206 	},
207 	[tcn75] = {
208 		.default_resolution = 9,
209 		.default_sample_time = MSEC_PER_SEC / 18,
210 	},
211 	[pct2075] = {
212 		.default_resolution = 11,
213 		.default_sample_time = MSEC_PER_SEC / 10,
214 		.num_sample_times = 31,
215 		.sample_times = (unsigned int []){ 100, 200, 300, 400, 500, 600,
216 		700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
217 		1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700,
218 		2800, 2900, 3000, 3100 },
219 	},
220 	[mcp980x] = {
221 		.set_mask = 3 << 5,	/* 12-bit mode */
222 		.clr_mask = 1 << 7,	/* not one-shot mode */
223 		.default_resolution = 12,
224 		.resolution_limits = 9,
225 		.default_sample_time = 240,
226 		.num_sample_times = 4,
227 		.sample_times = (unsigned int []){ 30, 60, 120, 240 },
228 		.resolutions = (u8 []) {9, 10, 11, 12 },
229 	},
230 	[tmp100] = {
231 		.set_mask = 3 << 5,	/* 12-bit mode */
232 		.clr_mask = 1 << 7,	/* not one-shot mode */
233 		.default_resolution = 12,
234 		.default_sample_time = 320,
235 		.num_sample_times = 4,
236 		.sample_times = (unsigned int []){ 40, 80, 160, 320 },
237 		.resolutions = (u8 []) {9, 10, 11, 12 },
238 	},
239 	[tmp101] = {
240 		.set_mask = 3 << 5,	/* 12-bit mode */
241 		.clr_mask = 1 << 7,	/* not one-shot mode */
242 		.default_resolution = 12,
243 		.default_sample_time = 320,
244 		.num_sample_times = 4,
245 		.sample_times = (unsigned int []){ 40, 80, 160, 320 },
246 		.resolutions = (u8 []) {9, 10, 11, 12 },
247 	},
248 	[tmp105] = {
249 		.set_mask = 3 << 5,	/* 12-bit mode */
250 		.clr_mask = 1 << 7,	/* not one-shot mode*/
251 		.default_resolution = 12,
252 		.default_sample_time = 220,
253 		.num_sample_times = 4,
254 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
255 		.resolutions = (u8 []) {9, 10, 11, 12 },
256 	},
257 	[tmp112] = {
258 		.set_mask = 3 << 5,	/* 8 samples / second */
259 		.clr_mask = 1 << 7,	/* no one-shot mode*/
260 		.default_resolution = 12,
261 		.default_sample_time = 125,
262 		.num_sample_times = 4,
263 		.sample_times = (unsigned int []){ 125, 250, 1000, 4000 },
264 	},
265 	[tmp175] = {
266 		.set_mask = 3 << 5,	/* 12-bit mode */
267 		.clr_mask = 1 << 7,	/* not one-shot mode*/
268 		.default_resolution = 12,
269 		.default_sample_time = 220,
270 		.num_sample_times = 4,
271 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
272 		.resolutions = (u8 []) {9, 10, 11, 12 },
273 	},
274 	[tmp275] = {
275 		.set_mask = 3 << 5,	/* 12-bit mode */
276 		.clr_mask = 1 << 7,	/* not one-shot mode*/
277 		.default_resolution = 12,
278 		.default_sample_time = 220,
279 		.num_sample_times = 4,
280 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
281 		.resolutions = (u8 []) {9, 10, 11, 12 },
282 	},
283 	[tmp75] = {
284 		.set_mask = 3 << 5,	/* 12-bit mode */
285 		.clr_mask = 1 << 7,	/* not one-shot mode*/
286 		.default_resolution = 12,
287 		.default_sample_time = 220,
288 		.num_sample_times = 4,
289 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
290 		.resolutions = (u8 []) {9, 10, 11, 12 },
291 	},
292 	[tmp75b] = { /* not one-shot mode, Conversion rate 37Hz */
293 		.clr_mask = 1 << 7 | 3 << 5,
294 		.default_resolution = 12,
295 		.default_sample_time = MSEC_PER_SEC / 37,
296 		.sample_times = (unsigned int []){ MSEC_PER_SEC / 37,
297 			MSEC_PER_SEC / 18,
298 			MSEC_PER_SEC / 9, MSEC_PER_SEC / 4 },
299 		.num_sample_times = 4,
300 	},
301 	[tmp75c] = {
302 		.clr_mask = 1 << 5,	/*not one-shot mode*/
303 		.default_resolution = 12,
304 		.default_sample_time = MSEC_PER_SEC / 12,
305 	},
306 	[tmp1075] = { /* not one-shot mode, 27.5 ms sample rate */
307 		.clr_mask = 1 << 5 | 1 << 6 | 1 << 7,
308 		.default_resolution = 12,
309 		.default_sample_time = 28,
310 		.num_sample_times = 4,
311 		.sample_times = (unsigned int []){ 28, 55, 110, 220 },
312 	}
313 };
314 
lm75_reg_to_mc(s16 temp,u8 resolution)315 static inline long lm75_reg_to_mc(s16 temp, u8 resolution)
316 {
317 	return ((temp >> (16 - resolution)) * 1000) >> (resolution - 8);
318 }
319 
lm75_write_config(struct lm75_data * data,u8 set_mask,u8 clr_mask)320 static int lm75_write_config(struct lm75_data *data, u8 set_mask,
321 			     u8 clr_mask)
322 {
323 	u8 value;
324 
325 	clr_mask |= LM75_SHUTDOWN;
326 	value = data->current_conf & ~clr_mask;
327 	value |= set_mask;
328 
329 	if (data->current_conf != value) {
330 		s32 err;
331 
332 		err = i2c_smbus_write_byte_data(data->client, LM75_REG_CONF,
333 						value);
334 		if (err)
335 			return err;
336 		data->current_conf = value;
337 	}
338 	return 0;
339 }
340 
lm75_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)341 static int lm75_read(struct device *dev, enum hwmon_sensor_types type,
342 		     u32 attr, int channel, long *val)
343 {
344 	struct lm75_data *data = dev_get_drvdata(dev);
345 	unsigned int regval;
346 	int err, reg;
347 
348 	switch (type) {
349 	case hwmon_chip:
350 		switch (attr) {
351 		case hwmon_chip_update_interval:
352 			*val = data->sample_time;
353 			break;
354 		default:
355 			return -EINVAL;
356 		}
357 		break;
358 	case hwmon_temp:
359 		switch (attr) {
360 		case hwmon_temp_input:
361 			reg = LM75_REG_TEMP;
362 			break;
363 		case hwmon_temp_max:
364 			reg = LM75_REG_MAX;
365 			break;
366 		case hwmon_temp_max_hyst:
367 			reg = LM75_REG_HYST;
368 			break;
369 		default:
370 			return -EINVAL;
371 		}
372 		err = regmap_read(data->regmap, reg, &regval);
373 		if (err < 0)
374 			return err;
375 
376 		*val = lm75_reg_to_mc(regval, data->resolution);
377 		break;
378 	default:
379 		return -EINVAL;
380 	}
381 	return 0;
382 }
383 
lm75_write_temp(struct device * dev,u32 attr,long temp)384 static int lm75_write_temp(struct device *dev, u32 attr, long temp)
385 {
386 	struct lm75_data *data = dev_get_drvdata(dev);
387 	u8 resolution;
388 	int reg;
389 
390 	switch (attr) {
391 	case hwmon_temp_max:
392 		reg = LM75_REG_MAX;
393 		break;
394 	case hwmon_temp_max_hyst:
395 		reg = LM75_REG_HYST;
396 		break;
397 	default:
398 		return -EINVAL;
399 	}
400 
401 	/*
402 	 * Resolution of limit registers is assumed to be the same as the
403 	 * temperature input register resolution unless given explicitly.
404 	 */
405 	if (data->params->resolution_limits)
406 		resolution = data->params->resolution_limits;
407 	else
408 		resolution = data->resolution;
409 
410 	temp = clamp_val(temp, LM75_TEMP_MIN, LM75_TEMP_MAX);
411 	temp = DIV_ROUND_CLOSEST(temp  << (resolution - 8),
412 				 1000) << (16 - resolution);
413 
414 	return regmap_write(data->regmap, reg, (u16)temp);
415 }
416 
lm75_update_interval(struct device * dev,long val)417 static int lm75_update_interval(struct device *dev, long val)
418 {
419 	struct lm75_data *data = dev_get_drvdata(dev);
420 	unsigned int reg;
421 	u8 index;
422 	s32 err;
423 
424 	index = find_closest(val, data->params->sample_times,
425 			     (int)data->params->num_sample_times);
426 
427 	switch (data->kind) {
428 	default:
429 		err = lm75_write_config(data, lm75_sample_set_masks[index],
430 					LM75_SAMPLE_CLEAR_MASK);
431 		if (err)
432 			return err;
433 
434 		data->sample_time = data->params->sample_times[index];
435 		if (data->params->resolutions)
436 			data->resolution = data->params->resolutions[index];
437 		break;
438 	case tmp112:
439 		err = regmap_read(data->regmap, LM75_REG_CONF, &reg);
440 		if (err < 0)
441 			return err;
442 		reg &= ~0x00c0;
443 		reg |= (3 - index) << 6;
444 		err = regmap_write(data->regmap, LM75_REG_CONF, reg);
445 		if (err < 0)
446 			return err;
447 		data->sample_time = data->params->sample_times[index];
448 		break;
449 	case pct2075:
450 		err = i2c_smbus_write_byte_data(data->client, PCT2075_REG_IDLE,
451 						index + 1);
452 		if (err)
453 			return err;
454 		data->sample_time = data->params->sample_times[index];
455 		break;
456 	}
457 	return 0;
458 }
459 
lm75_write_chip(struct device * dev,u32 attr,long val)460 static int lm75_write_chip(struct device *dev, u32 attr, long val)
461 {
462 	switch (attr) {
463 	case hwmon_chip_update_interval:
464 		return lm75_update_interval(dev, val);
465 	default:
466 		return -EINVAL;
467 	}
468 	return 0;
469 }
470 
lm75_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)471 static int lm75_write(struct device *dev, enum hwmon_sensor_types type,
472 		      u32 attr, int channel, long val)
473 {
474 	switch (type) {
475 	case hwmon_chip:
476 		return lm75_write_chip(dev, attr, val);
477 	case hwmon_temp:
478 		return lm75_write_temp(dev, attr, val);
479 	default:
480 		return -EINVAL;
481 	}
482 	return 0;
483 }
484 
lm75_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)485 static umode_t lm75_is_visible(const void *data, enum hwmon_sensor_types type,
486 			       u32 attr, int channel)
487 {
488 	const struct lm75_data *config_data = data;
489 
490 	switch (type) {
491 	case hwmon_chip:
492 		switch (attr) {
493 		case hwmon_chip_update_interval:
494 			if (config_data->params->num_sample_times > 1)
495 				return 0644;
496 			return 0444;
497 		}
498 		break;
499 	case hwmon_temp:
500 		switch (attr) {
501 		case hwmon_temp_input:
502 			return 0444;
503 		case hwmon_temp_max:
504 		case hwmon_temp_max_hyst:
505 			return 0644;
506 		}
507 		break;
508 	default:
509 		break;
510 	}
511 	return 0;
512 }
513 
514 static const struct hwmon_channel_info * const lm75_info[] = {
515 	HWMON_CHANNEL_INFO(chip,
516 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
517 	HWMON_CHANNEL_INFO(temp,
518 			   HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST),
519 	NULL
520 };
521 
522 static const struct hwmon_ops lm75_hwmon_ops = {
523 	.is_visible = lm75_is_visible,
524 	.read = lm75_read,
525 	.write = lm75_write,
526 };
527 
528 static const struct hwmon_chip_info lm75_chip_info = {
529 	.ops = &lm75_hwmon_ops,
530 	.info = lm75_info,
531 };
532 
lm75_is_writeable_reg(struct device * dev,unsigned int reg)533 static bool lm75_is_writeable_reg(struct device *dev, unsigned int reg)
534 {
535 	return reg != LM75_REG_TEMP;
536 }
537 
lm75_is_volatile_reg(struct device * dev,unsigned int reg)538 static bool lm75_is_volatile_reg(struct device *dev, unsigned int reg)
539 {
540 	return reg == LM75_REG_TEMP || reg == LM75_REG_CONF;
541 }
542 
543 static const struct regmap_config lm75_regmap_config = {
544 	.reg_bits = 8,
545 	.val_bits = 16,
546 	.max_register = PCT2075_REG_IDLE,
547 	.writeable_reg = lm75_is_writeable_reg,
548 	.volatile_reg = lm75_is_volatile_reg,
549 	.val_format_endian = REGMAP_ENDIAN_BIG,
550 	.cache_type = REGCACHE_MAPLE,
551 	.use_single_read = true,
552 	.use_single_write = true,
553 };
554 
lm75_disable_regulator(void * data)555 static void lm75_disable_regulator(void *data)
556 {
557 	struct lm75_data *lm75 = data;
558 
559 	regulator_disable(lm75->vs);
560 }
561 
lm75_remove(void * data)562 static void lm75_remove(void *data)
563 {
564 	struct lm75_data *lm75 = data;
565 	struct i2c_client *client = lm75->client;
566 
567 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, lm75->orig_conf);
568 }
569 
570 static const struct i2c_device_id lm75_ids[];
571 
lm75_probe(struct i2c_client * client)572 static int lm75_probe(struct i2c_client *client)
573 {
574 	struct device *dev = &client->dev;
575 	struct device *hwmon_dev;
576 	struct lm75_data *data;
577 	int status, err;
578 	enum lm75_type kind;
579 
580 	if (client->dev.of_node)
581 		kind = (uintptr_t)of_device_get_match_data(&client->dev);
582 	else
583 		kind = i2c_match_id(lm75_ids, client)->driver_data;
584 
585 	if (!i2c_check_functionality(client->adapter,
586 			I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA))
587 		return -EIO;
588 
589 	data = devm_kzalloc(dev, sizeof(struct lm75_data), GFP_KERNEL);
590 	if (!data)
591 		return -ENOMEM;
592 
593 	data->client = client;
594 	data->kind = kind;
595 
596 	data->vs = devm_regulator_get(dev, "vs");
597 	if (IS_ERR(data->vs))
598 		return PTR_ERR(data->vs);
599 
600 	data->regmap = devm_regmap_init_i2c(client, &lm75_regmap_config);
601 	if (IS_ERR(data->regmap))
602 		return PTR_ERR(data->regmap);
603 
604 	/* Set to LM75 resolution (9 bits, 1/2 degree C) and range.
605 	 * Then tweak to be more precise when appropriate.
606 	 */
607 
608 	data->params = &device_params[data->kind];
609 
610 	/* Save default sample time and resolution*/
611 	data->sample_time = data->params->default_sample_time;
612 	data->resolution = data->params->default_resolution;
613 
614 	/* Enable the power */
615 	err = regulator_enable(data->vs);
616 	if (err) {
617 		dev_err(dev, "failed to enable regulator: %d\n", err);
618 		return err;
619 	}
620 
621 	err = devm_add_action_or_reset(dev, lm75_disable_regulator, data);
622 	if (err)
623 		return err;
624 
625 	/* Cache original configuration */
626 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
627 	if (status < 0) {
628 		dev_dbg(dev, "Can't read config? %d\n", status);
629 		return status;
630 	}
631 	data->orig_conf = status;
632 	data->current_conf = status;
633 
634 	err = lm75_write_config(data, data->params->set_mask,
635 				data->params->clr_mask);
636 	if (err)
637 		return err;
638 
639 	err = devm_add_action_or_reset(dev, lm75_remove, data);
640 	if (err)
641 		return err;
642 
643 	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
644 							 data, &lm75_chip_info,
645 							 NULL);
646 	if (IS_ERR(hwmon_dev))
647 		return PTR_ERR(hwmon_dev);
648 
649 	dev_info(dev, "%s: sensor '%s'\n", dev_name(hwmon_dev), client->name);
650 
651 	return 0;
652 }
653 
654 static const struct i2c_device_id lm75_ids[] = {
655 	{ "adt75", adt75, },
656 	{ "at30ts74", at30ts74, },
657 	{ "ds1775", ds1775, },
658 	{ "ds75", ds75, },
659 	{ "ds7505", ds7505, },
660 	{ "g751", g751, },
661 	{ "lm75", lm75, },
662 	{ "lm75a", lm75a, },
663 	{ "lm75b", lm75b, },
664 	{ "max6625", max6625, },
665 	{ "max6626", max6626, },
666 	{ "max31725", max31725, },
667 	{ "max31726", max31725, },
668 	{ "mcp980x", mcp980x, },
669 	{ "pct2075", pct2075, },
670 	{ "stds75", stds75, },
671 	{ "stlm75", stlm75, },
672 	{ "tcn75", tcn75, },
673 	{ "tmp100", tmp100, },
674 	{ "tmp101", tmp101, },
675 	{ "tmp105", tmp105, },
676 	{ "tmp112", tmp112, },
677 	{ "tmp175", tmp175, },
678 	{ "tmp275", tmp275, },
679 	{ "tmp75", tmp75, },
680 	{ "tmp75b", tmp75b, },
681 	{ "tmp75c", tmp75c, },
682 	{ "tmp1075", tmp1075, },
683 	{ /* LIST END */ }
684 };
685 MODULE_DEVICE_TABLE(i2c, lm75_ids);
686 
687 static const struct of_device_id __maybe_unused lm75_of_match[] = {
688 	{
689 		.compatible = "adi,adt75",
690 		.data = (void *)adt75
691 	},
692 	{
693 		.compatible = "atmel,at30ts74",
694 		.data = (void *)at30ts74
695 	},
696 	{
697 		.compatible = "dallas,ds1775",
698 		.data = (void *)ds1775
699 	},
700 	{
701 		.compatible = "dallas,ds75",
702 		.data = (void *)ds75
703 	},
704 	{
705 		.compatible = "dallas,ds7505",
706 		.data = (void *)ds7505
707 	},
708 	{
709 		.compatible = "gmt,g751",
710 		.data = (void *)g751
711 	},
712 	{
713 		.compatible = "national,lm75",
714 		.data = (void *)lm75
715 	},
716 	{
717 		.compatible = "national,lm75a",
718 		.data = (void *)lm75a
719 	},
720 	{
721 		.compatible = "national,lm75b",
722 		.data = (void *)lm75b
723 	},
724 	{
725 		.compatible = "maxim,max6625",
726 		.data = (void *)max6625
727 	},
728 	{
729 		.compatible = "maxim,max6626",
730 		.data = (void *)max6626
731 	},
732 	{
733 		.compatible = "maxim,max31725",
734 		.data = (void *)max31725
735 	},
736 	{
737 		.compatible = "maxim,max31726",
738 		.data = (void *)max31725
739 	},
740 	{
741 		.compatible = "maxim,mcp980x",
742 		.data = (void *)mcp980x
743 	},
744 	{
745 		.compatible = "nxp,pct2075",
746 		.data = (void *)pct2075
747 	},
748 	{
749 		.compatible = "st,stds75",
750 		.data = (void *)stds75
751 	},
752 	{
753 		.compatible = "st,stlm75",
754 		.data = (void *)stlm75
755 	},
756 	{
757 		.compatible = "microchip,tcn75",
758 		.data = (void *)tcn75
759 	},
760 	{
761 		.compatible = "ti,tmp100",
762 		.data = (void *)tmp100
763 	},
764 	{
765 		.compatible = "ti,tmp101",
766 		.data = (void *)tmp101
767 	},
768 	{
769 		.compatible = "ti,tmp105",
770 		.data = (void *)tmp105
771 	},
772 	{
773 		.compatible = "ti,tmp112",
774 		.data = (void *)tmp112
775 	},
776 	{
777 		.compatible = "ti,tmp175",
778 		.data = (void *)tmp175
779 	},
780 	{
781 		.compatible = "ti,tmp275",
782 		.data = (void *)tmp275
783 	},
784 	{
785 		.compatible = "ti,tmp75",
786 		.data = (void *)tmp75
787 	},
788 	{
789 		.compatible = "ti,tmp75b",
790 		.data = (void *)tmp75b
791 	},
792 	{
793 		.compatible = "ti,tmp75c",
794 		.data = (void *)tmp75c
795 	},
796 	{
797 		.compatible = "ti,tmp1075",
798 		.data = (void *)tmp1075
799 	},
800 	{ },
801 };
802 MODULE_DEVICE_TABLE(of, lm75_of_match);
803 
804 #define LM75A_ID 0xA1
805 
806 /* Return 0 if detection is successful, -ENODEV otherwise */
lm75_detect(struct i2c_client * new_client,struct i2c_board_info * info)807 static int lm75_detect(struct i2c_client *new_client,
808 		       struct i2c_board_info *info)
809 {
810 	struct i2c_adapter *adapter = new_client->adapter;
811 	int i;
812 	int conf, hyst, os;
813 	bool is_lm75a = 0;
814 
815 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
816 				     I2C_FUNC_SMBUS_WORD_DATA))
817 		return -ENODEV;
818 
819 	/*
820 	 * Now, we do the remaining detection. There is no identification-
821 	 * dedicated register so we have to rely on several tricks:
822 	 * unused bits, registers cycling over 8-address boundaries,
823 	 * addresses 0x04-0x07 returning the last read value.
824 	 * The cycling+unused addresses combination is not tested,
825 	 * since it would significantly slow the detection down and would
826 	 * hardly add any value.
827 	 *
828 	 * The National Semiconductor LM75A is different than earlier
829 	 * LM75s.  It has an ID byte of 0xaX (where X is the chip
830 	 * revision, with 1 being the only revision in existence) in
831 	 * register 7, and unused registers return 0xff rather than the
832 	 * last read value.
833 	 *
834 	 * Note that this function only detects the original National
835 	 * Semiconductor LM75 and the LM75A. Clones from other vendors
836 	 * aren't detected, on purpose, because they are typically never
837 	 * found on PC hardware. They are found on embedded designs where
838 	 * they can be instantiated explicitly so detection is not needed.
839 	 * The absence of identification registers on all these clones
840 	 * would make their exhaustive detection very difficult and weak,
841 	 * and odds are that the driver would bind to unsupported devices.
842 	 */
843 
844 	/* Unused bits */
845 	conf = i2c_smbus_read_byte_data(new_client, 1);
846 	if (conf & 0xe0)
847 		return -ENODEV;
848 
849 	/* First check for LM75A */
850 	if (i2c_smbus_read_byte_data(new_client, 7) == LM75A_ID) {
851 		/*
852 		 * LM75A returns 0xff on unused registers so
853 		 * just to be sure we check for that too.
854 		 */
855 		if (i2c_smbus_read_byte_data(new_client, 4) != 0xff
856 		 || i2c_smbus_read_byte_data(new_client, 5) != 0xff
857 		 || i2c_smbus_read_byte_data(new_client, 6) != 0xff)
858 			return -ENODEV;
859 		is_lm75a = 1;
860 		hyst = i2c_smbus_read_byte_data(new_client, 2);
861 		os = i2c_smbus_read_byte_data(new_client, 3);
862 	} else { /* Traditional style LM75 detection */
863 		/* Unused addresses */
864 		hyst = i2c_smbus_read_byte_data(new_client, 2);
865 		if (i2c_smbus_read_byte_data(new_client, 4) != hyst
866 		 || i2c_smbus_read_byte_data(new_client, 5) != hyst
867 		 || i2c_smbus_read_byte_data(new_client, 6) != hyst
868 		 || i2c_smbus_read_byte_data(new_client, 7) != hyst)
869 			return -ENODEV;
870 		os = i2c_smbus_read_byte_data(new_client, 3);
871 		if (i2c_smbus_read_byte_data(new_client, 4) != os
872 		 || i2c_smbus_read_byte_data(new_client, 5) != os
873 		 || i2c_smbus_read_byte_data(new_client, 6) != os
874 		 || i2c_smbus_read_byte_data(new_client, 7) != os)
875 			return -ENODEV;
876 	}
877 	/*
878 	 * It is very unlikely that this is a LM75 if both
879 	 * hysteresis and temperature limit registers are 0.
880 	 */
881 	if (hyst == 0 && os == 0)
882 		return -ENODEV;
883 
884 	/* Addresses cycling */
885 	for (i = 8; i <= 248; i += 40) {
886 		if (i2c_smbus_read_byte_data(new_client, i + 1) != conf
887 		 || i2c_smbus_read_byte_data(new_client, i + 2) != hyst
888 		 || i2c_smbus_read_byte_data(new_client, i + 3) != os)
889 			return -ENODEV;
890 		if (is_lm75a && i2c_smbus_read_byte_data(new_client, i + 7)
891 				!= LM75A_ID)
892 			return -ENODEV;
893 	}
894 
895 	strscpy(info->type, is_lm75a ? "lm75a" : "lm75", I2C_NAME_SIZE);
896 
897 	return 0;
898 }
899 
900 #ifdef CONFIG_PM
lm75_suspend(struct device * dev)901 static int lm75_suspend(struct device *dev)
902 {
903 	int status;
904 	struct i2c_client *client = to_i2c_client(dev);
905 
906 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
907 	if (status < 0) {
908 		dev_dbg(&client->dev, "Can't read config? %d\n", status);
909 		return status;
910 	}
911 	status = status | LM75_SHUTDOWN;
912 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, status);
913 	return 0;
914 }
915 
lm75_resume(struct device * dev)916 static int lm75_resume(struct device *dev)
917 {
918 	int status;
919 	struct i2c_client *client = to_i2c_client(dev);
920 
921 	status = i2c_smbus_read_byte_data(client, LM75_REG_CONF);
922 	if (status < 0) {
923 		dev_dbg(&client->dev, "Can't read config? %d\n", status);
924 		return status;
925 	}
926 	status = status & ~LM75_SHUTDOWN;
927 	i2c_smbus_write_byte_data(client, LM75_REG_CONF, status);
928 	return 0;
929 }
930 
931 static const struct dev_pm_ops lm75_dev_pm_ops = {
932 	.suspend	= lm75_suspend,
933 	.resume		= lm75_resume,
934 };
935 #define LM75_DEV_PM_OPS (&lm75_dev_pm_ops)
936 #else
937 #define LM75_DEV_PM_OPS NULL
938 #endif /* CONFIG_PM */
939 
940 static struct i2c_driver lm75_driver = {
941 	.class		= I2C_CLASS_HWMON,
942 	.driver = {
943 		.name	= "lm75",
944 		.of_match_table = of_match_ptr(lm75_of_match),
945 		.pm	= LM75_DEV_PM_OPS,
946 	},
947 	.probe		= lm75_probe,
948 	.id_table	= lm75_ids,
949 	.detect		= lm75_detect,
950 	.address_list	= normal_i2c,
951 };
952 
953 module_i2c_driver(lm75_driver);
954 
955 MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>");
956 MODULE_DESCRIPTION("LM75 driver");
957 MODULE_LICENSE("GPL");
958