1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "priv.h"
25 #include "chan.h"
26 #include "hdmi.h"
27 #include "head.h"
28 #include "ior.h"
29 #include "outp.h"
30
31 #include <core/ramht.h>
32 #include <subdev/timer.h>
33
34 #include <nvif/class.h>
35
36 static void
gf119_sor_hda_device_entry(struct nvkm_ior * ior,int head)37 gf119_sor_hda_device_entry(struct nvkm_ior *ior, int head)
38 {
39 struct nvkm_device *device = ior->disp->engine.subdev.device;
40 const u32 hoff = 0x800 * head;
41
42 nvkm_mask(device, 0x616548 + hoff, 0x00000070, head << 4);
43 }
44
45 void
gf119_sor_hda_eld(struct nvkm_ior * ior,int head,u8 * data,u8 size)46 gf119_sor_hda_eld(struct nvkm_ior *ior, int head, u8 *data, u8 size)
47 {
48 struct nvkm_device *device = ior->disp->engine.subdev.device;
49 const u32 soff = 0x030 * ior->id + (head * 0x04);
50 int i;
51
52 for (i = 0; i < size; i++)
53 nvkm_wr32(device, 0x10ec00 + soff, (i << 8) | data[i]);
54 for (; i < 0x60; i++)
55 nvkm_wr32(device, 0x10ec00 + soff, (i << 8));
56 nvkm_mask(device, 0x10ec10 + soff, 0x80000002, 0x80000002);
57 }
58
59 void
gf119_sor_hda_hpd(struct nvkm_ior * ior,int head,bool present)60 gf119_sor_hda_hpd(struct nvkm_ior *ior, int head, bool present)
61 {
62 struct nvkm_device *device = ior->disp->engine.subdev.device;
63 const u32 soff = 0x030 * ior->id + (head * 0x04);
64 u32 data = 0x80000000;
65 u32 mask = 0x80000001;
66
67 if (present) {
68 ior->func->hda->device_entry(ior, head);
69 data |= 0x00000001;
70 } else {
71 mask |= 0x00000002;
72 }
73
74 nvkm_mask(device, 0x10ec10 + soff, mask, data);
75 }
76
77 const struct nvkm_ior_func_hda
78 gf119_sor_hda = {
79 .hpd = gf119_sor_hda_hpd,
80 .eld = gf119_sor_hda_eld,
81 .device_entry = gf119_sor_hda_device_entry,
82 };
83
84 void
gf119_sor_dp_watermark(struct nvkm_ior * sor,int head,u8 watermark)85 gf119_sor_dp_watermark(struct nvkm_ior *sor, int head, u8 watermark)
86 {
87 struct nvkm_device *device = sor->disp->engine.subdev.device;
88 const u32 hoff = head * 0x800;
89
90 nvkm_mask(device, 0x616610 + hoff, 0x0800003f, 0x08000000 | watermark);
91 }
92
93 void
gf119_sor_dp_audio_sym(struct nvkm_ior * sor,int head,u16 h,u32 v)94 gf119_sor_dp_audio_sym(struct nvkm_ior *sor, int head, u16 h, u32 v)
95 {
96 struct nvkm_device *device = sor->disp->engine.subdev.device;
97 const u32 hoff = head * 0x800;
98
99 nvkm_mask(device, 0x616620 + hoff, 0x0000ffff, h);
100 nvkm_mask(device, 0x616624 + hoff, 0x00ffffff, v);
101 }
102
103 void
gf119_sor_dp_audio(struct nvkm_ior * sor,int head,bool enable)104 gf119_sor_dp_audio(struct nvkm_ior *sor, int head, bool enable)
105 {
106 struct nvkm_device *device = sor->disp->engine.subdev.device;
107 const u32 hoff = 0x800 * head;
108 const u32 data = 0x80000000 | (0x00000001 * enable);
109 const u32 mask = 0x8000000d;
110
111 nvkm_mask(device, 0x616618 + hoff, mask, data);
112 nvkm_msec(device, 2000,
113 if (!(nvkm_rd32(device, 0x616618 + hoff) & 0x80000000))
114 break;
115 );
116 }
117
118 void
gf119_sor_dp_vcpi(struct nvkm_ior * sor,int head,u8 slot,u8 slot_nr,u16 pbn,u16 aligned)119 gf119_sor_dp_vcpi(struct nvkm_ior *sor, int head, u8 slot, u8 slot_nr, u16 pbn, u16 aligned)
120 {
121 struct nvkm_device *device = sor->disp->engine.subdev.device;
122 const u32 hoff = head * 0x800;
123
124 nvkm_mask(device, 0x616588 + hoff, 0x00003f3f, (slot_nr << 8) | slot);
125 nvkm_mask(device, 0x61658c + hoff, 0xffffffff, (aligned << 16) | pbn);
126 }
127
128 void
gf119_sor_dp_drive(struct nvkm_ior * sor,int ln,int pc,int dc,int pe,int pu)129 gf119_sor_dp_drive(struct nvkm_ior *sor, int ln, int pc, int dc, int pe, int pu)
130 {
131 struct nvkm_device *device = sor->disp->engine.subdev.device;
132 const u32 loff = nv50_sor_link(sor);
133 const u32 shift = sor->func->dp->lanes[ln] * 8;
134 u32 data[4];
135
136 data[0] = nvkm_rd32(device, 0x61c118 + loff) & ~(0x000000ff << shift);
137 data[1] = nvkm_rd32(device, 0x61c120 + loff) & ~(0x000000ff << shift);
138 data[2] = nvkm_rd32(device, 0x61c130 + loff);
139 if ((data[2] & 0x0000ff00) < (pu << 8) || ln == 0)
140 data[2] = (data[2] & ~0x0000ff00) | (pu << 8);
141
142 nvkm_wr32(device, 0x61c118 + loff, data[0] | (dc << shift));
143 nvkm_wr32(device, 0x61c120 + loff, data[1] | (pe << shift));
144 nvkm_wr32(device, 0x61c130 + loff, data[2]);
145
146 data[3] = nvkm_rd32(device, 0x61c13c + loff) & ~(0x000000ff << shift);
147 nvkm_wr32(device, 0x61c13c + loff, data[3] | (pc << shift));
148 }
149
150 static void
gf119_sor_dp_pattern(struct nvkm_ior * sor,int pattern)151 gf119_sor_dp_pattern(struct nvkm_ior *sor, int pattern)
152 {
153 struct nvkm_device *device = sor->disp->engine.subdev.device;
154 const u32 soff = nv50_ior_base(sor);
155 u32 data;
156
157 switch (pattern) {
158 case 0: data = 0x10101010; break;
159 case 1: data = 0x01010101; break;
160 case 2: data = 0x02020202; break;
161 case 3: data = 0x03030303; break;
162 default:
163 WARN_ON(1);
164 return;
165 }
166
167 nvkm_mask(device, 0x61c110 + soff, 0x1f1f1f1f, data);
168 }
169
170 int
gf119_sor_dp_links(struct nvkm_ior * sor,struct nvkm_i2c_aux * aux)171 gf119_sor_dp_links(struct nvkm_ior *sor, struct nvkm_i2c_aux *aux)
172 {
173 struct nvkm_device *device = sor->disp->engine.subdev.device;
174 const u32 soff = nv50_ior_base(sor);
175 const u32 loff = nv50_sor_link(sor);
176 u32 dpctrl = 0x00000000;
177 u32 clksor = 0x00000000;
178
179 clksor |= sor->dp.bw << 18;
180 dpctrl |= ((1 << sor->dp.nr) - 1) << 16;
181 if (sor->dp.mst)
182 dpctrl |= 0x40000000;
183 if (sor->dp.ef)
184 dpctrl |= 0x00004000;
185
186 nvkm_mask(device, 0x612300 + soff, 0x007c0000, clksor);
187 nvkm_mask(device, 0x61c10c + loff, 0x401f4000, dpctrl);
188 return 0;
189 }
190
191 const struct nvkm_ior_func_dp
192 gf119_sor_dp = {
193 .lanes = { 2, 1, 0, 3 },
194 .links = gf119_sor_dp_links,
195 .power = g94_sor_dp_power,
196 .pattern = gf119_sor_dp_pattern,
197 .drive = gf119_sor_dp_drive,
198 .vcpi = gf119_sor_dp_vcpi,
199 .audio = gf119_sor_dp_audio,
200 .audio_sym = gf119_sor_dp_audio_sym,
201 .watermark = gf119_sor_dp_watermark,
202 };
203
204 static void
gf119_sor_hdmi_infoframe_vsi(struct nvkm_ior * ior,int head,void * data,u32 size)205 gf119_sor_hdmi_infoframe_vsi(struct nvkm_ior *ior, int head, void *data, u32 size)
206 {
207 struct nvkm_device *device = ior->disp->engine.subdev.device;
208 struct packed_hdmi_infoframe vsi;
209 const u32 hoff = head * 0x800;
210
211 pack_hdmi_infoframe(&vsi, data, size);
212
213 nvkm_mask(device, 0x616730 + hoff, 0x00010001, 0x00010000);
214 if (!size)
215 return;
216
217 /*
218 * These appear to be the audio infoframe registers,
219 * but no other set of infoframe registers has yet
220 * been found.
221 */
222 nvkm_wr32(device, 0x616738 + hoff, vsi.header);
223 nvkm_wr32(device, 0x61673c + hoff, vsi.subpack0_low);
224 nvkm_wr32(device, 0x616740 + hoff, vsi.subpack0_high);
225 /* Is there a second (or further?) set of subpack registers here? */
226
227 nvkm_mask(device, 0x616730 + hoff, 0x00000001, 0x00000001);
228 }
229
230 static void
gf119_sor_hdmi_infoframe_avi(struct nvkm_ior * ior,int head,void * data,u32 size)231 gf119_sor_hdmi_infoframe_avi(struct nvkm_ior *ior, int head, void *data, u32 size)
232 {
233 struct nvkm_device *device = ior->disp->engine.subdev.device;
234 struct packed_hdmi_infoframe avi;
235 const u32 hoff = head * 0x800;
236
237 pack_hdmi_infoframe(&avi, data, size);
238
239 nvkm_mask(device, 0x616714 + hoff, 0x00000001, 0x00000000);
240 if (!size)
241 return;
242
243 nvkm_wr32(device, 0x61671c + hoff, avi.header);
244 nvkm_wr32(device, 0x616720 + hoff, avi.subpack0_low);
245 nvkm_wr32(device, 0x616724 + hoff, avi.subpack0_high);
246 nvkm_wr32(device, 0x616728 + hoff, avi.subpack1_low);
247 nvkm_wr32(device, 0x61672c + hoff, avi.subpack1_high);
248
249 nvkm_mask(device, 0x616714 + hoff, 0x00000001, 0x00000001);
250 }
251
252 static void
gf119_sor_hdmi_ctrl(struct nvkm_ior * ior,int head,bool enable,u8 max_ac_packet,u8 rekey)253 gf119_sor_hdmi_ctrl(struct nvkm_ior *ior, int head, bool enable, u8 max_ac_packet, u8 rekey)
254 {
255 struct nvkm_device *device = ior->disp->engine.subdev.device;
256 const u32 ctrl = 0x40000000 * enable |
257 max_ac_packet << 16 |
258 rekey;
259 const u32 hoff = head * 0x800;
260
261 if (!(ctrl & 0x40000000)) {
262 nvkm_mask(device, 0x616798 + hoff, 0x40000000, 0x00000000);
263 nvkm_mask(device, 0x616730 + hoff, 0x00000001, 0x00000000);
264 nvkm_mask(device, 0x6167a4 + hoff, 0x00000001, 0x00000000);
265 nvkm_mask(device, 0x616714 + hoff, 0x00000001, 0x00000000);
266 return;
267 }
268
269 /* ??? InfoFrame? */
270 nvkm_mask(device, 0x6167a4 + hoff, 0x00000001, 0x00000000);
271 nvkm_wr32(device, 0x6167ac + hoff, 0x00000010);
272 nvkm_mask(device, 0x6167a4 + hoff, 0x00000001, 0x00000001);
273
274 /* HDMI_CTRL */
275 nvkm_mask(device, 0x616798 + hoff, 0x401f007f, ctrl);
276 }
277
278 static const struct nvkm_ior_func_hdmi
279 gf119_sor_hdmi = {
280 .ctrl = gf119_sor_hdmi_ctrl,
281 .infoframe_avi = gf119_sor_hdmi_infoframe_avi,
282 .infoframe_vsi = gf119_sor_hdmi_infoframe_vsi,
283 };
284
285 void
gf119_sor_clock(struct nvkm_ior * sor)286 gf119_sor_clock(struct nvkm_ior *sor)
287 {
288 struct nvkm_device *device = sor->disp->engine.subdev.device;
289 const u32 soff = nv50_ior_base(sor);
290 u32 div1 = sor->asy.link == 3;
291 u32 div2 = sor->asy.link == 3;
292
293 if (sor->asy.proto == TMDS) {
294 const u32 speed = sor->tmds.high_speed ? 0x14 : 0x0a;
295 nvkm_mask(device, 0x612300 + soff, 0x007c0000, speed << 18);
296 if (sor->tmds.high_speed)
297 div2 = 1;
298 }
299
300 nvkm_mask(device, 0x612300 + soff, 0x00000707, (div2 << 8) | div1);
301 }
302
303 void
gf119_sor_state(struct nvkm_ior * sor,struct nvkm_ior_state * state)304 gf119_sor_state(struct nvkm_ior *sor, struct nvkm_ior_state *state)
305 {
306 struct nvkm_device *device = sor->disp->engine.subdev.device;
307 const u32 coff = (state == &sor->asy) * 0x20000 + sor->id * 0x20;
308 u32 ctrl = nvkm_rd32(device, 0x640200 + coff);
309
310 state->proto_evo = (ctrl & 0x00000f00) >> 8;
311 switch (state->proto_evo) {
312 case 0: state->proto = LVDS; state->link = 1; break;
313 case 1: state->proto = TMDS; state->link = 1; break;
314 case 2: state->proto = TMDS; state->link = 2; break;
315 case 5: state->proto = TMDS; state->link = 3; break;
316 case 8: state->proto = DP; state->link = 1; break;
317 case 9: state->proto = DP; state->link = 2; break;
318 default:
319 state->proto = UNKNOWN;
320 break;
321 }
322
323 state->head = ctrl & 0x0000000f;
324 }
325
326 static const struct nvkm_ior_func
327 gf119_sor = {
328 .state = gf119_sor_state,
329 .power = nv50_sor_power,
330 .clock = gf119_sor_clock,
331 .hdmi = &gf119_sor_hdmi,
332 .dp = &gf119_sor_dp,
333 .hda = &gf119_sor_hda,
334 };
335
336 static int
gf119_sor_new(struct nvkm_disp * disp,int id)337 gf119_sor_new(struct nvkm_disp *disp, int id)
338 {
339 return nvkm_ior_new_(&gf119_sor, disp, SOR, id, true);
340 }
341
342 int
gf119_sor_cnt(struct nvkm_disp * disp,unsigned long * pmask)343 gf119_sor_cnt(struct nvkm_disp *disp, unsigned long *pmask)
344 {
345 struct nvkm_device *device = disp->engine.subdev.device;
346 *pmask = (nvkm_rd32(device, 0x612004) & 0x0000ff00) >> 8;
347 return 8;
348 }
349
350 static void
gf119_dac_clock(struct nvkm_ior * dac)351 gf119_dac_clock(struct nvkm_ior *dac)
352 {
353 struct nvkm_device *device = dac->disp->engine.subdev.device;
354 const u32 doff = nv50_ior_base(dac);
355 nvkm_mask(device, 0x612280 + doff, 0x07070707, 0x00000000);
356 }
357
358 static void
gf119_dac_state(struct nvkm_ior * dac,struct nvkm_ior_state * state)359 gf119_dac_state(struct nvkm_ior *dac, struct nvkm_ior_state *state)
360 {
361 struct nvkm_device *device = dac->disp->engine.subdev.device;
362 const u32 coff = (state == &dac->asy) * 0x20000 + dac->id * 0x20;
363 u32 ctrl = nvkm_rd32(device, 0x640180 + coff);
364
365 state->proto_evo = (ctrl & 0x00000f00) >> 8;
366 switch (state->proto_evo) {
367 case 0: state->proto = CRT; break;
368 default:
369 state->proto = UNKNOWN;
370 break;
371 }
372
373 state->head = ctrl & 0x0000000f;
374 }
375
376 static const struct nvkm_ior_func
377 gf119_dac = {
378 .state = gf119_dac_state,
379 .power = nv50_dac_power,
380 .sense = nv50_dac_sense,
381 .clock = gf119_dac_clock,
382 };
383
384 int
gf119_dac_new(struct nvkm_disp * disp,int id)385 gf119_dac_new(struct nvkm_disp *disp, int id)
386 {
387 return nvkm_ior_new_(&gf119_dac, disp, DAC, id, false);
388 }
389
390 int
gf119_dac_cnt(struct nvkm_disp * disp,unsigned long * pmask)391 gf119_dac_cnt(struct nvkm_disp *disp, unsigned long *pmask)
392 {
393 struct nvkm_device *device = disp->engine.subdev.device;
394 *pmask = (nvkm_rd32(device, 0x612004) & 0x000000f0) >> 4;
395 return 4;
396 }
397
398 static void
gf119_head_vblank_put(struct nvkm_head * head)399 gf119_head_vblank_put(struct nvkm_head *head)
400 {
401 struct nvkm_device *device = head->disp->engine.subdev.device;
402 const u32 hoff = head->id * 0x800;
403 nvkm_mask(device, 0x6100c0 + hoff, 0x00000001, 0x00000000);
404 }
405
406 static void
gf119_head_vblank_get(struct nvkm_head * head)407 gf119_head_vblank_get(struct nvkm_head *head)
408 {
409 struct nvkm_device *device = head->disp->engine.subdev.device;
410 const u32 hoff = head->id * 0x800;
411 nvkm_mask(device, 0x6100c0 + hoff, 0x00000001, 0x00000001);
412 }
413
414 void
gf119_head_rgclk(struct nvkm_head * head,int div)415 gf119_head_rgclk(struct nvkm_head *head, int div)
416 {
417 struct nvkm_device *device = head->disp->engine.subdev.device;
418 nvkm_mask(device, 0x612200 + (head->id * 0x800), 0x0000000f, div);
419 }
420
421 static void
gf119_head_state(struct nvkm_head * head,struct nvkm_head_state * state)422 gf119_head_state(struct nvkm_head *head, struct nvkm_head_state *state)
423 {
424 struct nvkm_device *device = head->disp->engine.subdev.device;
425 const u32 hoff = (state == &head->asy) * 0x20000 + head->id * 0x300;
426 u32 data;
427
428 data = nvkm_rd32(device, 0x640414 + hoff);
429 state->vtotal = (data & 0xffff0000) >> 16;
430 state->htotal = (data & 0x0000ffff);
431 data = nvkm_rd32(device, 0x640418 + hoff);
432 state->vsynce = (data & 0xffff0000) >> 16;
433 state->hsynce = (data & 0x0000ffff);
434 data = nvkm_rd32(device, 0x64041c + hoff);
435 state->vblanke = (data & 0xffff0000) >> 16;
436 state->hblanke = (data & 0x0000ffff);
437 data = nvkm_rd32(device, 0x640420 + hoff);
438 state->vblanks = (data & 0xffff0000) >> 16;
439 state->hblanks = (data & 0x0000ffff);
440 state->hz = nvkm_rd32(device, 0x640450 + hoff);
441
442 data = nvkm_rd32(device, 0x640404 + hoff);
443 switch ((data & 0x000003c0) >> 6) {
444 case 6: state->or.depth = 30; break;
445 case 5: state->or.depth = 24; break;
446 case 2: state->or.depth = 18; break;
447 case 0: state->or.depth = 18; break; /*XXX: "default" */
448 default:
449 state->or.depth = 18;
450 WARN_ON(1);
451 break;
452 }
453 }
454
455 static const struct nvkm_head_func
456 gf119_head = {
457 .state = gf119_head_state,
458 .rgpos = nv50_head_rgpos,
459 .rgclk = gf119_head_rgclk,
460 .vblank_get = gf119_head_vblank_get,
461 .vblank_put = gf119_head_vblank_put,
462 };
463
464 int
gf119_head_new(struct nvkm_disp * disp,int id)465 gf119_head_new(struct nvkm_disp *disp, int id)
466 {
467 return nvkm_head_new_(&gf119_head, disp, id);
468 }
469
470 int
gf119_head_cnt(struct nvkm_disp * disp,unsigned long * pmask)471 gf119_head_cnt(struct nvkm_disp *disp, unsigned long *pmask)
472 {
473 struct nvkm_device *device = disp->engine.subdev.device;
474 *pmask = nvkm_rd32(device, 0x612004) & 0x0000000f;
475 return nvkm_rd32(device, 0x022448);
476 }
477
478 static void
gf119_disp_chan_uevent_fini(struct nvkm_event * event,int type,int index)479 gf119_disp_chan_uevent_fini(struct nvkm_event *event, int type, int index)
480 {
481 struct nvkm_disp *disp = container_of(event, typeof(*disp), uevent);
482 struct nvkm_device *device = disp->engine.subdev.device;
483 nvkm_mask(device, 0x610090, 0x00000001 << index, 0x00000000 << index);
484 nvkm_wr32(device, 0x61008c, 0x00000001 << index);
485 }
486
487 static void
gf119_disp_chan_uevent_init(struct nvkm_event * event,int types,int index)488 gf119_disp_chan_uevent_init(struct nvkm_event *event, int types, int index)
489 {
490 struct nvkm_disp *disp = container_of(event, typeof(*disp), uevent);
491 struct nvkm_device *device = disp->engine.subdev.device;
492 nvkm_wr32(device, 0x61008c, 0x00000001 << index);
493 nvkm_mask(device, 0x610090, 0x00000001 << index, 0x00000001 << index);
494 }
495
496 const struct nvkm_event_func
497 gf119_disp_chan_uevent = {
498 .init = gf119_disp_chan_uevent_init,
499 .fini = gf119_disp_chan_uevent_fini,
500 };
501
502 void
gf119_disp_chan_intr(struct nvkm_disp_chan * chan,bool en)503 gf119_disp_chan_intr(struct nvkm_disp_chan *chan, bool en)
504 {
505 struct nvkm_device *device = chan->disp->engine.subdev.device;
506 const u32 mask = 0x00000001 << chan->chid.user;
507 if (!en) {
508 nvkm_mask(device, 0x610090, mask, 0x00000000);
509 nvkm_mask(device, 0x6100a0, mask, 0x00000000);
510 } else {
511 nvkm_mask(device, 0x6100a0, mask, mask);
512 }
513 }
514
515 static void
gf119_disp_pioc_fini(struct nvkm_disp_chan * chan)516 gf119_disp_pioc_fini(struct nvkm_disp_chan *chan)
517 {
518 struct nvkm_disp *disp = chan->disp;
519 struct nvkm_subdev *subdev = &disp->engine.subdev;
520 struct nvkm_device *device = subdev->device;
521 int ctrl = chan->chid.ctrl;
522 int user = chan->chid.user;
523
524 nvkm_mask(device, 0x610490 + (ctrl * 0x10), 0x00000001, 0x00000000);
525 if (nvkm_msec(device, 2000,
526 if (!(nvkm_rd32(device, 0x610490 + (ctrl * 0x10)) & 0x00030000))
527 break;
528 ) < 0) {
529 nvkm_error(subdev, "ch %d fini: %08x\n", user,
530 nvkm_rd32(device, 0x610490 + (ctrl * 0x10)));
531 }
532 }
533
534 static int
gf119_disp_pioc_init(struct nvkm_disp_chan * chan)535 gf119_disp_pioc_init(struct nvkm_disp_chan *chan)
536 {
537 struct nvkm_disp *disp = chan->disp;
538 struct nvkm_subdev *subdev = &disp->engine.subdev;
539 struct nvkm_device *device = subdev->device;
540 int ctrl = chan->chid.ctrl;
541 int user = chan->chid.user;
542
543 /* activate channel */
544 nvkm_wr32(device, 0x610490 + (ctrl * 0x10), 0x00000001);
545 if (nvkm_msec(device, 2000,
546 u32 tmp = nvkm_rd32(device, 0x610490 + (ctrl * 0x10));
547 if ((tmp & 0x00030000) == 0x00010000)
548 break;
549 ) < 0) {
550 nvkm_error(subdev, "ch %d init: %08x\n", user,
551 nvkm_rd32(device, 0x610490 + (ctrl * 0x10)));
552 return -EBUSY;
553 }
554
555 return 0;
556 }
557
558 const struct nvkm_disp_chan_func
559 gf119_disp_pioc_func = {
560 .init = gf119_disp_pioc_init,
561 .fini = gf119_disp_pioc_fini,
562 .intr = gf119_disp_chan_intr,
563 .user = nv50_disp_chan_user,
564 };
565
566 int
gf119_disp_dmac_bind(struct nvkm_disp_chan * chan,struct nvkm_object * object,u32 handle)567 gf119_disp_dmac_bind(struct nvkm_disp_chan *chan, struct nvkm_object *object, u32 handle)
568 {
569 return nvkm_ramht_insert(chan->disp->ramht, object, chan->chid.user, -9, handle,
570 chan->chid.user << 27 | 0x00000001);
571 }
572
573 void
gf119_disp_dmac_fini(struct nvkm_disp_chan * chan)574 gf119_disp_dmac_fini(struct nvkm_disp_chan *chan)
575 {
576 struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
577 struct nvkm_device *device = subdev->device;
578 int ctrl = chan->chid.ctrl;
579 int user = chan->chid.user;
580
581 /* deactivate channel */
582 nvkm_mask(device, 0x610490 + (ctrl * 0x0010), 0x00001010, 0x00001000);
583 nvkm_mask(device, 0x610490 + (ctrl * 0x0010), 0x00000003, 0x00000000);
584 if (nvkm_msec(device, 2000,
585 if (!(nvkm_rd32(device, 0x610490 + (ctrl * 0x10)) & 0x001e0000))
586 break;
587 ) < 0) {
588 nvkm_error(subdev, "ch %d fini: %08x\n", user,
589 nvkm_rd32(device, 0x610490 + (ctrl * 0x10)));
590 }
591
592 chan->suspend_put = nvkm_rd32(device, 0x640000 + (ctrl * 0x1000));
593 }
594
595 static int
gf119_disp_dmac_init(struct nvkm_disp_chan * chan)596 gf119_disp_dmac_init(struct nvkm_disp_chan *chan)
597 {
598 struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
599 struct nvkm_device *device = subdev->device;
600 int ctrl = chan->chid.ctrl;
601 int user = chan->chid.user;
602
603 /* initialise channel for dma command submission */
604 nvkm_wr32(device, 0x610494 + (ctrl * 0x0010), chan->push);
605 nvkm_wr32(device, 0x610498 + (ctrl * 0x0010), 0x00010000);
606 nvkm_wr32(device, 0x61049c + (ctrl * 0x0010), 0x00000001);
607 nvkm_mask(device, 0x610490 + (ctrl * 0x0010), 0x00000010, 0x00000010);
608 nvkm_wr32(device, 0x640000 + (ctrl * 0x1000), chan->suspend_put);
609 nvkm_wr32(device, 0x610490 + (ctrl * 0x0010), 0x00000013);
610
611 /* wait for it to go inactive */
612 if (nvkm_msec(device, 2000,
613 if (!(nvkm_rd32(device, 0x610490 + (ctrl * 0x10)) & 0x80000000))
614 break;
615 ) < 0) {
616 nvkm_error(subdev, "ch %d init: %08x\n", user,
617 nvkm_rd32(device, 0x610490 + (ctrl * 0x10)));
618 return -EBUSY;
619 }
620
621 return 0;
622 }
623
624 const struct nvkm_disp_chan_func
625 gf119_disp_dmac_func = {
626 .push = nv50_disp_dmac_push,
627 .init = gf119_disp_dmac_init,
628 .fini = gf119_disp_dmac_fini,
629 .intr = gf119_disp_chan_intr,
630 .user = nv50_disp_chan_user,
631 .bind = gf119_disp_dmac_bind,
632 };
633
634 const struct nvkm_disp_chan_user
635 gf119_disp_curs = {
636 .func = &gf119_disp_pioc_func,
637 .ctrl = 13,
638 .user = 13,
639 };
640
641 const struct nvkm_disp_chan_user
642 gf119_disp_oimm = {
643 .func = &gf119_disp_pioc_func,
644 .ctrl = 9,
645 .user = 9,
646 };
647
648 static const struct nvkm_disp_mthd_list
649 gf119_disp_ovly_mthd_base = {
650 .mthd = 0x0000,
651 .data = {
652 { 0x0080, 0x665080 },
653 { 0x0084, 0x665084 },
654 { 0x0088, 0x665088 },
655 { 0x008c, 0x66508c },
656 { 0x0090, 0x665090 },
657 { 0x0094, 0x665094 },
658 { 0x00a0, 0x6650a0 },
659 { 0x00a4, 0x6650a4 },
660 { 0x00b0, 0x6650b0 },
661 { 0x00b4, 0x6650b4 },
662 { 0x00b8, 0x6650b8 },
663 { 0x00c0, 0x6650c0 },
664 { 0x00e0, 0x6650e0 },
665 { 0x00e4, 0x6650e4 },
666 { 0x00e8, 0x6650e8 },
667 { 0x0100, 0x665100 },
668 { 0x0104, 0x665104 },
669 { 0x0108, 0x665108 },
670 { 0x010c, 0x66510c },
671 { 0x0110, 0x665110 },
672 { 0x0118, 0x665118 },
673 { 0x011c, 0x66511c },
674 { 0x0120, 0x665120 },
675 { 0x0124, 0x665124 },
676 { 0x0130, 0x665130 },
677 { 0x0134, 0x665134 },
678 { 0x0138, 0x665138 },
679 { 0x013c, 0x66513c },
680 { 0x0140, 0x665140 },
681 { 0x0144, 0x665144 },
682 { 0x0148, 0x665148 },
683 { 0x014c, 0x66514c },
684 { 0x0150, 0x665150 },
685 { 0x0154, 0x665154 },
686 { 0x0158, 0x665158 },
687 { 0x015c, 0x66515c },
688 { 0x0160, 0x665160 },
689 { 0x0164, 0x665164 },
690 { 0x0168, 0x665168 },
691 { 0x016c, 0x66516c },
692 { 0x0400, 0x665400 },
693 { 0x0408, 0x665408 },
694 { 0x040c, 0x66540c },
695 { 0x0410, 0x665410 },
696 {}
697 }
698 };
699
700 static const struct nvkm_disp_chan_mthd
701 gf119_disp_ovly_mthd = {
702 .name = "Overlay",
703 .addr = 0x001000,
704 .prev = -0x020000,
705 .data = {
706 { "Global", 1, &gf119_disp_ovly_mthd_base },
707 {}
708 }
709 };
710
711 static const struct nvkm_disp_chan_user
712 gf119_disp_ovly = {
713 .func = &gf119_disp_dmac_func,
714 .ctrl = 5,
715 .user = 5,
716 .mthd = &gf119_disp_ovly_mthd,
717 };
718
719 static const struct nvkm_disp_mthd_list
720 gf119_disp_base_mthd_base = {
721 .mthd = 0x0000,
722 .addr = 0x000000,
723 .data = {
724 { 0x0080, 0x661080 },
725 { 0x0084, 0x661084 },
726 { 0x0088, 0x661088 },
727 { 0x008c, 0x66108c },
728 { 0x0090, 0x661090 },
729 { 0x0094, 0x661094 },
730 { 0x00a0, 0x6610a0 },
731 { 0x00a4, 0x6610a4 },
732 { 0x00c0, 0x6610c0 },
733 { 0x00c4, 0x6610c4 },
734 { 0x00c8, 0x6610c8 },
735 { 0x00cc, 0x6610cc },
736 { 0x00e0, 0x6610e0 },
737 { 0x00e4, 0x6610e4 },
738 { 0x00e8, 0x6610e8 },
739 { 0x00ec, 0x6610ec },
740 { 0x00fc, 0x6610fc },
741 { 0x0100, 0x661100 },
742 { 0x0104, 0x661104 },
743 { 0x0108, 0x661108 },
744 { 0x010c, 0x66110c },
745 { 0x0110, 0x661110 },
746 { 0x0114, 0x661114 },
747 { 0x0118, 0x661118 },
748 { 0x011c, 0x66111c },
749 { 0x0130, 0x661130 },
750 { 0x0134, 0x661134 },
751 { 0x0138, 0x661138 },
752 { 0x013c, 0x66113c },
753 { 0x0140, 0x661140 },
754 { 0x0144, 0x661144 },
755 { 0x0148, 0x661148 },
756 { 0x014c, 0x66114c },
757 { 0x0150, 0x661150 },
758 { 0x0154, 0x661154 },
759 { 0x0158, 0x661158 },
760 { 0x015c, 0x66115c },
761 { 0x0160, 0x661160 },
762 { 0x0164, 0x661164 },
763 { 0x0168, 0x661168 },
764 { 0x016c, 0x66116c },
765 {}
766 }
767 };
768
769 static const struct nvkm_disp_mthd_list
770 gf119_disp_base_mthd_image = {
771 .mthd = 0x0020,
772 .addr = 0x000020,
773 .data = {
774 { 0x0400, 0x661400 },
775 { 0x0404, 0x661404 },
776 { 0x0408, 0x661408 },
777 { 0x040c, 0x66140c },
778 { 0x0410, 0x661410 },
779 {}
780 }
781 };
782
783 const struct nvkm_disp_chan_mthd
784 gf119_disp_base_mthd = {
785 .name = "Base",
786 .addr = 0x001000,
787 .prev = -0x020000,
788 .data = {
789 { "Global", 1, &gf119_disp_base_mthd_base },
790 { "Image", 2, &gf119_disp_base_mthd_image },
791 {}
792 }
793 };
794
795 const struct nvkm_disp_chan_user
796 gf119_disp_base = {
797 .func = &gf119_disp_dmac_func,
798 .ctrl = 1,
799 .user = 1,
800 .mthd = &gf119_disp_base_mthd,
801 };
802
803 const struct nvkm_disp_mthd_list
804 gf119_disp_core_mthd_base = {
805 .mthd = 0x0000,
806 .addr = 0x000000,
807 .data = {
808 { 0x0080, 0x660080 },
809 { 0x0084, 0x660084 },
810 { 0x0088, 0x660088 },
811 { 0x008c, 0x000000 },
812 {}
813 }
814 };
815
816 const struct nvkm_disp_mthd_list
817 gf119_disp_core_mthd_dac = {
818 .mthd = 0x0020,
819 .addr = 0x000020,
820 .data = {
821 { 0x0180, 0x660180 },
822 { 0x0184, 0x660184 },
823 { 0x0188, 0x660188 },
824 { 0x0190, 0x660190 },
825 {}
826 }
827 };
828
829 const struct nvkm_disp_mthd_list
830 gf119_disp_core_mthd_sor = {
831 .mthd = 0x0020,
832 .addr = 0x000020,
833 .data = {
834 { 0x0200, 0x660200 },
835 { 0x0204, 0x660204 },
836 { 0x0208, 0x660208 },
837 { 0x0210, 0x660210 },
838 {}
839 }
840 };
841
842 const struct nvkm_disp_mthd_list
843 gf119_disp_core_mthd_pior = {
844 .mthd = 0x0020,
845 .addr = 0x000020,
846 .data = {
847 { 0x0300, 0x660300 },
848 { 0x0304, 0x660304 },
849 { 0x0308, 0x660308 },
850 { 0x0310, 0x660310 },
851 {}
852 }
853 };
854
855 static const struct nvkm_disp_mthd_list
856 gf119_disp_core_mthd_head = {
857 .mthd = 0x0300,
858 .addr = 0x000300,
859 .data = {
860 { 0x0400, 0x660400 },
861 { 0x0404, 0x660404 },
862 { 0x0408, 0x660408 },
863 { 0x040c, 0x66040c },
864 { 0x0410, 0x660410 },
865 { 0x0414, 0x660414 },
866 { 0x0418, 0x660418 },
867 { 0x041c, 0x66041c },
868 { 0x0420, 0x660420 },
869 { 0x0424, 0x660424 },
870 { 0x0428, 0x660428 },
871 { 0x042c, 0x66042c },
872 { 0x0430, 0x660430 },
873 { 0x0434, 0x660434 },
874 { 0x0438, 0x660438 },
875 { 0x0440, 0x660440 },
876 { 0x0444, 0x660444 },
877 { 0x0448, 0x660448 },
878 { 0x044c, 0x66044c },
879 { 0x0450, 0x660450 },
880 { 0x0454, 0x660454 },
881 { 0x0458, 0x660458 },
882 { 0x045c, 0x66045c },
883 { 0x0460, 0x660460 },
884 { 0x0468, 0x660468 },
885 { 0x046c, 0x66046c },
886 { 0x0470, 0x660470 },
887 { 0x0474, 0x660474 },
888 { 0x0480, 0x660480 },
889 { 0x0484, 0x660484 },
890 { 0x048c, 0x66048c },
891 { 0x0490, 0x660490 },
892 { 0x0494, 0x660494 },
893 { 0x0498, 0x660498 },
894 { 0x04b0, 0x6604b0 },
895 { 0x04b8, 0x6604b8 },
896 { 0x04bc, 0x6604bc },
897 { 0x04c0, 0x6604c0 },
898 { 0x04c4, 0x6604c4 },
899 { 0x04c8, 0x6604c8 },
900 { 0x04d0, 0x6604d0 },
901 { 0x04d4, 0x6604d4 },
902 { 0x04e0, 0x6604e0 },
903 { 0x04e4, 0x6604e4 },
904 { 0x04e8, 0x6604e8 },
905 { 0x04ec, 0x6604ec },
906 { 0x04f0, 0x6604f0 },
907 { 0x04f4, 0x6604f4 },
908 { 0x04f8, 0x6604f8 },
909 { 0x04fc, 0x6604fc },
910 { 0x0500, 0x660500 },
911 { 0x0504, 0x660504 },
912 { 0x0508, 0x660508 },
913 { 0x050c, 0x66050c },
914 { 0x0510, 0x660510 },
915 { 0x0514, 0x660514 },
916 { 0x0518, 0x660518 },
917 { 0x051c, 0x66051c },
918 { 0x052c, 0x66052c },
919 { 0x0530, 0x660530 },
920 { 0x054c, 0x66054c },
921 { 0x0550, 0x660550 },
922 { 0x0554, 0x660554 },
923 { 0x0558, 0x660558 },
924 { 0x055c, 0x66055c },
925 {}
926 }
927 };
928
929 static const struct nvkm_disp_chan_mthd
930 gf119_disp_core_mthd = {
931 .name = "Core",
932 .addr = 0x000000,
933 .prev = -0x020000,
934 .data = {
935 { "Global", 1, &gf119_disp_core_mthd_base },
936 { "DAC", 3, &gf119_disp_core_mthd_dac },
937 { "SOR", 8, &gf119_disp_core_mthd_sor },
938 { "PIOR", 4, &gf119_disp_core_mthd_pior },
939 { "HEAD", 4, &gf119_disp_core_mthd_head },
940 {}
941 }
942 };
943
944 void
gf119_disp_core_fini(struct nvkm_disp_chan * chan)945 gf119_disp_core_fini(struct nvkm_disp_chan *chan)
946 {
947 struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
948 struct nvkm_device *device = subdev->device;
949
950 /* deactivate channel */
951 nvkm_mask(device, 0x610490, 0x00000010, 0x00000000);
952 nvkm_mask(device, 0x610490, 0x00000003, 0x00000000);
953 if (nvkm_msec(device, 2000,
954 if (!(nvkm_rd32(device, 0x610490) & 0x001e0000))
955 break;
956 ) < 0) {
957 nvkm_error(subdev, "core fini: %08x\n",
958 nvkm_rd32(device, 0x610490));
959 }
960
961 chan->suspend_put = nvkm_rd32(device, 0x640000);
962 }
963
964 static int
gf119_disp_core_init(struct nvkm_disp_chan * chan)965 gf119_disp_core_init(struct nvkm_disp_chan *chan)
966 {
967 struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
968 struct nvkm_device *device = subdev->device;
969
970 /* initialise channel for dma command submission */
971 nvkm_wr32(device, 0x610494, chan->push);
972 nvkm_wr32(device, 0x610498, 0x00010000);
973 nvkm_wr32(device, 0x61049c, 0x00000001);
974 nvkm_mask(device, 0x610490, 0x00000010, 0x00000010);
975 nvkm_wr32(device, 0x640000, chan->suspend_put);
976 nvkm_wr32(device, 0x610490, 0x01000013);
977
978 /* wait for it to go inactive */
979 if (nvkm_msec(device, 2000,
980 if (!(nvkm_rd32(device, 0x610490) & 0x80000000))
981 break;
982 ) < 0) {
983 nvkm_error(subdev, "core init: %08x\n",
984 nvkm_rd32(device, 0x610490));
985 return -EBUSY;
986 }
987
988 return 0;
989 }
990
991 const struct nvkm_disp_chan_func
992 gf119_disp_core_func = {
993 .push = nv50_disp_dmac_push,
994 .init = gf119_disp_core_init,
995 .fini = gf119_disp_core_fini,
996 .intr = gf119_disp_chan_intr,
997 .user = nv50_disp_chan_user,
998 .bind = gf119_disp_dmac_bind,
999 };
1000
1001 static const struct nvkm_disp_chan_user
1002 gf119_disp_core = {
1003 .func = &gf119_disp_core_func,
1004 .ctrl = 0,
1005 .user = 0,
1006 .mthd = &gf119_disp_core_mthd,
1007 };
1008
1009 void
gf119_disp_super(struct work_struct * work)1010 gf119_disp_super(struct work_struct *work)
1011 {
1012 struct nvkm_disp *disp = container_of(work, struct nvkm_disp, super.work);
1013 struct nvkm_subdev *subdev = &disp->engine.subdev;
1014 struct nvkm_device *device = subdev->device;
1015 struct nvkm_head *head;
1016 u32 mask[4];
1017
1018 nvkm_debug(subdev, "supervisor %d\n", ffs(disp->super.pending));
1019 mutex_lock(&disp->super.mutex);
1020
1021 list_for_each_entry(head, &disp->heads, head) {
1022 mask[head->id] = nvkm_rd32(device, 0x6101d4 + (head->id * 0x800));
1023 HEAD_DBG(head, "%08x", mask[head->id]);
1024 }
1025
1026 if (disp->super.pending & 0x00000001) {
1027 nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG);
1028 nv50_disp_super_1(disp);
1029 list_for_each_entry(head, &disp->heads, head) {
1030 if (!(mask[head->id] & 0x00001000))
1031 continue;
1032 nv50_disp_super_1_0(disp, head);
1033 }
1034 } else
1035 if (disp->super.pending & 0x00000002) {
1036 list_for_each_entry(head, &disp->heads, head) {
1037 if (!(mask[head->id] & 0x00001000))
1038 continue;
1039 nv50_disp_super_2_0(disp, head);
1040 }
1041 nvkm_outp_route(disp);
1042 list_for_each_entry(head, &disp->heads, head) {
1043 if (!(mask[head->id] & 0x00010000))
1044 continue;
1045 nv50_disp_super_2_1(disp, head);
1046 }
1047 list_for_each_entry(head, &disp->heads, head) {
1048 if (!(mask[head->id] & 0x00001000))
1049 continue;
1050 nv50_disp_super_2_2(disp, head);
1051 }
1052 } else
1053 if (disp->super.pending & 0x00000004) {
1054 list_for_each_entry(head, &disp->heads, head) {
1055 if (!(mask[head->id] & 0x00001000))
1056 continue;
1057 nv50_disp_super_3_0(disp, head);
1058 }
1059 }
1060
1061 list_for_each_entry(head, &disp->heads, head)
1062 nvkm_wr32(device, 0x6101d4 + (head->id * 0x800), 0x00000000);
1063
1064 nvkm_wr32(device, 0x6101d0, 0x80000000);
1065 mutex_unlock(&disp->super.mutex);
1066 }
1067
1068 void
gf119_disp_intr_error(struct nvkm_disp * disp,int chid)1069 gf119_disp_intr_error(struct nvkm_disp *disp, int chid)
1070 {
1071 struct nvkm_subdev *subdev = &disp->engine.subdev;
1072 struct nvkm_device *device = subdev->device;
1073 u32 stat = nvkm_rd32(device, 0x6101f0 + (chid * 12));
1074 u32 type = (stat & 0x00007000) >> 12;
1075 u32 mthd = (stat & 0x00000ffc);
1076 u32 data = nvkm_rd32(device, 0x6101f4 + (chid * 12));
1077 u32 code = nvkm_rd32(device, 0x6101f8 + (chid * 12));
1078 const struct nvkm_enum *reason =
1079 nvkm_enum_find(nv50_disp_intr_error_type, type);
1080
1081 nvkm_error(subdev, "chid %d stat %08x reason %d [%s] mthd %04x "
1082 "data %08x code %08x\n",
1083 chid, stat, type, reason ? reason->name : "",
1084 mthd, data, code);
1085
1086 if (chid < ARRAY_SIZE(disp->chan)) {
1087 switch (mthd) {
1088 case 0x0080:
1089 nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR);
1090 break;
1091 default:
1092 break;
1093 }
1094 }
1095
1096 nvkm_wr32(device, 0x61009c, (1 << chid));
1097 nvkm_wr32(device, 0x6101f0 + (chid * 12), 0x90000000);
1098 }
1099
1100 void
gf119_disp_intr(struct nvkm_disp * disp)1101 gf119_disp_intr(struct nvkm_disp *disp)
1102 {
1103 struct nvkm_subdev *subdev = &disp->engine.subdev;
1104 struct nvkm_device *device = subdev->device;
1105 struct nvkm_head *head;
1106 u32 intr = nvkm_rd32(device, 0x610088);
1107
1108 if (intr & 0x00000001) {
1109 u32 stat = nvkm_rd32(device, 0x61008c);
1110 while (stat) {
1111 int chid = __ffs(stat); stat &= ~(1 << chid);
1112 nv50_disp_chan_uevent_send(disp, chid);
1113 nvkm_wr32(device, 0x61008c, 1 << chid);
1114 }
1115 intr &= ~0x00000001;
1116 }
1117
1118 if (intr & 0x00000002) {
1119 u32 stat = nvkm_rd32(device, 0x61009c);
1120 int chid = ffs(stat) - 1;
1121 if (chid >= 0)
1122 disp->func->intr_error(disp, chid);
1123 intr &= ~0x00000002;
1124 }
1125
1126 if (intr & 0x00100000) {
1127 u32 stat = nvkm_rd32(device, 0x6100ac);
1128 if (stat & 0x00000007) {
1129 disp->super.pending = (stat & 0x00000007);
1130 queue_work(disp->super.wq, &disp->super.work);
1131 nvkm_wr32(device, 0x6100ac, disp->super.pending);
1132 stat &= ~0x00000007;
1133 }
1134
1135 if (stat) {
1136 nvkm_warn(subdev, "intr24 %08x\n", stat);
1137 nvkm_wr32(device, 0x6100ac, stat);
1138 }
1139
1140 intr &= ~0x00100000;
1141 }
1142
1143 list_for_each_entry(head, &disp->heads, head) {
1144 const u32 hoff = head->id * 0x800;
1145 u32 mask = 0x01000000 << head->id;
1146 if (mask & intr) {
1147 u32 stat = nvkm_rd32(device, 0x6100bc + hoff);
1148 if (stat & 0x00000001)
1149 nvkm_disp_vblank(disp, head->id);
1150 nvkm_mask(device, 0x6100bc + hoff, 0, 0);
1151 nvkm_rd32(device, 0x6100c0 + hoff);
1152 }
1153 }
1154 }
1155
1156 void
gf119_disp_fini(struct nvkm_disp * disp)1157 gf119_disp_fini(struct nvkm_disp *disp)
1158 {
1159 struct nvkm_device *device = disp->engine.subdev.device;
1160 /* disable all interrupts */
1161 nvkm_wr32(device, 0x6100b0, 0x00000000);
1162 }
1163
1164 int
gf119_disp_init(struct nvkm_disp * disp)1165 gf119_disp_init(struct nvkm_disp *disp)
1166 {
1167 struct nvkm_device *device = disp->engine.subdev.device;
1168 struct nvkm_head *head;
1169 u32 tmp;
1170 int i;
1171
1172 /* The below segments of code copying values from one register to
1173 * another appear to inform EVO of the display capabilities or
1174 * something similar.
1175 */
1176
1177 /* ... CRTC caps */
1178 list_for_each_entry(head, &disp->heads, head) {
1179 const u32 hoff = head->id * 0x800;
1180 tmp = nvkm_rd32(device, 0x616104 + hoff);
1181 nvkm_wr32(device, 0x6101b4 + hoff, tmp);
1182 tmp = nvkm_rd32(device, 0x616108 + hoff);
1183 nvkm_wr32(device, 0x6101b8 + hoff, tmp);
1184 tmp = nvkm_rd32(device, 0x61610c + hoff);
1185 nvkm_wr32(device, 0x6101bc + hoff, tmp);
1186 }
1187
1188 /* ... DAC caps */
1189 for (i = 0; i < disp->dac.nr; i++) {
1190 tmp = nvkm_rd32(device, 0x61a000 + (i * 0x800));
1191 nvkm_wr32(device, 0x6101c0 + (i * 0x800), tmp);
1192 }
1193
1194 /* ... SOR caps */
1195 for (i = 0; i < disp->sor.nr; i++) {
1196 tmp = nvkm_rd32(device, 0x61c000 + (i * 0x800));
1197 nvkm_wr32(device, 0x6301c4 + (i * 0x800), tmp);
1198 }
1199
1200 /* steal display away from vbios, or something like that */
1201 if (nvkm_rd32(device, 0x6100ac) & 0x00000100) {
1202 nvkm_wr32(device, 0x6100ac, 0x00000100);
1203 nvkm_mask(device, 0x6194e8, 0x00000001, 0x00000000);
1204 if (nvkm_msec(device, 2000,
1205 if (!(nvkm_rd32(device, 0x6194e8) & 0x00000002))
1206 break;
1207 ) < 0)
1208 return -EBUSY;
1209 }
1210
1211 /* point at display engine memory area (hash table, objects) */
1212 nvkm_wr32(device, 0x610010, (disp->inst->addr >> 8) | 9);
1213
1214 /* enable supervisor interrupts, disable everything else */
1215 nvkm_wr32(device, 0x610090, 0x00000000);
1216 nvkm_wr32(device, 0x6100a0, 0x00000000);
1217 nvkm_wr32(device, 0x6100b0, 0x00000307);
1218
1219 /* disable underflow reporting, preventing an intermittent issue
1220 * on some gk104 boards where the production vbios left this
1221 * setting enabled by default.
1222 *
1223 * ftp://download.nvidia.com/open-gpu-doc/gk104-disable-underflow-reporting/1/gk104-disable-underflow-reporting.txt
1224 */
1225 list_for_each_entry(head, &disp->heads, head) {
1226 const u32 hoff = head->id * 0x800;
1227 nvkm_mask(device, 0x616308 + hoff, 0x00000111, 0x00000010);
1228 }
1229
1230 return 0;
1231 }
1232
1233 static const struct nvkm_disp_func
1234 gf119_disp = {
1235 .oneinit = nv50_disp_oneinit,
1236 .init = gf119_disp_init,
1237 .fini = gf119_disp_fini,
1238 .intr = gf119_disp_intr,
1239 .intr_error = gf119_disp_intr_error,
1240 .super = gf119_disp_super,
1241 .uevent = &gf119_disp_chan_uevent,
1242 .head = { .cnt = gf119_head_cnt, .new = gf119_head_new },
1243 .dac = { .cnt = gf119_dac_cnt, .new = gf119_dac_new },
1244 .sor = { .cnt = gf119_sor_cnt, .new = gf119_sor_new },
1245 .root = { 0,0,GF110_DISP },
1246 .user = {
1247 {{0,0,GF110_DISP_CURSOR }, nvkm_disp_chan_new, &gf119_disp_curs },
1248 {{0,0,GF110_DISP_OVERLAY }, nvkm_disp_chan_new, &gf119_disp_oimm },
1249 {{0,0,GF110_DISP_BASE_CHANNEL_DMA }, nvkm_disp_chan_new, &gf119_disp_base },
1250 {{0,0,GF110_DISP_CORE_CHANNEL_DMA }, nvkm_disp_core_new, &gf119_disp_core },
1251 {{0,0,GF110_DISP_OVERLAY_CONTROL_DMA}, nvkm_disp_chan_new, &gf119_disp_ovly },
1252 {}
1253 },
1254 };
1255
1256 int
gf119_disp_new(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,struct nvkm_disp ** pdisp)1257 gf119_disp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
1258 struct nvkm_disp **pdisp)
1259 {
1260 return nvkm_disp_new_(&gf119_disp, device, type, inst, pdisp);
1261 }
1262