1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include <linux/debugfs.h>
7 #include <linux/string_helpers.h>
8
9 #include "gt/intel_gt.h"
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "i915_memcpy.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_log.h"
15 #include "intel_guc_print.h"
16
17 #if defined(CONFIG_DRM_I915_DEBUG_GUC)
18 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_2M
19 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_16M
20 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
21 #elif defined(CONFIG_DRM_I915_DEBUG_GEM)
22 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_1M
23 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_2M
24 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
25 #else
26 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_8K
27 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_64K
28 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
29 #endif
30
31 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log);
32
33 struct guc_log_section {
34 u32 max;
35 u32 flag;
36 u32 default_val;
37 const char *name;
38 };
39
_guc_log_init_sizes(struct intel_guc_log * log)40 static void _guc_log_init_sizes(struct intel_guc_log *log)
41 {
42 struct intel_guc *guc = log_to_guc(log);
43 static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = {
44 {
45 GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT,
46 GUC_LOG_LOG_ALLOC_UNITS,
47 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE,
48 "crash dump"
49 },
50 {
51 GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT,
52 GUC_LOG_LOG_ALLOC_UNITS,
53 GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE,
54 "debug",
55 },
56 {
57 GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT,
58 GUC_LOG_CAPTURE_ALLOC_UNITS,
59 GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE,
60 "capture",
61 }
62 };
63 int i;
64
65 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++)
66 log->sizes[i].bytes = sections[i].default_val;
67
68 /* If debug size > 1MB then bump default crash size to keep the same units */
69 if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M &&
70 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M)
71 log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M;
72
73 /* Prepare the GuC API structure fields: */
74 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) {
75 /* Convert to correct units */
76 if ((log->sizes[i].bytes % SZ_1M) == 0) {
77 log->sizes[i].units = SZ_1M;
78 log->sizes[i].flag = sections[i].flag;
79 } else {
80 log->sizes[i].units = SZ_4K;
81 log->sizes[i].flag = 0;
82 }
83
84 if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units))
85 guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n",
86 sections[i].name, log->sizes[i].bytes, log->sizes[i].units);
87 log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units;
88
89 if (!log->sizes[i].count) {
90 guc_err(guc, "Zero log %s size!\n", sections[i].name);
91 } else {
92 /* Size is +1 unit */
93 log->sizes[i].count--;
94 }
95
96 /* Clip to field size */
97 if (log->sizes[i].count > sections[i].max) {
98 guc_err(guc, "log %s size too large: %d vs %d!\n",
99 sections[i].name, log->sizes[i].count + 1, sections[i].max + 1);
100 log->sizes[i].count = sections[i].max;
101 }
102 }
103
104 if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) {
105 guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n",
106 log->sizes[GUC_LOG_SECTIONS_CRASH].units,
107 log->sizes[GUC_LOG_SECTIONS_DEBUG].units);
108 log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units;
109 log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0;
110 }
111
112 log->sizes_initialised = true;
113 }
114
guc_log_init_sizes(struct intel_guc_log * log)115 static void guc_log_init_sizes(struct intel_guc_log *log)
116 {
117 if (log->sizes_initialised)
118 return;
119
120 _guc_log_init_sizes(log);
121 }
122
intel_guc_log_section_size_crash(struct intel_guc_log * log)123 static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log)
124 {
125 guc_log_init_sizes(log);
126
127 return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes;
128 }
129
intel_guc_log_section_size_debug(struct intel_guc_log * log)130 static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log)
131 {
132 guc_log_init_sizes(log);
133
134 return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes;
135 }
136
intel_guc_log_section_size_capture(struct intel_guc_log * log)137 u32 intel_guc_log_section_size_capture(struct intel_guc_log *log)
138 {
139 guc_log_init_sizes(log);
140
141 return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes;
142 }
143
intel_guc_log_size(struct intel_guc_log * log)144 static u32 intel_guc_log_size(struct intel_guc_log *log)
145 {
146 /*
147 * GuC Log buffer Layout:
148 *
149 * NB: Ordering must follow "enum guc_log_buffer_type".
150 *
151 * +===============================+ 00B
152 * | Debug state header |
153 * +-------------------------------+ 32B
154 * | Crash dump state header |
155 * +-------------------------------+ 64B
156 * | Capture state header |
157 * +-------------------------------+ 96B
158 * | |
159 * +===============================+ PAGE_SIZE (4KB)
160 * | Debug logs |
161 * +===============================+ + DEBUG_SIZE
162 * | Crash Dump logs |
163 * +===============================+ + CRASH_SIZE
164 * | Capture logs |
165 * +===============================+ + CAPTURE_SIZE
166 */
167 return PAGE_SIZE +
168 intel_guc_log_section_size_crash(log) +
169 intel_guc_log_section_size_debug(log) +
170 intel_guc_log_section_size_capture(log);
171 }
172
173 /**
174 * DOC: GuC firmware log
175 *
176 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
177 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
178 * i915_guc_load_status will print out firmware loading status and scratch
179 * registers value.
180 */
181
guc_action_flush_log_complete(struct intel_guc * guc)182 static int guc_action_flush_log_complete(struct intel_guc *guc)
183 {
184 u32 action[] = {
185 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
186 GUC_DEBUG_LOG_BUFFER
187 };
188
189 return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0);
190 }
191
guc_action_flush_log(struct intel_guc * guc)192 static int guc_action_flush_log(struct intel_guc *guc)
193 {
194 u32 action[] = {
195 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
196 0
197 };
198
199 return intel_guc_send(guc, action, ARRAY_SIZE(action));
200 }
201
guc_action_control_log(struct intel_guc * guc,bool enable,bool default_logging,u32 verbosity)202 static int guc_action_control_log(struct intel_guc *guc, bool enable,
203 bool default_logging, u32 verbosity)
204 {
205 u32 action[] = {
206 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
207 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
208 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
209 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
210 };
211
212 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
213
214 return intel_guc_send(guc, action, ARRAY_SIZE(action));
215 }
216
217 /*
218 * Sub buffer switch callback. Called whenever relay has to switch to a new
219 * sub buffer, relay stays on the same sub buffer if 0 is returned.
220 */
subbuf_start_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)221 static int subbuf_start_callback(struct rchan_buf *buf,
222 void *subbuf,
223 void *prev_subbuf,
224 size_t prev_padding)
225 {
226 /*
227 * Use no-overwrite mode by default, where relay will stop accepting
228 * new data if there are no empty sub buffers left.
229 * There is no strict synchronization enforced by relay between Consumer
230 * and Producer. In overwrite mode, there is a possibility of getting
231 * inconsistent/garbled data, the producer could be writing on to the
232 * same sub buffer from which Consumer is reading. This can't be avoided
233 * unless Consumer is fast enough and can always run in tandem with
234 * Producer.
235 */
236 if (relay_buf_full(buf))
237 return 0;
238
239 return 1;
240 }
241
242 /*
243 * file_create() callback. Creates relay file in debugfs.
244 */
create_buf_file_callback(const char * filename,struct dentry * parent,umode_t mode,struct rchan_buf * buf,int * is_global)245 static struct dentry *create_buf_file_callback(const char *filename,
246 struct dentry *parent,
247 umode_t mode,
248 struct rchan_buf *buf,
249 int *is_global)
250 {
251 struct dentry *buf_file;
252
253 /*
254 * This to enable the use of a single buffer for the relay channel and
255 * correspondingly have a single file exposed to User, through which
256 * it can collect the logs in order without any post-processing.
257 * Need to set 'is_global' even if parent is NULL for early logging.
258 */
259 *is_global = 1;
260
261 if (!parent)
262 return NULL;
263
264 buf_file = debugfs_create_file(filename, mode,
265 parent, buf, &relay_file_operations);
266 if (IS_ERR(buf_file))
267 return NULL;
268
269 return buf_file;
270 }
271
272 /*
273 * file_remove() default callback. Removes relay file in debugfs.
274 */
remove_buf_file_callback(struct dentry * dentry)275 static int remove_buf_file_callback(struct dentry *dentry)
276 {
277 debugfs_remove(dentry);
278 return 0;
279 }
280
281 /* relay channel callbacks */
282 static const struct rchan_callbacks relay_callbacks = {
283 .subbuf_start = subbuf_start_callback,
284 .create_buf_file = create_buf_file_callback,
285 .remove_buf_file = remove_buf_file_callback,
286 };
287
guc_move_to_next_buf(struct intel_guc_log * log)288 static void guc_move_to_next_buf(struct intel_guc_log *log)
289 {
290 /*
291 * Make sure the updates made in the sub buffer are visible when
292 * Consumer sees the following update to offset inside the sub buffer.
293 */
294 smp_wmb();
295
296 /* All data has been written, so now move the offset of sub buffer. */
297 relay_reserve(log->relay.channel, log->vma->obj->base.size -
298 intel_guc_log_section_size_capture(log));
299
300 /* Switch to the next sub buffer */
301 relay_flush(log->relay.channel);
302 }
303
guc_get_write_buffer(struct intel_guc_log * log)304 static void *guc_get_write_buffer(struct intel_guc_log *log)
305 {
306 /*
307 * Just get the base address of a new sub buffer and copy data into it
308 * ourselves. NULL will be returned in no-overwrite mode, if all sub
309 * buffers are full. Could have used the relay_write() to indirectly
310 * copy the data, but that would have been bit convoluted, as we need to
311 * write to only certain locations inside a sub buffer which cannot be
312 * done without using relay_reserve() along with relay_write(). So its
313 * better to use relay_reserve() alone.
314 */
315 return relay_reserve(log->relay.channel, 0);
316 }
317
intel_guc_check_log_buf_overflow(struct intel_guc_log * log,enum guc_log_buffer_type type,unsigned int full_cnt)318 bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log,
319 enum guc_log_buffer_type type,
320 unsigned int full_cnt)
321 {
322 unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
323 bool overflow = false;
324
325 if (full_cnt != prev_full_cnt) {
326 overflow = true;
327
328 log->stats[type].overflow = full_cnt;
329 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
330
331 if (full_cnt < prev_full_cnt) {
332 /* buffer_full_cnt is a 4 bit counter */
333 log->stats[type].sampled_overflow += 16;
334 }
335
336 guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n");
337 }
338
339 return overflow;
340 }
341
intel_guc_get_log_buffer_size(struct intel_guc_log * log,enum guc_log_buffer_type type)342 unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log,
343 enum guc_log_buffer_type type)
344 {
345 switch (type) {
346 case GUC_DEBUG_LOG_BUFFER:
347 return intel_guc_log_section_size_debug(log);
348 case GUC_CRASH_DUMP_LOG_BUFFER:
349 return intel_guc_log_section_size_crash(log);
350 case GUC_CAPTURE_LOG_BUFFER:
351 return intel_guc_log_section_size_capture(log);
352 default:
353 MISSING_CASE(type);
354 }
355
356 return 0;
357 }
358
intel_guc_get_log_buffer_offset(struct intel_guc_log * log,enum guc_log_buffer_type type)359 size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log,
360 enum guc_log_buffer_type type)
361 {
362 enum guc_log_buffer_type i;
363 size_t offset = PAGE_SIZE;/* for the log_buffer_states */
364
365 for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) {
366 if (i == type)
367 break;
368 offset += intel_guc_get_log_buffer_size(log, i);
369 }
370
371 return offset;
372 }
373
_guc_log_copy_debuglogs_for_relay(struct intel_guc_log * log)374 static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
375 {
376 struct intel_guc *guc = log_to_guc(log);
377 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
378 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
379 struct guc_log_buffer_state log_buf_state_local;
380 enum guc_log_buffer_type type;
381 void *src_data, *dst_data;
382 bool new_overflow;
383
384 mutex_lock(&log->relay.lock);
385
386 if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log)))
387 goto out_unlock;
388
389 /* Get the pointer to shared GuC log buffer */
390 src_data = log->buf_addr;
391 log_buf_state = src_data;
392
393 /* Get the pointer to local buffer to store the logs */
394 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
395
396 if (unlikely(!log_buf_snapshot_state)) {
397 /*
398 * Used rate limited to avoid deluge of messages, logs might be
399 * getting consumed by User at a slow rate.
400 */
401 guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n");
402 log->relay.full_count++;
403
404 goto out_unlock;
405 }
406
407 /* Actual logs are present from the 2nd page */
408 src_data += PAGE_SIZE;
409 dst_data += PAGE_SIZE;
410
411 /* For relay logging, we exclude error state capture */
412 for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) {
413 /*
414 * Make a copy of the state structure, inside GuC log buffer
415 * (which is uncached mapped), on the stack to avoid reading
416 * from it multiple times.
417 */
418 memcpy(&log_buf_state_local, log_buf_state,
419 sizeof(struct guc_log_buffer_state));
420 buffer_size = intel_guc_get_log_buffer_size(log, type);
421 read_offset = log_buf_state_local.read_ptr;
422 write_offset = log_buf_state_local.sampled_write_ptr;
423 full_cnt = log_buf_state_local.buffer_full_cnt;
424
425 /* Bookkeeping stuff */
426 log->stats[type].flush += log_buf_state_local.flush_to_file;
427 new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt);
428
429 /* Update the state of shared log buffer */
430 log_buf_state->read_ptr = write_offset;
431 log_buf_state->flush_to_file = 0;
432 log_buf_state++;
433
434 /* First copy the state structure in snapshot buffer */
435 memcpy(log_buf_snapshot_state, &log_buf_state_local,
436 sizeof(struct guc_log_buffer_state));
437
438 /*
439 * The write pointer could have been updated by GuC firmware,
440 * after sending the flush interrupt to Host, for consistency
441 * set write pointer value to same value of sampled_write_ptr
442 * in the snapshot buffer.
443 */
444 log_buf_snapshot_state->write_ptr = write_offset;
445 log_buf_snapshot_state++;
446
447 /* Now copy the actual logs. */
448 if (unlikely(new_overflow)) {
449 /* copy the whole buffer in case of overflow */
450 read_offset = 0;
451 write_offset = buffer_size;
452 } else if (unlikely((read_offset > buffer_size) ||
453 (write_offset > buffer_size))) {
454 guc_err(guc, "invalid log buffer state\n");
455 /* copy whole buffer as offsets are unreliable */
456 read_offset = 0;
457 write_offset = buffer_size;
458 }
459
460 /* Just copy the newly written data */
461 if (read_offset > write_offset) {
462 i915_memcpy_from_wc(dst_data, src_data, write_offset);
463 bytes_to_copy = buffer_size - read_offset;
464 } else {
465 bytes_to_copy = write_offset - read_offset;
466 }
467 i915_memcpy_from_wc(dst_data + read_offset,
468 src_data + read_offset, bytes_to_copy);
469
470 src_data += buffer_size;
471 dst_data += buffer_size;
472 }
473
474 guc_move_to_next_buf(log);
475
476 out_unlock:
477 mutex_unlock(&log->relay.lock);
478 }
479
copy_debug_logs_work(struct work_struct * work)480 static void copy_debug_logs_work(struct work_struct *work)
481 {
482 struct intel_guc_log *log =
483 container_of(work, struct intel_guc_log, relay.flush_work);
484
485 guc_log_copy_debuglogs_for_relay(log);
486 }
487
guc_log_relay_map(struct intel_guc_log * log)488 static int guc_log_relay_map(struct intel_guc_log *log)
489 {
490 lockdep_assert_held(&log->relay.lock);
491
492 if (!log->vma || !log->buf_addr)
493 return -ENODEV;
494
495 /*
496 * WC vmalloc mapping of log buffer pages was done at
497 * GuC Log Init time, but lets keep a ref for book-keeping
498 */
499 i915_gem_object_get(log->vma->obj);
500 log->relay.buf_in_use = true;
501
502 return 0;
503 }
504
guc_log_relay_unmap(struct intel_guc_log * log)505 static void guc_log_relay_unmap(struct intel_guc_log *log)
506 {
507 lockdep_assert_held(&log->relay.lock);
508
509 i915_gem_object_put(log->vma->obj);
510 log->relay.buf_in_use = false;
511 }
512
intel_guc_log_init_early(struct intel_guc_log * log)513 void intel_guc_log_init_early(struct intel_guc_log *log)
514 {
515 mutex_init(&log->relay.lock);
516 INIT_WORK(&log->relay.flush_work, copy_debug_logs_work);
517 log->relay.started = false;
518 }
519
guc_log_relay_create(struct intel_guc_log * log)520 static int guc_log_relay_create(struct intel_guc_log *log)
521 {
522 struct intel_guc *guc = log_to_guc(log);
523 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
524 struct rchan *guc_log_relay_chan;
525 size_t n_subbufs, subbuf_size;
526 int ret;
527
528 lockdep_assert_held(&log->relay.lock);
529 GEM_BUG_ON(!log->vma);
530
531 /*
532 * Keep the size of sub buffers same as shared log buffer
533 * but GuC log-events excludes the error-state-capture logs
534 */
535 subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log);
536
537 /*
538 * Store up to 8 snapshots, which is large enough to buffer sufficient
539 * boot time logs and provides enough leeway to User, in terms of
540 * latency, for consuming the logs from relay. Also doesn't take
541 * up too much memory.
542 */
543 n_subbufs = 8;
544
545 if (!guc->dbgfs_node)
546 return -ENOENT;
547
548 guc_log_relay_chan = relay_open("guc_log",
549 guc->dbgfs_node,
550 subbuf_size, n_subbufs,
551 &relay_callbacks, i915);
552 if (!guc_log_relay_chan) {
553 guc_err(guc, "Couldn't create relay channel for logging\n");
554
555 ret = -ENOMEM;
556 return ret;
557 }
558
559 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
560 log->relay.channel = guc_log_relay_chan;
561
562 return 0;
563 }
564
guc_log_relay_destroy(struct intel_guc_log * log)565 static void guc_log_relay_destroy(struct intel_guc_log *log)
566 {
567 lockdep_assert_held(&log->relay.lock);
568
569 relay_close(log->relay.channel);
570 log->relay.channel = NULL;
571 }
572
guc_log_copy_debuglogs_for_relay(struct intel_guc_log * log)573 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
574 {
575 struct intel_guc *guc = log_to_guc(log);
576 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
577 intel_wakeref_t wakeref;
578
579 _guc_log_copy_debuglogs_for_relay(log);
580
581 /*
582 * Generally device is expected to be active only at this
583 * time, so get/put should be really quick.
584 */
585 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
586 guc_action_flush_log_complete(guc);
587 }
588
__get_default_log_level(struct intel_guc_log * log)589 static u32 __get_default_log_level(struct intel_guc_log *log)
590 {
591 struct intel_guc *guc = log_to_guc(log);
592 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
593
594 /* A negative value means "use platform/config default" */
595 if (i915->params.guc_log_level < 0) {
596 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
597 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
598 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE;
599 }
600
601 if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) {
602 guc_warn(guc, "Log verbosity param out of range: %d > %d!\n",
603 i915->params.guc_log_level, GUC_LOG_LEVEL_MAX);
604 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
605 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
606 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED;
607 }
608
609 GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED);
610 GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX);
611 return i915->params.guc_log_level;
612 }
613
intel_guc_log_create(struct intel_guc_log * log)614 int intel_guc_log_create(struct intel_guc_log *log)
615 {
616 struct intel_guc *guc = log_to_guc(log);
617 struct i915_vma *vma;
618 void *vaddr;
619 u32 guc_log_size;
620 int ret;
621
622 GEM_BUG_ON(log->vma);
623
624 guc_log_size = intel_guc_log_size(log);
625
626 vma = intel_guc_allocate_vma(guc, guc_log_size);
627 if (IS_ERR(vma)) {
628 ret = PTR_ERR(vma);
629 goto err;
630 }
631
632 log->vma = vma;
633 /*
634 * Create a WC (Uncached for read) vmalloc mapping up front immediate access to
635 * data from memory during critical events such as error capture
636 */
637 vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC);
638 if (IS_ERR(vaddr)) {
639 ret = PTR_ERR(vaddr);
640 i915_vma_unpin_and_release(&log->vma, 0);
641 goto err;
642 }
643 log->buf_addr = vaddr;
644
645 log->level = __get_default_log_level(log);
646 guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n",
647 log->level, str_enabled_disabled(log->level),
648 str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)),
649 GUC_LOG_LEVEL_TO_VERBOSITY(log->level));
650
651 return 0;
652
653 err:
654 guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret));
655 return ret;
656 }
657
intel_guc_log_destroy(struct intel_guc_log * log)658 void intel_guc_log_destroy(struct intel_guc_log *log)
659 {
660 log->buf_addr = NULL;
661 i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP);
662 }
663
intel_guc_log_set_level(struct intel_guc_log * log,u32 level)664 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
665 {
666 struct intel_guc *guc = log_to_guc(log);
667 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
668 intel_wakeref_t wakeref;
669 int ret = 0;
670
671 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
672 GEM_BUG_ON(!log->vma);
673
674 /*
675 * GuC is recognizing log levels starting from 0 to max, we're using 0
676 * as indication that logging should be disabled.
677 */
678 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
679 return -EINVAL;
680
681 mutex_lock(&i915->drm.struct_mutex);
682
683 if (log->level == level)
684 goto out_unlock;
685
686 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
687 ret = guc_action_control_log(guc,
688 GUC_LOG_LEVEL_IS_VERBOSE(level),
689 GUC_LOG_LEVEL_IS_ENABLED(level),
690 GUC_LOG_LEVEL_TO_VERBOSITY(level));
691 if (ret) {
692 guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret));
693 goto out_unlock;
694 }
695
696 log->level = level;
697
698 out_unlock:
699 mutex_unlock(&i915->drm.struct_mutex);
700
701 return ret;
702 }
703
intel_guc_log_relay_created(const struct intel_guc_log * log)704 bool intel_guc_log_relay_created(const struct intel_guc_log *log)
705 {
706 return log->buf_addr;
707 }
708
intel_guc_log_relay_open(struct intel_guc_log * log)709 int intel_guc_log_relay_open(struct intel_guc_log *log)
710 {
711 int ret;
712
713 if (!log->vma)
714 return -ENODEV;
715
716 mutex_lock(&log->relay.lock);
717
718 if (intel_guc_log_relay_created(log)) {
719 ret = -EEXIST;
720 goto out_unlock;
721 }
722
723 /*
724 * We require SSE 4.1 for fast reads from the GuC log buffer and
725 * it should be present on the chipsets supporting GuC based
726 * submissions.
727 */
728 if (!i915_has_memcpy_from_wc()) {
729 ret = -ENXIO;
730 goto out_unlock;
731 }
732
733 ret = guc_log_relay_create(log);
734 if (ret)
735 goto out_unlock;
736
737 ret = guc_log_relay_map(log);
738 if (ret)
739 goto out_relay;
740
741 mutex_unlock(&log->relay.lock);
742
743 return 0;
744
745 out_relay:
746 guc_log_relay_destroy(log);
747 out_unlock:
748 mutex_unlock(&log->relay.lock);
749
750 return ret;
751 }
752
intel_guc_log_relay_start(struct intel_guc_log * log)753 int intel_guc_log_relay_start(struct intel_guc_log *log)
754 {
755 if (log->relay.started)
756 return -EEXIST;
757
758 /*
759 * When GuC is logging without us relaying to userspace, we're ignoring
760 * the flush notification. This means that we need to unconditionally
761 * flush on relay enabling, since GuC only notifies us once.
762 */
763 queue_work(system_highpri_wq, &log->relay.flush_work);
764
765 log->relay.started = true;
766
767 return 0;
768 }
769
intel_guc_log_relay_flush(struct intel_guc_log * log)770 void intel_guc_log_relay_flush(struct intel_guc_log *log)
771 {
772 struct intel_guc *guc = log_to_guc(log);
773 intel_wakeref_t wakeref;
774
775 if (!log->relay.started)
776 return;
777
778 /*
779 * Before initiating the forceful flush, wait for any pending/ongoing
780 * flush to complete otherwise forceful flush may not actually happen.
781 */
782 flush_work(&log->relay.flush_work);
783
784 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref)
785 guc_action_flush_log(guc);
786
787 /* GuC would have updated log buffer by now, so copy it */
788 guc_log_copy_debuglogs_for_relay(log);
789 }
790
791 /*
792 * Stops the relay log. Called from intel_guc_log_relay_close(), so no
793 * possibility of race with start/flush since relay_write cannot race
794 * relay_close.
795 */
guc_log_relay_stop(struct intel_guc_log * log)796 static void guc_log_relay_stop(struct intel_guc_log *log)
797 {
798 struct intel_guc *guc = log_to_guc(log);
799 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
800
801 if (!log->relay.started)
802 return;
803
804 intel_synchronize_irq(i915);
805
806 flush_work(&log->relay.flush_work);
807
808 log->relay.started = false;
809 }
810
intel_guc_log_relay_close(struct intel_guc_log * log)811 void intel_guc_log_relay_close(struct intel_guc_log *log)
812 {
813 guc_log_relay_stop(log);
814
815 mutex_lock(&log->relay.lock);
816 GEM_BUG_ON(!intel_guc_log_relay_created(log));
817 guc_log_relay_unmap(log);
818 guc_log_relay_destroy(log);
819 mutex_unlock(&log->relay.lock);
820 }
821
intel_guc_log_handle_flush_event(struct intel_guc_log * log)822 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
823 {
824 if (log->relay.started)
825 queue_work(system_highpri_wq, &log->relay.flush_work);
826 }
827
828 static const char *
stringify_guc_log_type(enum guc_log_buffer_type type)829 stringify_guc_log_type(enum guc_log_buffer_type type)
830 {
831 switch (type) {
832 case GUC_DEBUG_LOG_BUFFER:
833 return "DEBUG";
834 case GUC_CRASH_DUMP_LOG_BUFFER:
835 return "CRASH";
836 case GUC_CAPTURE_LOG_BUFFER:
837 return "CAPTURE";
838 default:
839 MISSING_CASE(type);
840 }
841
842 return "";
843 }
844
845 /**
846 * intel_guc_log_info - dump information about GuC log relay
847 * @log: the GuC log
848 * @p: the &drm_printer
849 *
850 * Pretty printer for GuC log info
851 */
intel_guc_log_info(struct intel_guc_log * log,struct drm_printer * p)852 void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p)
853 {
854 enum guc_log_buffer_type type;
855
856 if (!intel_guc_log_relay_created(log)) {
857 drm_puts(p, "GuC log relay not created\n");
858 return;
859 }
860
861 drm_puts(p, "GuC logging stats:\n");
862
863 drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count);
864
865 for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
866 drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n",
867 stringify_guc_log_type(type),
868 log->stats[type].flush,
869 log->stats[type].sampled_overflow);
870 }
871 }
872
873 /**
874 * intel_guc_log_dump - dump the contents of the GuC log
875 * @log: the GuC log
876 * @p: the &drm_printer
877 * @dump_load_err: dump the log saved on GuC load error
878 *
879 * Pretty printer for the GuC log
880 */
intel_guc_log_dump(struct intel_guc_log * log,struct drm_printer * p,bool dump_load_err)881 int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p,
882 bool dump_load_err)
883 {
884 struct intel_guc *guc = log_to_guc(log);
885 struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
886 struct drm_i915_gem_object *obj = NULL;
887 void *map;
888 u32 *page;
889 int i, j;
890
891 if (!intel_guc_is_supported(guc))
892 return -ENODEV;
893
894 if (dump_load_err)
895 obj = uc->load_err_log;
896 else if (guc->log.vma)
897 obj = guc->log.vma->obj;
898
899 if (!obj)
900 return 0;
901
902 page = (u32 *)__get_free_page(GFP_KERNEL);
903 if (!page)
904 return -ENOMEM;
905
906 intel_guc_dump_time_info(guc, p);
907
908 map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
909 if (IS_ERR(map)) {
910 guc_dbg(guc, "Failed to pin log object: %pe\n", map);
911 drm_puts(p, "(log data unaccessible)\n");
912 free_page((unsigned long)page);
913 return PTR_ERR(map);
914 }
915
916 for (i = 0; i < obj->base.size; i += PAGE_SIZE) {
917 if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE))
918 memcpy(page, map + i, PAGE_SIZE);
919
920 for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4)
921 drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n",
922 *(page + j + 0), *(page + j + 1),
923 *(page + j + 2), *(page + j + 3));
924 }
925
926 drm_puts(p, "\n");
927
928 i915_gem_object_unpin_map(obj);
929 free_page((unsigned long)page);
930
931 return 0;
932 }
933