1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2012 Samsung Electronics Co.Ltd
4 * Authors:
5 * Eunchul Kim <chulspro.kim@samsung.com>
6 * Jinyoung Jeon <jy0.jeon@samsung.com>
7 * Sangmin Lee <lsmin.lee@samsung.com>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/component.h>
12 #include <linux/kernel.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18
19 #include <drm/drm_fourcc.h>
20 #include <drm/drm_print.h>
21 #include <drm/exynos_drm.h>
22
23 #include "exynos_drm_drv.h"
24 #include "exynos_drm_ipp.h"
25 #include "regs-gsc.h"
26
27 /*
28 * GSC stands for General SCaler and
29 * supports image scaler/rotator and input/output DMA operations.
30 * input DMA reads image data from the memory.
31 * output DMA writes image data to memory.
32 * GSC supports image rotation and image effect functions.
33 */
34
35
36 #define GSC_MAX_CLOCKS 8
37 #define GSC_MAX_SRC 4
38 #define GSC_MAX_DST 16
39 #define GSC_RESET_TIMEOUT 50
40 #define GSC_BUF_STOP 1
41 #define GSC_BUF_START 2
42 #define GSC_REG_SZ 16
43 #define GSC_WIDTH_ITU_709 1280
44 #define GSC_SC_UP_MAX_RATIO 65536
45 #define GSC_SC_DOWN_RATIO_7_8 74898
46 #define GSC_SC_DOWN_RATIO_6_8 87381
47 #define GSC_SC_DOWN_RATIO_5_8 104857
48 #define GSC_SC_DOWN_RATIO_4_8 131072
49 #define GSC_SC_DOWN_RATIO_3_8 174762
50 #define GSC_SC_DOWN_RATIO_2_8 262144
51 #define GSC_CROP_MAX 8192
52 #define GSC_CROP_MIN 32
53 #define GSC_SCALE_MAX 4224
54 #define GSC_SCALE_MIN 32
55 #define GSC_COEF_RATIO 7
56 #define GSC_COEF_PHASE 9
57 #define GSC_COEF_ATTR 16
58 #define GSC_COEF_H_8T 8
59 #define GSC_COEF_V_4T 4
60 #define GSC_COEF_DEPTH 3
61 #define GSC_AUTOSUSPEND_DELAY 2000
62
63 #define get_gsc_context(dev) dev_get_drvdata(dev)
64 #define gsc_read(offset) readl(ctx->regs + (offset))
65 #define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset))
66
67 /*
68 * A structure of scaler.
69 *
70 * @range: narrow, wide.
71 * @pre_shfactor: pre sclaer shift factor.
72 * @pre_hratio: horizontal ratio of the prescaler.
73 * @pre_vratio: vertical ratio of the prescaler.
74 * @main_hratio: the main scaler's horizontal ratio.
75 * @main_vratio: the main scaler's vertical ratio.
76 */
77 struct gsc_scaler {
78 bool range;
79 u32 pre_shfactor;
80 u32 pre_hratio;
81 u32 pre_vratio;
82 unsigned long main_hratio;
83 unsigned long main_vratio;
84 };
85
86 /*
87 * A structure of gsc context.
88 *
89 * @regs: memory mapped io registers.
90 * @gsc_clk: gsc gate clock.
91 * @sc: scaler infomations.
92 * @id: gsc id.
93 * @irq: irq number.
94 * @rotation: supports rotation of src.
95 */
96 struct gsc_context {
97 struct exynos_drm_ipp ipp;
98 struct drm_device *drm_dev;
99 void *dma_priv;
100 struct device *dev;
101 struct exynos_drm_ipp_task *task;
102 struct exynos_drm_ipp_formats *formats;
103 unsigned int num_formats;
104
105 void __iomem *regs;
106 const char **clk_names;
107 struct clk *clocks[GSC_MAX_CLOCKS];
108 int num_clocks;
109 struct gsc_scaler sc;
110 int id;
111 int irq;
112 bool rotation;
113 };
114
115 /**
116 * struct gsc_driverdata - per device type driver data for init time.
117 *
118 * @limits: picture size limits array
119 * @num_limits: number of items in the aforementioned array
120 * @clk_names: names of clocks needed by this variant
121 * @num_clocks: the number of clocks needed by this variant
122 */
123 struct gsc_driverdata {
124 const struct drm_exynos_ipp_limit *limits;
125 int num_limits;
126 const char *clk_names[GSC_MAX_CLOCKS];
127 int num_clocks;
128 };
129
130 /* 8-tap Filter Coefficient */
131 static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = {
132 { /* Ratio <= 65536 (~8:8) */
133 { 0, 0, 0, 128, 0, 0, 0, 0 },
134 { -1, 2, -6, 127, 7, -2, 1, 0 },
135 { -1, 4, -12, 125, 16, -5, 1, 0 },
136 { -1, 5, -15, 120, 25, -8, 2, 0 },
137 { -1, 6, -18, 114, 35, -10, 3, -1 },
138 { -1, 6, -20, 107, 46, -13, 4, -1 },
139 { -2, 7, -21, 99, 57, -16, 5, -1 },
140 { -1, 6, -20, 89, 68, -18, 5, -1 },
141 { -1, 6, -20, 79, 79, -20, 6, -1 },
142 { -1, 5, -18, 68, 89, -20, 6, -1 },
143 { -1, 5, -16, 57, 99, -21, 7, -2 },
144 { -1, 4, -13, 46, 107, -20, 6, -1 },
145 { -1, 3, -10, 35, 114, -18, 6, -1 },
146 { 0, 2, -8, 25, 120, -15, 5, -1 },
147 { 0, 1, -5, 16, 125, -12, 4, -1 },
148 { 0, 1, -2, 7, 127, -6, 2, -1 }
149 }, { /* 65536 < Ratio <= 74898 (~8:7) */
150 { 3, -8, 14, 111, 13, -8, 3, 0 },
151 { 2, -6, 7, 112, 21, -10, 3, -1 },
152 { 2, -4, 1, 110, 28, -12, 4, -1 },
153 { 1, -2, -3, 106, 36, -13, 4, -1 },
154 { 1, -1, -7, 103, 44, -15, 4, -1 },
155 { 1, 1, -11, 97, 53, -16, 4, -1 },
156 { 0, 2, -13, 91, 61, -16, 4, -1 },
157 { 0, 3, -15, 85, 69, -17, 4, -1 },
158 { 0, 3, -16, 77, 77, -16, 3, 0 },
159 { -1, 4, -17, 69, 85, -15, 3, 0 },
160 { -1, 4, -16, 61, 91, -13, 2, 0 },
161 { -1, 4, -16, 53, 97, -11, 1, 1 },
162 { -1, 4, -15, 44, 103, -7, -1, 1 },
163 { -1, 4, -13, 36, 106, -3, -2, 1 },
164 { -1, 4, -12, 28, 110, 1, -4, 2 },
165 { -1, 3, -10, 21, 112, 7, -6, 2 }
166 }, { /* 74898 < Ratio <= 87381 (~8:6) */
167 { 2, -11, 25, 96, 25, -11, 2, 0 },
168 { 2, -10, 19, 96, 31, -12, 2, 0 },
169 { 2, -9, 14, 94, 37, -12, 2, 0 },
170 { 2, -8, 10, 92, 43, -12, 1, 0 },
171 { 2, -7, 5, 90, 49, -12, 1, 0 },
172 { 2, -5, 1, 86, 55, -12, 0, 1 },
173 { 2, -4, -2, 82, 61, -11, -1, 1 },
174 { 1, -3, -5, 77, 67, -9, -1, 1 },
175 { 1, -2, -7, 72, 72, -7, -2, 1 },
176 { 1, -1, -9, 67, 77, -5, -3, 1 },
177 { 1, -1, -11, 61, 82, -2, -4, 2 },
178 { 1, 0, -12, 55, 86, 1, -5, 2 },
179 { 0, 1, -12, 49, 90, 5, -7, 2 },
180 { 0, 1, -12, 43, 92, 10, -8, 2 },
181 { 0, 2, -12, 37, 94, 14, -9, 2 },
182 { 0, 2, -12, 31, 96, 19, -10, 2 }
183 }, { /* 87381 < Ratio <= 104857 (~8:5) */
184 { -1, -8, 33, 80, 33, -8, -1, 0 },
185 { -1, -8, 28, 80, 37, -7, -2, 1 },
186 { 0, -8, 24, 79, 41, -7, -2, 1 },
187 { 0, -8, 20, 78, 46, -6, -3, 1 },
188 { 0, -8, 16, 76, 50, -4, -3, 1 },
189 { 0, -7, 13, 74, 54, -3, -4, 1 },
190 { 1, -7, 10, 71, 58, -1, -5, 1 },
191 { 1, -6, 6, 68, 62, 1, -5, 1 },
192 { 1, -6, 4, 65, 65, 4, -6, 1 },
193 { 1, -5, 1, 62, 68, 6, -6, 1 },
194 { 1, -5, -1, 58, 71, 10, -7, 1 },
195 { 1, -4, -3, 54, 74, 13, -7, 0 },
196 { 1, -3, -4, 50, 76, 16, -8, 0 },
197 { 1, -3, -6, 46, 78, 20, -8, 0 },
198 { 1, -2, -7, 41, 79, 24, -8, 0 },
199 { 1, -2, -7, 37, 80, 28, -8, -1 }
200 }, { /* 104857 < Ratio <= 131072 (~8:4) */
201 { -3, 0, 35, 64, 35, 0, -3, 0 },
202 { -3, -1, 32, 64, 38, 1, -3, 0 },
203 { -2, -2, 29, 63, 41, 2, -3, 0 },
204 { -2, -3, 27, 63, 43, 4, -4, 0 },
205 { -2, -3, 24, 61, 46, 6, -4, 0 },
206 { -2, -3, 21, 60, 49, 7, -4, 0 },
207 { -1, -4, 19, 59, 51, 9, -4, -1 },
208 { -1, -4, 16, 57, 53, 12, -4, -1 },
209 { -1, -4, 14, 55, 55, 14, -4, -1 },
210 { -1, -4, 12, 53, 57, 16, -4, -1 },
211 { -1, -4, 9, 51, 59, 19, -4, -1 },
212 { 0, -4, 7, 49, 60, 21, -3, -2 },
213 { 0, -4, 6, 46, 61, 24, -3, -2 },
214 { 0, -4, 4, 43, 63, 27, -3, -2 },
215 { 0, -3, 2, 41, 63, 29, -2, -2 },
216 { 0, -3, 1, 38, 64, 32, -1, -3 }
217 }, { /* 131072 < Ratio <= 174762 (~8:3) */
218 { -1, 8, 33, 48, 33, 8, -1, 0 },
219 { -1, 7, 31, 49, 35, 9, -1, -1 },
220 { -1, 6, 30, 49, 36, 10, -1, -1 },
221 { -1, 5, 28, 48, 38, 12, -1, -1 },
222 { -1, 4, 26, 48, 39, 13, 0, -1 },
223 { -1, 3, 24, 47, 41, 15, 0, -1 },
224 { -1, 2, 23, 47, 42, 16, 0, -1 },
225 { -1, 2, 21, 45, 43, 18, 1, -1 },
226 { -1, 1, 19, 45, 45, 19, 1, -1 },
227 { -1, 1, 18, 43, 45, 21, 2, -1 },
228 { -1, 0, 16, 42, 47, 23, 2, -1 },
229 { -1, 0, 15, 41, 47, 24, 3, -1 },
230 { -1, 0, 13, 39, 48, 26, 4, -1 },
231 { -1, -1, 12, 38, 48, 28, 5, -1 },
232 { -1, -1, 10, 36, 49, 30, 6, -1 },
233 { -1, -1, 9, 35, 49, 31, 7, -1 }
234 }, { /* 174762 < Ratio <= 262144 (~8:2) */
235 { 2, 13, 30, 38, 30, 13, 2, 0 },
236 { 2, 12, 29, 38, 30, 14, 3, 0 },
237 { 2, 11, 28, 38, 31, 15, 3, 0 },
238 { 2, 10, 26, 38, 32, 16, 4, 0 },
239 { 1, 10, 26, 37, 33, 17, 4, 0 },
240 { 1, 9, 24, 37, 34, 18, 5, 0 },
241 { 1, 8, 24, 37, 34, 19, 5, 0 },
242 { 1, 7, 22, 36, 35, 20, 6, 1 },
243 { 1, 6, 21, 36, 36, 21, 6, 1 },
244 { 1, 6, 20, 35, 36, 22, 7, 1 },
245 { 0, 5, 19, 34, 37, 24, 8, 1 },
246 { 0, 5, 18, 34, 37, 24, 9, 1 },
247 { 0, 4, 17, 33, 37, 26, 10, 1 },
248 { 0, 4, 16, 32, 38, 26, 10, 2 },
249 { 0, 3, 15, 31, 38, 28, 11, 2 },
250 { 0, 3, 14, 30, 38, 29, 12, 2 }
251 }
252 };
253
254 /* 4-tap Filter Coefficient */
255 static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = {
256 { /* Ratio <= 65536 (~8:8) */
257 { 0, 128, 0, 0 },
258 { -4, 127, 5, 0 },
259 { -6, 124, 11, -1 },
260 { -8, 118, 19, -1 },
261 { -8, 111, 27, -2 },
262 { -8, 102, 37, -3 },
263 { -8, 92, 48, -4 },
264 { -7, 81, 59, -5 },
265 { -6, 70, 70, -6 },
266 { -5, 59, 81, -7 },
267 { -4, 48, 92, -8 },
268 { -3, 37, 102, -8 },
269 { -2, 27, 111, -8 },
270 { -1, 19, 118, -8 },
271 { -1, 11, 124, -6 },
272 { 0, 5, 127, -4 }
273 }, { /* 65536 < Ratio <= 74898 (~8:7) */
274 { 8, 112, 8, 0 },
275 { 4, 111, 14, -1 },
276 { 1, 109, 20, -2 },
277 { -2, 105, 27, -2 },
278 { -3, 100, 34, -3 },
279 { -5, 93, 43, -3 },
280 { -5, 86, 51, -4 },
281 { -5, 77, 60, -4 },
282 { -5, 69, 69, -5 },
283 { -4, 60, 77, -5 },
284 { -4, 51, 86, -5 },
285 { -3, 43, 93, -5 },
286 { -3, 34, 100, -3 },
287 { -2, 27, 105, -2 },
288 { -2, 20, 109, 1 },
289 { -1, 14, 111, 4 }
290 }, { /* 74898 < Ratio <= 87381 (~8:6) */
291 { 16, 96, 16, 0 },
292 { 12, 97, 21, -2 },
293 { 8, 96, 26, -2 },
294 { 5, 93, 32, -2 },
295 { 2, 89, 39, -2 },
296 { 0, 84, 46, -2 },
297 { -1, 79, 53, -3 },
298 { -2, 73, 59, -2 },
299 { -2, 66, 66, -2 },
300 { -2, 59, 73, -2 },
301 { -3, 53, 79, -1 },
302 { -2, 46, 84, 0 },
303 { -2, 39, 89, 2 },
304 { -2, 32, 93, 5 },
305 { -2, 26, 96, 8 },
306 { -2, 21, 97, 12 }
307 }, { /* 87381 < Ratio <= 104857 (~8:5) */
308 { 22, 84, 22, 0 },
309 { 18, 85, 26, -1 },
310 { 14, 84, 31, -1 },
311 { 11, 82, 36, -1 },
312 { 8, 79, 42, -1 },
313 { 6, 76, 47, -1 },
314 { 4, 72, 52, 0 },
315 { 2, 68, 58, 0 },
316 { 1, 63, 63, 1 },
317 { 0, 58, 68, 2 },
318 { 0, 52, 72, 4 },
319 { -1, 47, 76, 6 },
320 { -1, 42, 79, 8 },
321 { -1, 36, 82, 11 },
322 { -1, 31, 84, 14 },
323 { -1, 26, 85, 18 }
324 }, { /* 104857 < Ratio <= 131072 (~8:4) */
325 { 26, 76, 26, 0 },
326 { 22, 76, 30, 0 },
327 { 19, 75, 34, 0 },
328 { 16, 73, 38, 1 },
329 { 13, 71, 43, 1 },
330 { 10, 69, 47, 2 },
331 { 8, 66, 51, 3 },
332 { 6, 63, 55, 4 },
333 { 5, 59, 59, 5 },
334 { 4, 55, 63, 6 },
335 { 3, 51, 66, 8 },
336 { 2, 47, 69, 10 },
337 { 1, 43, 71, 13 },
338 { 1, 38, 73, 16 },
339 { 0, 34, 75, 19 },
340 { 0, 30, 76, 22 }
341 }, { /* 131072 < Ratio <= 174762 (~8:3) */
342 { 29, 70, 29, 0 },
343 { 26, 68, 32, 2 },
344 { 23, 67, 36, 2 },
345 { 20, 66, 39, 3 },
346 { 17, 65, 43, 3 },
347 { 15, 63, 46, 4 },
348 { 12, 61, 50, 5 },
349 { 10, 58, 53, 7 },
350 { 8, 56, 56, 8 },
351 { 7, 53, 58, 10 },
352 { 5, 50, 61, 12 },
353 { 4, 46, 63, 15 },
354 { 3, 43, 65, 17 },
355 { 3, 39, 66, 20 },
356 { 2, 36, 67, 23 },
357 { 2, 32, 68, 26 }
358 }, { /* 174762 < Ratio <= 262144 (~8:2) */
359 { 32, 64, 32, 0 },
360 { 28, 63, 34, 3 },
361 { 25, 62, 37, 4 },
362 { 22, 62, 40, 4 },
363 { 19, 61, 43, 5 },
364 { 17, 59, 46, 6 },
365 { 15, 58, 48, 7 },
366 { 13, 55, 51, 9 },
367 { 11, 53, 53, 11 },
368 { 9, 51, 55, 13 },
369 { 7, 48, 58, 15 },
370 { 6, 46, 59, 17 },
371 { 5, 43, 61, 19 },
372 { 4, 40, 62, 22 },
373 { 4, 37, 62, 25 },
374 { 3, 34, 63, 28 }
375 }
376 };
377
gsc_sw_reset(struct gsc_context * ctx)378 static int gsc_sw_reset(struct gsc_context *ctx)
379 {
380 u32 cfg;
381 int count = GSC_RESET_TIMEOUT;
382
383 /* s/w reset */
384 cfg = (GSC_SW_RESET_SRESET);
385 gsc_write(cfg, GSC_SW_RESET);
386
387 /* wait s/w reset complete */
388 while (count--) {
389 cfg = gsc_read(GSC_SW_RESET);
390 if (!cfg)
391 break;
392 usleep_range(1000, 2000);
393 }
394
395 if (cfg) {
396 DRM_DEV_ERROR(ctx->dev, "failed to reset gsc h/w.\n");
397 return -EBUSY;
398 }
399
400 /* reset sequence */
401 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
402 cfg |= (GSC_IN_BASE_ADDR_MASK |
403 GSC_IN_BASE_ADDR_PINGPONG(0));
404 gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
405 gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
406 gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
407
408 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
409 cfg |= (GSC_OUT_BASE_ADDR_MASK |
410 GSC_OUT_BASE_ADDR_PINGPONG(0));
411 gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
412 gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
413 gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
414
415 return 0;
416 }
417
gsc_handle_irq(struct gsc_context * ctx,bool enable,bool overflow,bool done)418 static void gsc_handle_irq(struct gsc_context *ctx, bool enable,
419 bool overflow, bool done)
420 {
421 u32 cfg;
422
423 DRM_DEV_DEBUG_KMS(ctx->dev, "enable[%d]overflow[%d]level[%d]\n",
424 enable, overflow, done);
425
426 cfg = gsc_read(GSC_IRQ);
427 cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK);
428
429 if (enable)
430 cfg |= GSC_IRQ_ENABLE;
431 else
432 cfg &= ~GSC_IRQ_ENABLE;
433
434 if (overflow)
435 cfg &= ~GSC_IRQ_OR_MASK;
436 else
437 cfg |= GSC_IRQ_OR_MASK;
438
439 if (done)
440 cfg &= ~GSC_IRQ_FRMDONE_MASK;
441 else
442 cfg |= GSC_IRQ_FRMDONE_MASK;
443
444 gsc_write(cfg, GSC_IRQ);
445 }
446
447
gsc_src_set_fmt(struct gsc_context * ctx,u32 fmt,bool tiled)448 static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled)
449 {
450 u32 cfg;
451
452 DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt);
453
454 cfg = gsc_read(GSC_IN_CON);
455 cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK |
456 GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK |
457 GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE |
458 GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK);
459
460 switch (fmt) {
461 case DRM_FORMAT_RGB565:
462 cfg |= GSC_IN_RGB565;
463 break;
464 case DRM_FORMAT_XRGB8888:
465 case DRM_FORMAT_ARGB8888:
466 cfg |= GSC_IN_XRGB8888;
467 break;
468 case DRM_FORMAT_BGRX8888:
469 cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP);
470 break;
471 case DRM_FORMAT_YUYV:
472 cfg |= (GSC_IN_YUV422_1P |
473 GSC_IN_YUV422_1P_ORDER_LSB_Y |
474 GSC_IN_CHROMA_ORDER_CBCR);
475 break;
476 case DRM_FORMAT_YVYU:
477 cfg |= (GSC_IN_YUV422_1P |
478 GSC_IN_YUV422_1P_ORDER_LSB_Y |
479 GSC_IN_CHROMA_ORDER_CRCB);
480 break;
481 case DRM_FORMAT_UYVY:
482 cfg |= (GSC_IN_YUV422_1P |
483 GSC_IN_YUV422_1P_OEDER_LSB_C |
484 GSC_IN_CHROMA_ORDER_CBCR);
485 break;
486 case DRM_FORMAT_VYUY:
487 cfg |= (GSC_IN_YUV422_1P |
488 GSC_IN_YUV422_1P_OEDER_LSB_C |
489 GSC_IN_CHROMA_ORDER_CRCB);
490 break;
491 case DRM_FORMAT_NV21:
492 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P);
493 break;
494 case DRM_FORMAT_NV61:
495 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV422_2P);
496 break;
497 case DRM_FORMAT_YUV422:
498 cfg |= GSC_IN_YUV422_3P;
499 break;
500 case DRM_FORMAT_YUV420:
501 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_3P);
502 break;
503 case DRM_FORMAT_YVU420:
504 cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_3P);
505 break;
506 case DRM_FORMAT_NV12:
507 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P);
508 break;
509 case DRM_FORMAT_NV16:
510 cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV422_2P);
511 break;
512 }
513
514 if (tiled)
515 cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE);
516
517 gsc_write(cfg, GSC_IN_CON);
518 }
519
gsc_src_set_transf(struct gsc_context * ctx,unsigned int rotation)520 static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation)
521 {
522 unsigned int degree = rotation & DRM_MODE_ROTATE_MASK;
523 u32 cfg;
524
525 cfg = gsc_read(GSC_IN_CON);
526 cfg &= ~GSC_IN_ROT_MASK;
527
528 switch (degree) {
529 case DRM_MODE_ROTATE_0:
530 if (rotation & DRM_MODE_REFLECT_X)
531 cfg |= GSC_IN_ROT_XFLIP;
532 if (rotation & DRM_MODE_REFLECT_Y)
533 cfg |= GSC_IN_ROT_YFLIP;
534 break;
535 case DRM_MODE_ROTATE_90:
536 cfg |= GSC_IN_ROT_90;
537 if (rotation & DRM_MODE_REFLECT_X)
538 cfg |= GSC_IN_ROT_XFLIP;
539 if (rotation & DRM_MODE_REFLECT_Y)
540 cfg |= GSC_IN_ROT_YFLIP;
541 break;
542 case DRM_MODE_ROTATE_180:
543 cfg |= GSC_IN_ROT_180;
544 if (rotation & DRM_MODE_REFLECT_X)
545 cfg &= ~GSC_IN_ROT_XFLIP;
546 if (rotation & DRM_MODE_REFLECT_Y)
547 cfg &= ~GSC_IN_ROT_YFLIP;
548 break;
549 case DRM_MODE_ROTATE_270:
550 cfg |= GSC_IN_ROT_270;
551 if (rotation & DRM_MODE_REFLECT_X)
552 cfg &= ~GSC_IN_ROT_XFLIP;
553 if (rotation & DRM_MODE_REFLECT_Y)
554 cfg &= ~GSC_IN_ROT_YFLIP;
555 break;
556 }
557
558 gsc_write(cfg, GSC_IN_CON);
559
560 ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0;
561 }
562
gsc_src_set_size(struct gsc_context * ctx,struct exynos_drm_ipp_buffer * buf)563 static void gsc_src_set_size(struct gsc_context *ctx,
564 struct exynos_drm_ipp_buffer *buf)
565 {
566 struct gsc_scaler *sc = &ctx->sc;
567 u32 cfg;
568
569 /* pixel offset */
570 cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) |
571 GSC_SRCIMG_OFFSET_Y(buf->rect.y));
572 gsc_write(cfg, GSC_SRCIMG_OFFSET);
573
574 /* cropped size */
575 cfg = (GSC_CROPPED_WIDTH(buf->rect.w) |
576 GSC_CROPPED_HEIGHT(buf->rect.h));
577 gsc_write(cfg, GSC_CROPPED_SIZE);
578
579 /* original size */
580 cfg = gsc_read(GSC_SRCIMG_SIZE);
581 cfg &= ~(GSC_SRCIMG_HEIGHT_MASK |
582 GSC_SRCIMG_WIDTH_MASK);
583
584 cfg |= (GSC_SRCIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) |
585 GSC_SRCIMG_HEIGHT(buf->buf.height));
586
587 gsc_write(cfg, GSC_SRCIMG_SIZE);
588
589 cfg = gsc_read(GSC_IN_CON);
590 cfg &= ~GSC_IN_RGB_TYPE_MASK;
591
592 if (buf->rect.w >= GSC_WIDTH_ITU_709)
593 if (sc->range)
594 cfg |= GSC_IN_RGB_HD_WIDE;
595 else
596 cfg |= GSC_IN_RGB_HD_NARROW;
597 else
598 if (sc->range)
599 cfg |= GSC_IN_RGB_SD_WIDE;
600 else
601 cfg |= GSC_IN_RGB_SD_NARROW;
602
603 gsc_write(cfg, GSC_IN_CON);
604 }
605
gsc_src_set_buf_seq(struct gsc_context * ctx,u32 buf_id,bool enqueue)606 static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
607 bool enqueue)
608 {
609 bool masked = !enqueue;
610 u32 cfg;
611 u32 mask = 0x00000001 << buf_id;
612
613 /* mask register set */
614 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
615
616 /* sequence id */
617 cfg &= ~mask;
618 cfg |= masked << buf_id;
619 gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
620 gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
621 gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
622 }
623
gsc_src_set_addr(struct gsc_context * ctx,u32 buf_id,struct exynos_drm_ipp_buffer * buf)624 static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id,
625 struct exynos_drm_ipp_buffer *buf)
626 {
627 /* address register set */
628 gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id));
629 gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id));
630 gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id));
631
632 gsc_src_set_buf_seq(ctx, buf_id, true);
633 }
634
gsc_dst_set_fmt(struct gsc_context * ctx,u32 fmt,bool tiled)635 static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled)
636 {
637 u32 cfg;
638
639 DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt);
640
641 cfg = gsc_read(GSC_OUT_CON);
642 cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK |
643 GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK |
644 GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK |
645 GSC_OUT_GLOBAL_ALPHA_MASK);
646
647 switch (fmt) {
648 case DRM_FORMAT_RGB565:
649 cfg |= GSC_OUT_RGB565;
650 break;
651 case DRM_FORMAT_ARGB8888:
652 case DRM_FORMAT_XRGB8888:
653 cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff));
654 break;
655 case DRM_FORMAT_BGRX8888:
656 cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP);
657 break;
658 case DRM_FORMAT_YUYV:
659 cfg |= (GSC_OUT_YUV422_1P |
660 GSC_OUT_YUV422_1P_ORDER_LSB_Y |
661 GSC_OUT_CHROMA_ORDER_CBCR);
662 break;
663 case DRM_FORMAT_YVYU:
664 cfg |= (GSC_OUT_YUV422_1P |
665 GSC_OUT_YUV422_1P_ORDER_LSB_Y |
666 GSC_OUT_CHROMA_ORDER_CRCB);
667 break;
668 case DRM_FORMAT_UYVY:
669 cfg |= (GSC_OUT_YUV422_1P |
670 GSC_OUT_YUV422_1P_OEDER_LSB_C |
671 GSC_OUT_CHROMA_ORDER_CBCR);
672 break;
673 case DRM_FORMAT_VYUY:
674 cfg |= (GSC_OUT_YUV422_1P |
675 GSC_OUT_YUV422_1P_OEDER_LSB_C |
676 GSC_OUT_CHROMA_ORDER_CRCB);
677 break;
678 case DRM_FORMAT_NV21:
679 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P);
680 break;
681 case DRM_FORMAT_NV61:
682 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV422_2P);
683 break;
684 case DRM_FORMAT_YUV422:
685 cfg |= GSC_OUT_YUV422_3P;
686 break;
687 case DRM_FORMAT_YUV420:
688 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_3P);
689 break;
690 case DRM_FORMAT_YVU420:
691 cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_3P);
692 break;
693 case DRM_FORMAT_NV12:
694 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P);
695 break;
696 case DRM_FORMAT_NV16:
697 cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV422_2P);
698 break;
699 }
700
701 if (tiled)
702 cfg |= (GSC_IN_TILE_C_16x8 | GSC_OUT_TILE_MODE);
703
704 gsc_write(cfg, GSC_OUT_CON);
705 }
706
gsc_get_ratio_shift(struct gsc_context * ctx,u32 src,u32 dst,u32 * ratio)707 static int gsc_get_ratio_shift(struct gsc_context *ctx, u32 src, u32 dst,
708 u32 *ratio)
709 {
710 DRM_DEV_DEBUG_KMS(ctx->dev, "src[%d]dst[%d]\n", src, dst);
711
712 if (src >= dst * 8) {
713 DRM_DEV_ERROR(ctx->dev, "failed to make ratio and shift.\n");
714 return -EINVAL;
715 } else if (src >= dst * 4)
716 *ratio = 4;
717 else if (src >= dst * 2)
718 *ratio = 2;
719 else
720 *ratio = 1;
721
722 return 0;
723 }
724
gsc_get_prescaler_shfactor(u32 hratio,u32 vratio,u32 * shfactor)725 static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor)
726 {
727 if (hratio == 4 && vratio == 4)
728 *shfactor = 4;
729 else if ((hratio == 4 && vratio == 2) ||
730 (hratio == 2 && vratio == 4))
731 *shfactor = 3;
732 else if ((hratio == 4 && vratio == 1) ||
733 (hratio == 1 && vratio == 4) ||
734 (hratio == 2 && vratio == 2))
735 *shfactor = 2;
736 else if (hratio == 1 && vratio == 1)
737 *shfactor = 0;
738 else
739 *shfactor = 1;
740 }
741
gsc_set_prescaler(struct gsc_context * ctx,struct gsc_scaler * sc,struct drm_exynos_ipp_task_rect * src,struct drm_exynos_ipp_task_rect * dst)742 static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc,
743 struct drm_exynos_ipp_task_rect *src,
744 struct drm_exynos_ipp_task_rect *dst)
745 {
746 u32 cfg;
747 u32 src_w, src_h, dst_w, dst_h;
748 int ret = 0;
749
750 src_w = src->w;
751 src_h = src->h;
752
753 if (ctx->rotation) {
754 dst_w = dst->h;
755 dst_h = dst->w;
756 } else {
757 dst_w = dst->w;
758 dst_h = dst->h;
759 }
760
761 ret = gsc_get_ratio_shift(ctx, src_w, dst_w, &sc->pre_hratio);
762 if (ret) {
763 DRM_DEV_ERROR(ctx->dev, "failed to get ratio horizontal.\n");
764 return ret;
765 }
766
767 ret = gsc_get_ratio_shift(ctx, src_h, dst_h, &sc->pre_vratio);
768 if (ret) {
769 DRM_DEV_ERROR(ctx->dev, "failed to get ratio vertical.\n");
770 return ret;
771 }
772
773 DRM_DEV_DEBUG_KMS(ctx->dev, "pre_hratio[%d]pre_vratio[%d]\n",
774 sc->pre_hratio, sc->pre_vratio);
775
776 sc->main_hratio = (src_w << 16) / dst_w;
777 sc->main_vratio = (src_h << 16) / dst_h;
778
779 DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n",
780 sc->main_hratio, sc->main_vratio);
781
782 gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio,
783 &sc->pre_shfactor);
784
785 DRM_DEV_DEBUG_KMS(ctx->dev, "pre_shfactor[%d]\n", sc->pre_shfactor);
786
787 cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) |
788 GSC_PRESC_H_RATIO(sc->pre_hratio) |
789 GSC_PRESC_V_RATIO(sc->pre_vratio));
790 gsc_write(cfg, GSC_PRE_SCALE_RATIO);
791
792 return ret;
793 }
794
gsc_set_h_coef(struct gsc_context * ctx,unsigned long main_hratio)795 static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio)
796 {
797 int i, j, k, sc_ratio;
798
799 if (main_hratio <= GSC_SC_UP_MAX_RATIO)
800 sc_ratio = 0;
801 else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8)
802 sc_ratio = 1;
803 else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8)
804 sc_ratio = 2;
805 else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8)
806 sc_ratio = 3;
807 else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8)
808 sc_ratio = 4;
809 else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8)
810 sc_ratio = 5;
811 else
812 sc_ratio = 6;
813
814 for (i = 0; i < GSC_COEF_PHASE; i++)
815 for (j = 0; j < GSC_COEF_H_8T; j++)
816 for (k = 0; k < GSC_COEF_DEPTH; k++)
817 gsc_write(h_coef_8t[sc_ratio][i][j],
818 GSC_HCOEF(i, j, k));
819 }
820
gsc_set_v_coef(struct gsc_context * ctx,unsigned long main_vratio)821 static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio)
822 {
823 int i, j, k, sc_ratio;
824
825 if (main_vratio <= GSC_SC_UP_MAX_RATIO)
826 sc_ratio = 0;
827 else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8)
828 sc_ratio = 1;
829 else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8)
830 sc_ratio = 2;
831 else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8)
832 sc_ratio = 3;
833 else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8)
834 sc_ratio = 4;
835 else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8)
836 sc_ratio = 5;
837 else
838 sc_ratio = 6;
839
840 for (i = 0; i < GSC_COEF_PHASE; i++)
841 for (j = 0; j < GSC_COEF_V_4T; j++)
842 for (k = 0; k < GSC_COEF_DEPTH; k++)
843 gsc_write(v_coef_4t[sc_ratio][i][j],
844 GSC_VCOEF(i, j, k));
845 }
846
gsc_set_scaler(struct gsc_context * ctx,struct gsc_scaler * sc)847 static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc)
848 {
849 u32 cfg;
850
851 DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n",
852 sc->main_hratio, sc->main_vratio);
853
854 gsc_set_h_coef(ctx, sc->main_hratio);
855 cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio);
856 gsc_write(cfg, GSC_MAIN_H_RATIO);
857
858 gsc_set_v_coef(ctx, sc->main_vratio);
859 cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio);
860 gsc_write(cfg, GSC_MAIN_V_RATIO);
861 }
862
gsc_dst_set_size(struct gsc_context * ctx,struct exynos_drm_ipp_buffer * buf)863 static void gsc_dst_set_size(struct gsc_context *ctx,
864 struct exynos_drm_ipp_buffer *buf)
865 {
866 struct gsc_scaler *sc = &ctx->sc;
867 u32 cfg;
868
869 /* pixel offset */
870 cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) |
871 GSC_DSTIMG_OFFSET_Y(buf->rect.y));
872 gsc_write(cfg, GSC_DSTIMG_OFFSET);
873
874 /* scaled size */
875 if (ctx->rotation)
876 cfg = (GSC_SCALED_WIDTH(buf->rect.h) |
877 GSC_SCALED_HEIGHT(buf->rect.w));
878 else
879 cfg = (GSC_SCALED_WIDTH(buf->rect.w) |
880 GSC_SCALED_HEIGHT(buf->rect.h));
881 gsc_write(cfg, GSC_SCALED_SIZE);
882
883 /* original size */
884 cfg = gsc_read(GSC_DSTIMG_SIZE);
885 cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK);
886 cfg |= GSC_DSTIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) |
887 GSC_DSTIMG_HEIGHT(buf->buf.height);
888 gsc_write(cfg, GSC_DSTIMG_SIZE);
889
890 cfg = gsc_read(GSC_OUT_CON);
891 cfg &= ~GSC_OUT_RGB_TYPE_MASK;
892
893 if (buf->rect.w >= GSC_WIDTH_ITU_709)
894 if (sc->range)
895 cfg |= GSC_OUT_RGB_HD_WIDE;
896 else
897 cfg |= GSC_OUT_RGB_HD_NARROW;
898 else
899 if (sc->range)
900 cfg |= GSC_OUT_RGB_SD_WIDE;
901 else
902 cfg |= GSC_OUT_RGB_SD_NARROW;
903
904 gsc_write(cfg, GSC_OUT_CON);
905 }
906
gsc_dst_get_buf_seq(struct gsc_context * ctx)907 static int gsc_dst_get_buf_seq(struct gsc_context *ctx)
908 {
909 u32 cfg, i, buf_num = GSC_REG_SZ;
910 u32 mask = 0x00000001;
911
912 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
913
914 for (i = 0; i < GSC_REG_SZ; i++)
915 if (cfg & (mask << i))
916 buf_num--;
917
918 DRM_DEV_DEBUG_KMS(ctx->dev, "buf_num[%d]\n", buf_num);
919
920 return buf_num;
921 }
922
gsc_dst_set_buf_seq(struct gsc_context * ctx,u32 buf_id,bool enqueue)923 static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
924 bool enqueue)
925 {
926 bool masked = !enqueue;
927 u32 cfg;
928 u32 mask = 0x00000001 << buf_id;
929
930 /* mask register set */
931 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
932
933 /* sequence id */
934 cfg &= ~mask;
935 cfg |= masked << buf_id;
936 gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK);
937 gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK);
938 gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
939
940 /* interrupt enable */
941 if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START)
942 gsc_handle_irq(ctx, true, false, true);
943
944 /* interrupt disable */
945 if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP)
946 gsc_handle_irq(ctx, false, false, true);
947 }
948
gsc_dst_set_addr(struct gsc_context * ctx,u32 buf_id,struct exynos_drm_ipp_buffer * buf)949 static void gsc_dst_set_addr(struct gsc_context *ctx,
950 u32 buf_id, struct exynos_drm_ipp_buffer *buf)
951 {
952 /* address register set */
953 gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id));
954 gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id));
955 gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id));
956
957 gsc_dst_set_buf_seq(ctx, buf_id, true);
958 }
959
gsc_get_src_buf_index(struct gsc_context * ctx)960 static int gsc_get_src_buf_index(struct gsc_context *ctx)
961 {
962 u32 cfg, curr_index, i;
963 u32 buf_id = GSC_MAX_SRC;
964
965 DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
966
967 cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
968 curr_index = GSC_IN_CURR_GET_INDEX(cfg);
969
970 for (i = curr_index; i < GSC_MAX_SRC; i++) {
971 if (!((cfg >> i) & 0x1)) {
972 buf_id = i;
973 break;
974 }
975 }
976
977 DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
978 curr_index, buf_id);
979
980 if (buf_id == GSC_MAX_SRC) {
981 DRM_DEV_ERROR(ctx->dev, "failed to get in buffer index.\n");
982 return -EINVAL;
983 }
984
985 gsc_src_set_buf_seq(ctx, buf_id, false);
986
987 return buf_id;
988 }
989
gsc_get_dst_buf_index(struct gsc_context * ctx)990 static int gsc_get_dst_buf_index(struct gsc_context *ctx)
991 {
992 u32 cfg, curr_index, i;
993 u32 buf_id = GSC_MAX_DST;
994
995 DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
996
997 cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
998 curr_index = GSC_OUT_CURR_GET_INDEX(cfg);
999
1000 for (i = curr_index; i < GSC_MAX_DST; i++) {
1001 if (!((cfg >> i) & 0x1)) {
1002 buf_id = i;
1003 break;
1004 }
1005 }
1006
1007 if (buf_id == GSC_MAX_DST) {
1008 DRM_DEV_ERROR(ctx->dev, "failed to get out buffer index.\n");
1009 return -EINVAL;
1010 }
1011
1012 gsc_dst_set_buf_seq(ctx, buf_id, false);
1013
1014 DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
1015 curr_index, buf_id);
1016
1017 return buf_id;
1018 }
1019
gsc_irq_handler(int irq,void * dev_id)1020 static irqreturn_t gsc_irq_handler(int irq, void *dev_id)
1021 {
1022 struct gsc_context *ctx = dev_id;
1023 u32 status;
1024 int err = 0;
1025
1026 DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id);
1027
1028 status = gsc_read(GSC_IRQ);
1029 if (status & GSC_IRQ_STATUS_OR_IRQ) {
1030 dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n",
1031 ctx->id, status);
1032 err = -EINVAL;
1033 }
1034
1035 if (status & GSC_IRQ_STATUS_OR_FRM_DONE) {
1036 int src_buf_id, dst_buf_id;
1037
1038 dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n",
1039 ctx->id, status);
1040
1041 src_buf_id = gsc_get_src_buf_index(ctx);
1042 dst_buf_id = gsc_get_dst_buf_index(ctx);
1043
1044 DRM_DEV_DEBUG_KMS(ctx->dev, "buf_id_src[%d]buf_id_dst[%d]\n",
1045 src_buf_id, dst_buf_id);
1046
1047 if (src_buf_id < 0 || dst_buf_id < 0)
1048 err = -EINVAL;
1049 }
1050
1051 if (ctx->task) {
1052 struct exynos_drm_ipp_task *task = ctx->task;
1053
1054 ctx->task = NULL;
1055 pm_runtime_mark_last_busy(ctx->dev);
1056 pm_runtime_put_autosuspend(ctx->dev);
1057 exynos_drm_ipp_task_done(task, err);
1058 }
1059
1060 return IRQ_HANDLED;
1061 }
1062
gsc_reset(struct gsc_context * ctx)1063 static int gsc_reset(struct gsc_context *ctx)
1064 {
1065 struct gsc_scaler *sc = &ctx->sc;
1066 int ret;
1067
1068 /* reset h/w block */
1069 ret = gsc_sw_reset(ctx);
1070 if (ret < 0) {
1071 dev_err(ctx->dev, "failed to reset hardware.\n");
1072 return ret;
1073 }
1074
1075 /* scaler setting */
1076 memset(&ctx->sc, 0x0, sizeof(ctx->sc));
1077 sc->range = true;
1078
1079 return 0;
1080 }
1081
gsc_start(struct gsc_context * ctx)1082 static void gsc_start(struct gsc_context *ctx)
1083 {
1084 u32 cfg;
1085
1086 gsc_handle_irq(ctx, true, false, true);
1087
1088 /* enable one shot */
1089 cfg = gsc_read(GSC_ENABLE);
1090 cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK |
1091 GSC_ENABLE_CLK_GATE_MODE_MASK);
1092 cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT;
1093 gsc_write(cfg, GSC_ENABLE);
1094
1095 /* src dma memory */
1096 cfg = gsc_read(GSC_IN_CON);
1097 cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
1098 cfg |= GSC_IN_PATH_MEMORY;
1099 gsc_write(cfg, GSC_IN_CON);
1100
1101 /* dst dma memory */
1102 cfg = gsc_read(GSC_OUT_CON);
1103 cfg |= GSC_OUT_PATH_MEMORY;
1104 gsc_write(cfg, GSC_OUT_CON);
1105
1106 gsc_set_scaler(ctx, &ctx->sc);
1107
1108 cfg = gsc_read(GSC_ENABLE);
1109 cfg |= GSC_ENABLE_ON;
1110 gsc_write(cfg, GSC_ENABLE);
1111 }
1112
gsc_commit(struct exynos_drm_ipp * ipp,struct exynos_drm_ipp_task * task)1113 static int gsc_commit(struct exynos_drm_ipp *ipp,
1114 struct exynos_drm_ipp_task *task)
1115 {
1116 struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp);
1117 int ret;
1118
1119 ret = pm_runtime_resume_and_get(ctx->dev);
1120 if (ret < 0) {
1121 dev_err(ctx->dev, "failed to enable GScaler device.\n");
1122 return ret;
1123 }
1124
1125 ctx->task = task;
1126
1127 ret = gsc_reset(ctx);
1128 if (ret) {
1129 pm_runtime_put_autosuspend(ctx->dev);
1130 ctx->task = NULL;
1131 return ret;
1132 }
1133
1134 gsc_src_set_fmt(ctx, task->src.buf.fourcc, task->src.buf.modifier);
1135 gsc_src_set_transf(ctx, task->transform.rotation);
1136 gsc_src_set_size(ctx, &task->src);
1137 gsc_src_set_addr(ctx, 0, &task->src);
1138 gsc_dst_set_fmt(ctx, task->dst.buf.fourcc, task->dst.buf.modifier);
1139 gsc_dst_set_size(ctx, &task->dst);
1140 gsc_dst_set_addr(ctx, 0, &task->dst);
1141 gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect);
1142 gsc_start(ctx);
1143
1144 return 0;
1145 }
1146
gsc_abort(struct exynos_drm_ipp * ipp,struct exynos_drm_ipp_task * task)1147 static void gsc_abort(struct exynos_drm_ipp *ipp,
1148 struct exynos_drm_ipp_task *task)
1149 {
1150 struct gsc_context *ctx =
1151 container_of(ipp, struct gsc_context, ipp);
1152
1153 gsc_reset(ctx);
1154 if (ctx->task) {
1155 struct exynos_drm_ipp_task *task = ctx->task;
1156
1157 ctx->task = NULL;
1158 pm_runtime_mark_last_busy(ctx->dev);
1159 pm_runtime_put_autosuspend(ctx->dev);
1160 exynos_drm_ipp_task_done(task, -EIO);
1161 }
1162 }
1163
1164 static struct exynos_drm_ipp_funcs ipp_funcs = {
1165 .commit = gsc_commit,
1166 .abort = gsc_abort,
1167 };
1168
gsc_bind(struct device * dev,struct device * master,void * data)1169 static int gsc_bind(struct device *dev, struct device *master, void *data)
1170 {
1171 struct gsc_context *ctx = dev_get_drvdata(dev);
1172 struct drm_device *drm_dev = data;
1173 struct exynos_drm_ipp *ipp = &ctx->ipp;
1174
1175 ctx->drm_dev = drm_dev;
1176 ctx->drm_dev = drm_dev;
1177 exynos_drm_register_dma(drm_dev, dev, &ctx->dma_priv);
1178
1179 exynos_drm_ipp_register(dev, ipp, &ipp_funcs,
1180 DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE |
1181 DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT,
1182 ctx->formats, ctx->num_formats, "gsc");
1183
1184 dev_info(dev, "The exynos gscaler has been probed successfully\n");
1185
1186 return 0;
1187 }
1188
gsc_unbind(struct device * dev,struct device * master,void * data)1189 static void gsc_unbind(struct device *dev, struct device *master,
1190 void *data)
1191 {
1192 struct gsc_context *ctx = dev_get_drvdata(dev);
1193 struct drm_device *drm_dev = data;
1194 struct exynos_drm_ipp *ipp = &ctx->ipp;
1195
1196 exynos_drm_ipp_unregister(dev, ipp);
1197 exynos_drm_unregister_dma(drm_dev, dev, &ctx->dma_priv);
1198 }
1199
1200 static const struct component_ops gsc_component_ops = {
1201 .bind = gsc_bind,
1202 .unbind = gsc_unbind,
1203 };
1204
1205 static const unsigned int gsc_formats[] = {
1206 DRM_FORMAT_ARGB8888,
1207 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888,
1208 DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61,
1209 DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU,
1210 DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422,
1211 };
1212
1213 static const unsigned int gsc_tiled_formats[] = {
1214 DRM_FORMAT_NV12, DRM_FORMAT_NV21,
1215 };
1216
gsc_probe(struct platform_device * pdev)1217 static int gsc_probe(struct platform_device *pdev)
1218 {
1219 struct device *dev = &pdev->dev;
1220 struct gsc_driverdata *driver_data;
1221 struct exynos_drm_ipp_formats *formats;
1222 struct gsc_context *ctx;
1223 int num_formats, ret, i, j;
1224
1225 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
1226 if (!ctx)
1227 return -ENOMEM;
1228
1229 driver_data = (struct gsc_driverdata *)of_device_get_match_data(dev);
1230 ctx->dev = dev;
1231 ctx->num_clocks = driver_data->num_clocks;
1232 ctx->clk_names = driver_data->clk_names;
1233
1234 /* construct formats/limits array */
1235 num_formats = ARRAY_SIZE(gsc_formats) + ARRAY_SIZE(gsc_tiled_formats);
1236 formats = devm_kcalloc(dev, num_formats, sizeof(*formats), GFP_KERNEL);
1237 if (!formats)
1238 return -ENOMEM;
1239
1240 /* linear formats */
1241 for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) {
1242 formats[i].fourcc = gsc_formats[i];
1243 formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
1244 DRM_EXYNOS_IPP_FORMAT_DESTINATION;
1245 formats[i].limits = driver_data->limits;
1246 formats[i].num_limits = driver_data->num_limits;
1247 }
1248
1249 /* tiled formats */
1250 for (j = i, i = 0; i < ARRAY_SIZE(gsc_tiled_formats); j++, i++) {
1251 formats[j].fourcc = gsc_tiled_formats[i];
1252 formats[j].modifier = DRM_FORMAT_MOD_SAMSUNG_16_16_TILE;
1253 formats[j].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
1254 DRM_EXYNOS_IPP_FORMAT_DESTINATION;
1255 formats[j].limits = driver_data->limits;
1256 formats[j].num_limits = driver_data->num_limits;
1257 }
1258
1259 ctx->formats = formats;
1260 ctx->num_formats = num_formats;
1261
1262 /* clock control */
1263 for (i = 0; i < ctx->num_clocks; i++) {
1264 ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]);
1265 if (IS_ERR(ctx->clocks[i])) {
1266 dev_err(dev, "failed to get clock: %s\n",
1267 ctx->clk_names[i]);
1268 return PTR_ERR(ctx->clocks[i]);
1269 }
1270 }
1271
1272 ctx->regs = devm_platform_ioremap_resource(pdev, 0);
1273 if (IS_ERR(ctx->regs))
1274 return PTR_ERR(ctx->regs);
1275
1276 /* resource irq */
1277 ctx->irq = platform_get_irq(pdev, 0);
1278 if (ctx->irq < 0)
1279 return ctx->irq;
1280
1281 ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0,
1282 dev_name(dev), ctx);
1283 if (ret < 0) {
1284 dev_err(dev, "failed to request irq.\n");
1285 return ret;
1286 }
1287
1288 /* context initailization */
1289 ctx->id = pdev->id;
1290
1291 platform_set_drvdata(pdev, ctx);
1292
1293 pm_runtime_use_autosuspend(dev);
1294 pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY);
1295 pm_runtime_enable(dev);
1296
1297 ret = component_add(dev, &gsc_component_ops);
1298 if (ret)
1299 goto err_pm_dis;
1300
1301 dev_info(dev, "drm gsc registered successfully.\n");
1302
1303 return 0;
1304
1305 err_pm_dis:
1306 pm_runtime_dont_use_autosuspend(dev);
1307 pm_runtime_disable(dev);
1308 return ret;
1309 }
1310
gsc_remove(struct platform_device * pdev)1311 static int gsc_remove(struct platform_device *pdev)
1312 {
1313 struct device *dev = &pdev->dev;
1314
1315 component_del(dev, &gsc_component_ops);
1316 pm_runtime_dont_use_autosuspend(dev);
1317 pm_runtime_disable(dev);
1318
1319 return 0;
1320 }
1321
gsc_runtime_suspend(struct device * dev)1322 static int __maybe_unused gsc_runtime_suspend(struct device *dev)
1323 {
1324 struct gsc_context *ctx = get_gsc_context(dev);
1325 int i;
1326
1327 DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id);
1328
1329 for (i = ctx->num_clocks - 1; i >= 0; i--)
1330 clk_disable_unprepare(ctx->clocks[i]);
1331
1332 return 0;
1333 }
1334
gsc_runtime_resume(struct device * dev)1335 static int __maybe_unused gsc_runtime_resume(struct device *dev)
1336 {
1337 struct gsc_context *ctx = get_gsc_context(dev);
1338 int i, ret;
1339
1340 DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id);
1341
1342 for (i = 0; i < ctx->num_clocks; i++) {
1343 ret = clk_prepare_enable(ctx->clocks[i]);
1344 if (ret) {
1345 while (--i >= 0)
1346 clk_disable_unprepare(ctx->clocks[i]);
1347 return ret;
1348 }
1349 }
1350 return 0;
1351 }
1352
1353 static const struct dev_pm_ops gsc_pm_ops = {
1354 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1355 pm_runtime_force_resume)
1356 SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL)
1357 };
1358
1359 static const struct drm_exynos_ipp_limit gsc_5250_limits[] = {
1360 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
1361 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
1362 { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) },
1363 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1364 .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1365 };
1366
1367 static const struct drm_exynos_ipp_limit gsc_5420_limits[] = {
1368 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
1369 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
1370 { IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) },
1371 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1372 .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1373 };
1374
1375 static const struct drm_exynos_ipp_limit gsc_5433_limits[] = {
1376 { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 16 }, .v = { 16, 8191, 2 }) },
1377 { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) },
1378 { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) },
1379 { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
1380 .v = { (1 << 16) / 16, (1 << 16) * 8 }) },
1381 };
1382
1383 static struct gsc_driverdata gsc_exynos5250_drvdata = {
1384 .clk_names = {"gscl"},
1385 .num_clocks = 1,
1386 .limits = gsc_5250_limits,
1387 .num_limits = ARRAY_SIZE(gsc_5250_limits),
1388 };
1389
1390 static struct gsc_driverdata gsc_exynos5420_drvdata = {
1391 .clk_names = {"gscl"},
1392 .num_clocks = 1,
1393 .limits = gsc_5420_limits,
1394 .num_limits = ARRAY_SIZE(gsc_5420_limits),
1395 };
1396
1397 static struct gsc_driverdata gsc_exynos5433_drvdata = {
1398 .clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"},
1399 .num_clocks = 4,
1400 .limits = gsc_5433_limits,
1401 .num_limits = ARRAY_SIZE(gsc_5433_limits),
1402 };
1403
1404 static const struct of_device_id exynos_drm_gsc_of_match[] = {
1405 {
1406 .compatible = "samsung,exynos5-gsc",
1407 .data = &gsc_exynos5250_drvdata,
1408 }, {
1409 .compatible = "samsung,exynos5250-gsc",
1410 .data = &gsc_exynos5250_drvdata,
1411 }, {
1412 .compatible = "samsung,exynos5420-gsc",
1413 .data = &gsc_exynos5420_drvdata,
1414 }, {
1415 .compatible = "samsung,exynos5433-gsc",
1416 .data = &gsc_exynos5433_drvdata,
1417 }, {
1418 },
1419 };
1420 MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match);
1421
1422 struct platform_driver gsc_driver = {
1423 .probe = gsc_probe,
1424 .remove = gsc_remove,
1425 .driver = {
1426 .name = "exynos-drm-gsc",
1427 .owner = THIS_MODULE,
1428 .pm = &gsc_pm_ops,
1429 .of_match_table = exynos_drm_gsc_of_match,
1430 },
1431 };
1432