1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201 return 0;
202 }
203
204 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
206 unsigned long offset, unsigned long npages,
207 unsigned long *hmm_pfns)
208 {
209 struct kfd_process *p;
210 uint32_t gpuidx;
211 int r;
212
213 p = container_of(prange->svms, struct kfd_process, svms);
214
215 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
216 struct kfd_process_device *pdd;
217
218 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
219 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
220 if (!pdd) {
221 pr_debug("failed to find device idx %d\n", gpuidx);
222 return -EINVAL;
223 }
224
225 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
226 hmm_pfns, gpuidx);
227 if (r)
228 break;
229 }
230
231 return r;
232 }
233
svm_range_dma_unmap(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)234 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
235 unsigned long offset, unsigned long npages)
236 {
237 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
238 int i;
239
240 if (!dma_addr)
241 return;
242
243 for (i = offset; i < offset + npages; i++) {
244 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
245 continue;
246 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
247 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
248 dma_addr[i] = 0;
249 }
250 }
251
svm_range_free_dma_mappings(struct svm_range * prange,bool unmap_dma)252 void svm_range_free_dma_mappings(struct svm_range *prange, bool unmap_dma)
253 {
254 struct kfd_process_device *pdd;
255 dma_addr_t *dma_addr;
256 struct device *dev;
257 struct kfd_process *p;
258 uint32_t gpuidx;
259
260 p = container_of(prange->svms, struct kfd_process, svms);
261
262 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
263 dma_addr = prange->dma_addr[gpuidx];
264 if (!dma_addr)
265 continue;
266
267 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
268 if (!pdd) {
269 pr_debug("failed to find device idx %d\n", gpuidx);
270 continue;
271 }
272 dev = &pdd->dev->adev->pdev->dev;
273 if (unmap_dma)
274 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
275 kvfree(dma_addr);
276 prange->dma_addr[gpuidx] = NULL;
277 }
278 }
279
svm_range_free(struct svm_range * prange,bool do_unmap)280 static void svm_range_free(struct svm_range *prange, bool do_unmap)
281 {
282 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
283 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 svm_range_free_dma_mappings(prange, do_unmap);
290
291 if (do_unmap && !p->xnack_enabled) {
292 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
293 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
294 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
295 }
296 mutex_destroy(&prange->lock);
297 mutex_destroy(&prange->migrate_mutex);
298 kfree(prange);
299 }
300
301 static void
svm_range_set_default_attributes(int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)302 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
303 uint8_t *granularity, uint32_t *flags)
304 {
305 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
306 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
307 *granularity = 9;
308 *flags =
309 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
310 }
311
312 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)313 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
314 uint64_t last, bool update_mem_usage)
315 {
316 uint64_t size = last - start + 1;
317 struct svm_range *prange;
318 struct kfd_process *p;
319
320 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
321 if (!prange)
322 return NULL;
323
324 p = container_of(svms, struct kfd_process, svms);
325 if (!p->xnack_enabled && update_mem_usage &&
326 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
327 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
328 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
329 kfree(prange);
330 return NULL;
331 }
332 prange->npages = size;
333 prange->svms = svms;
334 prange->start = start;
335 prange->last = last;
336 INIT_LIST_HEAD(&prange->list);
337 INIT_LIST_HEAD(&prange->update_list);
338 INIT_LIST_HEAD(&prange->svm_bo_list);
339 INIT_LIST_HEAD(&prange->deferred_list);
340 INIT_LIST_HEAD(&prange->child_list);
341 atomic_set(&prange->invalid, 0);
342 prange->validate_timestamp = 0;
343 mutex_init(&prange->migrate_mutex);
344 mutex_init(&prange->lock);
345
346 if (p->xnack_enabled)
347 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
348 MAX_GPU_INSTANCE);
349
350 svm_range_set_default_attributes(&prange->preferred_loc,
351 &prange->prefetch_loc,
352 &prange->granularity, &prange->flags);
353
354 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
355
356 return prange;
357 }
358
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)359 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
360 {
361 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
362 return false;
363
364 return true;
365 }
366
svm_range_bo_release(struct kref * kref)367 static void svm_range_bo_release(struct kref *kref)
368 {
369 struct svm_range_bo *svm_bo;
370
371 svm_bo = container_of(kref, struct svm_range_bo, kref);
372 pr_debug("svm_bo 0x%p\n", svm_bo);
373
374 spin_lock(&svm_bo->list_lock);
375 while (!list_empty(&svm_bo->range_list)) {
376 struct svm_range *prange =
377 list_first_entry(&svm_bo->range_list,
378 struct svm_range, svm_bo_list);
379 /* list_del_init tells a concurrent svm_range_vram_node_new when
380 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
381 */
382 list_del_init(&prange->svm_bo_list);
383 spin_unlock(&svm_bo->list_lock);
384
385 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
386 prange->start, prange->last);
387 mutex_lock(&prange->lock);
388 prange->svm_bo = NULL;
389 mutex_unlock(&prange->lock);
390
391 spin_lock(&svm_bo->list_lock);
392 }
393 spin_unlock(&svm_bo->list_lock);
394 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
395 /* We're not in the eviction worker. Signal the fence. */
396 dma_fence_signal(&svm_bo->eviction_fence->base);
397 dma_fence_put(&svm_bo->eviction_fence->base);
398 amdgpu_bo_unref(&svm_bo->bo);
399 kfree(svm_bo);
400 }
401
svm_range_bo_wq_release(struct work_struct * work)402 static void svm_range_bo_wq_release(struct work_struct *work)
403 {
404 struct svm_range_bo *svm_bo;
405
406 svm_bo = container_of(work, struct svm_range_bo, release_work);
407 svm_range_bo_release(&svm_bo->kref);
408 }
409
svm_range_bo_release_async(struct kref * kref)410 static void svm_range_bo_release_async(struct kref *kref)
411 {
412 struct svm_range_bo *svm_bo;
413
414 svm_bo = container_of(kref, struct svm_range_bo, kref);
415 pr_debug("svm_bo 0x%p\n", svm_bo);
416 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
417 schedule_work(&svm_bo->release_work);
418 }
419
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)420 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
421 {
422 kref_put(&svm_bo->kref, svm_range_bo_release_async);
423 }
424
svm_range_bo_unref(struct svm_range_bo * svm_bo)425 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
426 {
427 if (svm_bo)
428 kref_put(&svm_bo->kref, svm_range_bo_release);
429 }
430
431 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)432 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
433 {
434 mutex_lock(&prange->lock);
435 if (!prange->svm_bo) {
436 mutex_unlock(&prange->lock);
437 return false;
438 }
439 if (prange->ttm_res) {
440 /* We still have a reference, all is well */
441 mutex_unlock(&prange->lock);
442 return true;
443 }
444 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
445 /*
446 * Migrate from GPU to GPU, remove range from source svm_bo->node
447 * range list, and return false to allocate svm_bo from destination
448 * node.
449 */
450 if (prange->svm_bo->node != node) {
451 mutex_unlock(&prange->lock);
452
453 spin_lock(&prange->svm_bo->list_lock);
454 list_del_init(&prange->svm_bo_list);
455 spin_unlock(&prange->svm_bo->list_lock);
456
457 svm_range_bo_unref(prange->svm_bo);
458 return false;
459 }
460 if (READ_ONCE(prange->svm_bo->evicting)) {
461 struct dma_fence *f;
462 struct svm_range_bo *svm_bo;
463 /* The BO is getting evicted,
464 * we need to get a new one
465 */
466 mutex_unlock(&prange->lock);
467 svm_bo = prange->svm_bo;
468 f = dma_fence_get(&svm_bo->eviction_fence->base);
469 svm_range_bo_unref(prange->svm_bo);
470 /* wait for the fence to avoid long spin-loop
471 * at list_empty_careful
472 */
473 dma_fence_wait(f, false);
474 dma_fence_put(f);
475 } else {
476 /* The BO was still around and we got
477 * a new reference to it
478 */
479 mutex_unlock(&prange->lock);
480 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
481 prange->svms, prange->start, prange->last);
482
483 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
484 return true;
485 }
486
487 } else {
488 mutex_unlock(&prange->lock);
489 }
490
491 /* We need a new svm_bo. Spin-loop to wait for concurrent
492 * svm_range_bo_release to finish removing this range from
493 * its range list and set prange->svm_bo to null. After this,
494 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
495 */
496 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
497 cond_resched();
498
499 return false;
500 }
501
svm_range_bo_new(void)502 static struct svm_range_bo *svm_range_bo_new(void)
503 {
504 struct svm_range_bo *svm_bo;
505
506 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
507 if (!svm_bo)
508 return NULL;
509
510 kref_init(&svm_bo->kref);
511 INIT_LIST_HEAD(&svm_bo->range_list);
512 spin_lock_init(&svm_bo->list_lock);
513
514 return svm_bo;
515 }
516
517 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)518 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
519 bool clear)
520 {
521 struct amdgpu_bo_param bp;
522 struct svm_range_bo *svm_bo;
523 struct amdgpu_bo_user *ubo;
524 struct amdgpu_bo *bo;
525 struct kfd_process *p;
526 struct mm_struct *mm;
527 int r;
528
529 p = container_of(prange->svms, struct kfd_process, svms);
530 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
531 prange->start, prange->last);
532
533 if (svm_range_validate_svm_bo(node, prange))
534 return 0;
535
536 svm_bo = svm_range_bo_new();
537 if (!svm_bo) {
538 pr_debug("failed to alloc svm bo\n");
539 return -ENOMEM;
540 }
541 mm = get_task_mm(p->lead_thread);
542 if (!mm) {
543 pr_debug("failed to get mm\n");
544 kfree(svm_bo);
545 return -ESRCH;
546 }
547 svm_bo->node = node;
548 svm_bo->eviction_fence =
549 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
550 mm,
551 svm_bo);
552 mmput(mm);
553 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
554 svm_bo->evicting = 0;
555 memset(&bp, 0, sizeof(bp));
556 bp.size = prange->npages * PAGE_SIZE;
557 bp.byte_align = PAGE_SIZE;
558 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
559 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
560 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
561 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
562 bp.type = ttm_bo_type_device;
563 bp.resv = NULL;
564 if (node->xcp)
565 bp.xcp_id_plus1 = node->xcp->id + 1;
566
567 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
568 if (r) {
569 pr_debug("failed %d to create bo\n", r);
570 goto create_bo_failed;
571 }
572 bo = &ubo->bo;
573
574 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
575 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
576 bp.xcp_id_plus1 - 1);
577
578 r = amdgpu_bo_reserve(bo, true);
579 if (r) {
580 pr_debug("failed %d to reserve bo\n", r);
581 goto reserve_bo_failed;
582 }
583
584 if (clear) {
585 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
586 if (r) {
587 pr_debug("failed %d to sync bo\n", r);
588 amdgpu_bo_unreserve(bo);
589 goto reserve_bo_failed;
590 }
591 }
592
593 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
594 if (r) {
595 pr_debug("failed %d to reserve bo\n", r);
596 amdgpu_bo_unreserve(bo);
597 goto reserve_bo_failed;
598 }
599 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
600
601 amdgpu_bo_unreserve(bo);
602
603 svm_bo->bo = bo;
604 prange->svm_bo = svm_bo;
605 prange->ttm_res = bo->tbo.resource;
606 prange->offset = 0;
607
608 spin_lock(&svm_bo->list_lock);
609 list_add(&prange->svm_bo_list, &svm_bo->range_list);
610 spin_unlock(&svm_bo->list_lock);
611
612 return 0;
613
614 reserve_bo_failed:
615 amdgpu_bo_unref(&bo);
616 create_bo_failed:
617 dma_fence_put(&svm_bo->eviction_fence->base);
618 kfree(svm_bo);
619 prange->ttm_res = NULL;
620
621 return r;
622 }
623
svm_range_vram_node_free(struct svm_range * prange)624 void svm_range_vram_node_free(struct svm_range *prange)
625 {
626 /* serialize prange->svm_bo unref */
627 mutex_lock(&prange->lock);
628 /* prange->svm_bo has not been unref */
629 if (prange->ttm_res) {
630 prange->ttm_res = NULL;
631 mutex_unlock(&prange->lock);
632 svm_range_bo_unref(prange->svm_bo);
633 } else
634 mutex_unlock(&prange->lock);
635 }
636
637 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)638 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
639 {
640 struct kfd_process *p;
641 struct kfd_process_device *pdd;
642
643 p = container_of(prange->svms, struct kfd_process, svms);
644 pdd = kfd_process_device_data_by_id(p, gpu_id);
645 if (!pdd) {
646 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
647 return NULL;
648 }
649
650 return pdd->dev;
651 }
652
653 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)654 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
655 {
656 struct kfd_process *p;
657
658 p = container_of(prange->svms, struct kfd_process, svms);
659
660 return kfd_get_process_device_data(node, p);
661 }
662
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)663 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
664 {
665 struct ttm_operation_ctx ctx = { false, false };
666
667 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
668
669 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
670 }
671
672 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)673 svm_range_check_attr(struct kfd_process *p,
674 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
675 {
676 uint32_t i;
677
678 for (i = 0; i < nattr; i++) {
679 uint32_t val = attrs[i].value;
680 int gpuidx = MAX_GPU_INSTANCE;
681
682 switch (attrs[i].type) {
683 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
684 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
685 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
686 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
687 break;
688 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
689 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
690 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
691 break;
692 case KFD_IOCTL_SVM_ATTR_ACCESS:
693 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
694 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
695 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
696 break;
697 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
698 break;
699 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
700 break;
701 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
702 break;
703 default:
704 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
705 return -EINVAL;
706 }
707
708 if (gpuidx < 0) {
709 pr_debug("no GPU 0x%x found\n", val);
710 return -EINVAL;
711 } else if (gpuidx < MAX_GPU_INSTANCE &&
712 !test_bit(gpuidx, p->svms.bitmap_supported)) {
713 pr_debug("GPU 0x%x not supported\n", val);
714 return -EINVAL;
715 }
716 }
717
718 return 0;
719 }
720
721 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)722 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
723 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
724 bool *update_mapping)
725 {
726 uint32_t i;
727 int gpuidx;
728
729 for (i = 0; i < nattr; i++) {
730 switch (attrs[i].type) {
731 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
732 prange->preferred_loc = attrs[i].value;
733 break;
734 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
735 prange->prefetch_loc = attrs[i].value;
736 break;
737 case KFD_IOCTL_SVM_ATTR_ACCESS:
738 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
739 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
740 if (!p->xnack_enabled)
741 *update_mapping = true;
742
743 gpuidx = kfd_process_gpuidx_from_gpuid(p,
744 attrs[i].value);
745 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
746 bitmap_clear(prange->bitmap_access, gpuidx, 1);
747 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
748 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
749 bitmap_set(prange->bitmap_access, gpuidx, 1);
750 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
751 } else {
752 bitmap_clear(prange->bitmap_access, gpuidx, 1);
753 bitmap_set(prange->bitmap_aip, gpuidx, 1);
754 }
755 break;
756 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
757 *update_mapping = true;
758 prange->flags |= attrs[i].value;
759 break;
760 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
761 *update_mapping = true;
762 prange->flags &= ~attrs[i].value;
763 break;
764 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
765 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
766 break;
767 default:
768 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
769 }
770 }
771 }
772
773 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)774 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
775 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
776 {
777 uint32_t i;
778 int gpuidx;
779
780 for (i = 0; i < nattr; i++) {
781 switch (attrs[i].type) {
782 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
783 if (prange->preferred_loc != attrs[i].value)
784 return false;
785 break;
786 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
787 /* Prefetch should always trigger a migration even
788 * if the value of the attribute didn't change.
789 */
790 return false;
791 case KFD_IOCTL_SVM_ATTR_ACCESS:
792 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
793 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
794 gpuidx = kfd_process_gpuidx_from_gpuid(p,
795 attrs[i].value);
796 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
797 if (test_bit(gpuidx, prange->bitmap_access) ||
798 test_bit(gpuidx, prange->bitmap_aip))
799 return false;
800 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
801 if (!test_bit(gpuidx, prange->bitmap_access))
802 return false;
803 } else {
804 if (!test_bit(gpuidx, prange->bitmap_aip))
805 return false;
806 }
807 break;
808 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
809 if ((prange->flags & attrs[i].value) != attrs[i].value)
810 return false;
811 break;
812 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
813 if ((prange->flags & attrs[i].value) != 0)
814 return false;
815 break;
816 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
817 if (prange->granularity != attrs[i].value)
818 return false;
819 break;
820 default:
821 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
822 }
823 }
824
825 return true;
826 }
827
828 /**
829 * svm_range_debug_dump - print all range information from svms
830 * @svms: svm range list header
831 *
832 * debug output svm range start, end, prefetch location from svms
833 * interval tree and link list
834 *
835 * Context: The caller must hold svms->lock
836 */
svm_range_debug_dump(struct svm_range_list * svms)837 static void svm_range_debug_dump(struct svm_range_list *svms)
838 {
839 struct interval_tree_node *node;
840 struct svm_range *prange;
841
842 pr_debug("dump svms 0x%p list\n", svms);
843 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
844
845 list_for_each_entry(prange, &svms->list, list) {
846 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
847 prange, prange->start, prange->npages,
848 prange->start + prange->npages - 1,
849 prange->actual_loc);
850 }
851
852 pr_debug("dump svms 0x%p interval tree\n", svms);
853 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
854 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
855 while (node) {
856 prange = container_of(node, struct svm_range, it_node);
857 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
858 prange, prange->start, prange->npages,
859 prange->start + prange->npages - 1,
860 prange->actual_loc);
861 node = interval_tree_iter_next(node, 0, ~0ULL);
862 }
863 }
864
865 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset)866 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
867 uint64_t offset)
868 {
869 unsigned char *dst;
870
871 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
872 if (!dst)
873 return NULL;
874 memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
875
876 return (void *)dst;
877 }
878
879 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)880 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
881 {
882 int i;
883
884 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
885 if (!src->dma_addr[i])
886 continue;
887 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
888 sizeof(*src->dma_addr[i]), src->npages, 0);
889 if (!dst->dma_addr[i])
890 return -ENOMEM;
891 }
892
893 return 0;
894 }
895
896 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n)897 svm_range_split_array(void *ppnew, void *ppold, size_t size,
898 uint64_t old_start, uint64_t old_n,
899 uint64_t new_start, uint64_t new_n)
900 {
901 unsigned char *new, *old, *pold;
902 uint64_t d;
903
904 if (!ppold)
905 return 0;
906 pold = *(unsigned char **)ppold;
907 if (!pold)
908 return 0;
909
910 d = (new_start - old_start) * size;
911 new = svm_range_copy_array(pold, size, new_n, d);
912 if (!new)
913 return -ENOMEM;
914 d = (new_start == old_start) ? new_n * size : 0;
915 old = svm_range_copy_array(pold, size, old_n, d);
916 if (!old) {
917 kvfree(new);
918 return -ENOMEM;
919 }
920 kvfree(pold);
921 *(void **)ppold = old;
922 *(void **)ppnew = new;
923
924 return 0;
925 }
926
927 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)928 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
929 uint64_t start, uint64_t last)
930 {
931 uint64_t npages = last - start + 1;
932 int i, r;
933
934 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
935 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
936 sizeof(*old->dma_addr[i]), old->start,
937 npages, new->start, new->npages);
938 if (r)
939 return r;
940 }
941
942 return 0;
943 }
944
945 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)946 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
947 uint64_t start, uint64_t last)
948 {
949 uint64_t npages = last - start + 1;
950
951 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
952 new->svms, new, new->start, start, last);
953
954 if (new->start == old->start) {
955 new->offset = old->offset;
956 old->offset += new->npages;
957 } else {
958 new->offset = old->offset + npages;
959 }
960
961 new->svm_bo = svm_range_bo_ref(old->svm_bo);
962 new->ttm_res = old->ttm_res;
963
964 spin_lock(&new->svm_bo->list_lock);
965 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
966 spin_unlock(&new->svm_bo->list_lock);
967
968 return 0;
969 }
970
971 /**
972 * svm_range_split_adjust - split range and adjust
973 *
974 * @new: new range
975 * @old: the old range
976 * @start: the old range adjust to start address in pages
977 * @last: the old range adjust to last address in pages
978 *
979 * Copy system memory dma_addr or vram ttm_res in old range to new
980 * range from new_start up to size new->npages, the remaining old range is from
981 * start to last
982 *
983 * Return:
984 * 0 - OK, -ENOMEM - out of memory
985 */
986 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)987 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
988 uint64_t start, uint64_t last)
989 {
990 int r;
991
992 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
993 new->svms, new->start, old->start, old->last, start, last);
994
995 if (new->start < old->start ||
996 new->last > old->last) {
997 WARN_ONCE(1, "invalid new range start or last\n");
998 return -EINVAL;
999 }
1000
1001 r = svm_range_split_pages(new, old, start, last);
1002 if (r)
1003 return r;
1004
1005 if (old->actual_loc && old->ttm_res) {
1006 r = svm_range_split_nodes(new, old, start, last);
1007 if (r)
1008 return r;
1009 }
1010
1011 old->npages = last - start + 1;
1012 old->start = start;
1013 old->last = last;
1014 new->flags = old->flags;
1015 new->preferred_loc = old->preferred_loc;
1016 new->prefetch_loc = old->prefetch_loc;
1017 new->actual_loc = old->actual_loc;
1018 new->granularity = old->granularity;
1019 new->mapped_to_gpu = old->mapped_to_gpu;
1020 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1021 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1022
1023 return 0;
1024 }
1025
1026 /**
1027 * svm_range_split - split a range in 2 ranges
1028 *
1029 * @prange: the svm range to split
1030 * @start: the remaining range start address in pages
1031 * @last: the remaining range last address in pages
1032 * @new: the result new range generated
1033 *
1034 * Two cases only:
1035 * case 1: if start == prange->start
1036 * prange ==> prange[start, last]
1037 * new range [last + 1, prange->last]
1038 *
1039 * case 2: if last == prange->last
1040 * prange ==> prange[start, last]
1041 * new range [prange->start, start - 1]
1042 *
1043 * Return:
1044 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1045 */
1046 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1047 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1048 struct svm_range **new)
1049 {
1050 uint64_t old_start = prange->start;
1051 uint64_t old_last = prange->last;
1052 struct svm_range_list *svms;
1053 int r = 0;
1054
1055 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1056 old_start, old_last, start, last);
1057
1058 if (old_start != start && old_last != last)
1059 return -EINVAL;
1060 if (start < old_start || last > old_last)
1061 return -EINVAL;
1062
1063 svms = prange->svms;
1064 if (old_start == start)
1065 *new = svm_range_new(svms, last + 1, old_last, false);
1066 else
1067 *new = svm_range_new(svms, old_start, start - 1, false);
1068 if (!*new)
1069 return -ENOMEM;
1070
1071 r = svm_range_split_adjust(*new, prange, start, last);
1072 if (r) {
1073 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1074 r, old_start, old_last, start, last);
1075 svm_range_free(*new, false);
1076 *new = NULL;
1077 }
1078
1079 return r;
1080 }
1081
1082 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list)1083 svm_range_split_tail(struct svm_range *prange,
1084 uint64_t new_last, struct list_head *insert_list)
1085 {
1086 struct svm_range *tail;
1087 int r = svm_range_split(prange, prange->start, new_last, &tail);
1088
1089 if (!r)
1090 list_add(&tail->list, insert_list);
1091 return r;
1092 }
1093
1094 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list)1095 svm_range_split_head(struct svm_range *prange,
1096 uint64_t new_start, struct list_head *insert_list)
1097 {
1098 struct svm_range *head;
1099 int r = svm_range_split(prange, new_start, prange->last, &head);
1100
1101 if (!r)
1102 list_add(&head->list, insert_list);
1103 return r;
1104 }
1105
1106 static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)1107 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1108 struct svm_range *pchild, enum svm_work_list_ops op)
1109 {
1110 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1111 pchild, pchild->start, pchild->last, prange, op);
1112
1113 pchild->work_item.mm = mm;
1114 pchild->work_item.op = op;
1115 list_add_tail(&pchild->child_list, &prange->child_list);
1116 }
1117
1118 /**
1119 * svm_range_split_by_granularity - collect ranges within granularity boundary
1120 *
1121 * @p: the process with svms list
1122 * @mm: mm structure
1123 * @addr: the vm fault address in pages, to split the prange
1124 * @parent: parent range if prange is from child list
1125 * @prange: prange to split
1126 *
1127 * Trims @prange to be a single aligned block of prange->granularity if
1128 * possible. The head and tail are added to the child_list in @parent.
1129 *
1130 * Context: caller must hold mmap_read_lock and prange->lock
1131 *
1132 * Return:
1133 * 0 - OK, otherwise error code
1134 */
1135 int
svm_range_split_by_granularity(struct kfd_process * p,struct mm_struct * mm,unsigned long addr,struct svm_range * parent,struct svm_range * prange)1136 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1137 unsigned long addr, struct svm_range *parent,
1138 struct svm_range *prange)
1139 {
1140 struct svm_range *head, *tail;
1141 unsigned long start, last, size;
1142 int r;
1143
1144 /* Align splited range start and size to granularity size, then a single
1145 * PTE will be used for whole range, this reduces the number of PTE
1146 * updated and the L1 TLB space used for translation.
1147 */
1148 size = 1UL << prange->granularity;
1149 start = ALIGN_DOWN(addr, size);
1150 last = ALIGN(addr + 1, size) - 1;
1151
1152 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1153 prange->svms, prange->start, prange->last, start, last, size);
1154
1155 if (start > prange->start) {
1156 r = svm_range_split(prange, start, prange->last, &head);
1157 if (r)
1158 return r;
1159 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1160 }
1161
1162 if (last < prange->last) {
1163 r = svm_range_split(prange, prange->start, last, &tail);
1164 if (r)
1165 return r;
1166 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1167 }
1168
1169 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1170 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1171 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1172 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1173 prange, prange->start, prange->last,
1174 SVM_OP_ADD_RANGE_AND_MAP);
1175 }
1176 return 0;
1177 }
1178 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1179 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1180 {
1181 return (node_a->adev == node_b->adev ||
1182 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1183 }
1184
1185 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1186 svm_range_get_pte_flags(struct kfd_node *node,
1187 struct svm_range *prange, int domain)
1188 {
1189 struct kfd_node *bo_node;
1190 uint32_t flags = prange->flags;
1191 uint32_t mapping_flags = 0;
1192 uint64_t pte_flags;
1193 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1194 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
1195 bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1196 unsigned int mtype_local;
1197
1198 if (domain == SVM_RANGE_VRAM_DOMAIN)
1199 bo_node = prange->svm_bo->node;
1200
1201 switch (node->adev->ip_versions[GC_HWIP][0]) {
1202 case IP_VERSION(9, 4, 1):
1203 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1204 if (bo_node == node) {
1205 mapping_flags |= coherent ?
1206 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1207 } else {
1208 mapping_flags |= coherent ?
1209 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1210 if (svm_nodes_in_same_hive(node, bo_node))
1211 snoop = true;
1212 }
1213 } else {
1214 mapping_flags |= coherent ?
1215 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1216 }
1217 break;
1218 case IP_VERSION(9, 4, 2):
1219 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1220 if (bo_node == node) {
1221 mapping_flags |= coherent ?
1222 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1223 if (node->adev->gmc.xgmi.connected_to_cpu)
1224 snoop = true;
1225 } else {
1226 mapping_flags |= coherent ?
1227 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1228 if (svm_nodes_in_same_hive(node, bo_node))
1229 snoop = true;
1230 }
1231 } else {
1232 mapping_flags |= coherent ?
1233 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1234 }
1235 break;
1236 case IP_VERSION(9, 4, 3):
1237 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1238 (amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW);
1239 snoop = true;
1240 if (uncached) {
1241 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1242 } else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1243 /* local HBM region close to partition */
1244 if (bo_node->adev == node->adev &&
1245 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1246 mapping_flags |= mtype_local;
1247 /* local HBM region far from partition or remote XGMI GPU */
1248 else if (svm_nodes_in_same_hive(bo_node, node))
1249 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1250 /* PCIe P2P */
1251 else
1252 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1253 /* system memory accessed by the APU */
1254 } else if (node->adev->flags & AMD_IS_APU) {
1255 /* On NUMA systems, locality is determined per-page
1256 * in amdgpu_gmc_override_vm_pte_flags
1257 */
1258 if (num_possible_nodes() <= 1)
1259 mapping_flags |= mtype_local;
1260 else
1261 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1262 /* system memory accessed by the dGPU */
1263 } else {
1264 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1265 }
1266 break;
1267 default:
1268 mapping_flags |= coherent ?
1269 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1270 }
1271
1272 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1273
1274 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1275 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1276 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1277 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1278
1279 pte_flags = AMDGPU_PTE_VALID;
1280 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1281 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1282
1283 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1284 return pte_flags;
1285 }
1286
1287 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1288 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1289 uint64_t start, uint64_t last,
1290 struct dma_fence **fence)
1291 {
1292 uint64_t init_pte_value = 0;
1293
1294 pr_debug("[0x%llx 0x%llx]\n", start, last);
1295
1296 return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
1297 last, init_pte_value, 0, 0, NULL, NULL,
1298 fence);
1299 }
1300
1301 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1302 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1303 unsigned long last, uint32_t trigger)
1304 {
1305 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1306 struct kfd_process_device *pdd;
1307 struct dma_fence *fence = NULL;
1308 struct kfd_process *p;
1309 uint32_t gpuidx;
1310 int r = 0;
1311
1312 if (!prange->mapped_to_gpu) {
1313 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1314 prange, prange->start, prange->last);
1315 return 0;
1316 }
1317
1318 if (prange->start == start && prange->last == last) {
1319 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1320 prange->mapped_to_gpu = false;
1321 }
1322
1323 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1324 MAX_GPU_INSTANCE);
1325 p = container_of(prange->svms, struct kfd_process, svms);
1326
1327 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1328 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1329 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1330 if (!pdd) {
1331 pr_debug("failed to find device idx %d\n", gpuidx);
1332 return -EINVAL;
1333 }
1334
1335 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1336 start, last, trigger);
1337
1338 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1339 drm_priv_to_vm(pdd->drm_priv),
1340 start, last, &fence);
1341 if (r)
1342 break;
1343
1344 if (fence) {
1345 r = dma_fence_wait(fence, false);
1346 dma_fence_put(fence);
1347 fence = NULL;
1348 if (r)
1349 break;
1350 }
1351 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1352 }
1353
1354 return r;
1355 }
1356
1357 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1358 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1359 unsigned long offset, unsigned long npages, bool readonly,
1360 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1361 struct dma_fence **fence, bool flush_tlb)
1362 {
1363 struct amdgpu_device *adev = pdd->dev->adev;
1364 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1365 uint64_t pte_flags;
1366 unsigned long last_start;
1367 int last_domain;
1368 int r = 0;
1369 int64_t i, j;
1370
1371 last_start = prange->start + offset;
1372
1373 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1374 last_start, last_start + npages - 1, readonly);
1375
1376 for (i = offset; i < offset + npages; i++) {
1377 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1378 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1379
1380 /* Collect all pages in the same address range and memory domain
1381 * that can be mapped with a single call to update mapping.
1382 */
1383 if (i < offset + npages - 1 &&
1384 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1385 continue;
1386
1387 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1388 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1389
1390 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1391 if (readonly)
1392 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1393
1394 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1395 prange->svms, last_start, prange->start + i,
1396 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1397 pte_flags);
1398
1399 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1400 * different memory partition based on fpfn/lpfn, we should use
1401 * same vm_manager.vram_base_offset regardless memory partition.
1402 */
1403 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
1404 last_start, prange->start + i,
1405 pte_flags,
1406 (last_start - prange->start) << PAGE_SHIFT,
1407 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1408 NULL, dma_addr, &vm->last_update);
1409
1410 for (j = last_start - prange->start; j <= i; j++)
1411 dma_addr[j] |= last_domain;
1412
1413 if (r) {
1414 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1415 goto out;
1416 }
1417 last_start = prange->start + i + 1;
1418 }
1419
1420 r = amdgpu_vm_update_pdes(adev, vm, false);
1421 if (r) {
1422 pr_debug("failed %d to update directories 0x%lx\n", r,
1423 prange->start);
1424 goto out;
1425 }
1426
1427 if (fence)
1428 *fence = dma_fence_get(vm->last_update);
1429
1430 out:
1431 return r;
1432 }
1433
1434 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1435 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1436 unsigned long npages, bool readonly,
1437 unsigned long *bitmap, bool wait, bool flush_tlb)
1438 {
1439 struct kfd_process_device *pdd;
1440 struct amdgpu_device *bo_adev = NULL;
1441 struct kfd_process *p;
1442 struct dma_fence *fence = NULL;
1443 uint32_t gpuidx;
1444 int r = 0;
1445
1446 if (prange->svm_bo && prange->ttm_res)
1447 bo_adev = prange->svm_bo->node->adev;
1448
1449 p = container_of(prange->svms, struct kfd_process, svms);
1450 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1451 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1452 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1453 if (!pdd) {
1454 pr_debug("failed to find device idx %d\n", gpuidx);
1455 return -EINVAL;
1456 }
1457
1458 pdd = kfd_bind_process_to_device(pdd->dev, p);
1459 if (IS_ERR(pdd))
1460 return -EINVAL;
1461
1462 if (bo_adev && pdd->dev->adev != bo_adev &&
1463 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1464 pr_debug("cannot map to device idx %d\n", gpuidx);
1465 continue;
1466 }
1467
1468 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1469 prange->dma_addr[gpuidx],
1470 bo_adev, wait ? &fence : NULL,
1471 flush_tlb);
1472 if (r)
1473 break;
1474
1475 if (fence) {
1476 r = dma_fence_wait(fence, false);
1477 dma_fence_put(fence);
1478 fence = NULL;
1479 if (r) {
1480 pr_debug("failed %d to dma fence wait\n", r);
1481 break;
1482 }
1483 }
1484
1485 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1486 }
1487
1488 return r;
1489 }
1490
1491 struct svm_validate_context {
1492 struct kfd_process *process;
1493 struct svm_range *prange;
1494 bool intr;
1495 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1496 struct drm_exec exec;
1497 };
1498
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1499 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1500 {
1501 struct kfd_process_device *pdd;
1502 struct amdgpu_vm *vm;
1503 uint32_t gpuidx;
1504 int r;
1505
1506 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1507 drm_exec_until_all_locked(&ctx->exec) {
1508 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1509 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1510 if (!pdd) {
1511 pr_debug("failed to find device idx %d\n", gpuidx);
1512 r = -EINVAL;
1513 goto unreserve_out;
1514 }
1515 vm = drm_priv_to_vm(pdd->drm_priv);
1516
1517 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1518 drm_exec_retry_on_contention(&ctx->exec);
1519 if (unlikely(r)) {
1520 pr_debug("failed %d to reserve bo\n", r);
1521 goto unreserve_out;
1522 }
1523 }
1524 }
1525
1526 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1527 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1528 if (!pdd) {
1529 pr_debug("failed to find device idx %d\n", gpuidx);
1530 r = -EINVAL;
1531 goto unreserve_out;
1532 }
1533
1534 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1535 drm_priv_to_vm(pdd->drm_priv),
1536 svm_range_bo_validate, NULL);
1537 if (r) {
1538 pr_debug("failed %d validate pt bos\n", r);
1539 goto unreserve_out;
1540 }
1541 }
1542
1543 return 0;
1544
1545 unreserve_out:
1546 drm_exec_fini(&ctx->exec);
1547 return r;
1548 }
1549
svm_range_unreserve_bos(struct svm_validate_context * ctx)1550 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1551 {
1552 drm_exec_fini(&ctx->exec);
1553 }
1554
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1555 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1556 {
1557 struct kfd_process_device *pdd;
1558
1559 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1560 if (!pdd)
1561 return NULL;
1562
1563 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1564 }
1565
1566 /*
1567 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1568 *
1569 * To prevent concurrent destruction or change of range attributes, the
1570 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1571 * because that would block concurrent evictions and lead to deadlocks. To
1572 * serialize concurrent migrations or validations of the same range, the
1573 * prange->migrate_mutex must be held.
1574 *
1575 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1576 * eviction fence.
1577 *
1578 * The following sequence ensures race-free validation and GPU mapping:
1579 *
1580 * 1. Reserve page table (and SVM BO if range is in VRAM)
1581 * 2. hmm_range_fault to get page addresses (if system memory)
1582 * 3. DMA-map pages (if system memory)
1583 * 4-a. Take notifier lock
1584 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1585 * 4-c. Check that the range was not split or otherwise invalidated
1586 * 4-d. Update GPU page table
1587 * 4.e. Release notifier lock
1588 * 5. Release page table (and SVM BO) reservation
1589 */
svm_range_validate_and_map(struct mm_struct * mm,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1590 static int svm_range_validate_and_map(struct mm_struct *mm,
1591 struct svm_range *prange, int32_t gpuidx,
1592 bool intr, bool wait, bool flush_tlb)
1593 {
1594 struct svm_validate_context *ctx;
1595 unsigned long start, end, addr;
1596 struct kfd_process *p;
1597 void *owner;
1598 int32_t idx;
1599 int r = 0;
1600
1601 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1602 if (!ctx)
1603 return -ENOMEM;
1604 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1605 ctx->prange = prange;
1606 ctx->intr = intr;
1607
1608 if (gpuidx < MAX_GPU_INSTANCE) {
1609 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1610 bitmap_set(ctx->bitmap, gpuidx, 1);
1611 } else if (ctx->process->xnack_enabled) {
1612 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1613
1614 /* If prefetch range to GPU, or GPU retry fault migrate range to
1615 * GPU, which has ACCESS attribute to the range, create mapping
1616 * on that GPU.
1617 */
1618 if (prange->actual_loc) {
1619 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1620 prange->actual_loc);
1621 if (gpuidx < 0) {
1622 WARN_ONCE(1, "failed get device by id 0x%x\n",
1623 prange->actual_loc);
1624 r = -EINVAL;
1625 goto free_ctx;
1626 }
1627 if (test_bit(gpuidx, prange->bitmap_access))
1628 bitmap_set(ctx->bitmap, gpuidx, 1);
1629 }
1630
1631 /*
1632 * If prange is already mapped or with always mapped flag,
1633 * update mapping on GPUs with ACCESS attribute
1634 */
1635 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1636 if (prange->mapped_to_gpu ||
1637 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1638 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1639 }
1640 } else {
1641 bitmap_or(ctx->bitmap, prange->bitmap_access,
1642 prange->bitmap_aip, MAX_GPU_INSTANCE);
1643 }
1644
1645 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1646 r = 0;
1647 goto free_ctx;
1648 }
1649
1650 if (prange->actual_loc && !prange->ttm_res) {
1651 /* This should never happen. actual_loc gets set by
1652 * svm_migrate_ram_to_vram after allocating a BO.
1653 */
1654 WARN_ONCE(1, "VRAM BO missing during validation\n");
1655 r = -EINVAL;
1656 goto free_ctx;
1657 }
1658
1659 svm_range_reserve_bos(ctx, intr);
1660
1661 p = container_of(prange->svms, struct kfd_process, svms);
1662 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1663 MAX_GPU_INSTANCE));
1664 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1665 if (kfd_svm_page_owner(p, idx) != owner) {
1666 owner = NULL;
1667 break;
1668 }
1669 }
1670
1671 start = prange->start << PAGE_SHIFT;
1672 end = (prange->last + 1) << PAGE_SHIFT;
1673 for (addr = start; !r && addr < end; ) {
1674 struct hmm_range *hmm_range;
1675 struct vm_area_struct *vma;
1676 unsigned long next = 0;
1677 unsigned long offset;
1678 unsigned long npages;
1679 bool readonly;
1680
1681 vma = vma_lookup(mm, addr);
1682 if (vma) {
1683 readonly = !(vma->vm_flags & VM_WRITE);
1684
1685 next = min(vma->vm_end, end);
1686 npages = (next - addr) >> PAGE_SHIFT;
1687 WRITE_ONCE(p->svms.faulting_task, current);
1688 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1689 readonly, owner, NULL,
1690 &hmm_range);
1691 WRITE_ONCE(p->svms.faulting_task, NULL);
1692 if (r) {
1693 pr_debug("failed %d to get svm range pages\n", r);
1694 if (r == -EBUSY)
1695 r = -EAGAIN;
1696 }
1697 } else {
1698 r = -EFAULT;
1699 }
1700
1701 if (!r) {
1702 offset = (addr - start) >> PAGE_SHIFT;
1703 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1704 hmm_range->hmm_pfns);
1705 if (r)
1706 pr_debug("failed %d to dma map range\n", r);
1707 }
1708
1709 svm_range_lock(prange);
1710 if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1711 pr_debug("hmm update the range, need validate again\n");
1712 r = -EAGAIN;
1713 }
1714
1715 if (!r && !list_empty(&prange->child_list)) {
1716 pr_debug("range split by unmap in parallel, validate again\n");
1717 r = -EAGAIN;
1718 }
1719
1720 if (!r)
1721 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1722 ctx->bitmap, wait, flush_tlb);
1723
1724 if (!r && next == end)
1725 prange->mapped_to_gpu = true;
1726
1727 svm_range_unlock(prange);
1728
1729 addr = next;
1730 }
1731
1732 svm_range_unreserve_bos(ctx);
1733 if (!r)
1734 prange->validate_timestamp = ktime_get_boottime();
1735
1736 free_ctx:
1737 kfree(ctx);
1738
1739 return r;
1740 }
1741
1742 /**
1743 * svm_range_list_lock_and_flush_work - flush pending deferred work
1744 *
1745 * @svms: the svm range list
1746 * @mm: the mm structure
1747 *
1748 * Context: Returns with mmap write lock held, pending deferred work flushed
1749 *
1750 */
1751 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1752 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1753 struct mm_struct *mm)
1754 {
1755 retry_flush_work:
1756 flush_work(&svms->deferred_list_work);
1757 mmap_write_lock(mm);
1758
1759 if (list_empty(&svms->deferred_range_list))
1760 return;
1761 mmap_write_unlock(mm);
1762 pr_debug("retry flush\n");
1763 goto retry_flush_work;
1764 }
1765
svm_range_restore_work(struct work_struct * work)1766 static void svm_range_restore_work(struct work_struct *work)
1767 {
1768 struct delayed_work *dwork = to_delayed_work(work);
1769 struct amdkfd_process_info *process_info;
1770 struct svm_range_list *svms;
1771 struct svm_range *prange;
1772 struct kfd_process *p;
1773 struct mm_struct *mm;
1774 int evicted_ranges;
1775 int invalid;
1776 int r;
1777
1778 svms = container_of(dwork, struct svm_range_list, restore_work);
1779 evicted_ranges = atomic_read(&svms->evicted_ranges);
1780 if (!evicted_ranges)
1781 return;
1782
1783 pr_debug("restore svm ranges\n");
1784
1785 p = container_of(svms, struct kfd_process, svms);
1786 process_info = p->kgd_process_info;
1787
1788 /* Keep mm reference when svm_range_validate_and_map ranges */
1789 mm = get_task_mm(p->lead_thread);
1790 if (!mm) {
1791 pr_debug("svms 0x%p process mm gone\n", svms);
1792 return;
1793 }
1794
1795 mutex_lock(&process_info->lock);
1796 svm_range_list_lock_and_flush_work(svms, mm);
1797 mutex_lock(&svms->lock);
1798
1799 evicted_ranges = atomic_read(&svms->evicted_ranges);
1800
1801 list_for_each_entry(prange, &svms->list, list) {
1802 invalid = atomic_read(&prange->invalid);
1803 if (!invalid)
1804 continue;
1805
1806 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1807 prange->svms, prange, prange->start, prange->last,
1808 invalid);
1809
1810 /*
1811 * If range is migrating, wait for migration is done.
1812 */
1813 mutex_lock(&prange->migrate_mutex);
1814
1815 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1816 false, true, false);
1817 if (r)
1818 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1819 prange->start);
1820
1821 mutex_unlock(&prange->migrate_mutex);
1822 if (r)
1823 goto out_reschedule;
1824
1825 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1826 goto out_reschedule;
1827 }
1828
1829 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1830 evicted_ranges)
1831 goto out_reschedule;
1832
1833 evicted_ranges = 0;
1834
1835 r = kgd2kfd_resume_mm(mm);
1836 if (r) {
1837 /* No recovery from this failure. Probably the CP is
1838 * hanging. No point trying again.
1839 */
1840 pr_debug("failed %d to resume KFD\n", r);
1841 }
1842
1843 pr_debug("restore svm ranges successfully\n");
1844
1845 out_reschedule:
1846 mutex_unlock(&svms->lock);
1847 mmap_write_unlock(mm);
1848 mutex_unlock(&process_info->lock);
1849
1850 /* If validation failed, reschedule another attempt */
1851 if (evicted_ranges) {
1852 pr_debug("reschedule to restore svm range\n");
1853 schedule_delayed_work(&svms->restore_work,
1854 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1855
1856 kfd_smi_event_queue_restore_rescheduled(mm);
1857 }
1858 mmput(mm);
1859 }
1860
1861 /**
1862 * svm_range_evict - evict svm range
1863 * @prange: svm range structure
1864 * @mm: current process mm_struct
1865 * @start: starting process queue number
1866 * @last: last process queue number
1867 * @event: mmu notifier event when range is evicted or migrated
1868 *
1869 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1870 * return to let CPU evict the buffer and proceed CPU pagetable update.
1871 *
1872 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1873 * If invalidation happens while restore work is running, restore work will
1874 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1875 * the queues.
1876 */
1877 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1878 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1879 unsigned long start, unsigned long last,
1880 enum mmu_notifier_event event)
1881 {
1882 struct svm_range_list *svms = prange->svms;
1883 struct svm_range *pchild;
1884 struct kfd_process *p;
1885 int r = 0;
1886
1887 p = container_of(svms, struct kfd_process, svms);
1888
1889 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1890 svms, prange->start, prange->last, start, last);
1891
1892 if (!p->xnack_enabled ||
1893 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1894 int evicted_ranges;
1895 bool mapped = prange->mapped_to_gpu;
1896
1897 list_for_each_entry(pchild, &prange->child_list, child_list) {
1898 if (!pchild->mapped_to_gpu)
1899 continue;
1900 mapped = true;
1901 mutex_lock_nested(&pchild->lock, 1);
1902 if (pchild->start <= last && pchild->last >= start) {
1903 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1904 pchild->start, pchild->last);
1905 atomic_inc(&pchild->invalid);
1906 }
1907 mutex_unlock(&pchild->lock);
1908 }
1909
1910 if (!mapped)
1911 return r;
1912
1913 if (prange->start <= last && prange->last >= start)
1914 atomic_inc(&prange->invalid);
1915
1916 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1917 if (evicted_ranges != 1)
1918 return r;
1919
1920 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1921 prange->svms, prange->start, prange->last);
1922
1923 /* First eviction, stop the queues */
1924 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1925 if (r)
1926 pr_debug("failed to quiesce KFD\n");
1927
1928 pr_debug("schedule to restore svm %p ranges\n", svms);
1929 schedule_delayed_work(&svms->restore_work,
1930 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1931 } else {
1932 unsigned long s, l;
1933 uint32_t trigger;
1934
1935 if (event == MMU_NOTIFY_MIGRATE)
1936 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1937 else
1938 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1939
1940 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1941 prange->svms, start, last);
1942 list_for_each_entry(pchild, &prange->child_list, child_list) {
1943 mutex_lock_nested(&pchild->lock, 1);
1944 s = max(start, pchild->start);
1945 l = min(last, pchild->last);
1946 if (l >= s)
1947 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1948 mutex_unlock(&pchild->lock);
1949 }
1950 s = max(start, prange->start);
1951 l = min(last, prange->last);
1952 if (l >= s)
1953 svm_range_unmap_from_gpus(prange, s, l, trigger);
1954 }
1955
1956 return r;
1957 }
1958
svm_range_clone(struct svm_range * old)1959 static struct svm_range *svm_range_clone(struct svm_range *old)
1960 {
1961 struct svm_range *new;
1962
1963 new = svm_range_new(old->svms, old->start, old->last, false);
1964 if (!new)
1965 return NULL;
1966 if (svm_range_copy_dma_addrs(new, old)) {
1967 svm_range_free(new, false);
1968 return NULL;
1969 }
1970 if (old->svm_bo) {
1971 new->ttm_res = old->ttm_res;
1972 new->offset = old->offset;
1973 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1974 spin_lock(&new->svm_bo->list_lock);
1975 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1976 spin_unlock(&new->svm_bo->list_lock);
1977 }
1978 new->flags = old->flags;
1979 new->preferred_loc = old->preferred_loc;
1980 new->prefetch_loc = old->prefetch_loc;
1981 new->actual_loc = old->actual_loc;
1982 new->granularity = old->granularity;
1983 new->mapped_to_gpu = old->mapped_to_gpu;
1984 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1985 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1986
1987 return new;
1988 }
1989
svm_range_set_max_pages(struct amdgpu_device * adev)1990 void svm_range_set_max_pages(struct amdgpu_device *adev)
1991 {
1992 uint64_t max_pages;
1993 uint64_t pages, _pages;
1994 uint64_t min_pages = 0;
1995 int i, id;
1996
1997 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
1998 if (adev->kfd.dev->nodes[i]->xcp)
1999 id = adev->kfd.dev->nodes[i]->xcp->id;
2000 else
2001 id = -1;
2002 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2003 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2004 pages = rounddown_pow_of_two(pages);
2005 min_pages = min_not_zero(min_pages, pages);
2006 }
2007
2008 do {
2009 max_pages = READ_ONCE(max_svm_range_pages);
2010 _pages = min_not_zero(max_pages, min_pages);
2011 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2012 }
2013
2014 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2015 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2016 uint64_t max_pages, struct list_head *insert_list,
2017 struct list_head *update_list)
2018 {
2019 struct svm_range *prange;
2020 uint64_t l;
2021
2022 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2023 max_pages, start, last);
2024
2025 while (last >= start) {
2026 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2027
2028 prange = svm_range_new(svms, start, l, true);
2029 if (!prange)
2030 return -ENOMEM;
2031 list_add(&prange->list, insert_list);
2032 list_add(&prange->update_list, update_list);
2033
2034 start = l + 1;
2035 }
2036 return 0;
2037 }
2038
2039 /**
2040 * svm_range_add - add svm range and handle overlap
2041 * @p: the range add to this process svms
2042 * @start: page size aligned
2043 * @size: page size aligned
2044 * @nattr: number of attributes
2045 * @attrs: array of attributes
2046 * @update_list: output, the ranges need validate and update GPU mapping
2047 * @insert_list: output, the ranges need insert to svms
2048 * @remove_list: output, the ranges are replaced and need remove from svms
2049 *
2050 * Check if the virtual address range has overlap with any existing ranges,
2051 * split partly overlapping ranges and add new ranges in the gaps. All changes
2052 * should be applied to the range_list and interval tree transactionally. If
2053 * any range split or allocation fails, the entire update fails. Therefore any
2054 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2055 * unchanged.
2056 *
2057 * If the transaction succeeds, the caller can update and insert clones and
2058 * new ranges, then free the originals.
2059 *
2060 * Otherwise the caller can free the clones and new ranges, while the old
2061 * svm_ranges remain unchanged.
2062 *
2063 * Context: Process context, caller must hold svms->lock
2064 *
2065 * Return:
2066 * 0 - OK, otherwise error code
2067 */
2068 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list)2069 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2070 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2071 struct list_head *update_list, struct list_head *insert_list,
2072 struct list_head *remove_list)
2073 {
2074 unsigned long last = start + size - 1UL;
2075 struct svm_range_list *svms = &p->svms;
2076 struct interval_tree_node *node;
2077 struct svm_range *prange;
2078 struct svm_range *tmp;
2079 struct list_head new_list;
2080 int r = 0;
2081
2082 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2083
2084 INIT_LIST_HEAD(update_list);
2085 INIT_LIST_HEAD(insert_list);
2086 INIT_LIST_HEAD(remove_list);
2087 INIT_LIST_HEAD(&new_list);
2088
2089 node = interval_tree_iter_first(&svms->objects, start, last);
2090 while (node) {
2091 struct interval_tree_node *next;
2092 unsigned long next_start;
2093
2094 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2095 node->last);
2096
2097 prange = container_of(node, struct svm_range, it_node);
2098 next = interval_tree_iter_next(node, start, last);
2099 next_start = min(node->last, last) + 1;
2100
2101 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2102 prange->mapped_to_gpu) {
2103 /* nothing to do */
2104 } else if (node->start < start || node->last > last) {
2105 /* node intersects the update range and its attributes
2106 * will change. Clone and split it, apply updates only
2107 * to the overlapping part
2108 */
2109 struct svm_range *old = prange;
2110
2111 prange = svm_range_clone(old);
2112 if (!prange) {
2113 r = -ENOMEM;
2114 goto out;
2115 }
2116
2117 list_add(&old->update_list, remove_list);
2118 list_add(&prange->list, insert_list);
2119 list_add(&prange->update_list, update_list);
2120
2121 if (node->start < start) {
2122 pr_debug("change old range start\n");
2123 r = svm_range_split_head(prange, start,
2124 insert_list);
2125 if (r)
2126 goto out;
2127 }
2128 if (node->last > last) {
2129 pr_debug("change old range last\n");
2130 r = svm_range_split_tail(prange, last,
2131 insert_list);
2132 if (r)
2133 goto out;
2134 }
2135 } else {
2136 /* The node is contained within start..last,
2137 * just update it
2138 */
2139 list_add(&prange->update_list, update_list);
2140 }
2141
2142 /* insert a new node if needed */
2143 if (node->start > start) {
2144 r = svm_range_split_new(svms, start, node->start - 1,
2145 READ_ONCE(max_svm_range_pages),
2146 &new_list, update_list);
2147 if (r)
2148 goto out;
2149 }
2150
2151 node = next;
2152 start = next_start;
2153 }
2154
2155 /* add a final range at the end if needed */
2156 if (start <= last)
2157 r = svm_range_split_new(svms, start, last,
2158 READ_ONCE(max_svm_range_pages),
2159 &new_list, update_list);
2160
2161 out:
2162 if (r) {
2163 list_for_each_entry_safe(prange, tmp, insert_list, list)
2164 svm_range_free(prange, false);
2165 list_for_each_entry_safe(prange, tmp, &new_list, list)
2166 svm_range_free(prange, true);
2167 } else {
2168 list_splice(&new_list, insert_list);
2169 }
2170
2171 return r;
2172 }
2173
2174 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2175 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2176 struct svm_range *prange)
2177 {
2178 unsigned long start;
2179 unsigned long last;
2180
2181 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2182 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2183
2184 if (prange->start == start && prange->last == last)
2185 return;
2186
2187 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2188 prange->svms, prange, start, last, prange->start,
2189 prange->last);
2190
2191 if (start != 0 && last != 0) {
2192 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2193 svm_range_remove_notifier(prange);
2194 }
2195 prange->it_node.start = prange->start;
2196 prange->it_node.last = prange->last;
2197
2198 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2199 svm_range_add_notifier_locked(mm, prange);
2200 }
2201
2202 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2203 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2204 struct mm_struct *mm)
2205 {
2206 switch (prange->work_item.op) {
2207 case SVM_OP_NULL:
2208 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2209 svms, prange, prange->start, prange->last);
2210 break;
2211 case SVM_OP_UNMAP_RANGE:
2212 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2213 svms, prange, prange->start, prange->last);
2214 svm_range_unlink(prange);
2215 svm_range_remove_notifier(prange);
2216 svm_range_free(prange, true);
2217 break;
2218 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2219 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2220 svms, prange, prange->start, prange->last);
2221 svm_range_update_notifier_and_interval_tree(mm, prange);
2222 break;
2223 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2224 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2225 svms, prange, prange->start, prange->last);
2226 svm_range_update_notifier_and_interval_tree(mm, prange);
2227 /* TODO: implement deferred validation and mapping */
2228 break;
2229 case SVM_OP_ADD_RANGE:
2230 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2231 prange->start, prange->last);
2232 svm_range_add_to_svms(prange);
2233 svm_range_add_notifier_locked(mm, prange);
2234 break;
2235 case SVM_OP_ADD_RANGE_AND_MAP:
2236 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2237 prange, prange->start, prange->last);
2238 svm_range_add_to_svms(prange);
2239 svm_range_add_notifier_locked(mm, prange);
2240 /* TODO: implement deferred validation and mapping */
2241 break;
2242 default:
2243 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2244 prange->work_item.op);
2245 }
2246 }
2247
svm_range_drain_retry_fault(struct svm_range_list * svms)2248 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2249 {
2250 struct kfd_process_device *pdd;
2251 struct kfd_process *p;
2252 int drain;
2253 uint32_t i;
2254
2255 p = container_of(svms, struct kfd_process, svms);
2256
2257 restart:
2258 drain = atomic_read(&svms->drain_pagefaults);
2259 if (!drain)
2260 return;
2261
2262 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2263 pdd = p->pdds[i];
2264 if (!pdd)
2265 continue;
2266
2267 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2268
2269 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2270 pdd->dev->adev->irq.retry_cam_enabled ?
2271 &pdd->dev->adev->irq.ih :
2272 &pdd->dev->adev->irq.ih1);
2273
2274 if (pdd->dev->adev->irq.retry_cam_enabled)
2275 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2276 &pdd->dev->adev->irq.ih_soft);
2277
2278
2279 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2280 }
2281 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2282 goto restart;
2283 }
2284
svm_range_deferred_list_work(struct work_struct * work)2285 static void svm_range_deferred_list_work(struct work_struct *work)
2286 {
2287 struct svm_range_list *svms;
2288 struct svm_range *prange;
2289 struct mm_struct *mm;
2290
2291 svms = container_of(work, struct svm_range_list, deferred_list_work);
2292 pr_debug("enter svms 0x%p\n", svms);
2293
2294 spin_lock(&svms->deferred_list_lock);
2295 while (!list_empty(&svms->deferred_range_list)) {
2296 prange = list_first_entry(&svms->deferred_range_list,
2297 struct svm_range, deferred_list);
2298 spin_unlock(&svms->deferred_list_lock);
2299
2300 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2301 prange->start, prange->last, prange->work_item.op);
2302
2303 mm = prange->work_item.mm;
2304 retry:
2305 mmap_write_lock(mm);
2306
2307 /* Checking for the need to drain retry faults must be inside
2308 * mmap write lock to serialize with munmap notifiers.
2309 */
2310 if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2311 mmap_write_unlock(mm);
2312 svm_range_drain_retry_fault(svms);
2313 goto retry;
2314 }
2315
2316 /* Remove from deferred_list must be inside mmap write lock, for
2317 * two race cases:
2318 * 1. unmap_from_cpu may change work_item.op and add the range
2319 * to deferred_list again, cause use after free bug.
2320 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2321 * lock and continue because deferred_list is empty, but
2322 * deferred_list work is actually waiting for mmap lock.
2323 */
2324 spin_lock(&svms->deferred_list_lock);
2325 list_del_init(&prange->deferred_list);
2326 spin_unlock(&svms->deferred_list_lock);
2327
2328 mutex_lock(&svms->lock);
2329 mutex_lock(&prange->migrate_mutex);
2330 while (!list_empty(&prange->child_list)) {
2331 struct svm_range *pchild;
2332
2333 pchild = list_first_entry(&prange->child_list,
2334 struct svm_range, child_list);
2335 pr_debug("child prange 0x%p op %d\n", pchild,
2336 pchild->work_item.op);
2337 list_del_init(&pchild->child_list);
2338 svm_range_handle_list_op(svms, pchild, mm);
2339 }
2340 mutex_unlock(&prange->migrate_mutex);
2341
2342 svm_range_handle_list_op(svms, prange, mm);
2343 mutex_unlock(&svms->lock);
2344 mmap_write_unlock(mm);
2345
2346 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2347 * last mm refcount, schedule release work to avoid circular locking
2348 */
2349 mmput_async(mm);
2350
2351 spin_lock(&svms->deferred_list_lock);
2352 }
2353 spin_unlock(&svms->deferred_list_lock);
2354 pr_debug("exit svms 0x%p\n", svms);
2355 }
2356
2357 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2358 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2359 struct mm_struct *mm, enum svm_work_list_ops op)
2360 {
2361 spin_lock(&svms->deferred_list_lock);
2362 /* if prange is on the deferred list */
2363 if (!list_empty(&prange->deferred_list)) {
2364 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2365 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2366 if (op != SVM_OP_NULL &&
2367 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2368 prange->work_item.op = op;
2369 } else {
2370 prange->work_item.op = op;
2371
2372 /* Pairs with mmput in deferred_list_work */
2373 mmget(mm);
2374 prange->work_item.mm = mm;
2375 list_add_tail(&prange->deferred_list,
2376 &prange->svms->deferred_range_list);
2377 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2378 prange, prange->start, prange->last, op);
2379 }
2380 spin_unlock(&svms->deferred_list_lock);
2381 }
2382
schedule_deferred_list_work(struct svm_range_list * svms)2383 void schedule_deferred_list_work(struct svm_range_list *svms)
2384 {
2385 spin_lock(&svms->deferred_list_lock);
2386 if (!list_empty(&svms->deferred_range_list))
2387 schedule_work(&svms->deferred_list_work);
2388 spin_unlock(&svms->deferred_list_lock);
2389 }
2390
2391 static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2392 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2393 struct svm_range *prange, unsigned long start,
2394 unsigned long last)
2395 {
2396 struct svm_range *head;
2397 struct svm_range *tail;
2398
2399 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2400 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2401 prange->start, prange->last);
2402 return;
2403 }
2404 if (start > prange->last || last < prange->start)
2405 return;
2406
2407 head = tail = prange;
2408 if (start > prange->start)
2409 svm_range_split(prange, prange->start, start - 1, &tail);
2410 if (last < tail->last)
2411 svm_range_split(tail, last + 1, tail->last, &head);
2412
2413 if (head != prange && tail != prange) {
2414 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2415 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2416 } else if (tail != prange) {
2417 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2418 } else if (head != prange) {
2419 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2420 } else if (parent != prange) {
2421 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2422 }
2423 }
2424
2425 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2426 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2427 unsigned long start, unsigned long last)
2428 {
2429 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2430 struct svm_range_list *svms;
2431 struct svm_range *pchild;
2432 struct kfd_process *p;
2433 unsigned long s, l;
2434 bool unmap_parent;
2435
2436 p = kfd_lookup_process_by_mm(mm);
2437 if (!p)
2438 return;
2439 svms = &p->svms;
2440
2441 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2442 prange, prange->start, prange->last, start, last);
2443
2444 /* Make sure pending page faults are drained in the deferred worker
2445 * before the range is freed to avoid straggler interrupts on
2446 * unmapped memory causing "phantom faults".
2447 */
2448 atomic_inc(&svms->drain_pagefaults);
2449
2450 unmap_parent = start <= prange->start && last >= prange->last;
2451
2452 list_for_each_entry(pchild, &prange->child_list, child_list) {
2453 mutex_lock_nested(&pchild->lock, 1);
2454 s = max(start, pchild->start);
2455 l = min(last, pchild->last);
2456 if (l >= s)
2457 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2458 svm_range_unmap_split(mm, prange, pchild, start, last);
2459 mutex_unlock(&pchild->lock);
2460 }
2461 s = max(start, prange->start);
2462 l = min(last, prange->last);
2463 if (l >= s)
2464 svm_range_unmap_from_gpus(prange, s, l, trigger);
2465 svm_range_unmap_split(mm, prange, prange, start, last);
2466
2467 if (unmap_parent)
2468 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2469 else
2470 svm_range_add_list_work(svms, prange, mm,
2471 SVM_OP_UPDATE_RANGE_NOTIFIER);
2472 schedule_deferred_list_work(svms);
2473
2474 kfd_unref_process(p);
2475 }
2476
2477 /**
2478 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2479 * @mni: mmu_interval_notifier struct
2480 * @range: mmu_notifier_range struct
2481 * @cur_seq: value to pass to mmu_interval_set_seq()
2482 *
2483 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2484 * is from migration, or CPU page invalidation callback.
2485 *
2486 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2487 * work thread, and split prange if only part of prange is unmapped.
2488 *
2489 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2490 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2491 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2492 * update GPU mapping to recover.
2493 *
2494 * Context: mmap lock, notifier_invalidate_start lock are held
2495 * for invalidate event, prange lock is held if this is from migration
2496 */
2497 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2498 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2499 const struct mmu_notifier_range *range,
2500 unsigned long cur_seq)
2501 {
2502 struct svm_range *prange;
2503 unsigned long start;
2504 unsigned long last;
2505
2506 if (range->event == MMU_NOTIFY_RELEASE)
2507 return true;
2508 if (!mmget_not_zero(mni->mm))
2509 return true;
2510
2511 start = mni->interval_tree.start;
2512 last = mni->interval_tree.last;
2513 start = max(start, range->start) >> PAGE_SHIFT;
2514 last = min(last, range->end - 1) >> PAGE_SHIFT;
2515 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2516 start, last, range->start >> PAGE_SHIFT,
2517 (range->end - 1) >> PAGE_SHIFT,
2518 mni->interval_tree.start >> PAGE_SHIFT,
2519 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2520
2521 prange = container_of(mni, struct svm_range, notifier);
2522
2523 svm_range_lock(prange);
2524 mmu_interval_set_seq(mni, cur_seq);
2525
2526 switch (range->event) {
2527 case MMU_NOTIFY_UNMAP:
2528 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2529 break;
2530 default:
2531 svm_range_evict(prange, mni->mm, start, last, range->event);
2532 break;
2533 }
2534
2535 svm_range_unlock(prange);
2536 mmput(mni->mm);
2537
2538 return true;
2539 }
2540
2541 /**
2542 * svm_range_from_addr - find svm range from fault address
2543 * @svms: svm range list header
2544 * @addr: address to search range interval tree, in pages
2545 * @parent: parent range if range is on child list
2546 *
2547 * Context: The caller must hold svms->lock
2548 *
2549 * Return: the svm_range found or NULL
2550 */
2551 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2552 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2553 struct svm_range **parent)
2554 {
2555 struct interval_tree_node *node;
2556 struct svm_range *prange;
2557 struct svm_range *pchild;
2558
2559 node = interval_tree_iter_first(&svms->objects, addr, addr);
2560 if (!node)
2561 return NULL;
2562
2563 prange = container_of(node, struct svm_range, it_node);
2564 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2565 addr, prange->start, prange->last, node->start, node->last);
2566
2567 if (addr >= prange->start && addr <= prange->last) {
2568 if (parent)
2569 *parent = prange;
2570 return prange;
2571 }
2572 list_for_each_entry(pchild, &prange->child_list, child_list)
2573 if (addr >= pchild->start && addr <= pchild->last) {
2574 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2575 addr, pchild->start, pchild->last);
2576 if (parent)
2577 *parent = prange;
2578 return pchild;
2579 }
2580
2581 return NULL;
2582 }
2583
2584 /* svm_range_best_restore_location - decide the best fault restore location
2585 * @prange: svm range structure
2586 * @adev: the GPU on which vm fault happened
2587 *
2588 * This is only called when xnack is on, to decide the best location to restore
2589 * the range mapping after GPU vm fault. Caller uses the best location to do
2590 * migration if actual loc is not best location, then update GPU page table
2591 * mapping to the best location.
2592 *
2593 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2594 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2595 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2596 * if range actual loc is cpu, best_loc is cpu
2597 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2598 * range actual loc.
2599 * Otherwise, GPU no access, best_loc is -1.
2600 *
2601 * Return:
2602 * -1 means vm fault GPU no access
2603 * 0 for CPU or GPU id
2604 */
2605 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2606 svm_range_best_restore_location(struct svm_range *prange,
2607 struct kfd_node *node,
2608 int32_t *gpuidx)
2609 {
2610 struct kfd_node *bo_node, *preferred_node;
2611 struct kfd_process *p;
2612 uint32_t gpuid;
2613 int r;
2614
2615 p = container_of(prange->svms, struct kfd_process, svms);
2616
2617 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2618 if (r < 0) {
2619 pr_debug("failed to get gpuid from kgd\n");
2620 return -1;
2621 }
2622
2623 if (node->adev->gmc.is_app_apu)
2624 return 0;
2625
2626 if (prange->preferred_loc == gpuid ||
2627 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2628 return prange->preferred_loc;
2629 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2630 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2631 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2632 return prange->preferred_loc;
2633 /* fall through */
2634 }
2635
2636 if (test_bit(*gpuidx, prange->bitmap_access))
2637 return gpuid;
2638
2639 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2640 if (!prange->actual_loc)
2641 return 0;
2642
2643 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2644 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2645 return prange->actual_loc;
2646 else
2647 return 0;
2648 }
2649
2650 return -1;
2651 }
2652
2653 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2654 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2655 unsigned long *start, unsigned long *last,
2656 bool *is_heap_stack)
2657 {
2658 struct vm_area_struct *vma;
2659 struct interval_tree_node *node;
2660 struct rb_node *rb_node;
2661 unsigned long start_limit, end_limit;
2662
2663 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2664 if (!vma) {
2665 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2666 return -EFAULT;
2667 }
2668
2669 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2670
2671 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2672 (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2673 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2674 (unsigned long)ALIGN(addr + 1, 2UL << 8));
2675 /* First range that starts after the fault address */
2676 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2677 if (node) {
2678 end_limit = min(end_limit, node->start);
2679 /* Last range that ends before the fault address */
2680 rb_node = rb_prev(&node->rb);
2681 } else {
2682 /* Last range must end before addr because
2683 * there was no range after addr
2684 */
2685 rb_node = rb_last(&p->svms.objects.rb_root);
2686 }
2687 if (rb_node) {
2688 node = container_of(rb_node, struct interval_tree_node, rb);
2689 if (node->last >= addr) {
2690 WARN(1, "Overlap with prev node and page fault addr\n");
2691 return -EFAULT;
2692 }
2693 start_limit = max(start_limit, node->last + 1);
2694 }
2695
2696 *start = start_limit;
2697 *last = end_limit - 1;
2698
2699 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2700 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2701 *start, *last, *is_heap_stack);
2702
2703 return 0;
2704 }
2705
2706 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2707 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2708 uint64_t *bo_s, uint64_t *bo_l)
2709 {
2710 struct amdgpu_bo_va_mapping *mapping;
2711 struct interval_tree_node *node;
2712 struct amdgpu_bo *bo = NULL;
2713 unsigned long userptr;
2714 uint32_t i;
2715 int r;
2716
2717 for (i = 0; i < p->n_pdds; i++) {
2718 struct amdgpu_vm *vm;
2719
2720 if (!p->pdds[i]->drm_priv)
2721 continue;
2722
2723 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2724 r = amdgpu_bo_reserve(vm->root.bo, false);
2725 if (r)
2726 return r;
2727
2728 /* Check userptr by searching entire vm->va interval tree */
2729 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2730 while (node) {
2731 mapping = container_of((struct rb_node *)node,
2732 struct amdgpu_bo_va_mapping, rb);
2733 bo = mapping->bo_va->base.bo;
2734
2735 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2736 start << PAGE_SHIFT,
2737 last << PAGE_SHIFT,
2738 &userptr)) {
2739 node = interval_tree_iter_next(node, 0, ~0ULL);
2740 continue;
2741 }
2742
2743 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2744 start, last);
2745 if (bo_s && bo_l) {
2746 *bo_s = userptr >> PAGE_SHIFT;
2747 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2748 }
2749 amdgpu_bo_unreserve(vm->root.bo);
2750 return -EADDRINUSE;
2751 }
2752 amdgpu_bo_unreserve(vm->root.bo);
2753 }
2754 return 0;
2755 }
2756
2757 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2758 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2759 struct kfd_process *p,
2760 struct mm_struct *mm,
2761 int64_t addr)
2762 {
2763 struct svm_range *prange = NULL;
2764 unsigned long start, last;
2765 uint32_t gpuid, gpuidx;
2766 bool is_heap_stack;
2767 uint64_t bo_s = 0;
2768 uint64_t bo_l = 0;
2769 int r;
2770
2771 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2772 &is_heap_stack))
2773 return NULL;
2774
2775 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2776 if (r != -EADDRINUSE)
2777 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2778
2779 if (r == -EADDRINUSE) {
2780 if (addr >= bo_s && addr <= bo_l)
2781 return NULL;
2782
2783 /* Create one page svm range if 2MB range overlapping */
2784 start = addr;
2785 last = addr;
2786 }
2787
2788 prange = svm_range_new(&p->svms, start, last, true);
2789 if (!prange) {
2790 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2791 return NULL;
2792 }
2793 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2794 pr_debug("failed to get gpuid from kgd\n");
2795 svm_range_free(prange, true);
2796 return NULL;
2797 }
2798
2799 if (is_heap_stack)
2800 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2801
2802 svm_range_add_to_svms(prange);
2803 svm_range_add_notifier_locked(mm, prange);
2804
2805 return prange;
2806 }
2807
2808 /* svm_range_skip_recover - decide if prange can be recovered
2809 * @prange: svm range structure
2810 *
2811 * GPU vm retry fault handle skip recover the range for cases:
2812 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2813 * deferred list work will drain the stale fault before free the prange.
2814 * 2. prange is on deferred list to add interval notifier after split, or
2815 * 3. prange is child range, it is split from parent prange, recover later
2816 * after interval notifier is added.
2817 *
2818 * Return: true to skip recover, false to recover
2819 */
svm_range_skip_recover(struct svm_range * prange)2820 static bool svm_range_skip_recover(struct svm_range *prange)
2821 {
2822 struct svm_range_list *svms = prange->svms;
2823
2824 spin_lock(&svms->deferred_list_lock);
2825 if (list_empty(&prange->deferred_list) &&
2826 list_empty(&prange->child_list)) {
2827 spin_unlock(&svms->deferred_list_lock);
2828 return false;
2829 }
2830 spin_unlock(&svms->deferred_list_lock);
2831
2832 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2833 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2834 svms, prange, prange->start, prange->last);
2835 return true;
2836 }
2837 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2838 prange->work_item.op == SVM_OP_ADD_RANGE) {
2839 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2840 svms, prange, prange->start, prange->last);
2841 return true;
2842 }
2843 return false;
2844 }
2845
2846 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2847 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2848 int32_t gpuidx)
2849 {
2850 struct kfd_process_device *pdd;
2851
2852 /* fault is on different page of same range
2853 * or fault is skipped to recover later
2854 * or fault is on invalid virtual address
2855 */
2856 if (gpuidx == MAX_GPU_INSTANCE) {
2857 uint32_t gpuid;
2858 int r;
2859
2860 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2861 if (r < 0)
2862 return;
2863 }
2864
2865 /* fault is recovered
2866 * or fault cannot recover because GPU no access on the range
2867 */
2868 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2869 if (pdd)
2870 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2871 }
2872
2873 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2874 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2875 {
2876 unsigned long requested = VM_READ;
2877
2878 if (write_fault)
2879 requested |= VM_WRITE;
2880
2881 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2882 vma->vm_flags);
2883 return (vma->vm_flags & requested) == requested;
2884 }
2885
2886 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,bool write_fault)2887 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2888 uint32_t vmid, uint32_t node_id,
2889 uint64_t addr, bool write_fault)
2890 {
2891 struct mm_struct *mm = NULL;
2892 struct svm_range_list *svms;
2893 struct svm_range *prange;
2894 struct kfd_process *p;
2895 ktime_t timestamp = ktime_get_boottime();
2896 struct kfd_node *node;
2897 int32_t best_loc;
2898 int32_t gpuidx = MAX_GPU_INSTANCE;
2899 bool write_locked = false;
2900 struct vm_area_struct *vma;
2901 bool migration = false;
2902 int r = 0;
2903
2904 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2905 pr_debug("device does not support SVM\n");
2906 return -EFAULT;
2907 }
2908
2909 p = kfd_lookup_process_by_pasid(pasid);
2910 if (!p) {
2911 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2912 return 0;
2913 }
2914 svms = &p->svms;
2915
2916 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2917
2918 if (atomic_read(&svms->drain_pagefaults)) {
2919 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2920 r = 0;
2921 goto out;
2922 }
2923
2924 if (!p->xnack_enabled) {
2925 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2926 r = -EFAULT;
2927 goto out;
2928 }
2929
2930 /* p->lead_thread is available as kfd_process_wq_release flush the work
2931 * before releasing task ref.
2932 */
2933 mm = get_task_mm(p->lead_thread);
2934 if (!mm) {
2935 pr_debug("svms 0x%p failed to get mm\n", svms);
2936 r = 0;
2937 goto out;
2938 }
2939
2940 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2941 if (!node) {
2942 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2943 vmid);
2944 r = -EFAULT;
2945 goto out;
2946 }
2947 mmap_read_lock(mm);
2948 retry_write_locked:
2949 mutex_lock(&svms->lock);
2950 prange = svm_range_from_addr(svms, addr, NULL);
2951 if (!prange) {
2952 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2953 svms, addr);
2954 if (!write_locked) {
2955 /* Need the write lock to create new range with MMU notifier.
2956 * Also flush pending deferred work to make sure the interval
2957 * tree is up to date before we add a new range
2958 */
2959 mutex_unlock(&svms->lock);
2960 mmap_read_unlock(mm);
2961 mmap_write_lock(mm);
2962 write_locked = true;
2963 goto retry_write_locked;
2964 }
2965 prange = svm_range_create_unregistered_range(node, p, mm, addr);
2966 if (!prange) {
2967 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2968 svms, addr);
2969 mmap_write_downgrade(mm);
2970 r = -EFAULT;
2971 goto out_unlock_svms;
2972 }
2973 }
2974 if (write_locked)
2975 mmap_write_downgrade(mm);
2976
2977 mutex_lock(&prange->migrate_mutex);
2978
2979 if (svm_range_skip_recover(prange)) {
2980 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
2981 r = 0;
2982 goto out_unlock_range;
2983 }
2984
2985 /* skip duplicate vm fault on different pages of same range */
2986 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
2987 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2988 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2989 svms, prange->start, prange->last);
2990 r = 0;
2991 goto out_unlock_range;
2992 }
2993
2994 /* __do_munmap removed VMA, return success as we are handling stale
2995 * retry fault.
2996 */
2997 vma = vma_lookup(mm, addr << PAGE_SHIFT);
2998 if (!vma) {
2999 pr_debug("address 0x%llx VMA is removed\n", addr);
3000 r = 0;
3001 goto out_unlock_range;
3002 }
3003
3004 if (!svm_fault_allowed(vma, write_fault)) {
3005 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3006 write_fault ? "write" : "read");
3007 r = -EPERM;
3008 goto out_unlock_range;
3009 }
3010
3011 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3012 if (best_loc == -1) {
3013 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3014 svms, prange->start, prange->last);
3015 r = -EACCES;
3016 goto out_unlock_range;
3017 }
3018
3019 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3020 svms, prange->start, prange->last, best_loc,
3021 prange->actual_loc);
3022
3023 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3024 write_fault, timestamp);
3025
3026 if (prange->actual_loc != best_loc) {
3027 migration = true;
3028 if (best_loc) {
3029 r = svm_migrate_to_vram(prange, best_loc, mm,
3030 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3031 if (r) {
3032 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3033 r, addr);
3034 /* Fallback to system memory if migration to
3035 * VRAM failed
3036 */
3037 if (prange->actual_loc)
3038 r = svm_migrate_vram_to_ram(prange, mm,
3039 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3040 NULL);
3041 else
3042 r = 0;
3043 }
3044 } else {
3045 r = svm_migrate_vram_to_ram(prange, mm,
3046 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3047 NULL);
3048 }
3049 if (r) {
3050 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3051 r, svms, prange->start, prange->last);
3052 goto out_unlock_range;
3053 }
3054 }
3055
3056 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
3057 if (r)
3058 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3059 r, svms, prange->start, prange->last);
3060
3061 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3062 migration);
3063
3064 out_unlock_range:
3065 mutex_unlock(&prange->migrate_mutex);
3066 out_unlock_svms:
3067 mutex_unlock(&svms->lock);
3068 mmap_read_unlock(mm);
3069
3070 svm_range_count_fault(node, p, gpuidx);
3071
3072 mmput(mm);
3073 out:
3074 kfd_unref_process(p);
3075
3076 if (r == -EAGAIN) {
3077 pr_debug("recover vm fault later\n");
3078 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3079 r = 0;
3080 }
3081 return r;
3082 }
3083
3084 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3085 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3086 {
3087 struct svm_range *prange, *pchild;
3088 uint64_t reserved_size = 0;
3089 uint64_t size;
3090 int r = 0;
3091
3092 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3093
3094 mutex_lock(&p->svms.lock);
3095
3096 list_for_each_entry(prange, &p->svms.list, list) {
3097 svm_range_lock(prange);
3098 list_for_each_entry(pchild, &prange->child_list, child_list) {
3099 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3100 if (xnack_enabled) {
3101 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3102 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3103 } else {
3104 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3105 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3106 if (r)
3107 goto out_unlock;
3108 reserved_size += size;
3109 }
3110 }
3111
3112 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3113 if (xnack_enabled) {
3114 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3115 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3116 } else {
3117 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3118 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3119 if (r)
3120 goto out_unlock;
3121 reserved_size += size;
3122 }
3123 out_unlock:
3124 svm_range_unlock(prange);
3125 if (r)
3126 break;
3127 }
3128
3129 if (r)
3130 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3131 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3132 else
3133 /* Change xnack mode must be inside svms lock, to avoid race with
3134 * svm_range_deferred_list_work unreserve memory in parallel.
3135 */
3136 p->xnack_enabled = xnack_enabled;
3137
3138 mutex_unlock(&p->svms.lock);
3139 return r;
3140 }
3141
svm_range_list_fini(struct kfd_process * p)3142 void svm_range_list_fini(struct kfd_process *p)
3143 {
3144 struct svm_range *prange;
3145 struct svm_range *next;
3146
3147 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3148
3149 cancel_delayed_work_sync(&p->svms.restore_work);
3150
3151 /* Ensure list work is finished before process is destroyed */
3152 flush_work(&p->svms.deferred_list_work);
3153
3154 /*
3155 * Ensure no retry fault comes in afterwards, as page fault handler will
3156 * not find kfd process and take mm lock to recover fault.
3157 */
3158 atomic_inc(&p->svms.drain_pagefaults);
3159 svm_range_drain_retry_fault(&p->svms);
3160
3161 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3162 svm_range_unlink(prange);
3163 svm_range_remove_notifier(prange);
3164 svm_range_free(prange, true);
3165 }
3166
3167 mutex_destroy(&p->svms.lock);
3168
3169 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3170 }
3171
svm_range_list_init(struct kfd_process * p)3172 int svm_range_list_init(struct kfd_process *p)
3173 {
3174 struct svm_range_list *svms = &p->svms;
3175 int i;
3176
3177 svms->objects = RB_ROOT_CACHED;
3178 mutex_init(&svms->lock);
3179 INIT_LIST_HEAD(&svms->list);
3180 atomic_set(&svms->evicted_ranges, 0);
3181 atomic_set(&svms->drain_pagefaults, 0);
3182 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3183 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3184 INIT_LIST_HEAD(&svms->deferred_range_list);
3185 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3186 spin_lock_init(&svms->deferred_list_lock);
3187
3188 for (i = 0; i < p->n_pdds; i++)
3189 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3190 bitmap_set(svms->bitmap_supported, i, 1);
3191
3192 return 0;
3193 }
3194
3195 /**
3196 * svm_range_check_vm - check if virtual address range mapped already
3197 * @p: current kfd_process
3198 * @start: range start address, in pages
3199 * @last: range last address, in pages
3200 * @bo_s: mapping start address in pages if address range already mapped
3201 * @bo_l: mapping last address in pages if address range already mapped
3202 *
3203 * The purpose is to avoid virtual address ranges already allocated by
3204 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3205 * It looks for each pdd in the kfd_process.
3206 *
3207 * Context: Process context
3208 *
3209 * Return 0 - OK, if the range is not mapped.
3210 * Otherwise error code:
3211 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3212 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3213 * a signal. Release all buffer reservations and return to user-space.
3214 */
3215 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3216 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3217 uint64_t *bo_s, uint64_t *bo_l)
3218 {
3219 struct amdgpu_bo_va_mapping *mapping;
3220 struct interval_tree_node *node;
3221 uint32_t i;
3222 int r;
3223
3224 for (i = 0; i < p->n_pdds; i++) {
3225 struct amdgpu_vm *vm;
3226
3227 if (!p->pdds[i]->drm_priv)
3228 continue;
3229
3230 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3231 r = amdgpu_bo_reserve(vm->root.bo, false);
3232 if (r)
3233 return r;
3234
3235 node = interval_tree_iter_first(&vm->va, start, last);
3236 if (node) {
3237 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3238 start, last);
3239 mapping = container_of((struct rb_node *)node,
3240 struct amdgpu_bo_va_mapping, rb);
3241 if (bo_s && bo_l) {
3242 *bo_s = mapping->start;
3243 *bo_l = mapping->last;
3244 }
3245 amdgpu_bo_unreserve(vm->root.bo);
3246 return -EADDRINUSE;
3247 }
3248 amdgpu_bo_unreserve(vm->root.bo);
3249 }
3250
3251 return 0;
3252 }
3253
3254 /**
3255 * svm_range_is_valid - check if virtual address range is valid
3256 * @p: current kfd_process
3257 * @start: range start address, in pages
3258 * @size: range size, in pages
3259 *
3260 * Valid virtual address range means it belongs to one or more VMAs
3261 *
3262 * Context: Process context
3263 *
3264 * Return:
3265 * 0 - OK, otherwise error code
3266 */
3267 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3268 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3269 {
3270 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3271 struct vm_area_struct *vma;
3272 unsigned long end;
3273 unsigned long start_unchg = start;
3274
3275 start <<= PAGE_SHIFT;
3276 end = start + (size << PAGE_SHIFT);
3277 do {
3278 vma = vma_lookup(p->mm, start);
3279 if (!vma || (vma->vm_flags & device_vma))
3280 return -EFAULT;
3281 start = min(end, vma->vm_end);
3282 } while (start < end);
3283
3284 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3285 NULL);
3286 }
3287
3288 /**
3289 * svm_range_best_prefetch_location - decide the best prefetch location
3290 * @prange: svm range structure
3291 *
3292 * For xnack off:
3293 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3294 * can be CPU or GPU.
3295 *
3296 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3297 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3298 * the best prefetch location is always CPU, because GPU can not have coherent
3299 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3300 *
3301 * For xnack on:
3302 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3303 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3304 *
3305 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3306 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3307 * prefetch location is always CPU.
3308 *
3309 * Context: Process context
3310 *
3311 * Return:
3312 * 0 for CPU or GPU id
3313 */
3314 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3315 svm_range_best_prefetch_location(struct svm_range *prange)
3316 {
3317 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3318 uint32_t best_loc = prange->prefetch_loc;
3319 struct kfd_process_device *pdd;
3320 struct kfd_node *bo_node;
3321 struct kfd_process *p;
3322 uint32_t gpuidx;
3323
3324 p = container_of(prange->svms, struct kfd_process, svms);
3325
3326 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3327 goto out;
3328
3329 bo_node = svm_range_get_node_by_id(prange, best_loc);
3330 if (!bo_node) {
3331 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3332 best_loc = 0;
3333 goto out;
3334 }
3335
3336 if (bo_node->adev->gmc.is_app_apu) {
3337 best_loc = 0;
3338 goto out;
3339 }
3340
3341 if (p->xnack_enabled)
3342 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3343 else
3344 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3345 MAX_GPU_INSTANCE);
3346
3347 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3348 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3349 if (!pdd) {
3350 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3351 continue;
3352 }
3353
3354 if (pdd->dev->adev == bo_node->adev)
3355 continue;
3356
3357 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3358 best_loc = 0;
3359 break;
3360 }
3361 }
3362
3363 out:
3364 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3365 p->xnack_enabled, &p->svms, prange->start, prange->last,
3366 best_loc);
3367
3368 return best_loc;
3369 }
3370
3371 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3372 * @mm: current process mm_struct
3373 * @prange: svm range structure
3374 * @migrated: output, true if migration is triggered
3375 *
3376 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3377 * from ram to vram.
3378 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3379 * from vram to ram.
3380 *
3381 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3382 * and restore work:
3383 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3384 * stops all queues, schedule restore work
3385 * 2. svm_range_restore_work wait for migration is done by
3386 * a. svm_range_validate_vram takes prange->migrate_mutex
3387 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3388 * 3. restore work update mappings of GPU, resume all queues.
3389 *
3390 * Context: Process context
3391 *
3392 * Return:
3393 * 0 - OK, otherwise - error code of migration
3394 */
3395 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3396 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3397 bool *migrated)
3398 {
3399 uint32_t best_loc;
3400 int r = 0;
3401
3402 *migrated = false;
3403 best_loc = svm_range_best_prefetch_location(prange);
3404
3405 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3406 best_loc == prange->actual_loc)
3407 return 0;
3408
3409 if (!best_loc) {
3410 r = svm_migrate_vram_to_ram(prange, mm,
3411 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3412 *migrated = !r;
3413 return r;
3414 }
3415
3416 r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3417 *migrated = !r;
3418
3419 return r;
3420 }
3421
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3422 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3423 {
3424 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3425 * signaled yet and we're under the protection of the fence->lock.
3426 * After the fence is signaled in svm_range_bo_release, we cannot get
3427 * here any more.
3428 *
3429 * Reference is dropped in svm_range_evict_svm_bo_worker.
3430 */
3431 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3432 WRITE_ONCE(fence->svm_bo->evicting, 1);
3433 schedule_work(&fence->svm_bo->eviction_work);
3434 }
3435
3436 return 0;
3437 }
3438
svm_range_evict_svm_bo_worker(struct work_struct * work)3439 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3440 {
3441 struct svm_range_bo *svm_bo;
3442 struct mm_struct *mm;
3443 int r = 0;
3444
3445 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3446
3447 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3448 mm = svm_bo->eviction_fence->mm;
3449 } else {
3450 svm_range_bo_unref(svm_bo);
3451 return;
3452 }
3453
3454 mmap_read_lock(mm);
3455 spin_lock(&svm_bo->list_lock);
3456 while (!list_empty(&svm_bo->range_list) && !r) {
3457 struct svm_range *prange =
3458 list_first_entry(&svm_bo->range_list,
3459 struct svm_range, svm_bo_list);
3460 int retries = 3;
3461
3462 list_del_init(&prange->svm_bo_list);
3463 spin_unlock(&svm_bo->list_lock);
3464
3465 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3466 prange->start, prange->last);
3467
3468 mutex_lock(&prange->migrate_mutex);
3469 do {
3470 r = svm_migrate_vram_to_ram(prange, mm,
3471 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3472 } while (!r && prange->actual_loc && --retries);
3473
3474 if (!r && prange->actual_loc)
3475 pr_info_once("Migration failed during eviction");
3476
3477 if (!prange->actual_loc) {
3478 mutex_lock(&prange->lock);
3479 prange->svm_bo = NULL;
3480 mutex_unlock(&prange->lock);
3481 }
3482 mutex_unlock(&prange->migrate_mutex);
3483
3484 spin_lock(&svm_bo->list_lock);
3485 }
3486 spin_unlock(&svm_bo->list_lock);
3487 mmap_read_unlock(mm);
3488 mmput(mm);
3489
3490 dma_fence_signal(&svm_bo->eviction_fence->base);
3491
3492 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3493 * has been called in svm_migrate_vram_to_ram
3494 */
3495 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3496 svm_range_bo_unref(svm_bo);
3497 }
3498
3499 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3500 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3501 uint64_t start, uint64_t size, uint32_t nattr,
3502 struct kfd_ioctl_svm_attribute *attrs)
3503 {
3504 struct amdkfd_process_info *process_info = p->kgd_process_info;
3505 struct list_head update_list;
3506 struct list_head insert_list;
3507 struct list_head remove_list;
3508 struct svm_range_list *svms;
3509 struct svm_range *prange;
3510 struct svm_range *next;
3511 bool update_mapping = false;
3512 bool flush_tlb;
3513 int r, ret = 0;
3514
3515 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3516 p->pasid, &p->svms, start, start + size - 1, size);
3517
3518 r = svm_range_check_attr(p, nattr, attrs);
3519 if (r)
3520 return r;
3521
3522 svms = &p->svms;
3523
3524 mutex_lock(&process_info->lock);
3525
3526 svm_range_list_lock_and_flush_work(svms, mm);
3527
3528 r = svm_range_is_valid(p, start, size);
3529 if (r) {
3530 pr_debug("invalid range r=%d\n", r);
3531 mmap_write_unlock(mm);
3532 goto out;
3533 }
3534
3535 mutex_lock(&svms->lock);
3536
3537 /* Add new range and split existing ranges as needed */
3538 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3539 &insert_list, &remove_list);
3540 if (r) {
3541 mutex_unlock(&svms->lock);
3542 mmap_write_unlock(mm);
3543 goto out;
3544 }
3545 /* Apply changes as a transaction */
3546 list_for_each_entry_safe(prange, next, &insert_list, list) {
3547 svm_range_add_to_svms(prange);
3548 svm_range_add_notifier_locked(mm, prange);
3549 }
3550 list_for_each_entry(prange, &update_list, update_list) {
3551 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3552 /* TODO: unmap ranges from GPU that lost access */
3553 }
3554 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3555 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3556 prange->svms, prange, prange->start,
3557 prange->last);
3558 svm_range_unlink(prange);
3559 svm_range_remove_notifier(prange);
3560 svm_range_free(prange, false);
3561 }
3562
3563 mmap_write_downgrade(mm);
3564 /* Trigger migrations and revalidate and map to GPUs as needed. If
3565 * this fails we may be left with partially completed actions. There
3566 * is no clean way of rolling back to the previous state in such a
3567 * case because the rollback wouldn't be guaranteed to work either.
3568 */
3569 list_for_each_entry(prange, &update_list, update_list) {
3570 bool migrated;
3571
3572 mutex_lock(&prange->migrate_mutex);
3573
3574 r = svm_range_trigger_migration(mm, prange, &migrated);
3575 if (r)
3576 goto out_unlock_range;
3577
3578 if (migrated && (!p->xnack_enabled ||
3579 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3580 prange->mapped_to_gpu) {
3581 pr_debug("restore_work will update mappings of GPUs\n");
3582 mutex_unlock(&prange->migrate_mutex);
3583 continue;
3584 }
3585
3586 if (!migrated && !update_mapping) {
3587 mutex_unlock(&prange->migrate_mutex);
3588 continue;
3589 }
3590
3591 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3592
3593 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3594 true, true, flush_tlb);
3595 if (r)
3596 pr_debug("failed %d to map svm range\n", r);
3597
3598 out_unlock_range:
3599 mutex_unlock(&prange->migrate_mutex);
3600 if (r)
3601 ret = r;
3602 }
3603
3604 dynamic_svm_range_dump(svms);
3605
3606 mutex_unlock(&svms->lock);
3607 mmap_read_unlock(mm);
3608 out:
3609 mutex_unlock(&process_info->lock);
3610
3611 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3612 &p->svms, start, start + size - 1, r);
3613
3614 return ret ? ret : r;
3615 }
3616
3617 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3618 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3619 uint64_t start, uint64_t size, uint32_t nattr,
3620 struct kfd_ioctl_svm_attribute *attrs)
3621 {
3622 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3623 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3624 bool get_preferred_loc = false;
3625 bool get_prefetch_loc = false;
3626 bool get_granularity = false;
3627 bool get_accessible = false;
3628 bool get_flags = false;
3629 uint64_t last = start + size - 1UL;
3630 uint8_t granularity = 0xff;
3631 struct interval_tree_node *node;
3632 struct svm_range_list *svms;
3633 struct svm_range *prange;
3634 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3635 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3636 uint32_t flags_and = 0xffffffff;
3637 uint32_t flags_or = 0;
3638 int gpuidx;
3639 uint32_t i;
3640 int r = 0;
3641
3642 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3643 start + size - 1, nattr);
3644
3645 /* Flush pending deferred work to avoid racing with deferred actions from
3646 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3647 * can still race with get_attr because we don't hold the mmap lock. But that
3648 * would be a race condition in the application anyway, and undefined
3649 * behaviour is acceptable in that case.
3650 */
3651 flush_work(&p->svms.deferred_list_work);
3652
3653 mmap_read_lock(mm);
3654 r = svm_range_is_valid(p, start, size);
3655 mmap_read_unlock(mm);
3656 if (r) {
3657 pr_debug("invalid range r=%d\n", r);
3658 return r;
3659 }
3660
3661 for (i = 0; i < nattr; i++) {
3662 switch (attrs[i].type) {
3663 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3664 get_preferred_loc = true;
3665 break;
3666 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3667 get_prefetch_loc = true;
3668 break;
3669 case KFD_IOCTL_SVM_ATTR_ACCESS:
3670 get_accessible = true;
3671 break;
3672 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3673 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3674 get_flags = true;
3675 break;
3676 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3677 get_granularity = true;
3678 break;
3679 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3680 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3681 fallthrough;
3682 default:
3683 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3684 return -EINVAL;
3685 }
3686 }
3687
3688 svms = &p->svms;
3689
3690 mutex_lock(&svms->lock);
3691
3692 node = interval_tree_iter_first(&svms->objects, start, last);
3693 if (!node) {
3694 pr_debug("range attrs not found return default values\n");
3695 svm_range_set_default_attributes(&location, &prefetch_loc,
3696 &granularity, &flags_and);
3697 flags_or = flags_and;
3698 if (p->xnack_enabled)
3699 bitmap_copy(bitmap_access, svms->bitmap_supported,
3700 MAX_GPU_INSTANCE);
3701 else
3702 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3703 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3704 goto fill_values;
3705 }
3706 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3707 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3708
3709 while (node) {
3710 struct interval_tree_node *next;
3711
3712 prange = container_of(node, struct svm_range, it_node);
3713 next = interval_tree_iter_next(node, start, last);
3714
3715 if (get_preferred_loc) {
3716 if (prange->preferred_loc ==
3717 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3718 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3719 location != prange->preferred_loc)) {
3720 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3721 get_preferred_loc = false;
3722 } else {
3723 location = prange->preferred_loc;
3724 }
3725 }
3726 if (get_prefetch_loc) {
3727 if (prange->prefetch_loc ==
3728 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3729 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3730 prefetch_loc != prange->prefetch_loc)) {
3731 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3732 get_prefetch_loc = false;
3733 } else {
3734 prefetch_loc = prange->prefetch_loc;
3735 }
3736 }
3737 if (get_accessible) {
3738 bitmap_and(bitmap_access, bitmap_access,
3739 prange->bitmap_access, MAX_GPU_INSTANCE);
3740 bitmap_and(bitmap_aip, bitmap_aip,
3741 prange->bitmap_aip, MAX_GPU_INSTANCE);
3742 }
3743 if (get_flags) {
3744 flags_and &= prange->flags;
3745 flags_or |= prange->flags;
3746 }
3747
3748 if (get_granularity && prange->granularity < granularity)
3749 granularity = prange->granularity;
3750
3751 node = next;
3752 }
3753 fill_values:
3754 mutex_unlock(&svms->lock);
3755
3756 for (i = 0; i < nattr; i++) {
3757 switch (attrs[i].type) {
3758 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3759 attrs[i].value = location;
3760 break;
3761 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3762 attrs[i].value = prefetch_loc;
3763 break;
3764 case KFD_IOCTL_SVM_ATTR_ACCESS:
3765 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3766 attrs[i].value);
3767 if (gpuidx < 0) {
3768 pr_debug("invalid gpuid %x\n", attrs[i].value);
3769 return -EINVAL;
3770 }
3771 if (test_bit(gpuidx, bitmap_access))
3772 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3773 else if (test_bit(gpuidx, bitmap_aip))
3774 attrs[i].type =
3775 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3776 else
3777 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3778 break;
3779 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3780 attrs[i].value = flags_and;
3781 break;
3782 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3783 attrs[i].value = ~flags_or;
3784 break;
3785 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3786 attrs[i].value = (uint32_t)granularity;
3787 break;
3788 }
3789 }
3790
3791 return 0;
3792 }
3793
kfd_criu_resume_svm(struct kfd_process * p)3794 int kfd_criu_resume_svm(struct kfd_process *p)
3795 {
3796 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3797 int nattr_common = 4, nattr_accessibility = 1;
3798 struct criu_svm_metadata *criu_svm_md = NULL;
3799 struct svm_range_list *svms = &p->svms;
3800 struct criu_svm_metadata *next = NULL;
3801 uint32_t set_flags = 0xffffffff;
3802 int i, j, num_attrs, ret = 0;
3803 uint64_t set_attr_size;
3804 struct mm_struct *mm;
3805
3806 if (list_empty(&svms->criu_svm_metadata_list)) {
3807 pr_debug("No SVM data from CRIU restore stage 2\n");
3808 return ret;
3809 }
3810
3811 mm = get_task_mm(p->lead_thread);
3812 if (!mm) {
3813 pr_err("failed to get mm for the target process\n");
3814 return -ESRCH;
3815 }
3816
3817 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3818
3819 i = j = 0;
3820 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3821 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3822 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3823
3824 for (j = 0; j < num_attrs; j++) {
3825 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3826 i, j, criu_svm_md->data.attrs[j].type,
3827 i, j, criu_svm_md->data.attrs[j].value);
3828 switch (criu_svm_md->data.attrs[j].type) {
3829 /* During Checkpoint operation, the query for
3830 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3831 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3832 * not used by the range which was checkpointed. Care
3833 * must be taken to not restore with an invalid value
3834 * otherwise the gpuidx value will be invalid and
3835 * set_attr would eventually fail so just replace those
3836 * with another dummy attribute such as
3837 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3838 */
3839 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3840 if (criu_svm_md->data.attrs[j].value ==
3841 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3842 criu_svm_md->data.attrs[j].type =
3843 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3844 criu_svm_md->data.attrs[j].value = 0;
3845 }
3846 break;
3847 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3848 set_flags = criu_svm_md->data.attrs[j].value;
3849 break;
3850 default:
3851 break;
3852 }
3853 }
3854
3855 /* CLR_FLAGS is not available via get_attr during checkpoint but
3856 * it needs to be inserted before restoring the ranges so
3857 * allocate extra space for it before calling set_attr
3858 */
3859 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3860 (num_attrs + 1);
3861 set_attr_new = krealloc(set_attr, set_attr_size,
3862 GFP_KERNEL);
3863 if (!set_attr_new) {
3864 ret = -ENOMEM;
3865 goto exit;
3866 }
3867 set_attr = set_attr_new;
3868
3869 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3870 sizeof(struct kfd_ioctl_svm_attribute));
3871 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3872 set_attr[num_attrs].value = ~set_flags;
3873
3874 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3875 criu_svm_md->data.size, num_attrs + 1,
3876 set_attr);
3877 if (ret) {
3878 pr_err("CRIU: failed to set range attributes\n");
3879 goto exit;
3880 }
3881
3882 i++;
3883 }
3884 exit:
3885 kfree(set_attr);
3886 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3887 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3888 criu_svm_md->data.start_addr);
3889 kfree(criu_svm_md);
3890 }
3891
3892 mmput(mm);
3893 return ret;
3894
3895 }
3896
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)3897 int kfd_criu_restore_svm(struct kfd_process *p,
3898 uint8_t __user *user_priv_ptr,
3899 uint64_t *priv_data_offset,
3900 uint64_t max_priv_data_size)
3901 {
3902 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3903 int nattr_common = 4, nattr_accessibility = 1;
3904 struct criu_svm_metadata *criu_svm_md = NULL;
3905 struct svm_range_list *svms = &p->svms;
3906 uint32_t num_devices;
3907 int ret = 0;
3908
3909 num_devices = p->n_pdds;
3910 /* Handle one SVM range object at a time, also the number of gpus are
3911 * assumed to be same on the restore node, checking must be done while
3912 * evaluating the topology earlier
3913 */
3914
3915 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3916 (nattr_common + nattr_accessibility * num_devices);
3917 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3918
3919 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3920 svm_attrs_size;
3921
3922 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3923 if (!criu_svm_md) {
3924 pr_err("failed to allocate memory to store svm metadata\n");
3925 return -ENOMEM;
3926 }
3927 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3928 ret = -EINVAL;
3929 goto exit;
3930 }
3931
3932 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3933 svm_priv_data_size);
3934 if (ret) {
3935 ret = -EFAULT;
3936 goto exit;
3937 }
3938 *priv_data_offset += svm_priv_data_size;
3939
3940 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3941
3942 return 0;
3943
3944
3945 exit:
3946 kfree(criu_svm_md);
3947 return ret;
3948 }
3949
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)3950 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3951 uint64_t *svm_priv_data_size)
3952 {
3953 uint64_t total_size, accessibility_size, common_attr_size;
3954 int nattr_common = 4, nattr_accessibility = 1;
3955 int num_devices = p->n_pdds;
3956 struct svm_range_list *svms;
3957 struct svm_range *prange;
3958 uint32_t count = 0;
3959
3960 *svm_priv_data_size = 0;
3961
3962 svms = &p->svms;
3963 if (!svms)
3964 return -EINVAL;
3965
3966 mutex_lock(&svms->lock);
3967 list_for_each_entry(prange, &svms->list, list) {
3968 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3969 prange, prange->start, prange->npages,
3970 prange->start + prange->npages - 1);
3971 count++;
3972 }
3973 mutex_unlock(&svms->lock);
3974
3975 *num_svm_ranges = count;
3976 /* Only the accessbility attributes need to be queried for all the gpus
3977 * individually, remaining ones are spanned across the entire process
3978 * regardless of the various gpu nodes. Of the remaining attributes,
3979 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
3980 *
3981 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
3982 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
3983 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
3984 * KFD_IOCTL_SVM_ATTR_GRANULARITY
3985 *
3986 * ** ACCESSBILITY ATTRIBUTES **
3987 * (Considered as one, type is altered during query, value is gpuid)
3988 * KFD_IOCTL_SVM_ATTR_ACCESS
3989 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
3990 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
3991 */
3992 if (*num_svm_ranges > 0) {
3993 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3994 nattr_common;
3995 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
3996 nattr_accessibility * num_devices;
3997
3998 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3999 common_attr_size + accessibility_size;
4000
4001 *svm_priv_data_size = *num_svm_ranges * total_size;
4002 }
4003
4004 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4005 *svm_priv_data_size);
4006 return 0;
4007 }
4008
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4009 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4010 uint8_t __user *user_priv_data,
4011 uint64_t *priv_data_offset)
4012 {
4013 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4014 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4015 uint64_t svm_priv_data_size, query_attr_size = 0;
4016 int index, nattr_common = 4, ret = 0;
4017 struct svm_range_list *svms;
4018 int num_devices = p->n_pdds;
4019 struct svm_range *prange;
4020 struct mm_struct *mm;
4021
4022 svms = &p->svms;
4023 if (!svms)
4024 return -EINVAL;
4025
4026 mm = get_task_mm(p->lead_thread);
4027 if (!mm) {
4028 pr_err("failed to get mm for the target process\n");
4029 return -ESRCH;
4030 }
4031
4032 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4033 (nattr_common + num_devices);
4034
4035 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4036 if (!query_attr) {
4037 ret = -ENOMEM;
4038 goto exit;
4039 }
4040
4041 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4042 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4043 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4044 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4045
4046 for (index = 0; index < num_devices; index++) {
4047 struct kfd_process_device *pdd = p->pdds[index];
4048
4049 query_attr[index + nattr_common].type =
4050 KFD_IOCTL_SVM_ATTR_ACCESS;
4051 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4052 }
4053
4054 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4055
4056 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4057 if (!svm_priv) {
4058 ret = -ENOMEM;
4059 goto exit_query;
4060 }
4061
4062 index = 0;
4063 list_for_each_entry(prange, &svms->list, list) {
4064
4065 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4066 svm_priv->start_addr = prange->start;
4067 svm_priv->size = prange->npages;
4068 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4069 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4070 prange, prange->start, prange->npages,
4071 prange->start + prange->npages - 1,
4072 prange->npages * PAGE_SIZE);
4073
4074 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4075 svm_priv->size,
4076 (nattr_common + num_devices),
4077 svm_priv->attrs);
4078 if (ret) {
4079 pr_err("CRIU: failed to obtain range attributes\n");
4080 goto exit_priv;
4081 }
4082
4083 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4084 svm_priv_data_size)) {
4085 pr_err("Failed to copy svm priv to user\n");
4086 ret = -EFAULT;
4087 goto exit_priv;
4088 }
4089
4090 *priv_data_offset += svm_priv_data_size;
4091
4092 }
4093
4094
4095 exit_priv:
4096 kfree(svm_priv);
4097 exit_query:
4098 kfree(query_attr);
4099 exit:
4100 mmput(mm);
4101 return ret;
4102 }
4103
4104 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4105 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4106 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4107 {
4108 struct mm_struct *mm = current->mm;
4109 int r;
4110
4111 start >>= PAGE_SHIFT;
4112 size >>= PAGE_SHIFT;
4113
4114 switch (op) {
4115 case KFD_IOCTL_SVM_OP_SET_ATTR:
4116 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4117 break;
4118 case KFD_IOCTL_SVM_OP_GET_ATTR:
4119 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4120 break;
4121 default:
4122 r = EINVAL;
4123 break;
4124 }
4125
4126 return r;
4127 }
4128