1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 * Ux500 support taken from snippets in the old Ux500 cryp driver
6 */
7
8 #include <crypto/aes.h>
9 #include <crypto/engine.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/internal/skcipher.h>
13 #include <crypto/scatterwalk.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/string.h>
26
27 #define DRIVER_NAME "stm32-cryp"
28
29 /* Bit [0] encrypt / decrypt */
30 #define FLG_ENCRYPT BIT(0)
31 /* Bit [8..1] algo & operation mode */
32 #define FLG_AES BIT(1)
33 #define FLG_DES BIT(2)
34 #define FLG_TDES BIT(3)
35 #define FLG_ECB BIT(4)
36 #define FLG_CBC BIT(5)
37 #define FLG_CTR BIT(6)
38 #define FLG_GCM BIT(7)
39 #define FLG_CCM BIT(8)
40 /* Mode mask = bits [15..0] */
41 #define FLG_MODE_MASK GENMASK(15, 0)
42 /* Bit [31..16] status */
43
44 /* Registers */
45 #define CRYP_CR 0x00000000
46 #define CRYP_SR 0x00000004
47 #define CRYP_DIN 0x00000008
48 #define CRYP_DOUT 0x0000000C
49 #define CRYP_DMACR 0x00000010
50 #define CRYP_IMSCR 0x00000014
51 #define CRYP_RISR 0x00000018
52 #define CRYP_MISR 0x0000001C
53 #define CRYP_K0LR 0x00000020
54 #define CRYP_K0RR 0x00000024
55 #define CRYP_K1LR 0x00000028
56 #define CRYP_K1RR 0x0000002C
57 #define CRYP_K2LR 0x00000030
58 #define CRYP_K2RR 0x00000034
59 #define CRYP_K3LR 0x00000038
60 #define CRYP_K3RR 0x0000003C
61 #define CRYP_IV0LR 0x00000040
62 #define CRYP_IV0RR 0x00000044
63 #define CRYP_IV1LR 0x00000048
64 #define CRYP_IV1RR 0x0000004C
65 #define CRYP_CSGCMCCM0R 0x00000050
66 #define CRYP_CSGCM0R 0x00000070
67
68 #define UX500_CRYP_CR 0x00000000
69 #define UX500_CRYP_SR 0x00000004
70 #define UX500_CRYP_DIN 0x00000008
71 #define UX500_CRYP_DINSIZE 0x0000000C
72 #define UX500_CRYP_DOUT 0x00000010
73 #define UX500_CRYP_DOUSIZE 0x00000014
74 #define UX500_CRYP_DMACR 0x00000018
75 #define UX500_CRYP_IMSC 0x0000001C
76 #define UX500_CRYP_RIS 0x00000020
77 #define UX500_CRYP_MIS 0x00000024
78 #define UX500_CRYP_K1L 0x00000028
79 #define UX500_CRYP_K1R 0x0000002C
80 #define UX500_CRYP_K2L 0x00000030
81 #define UX500_CRYP_K2R 0x00000034
82 #define UX500_CRYP_K3L 0x00000038
83 #define UX500_CRYP_K3R 0x0000003C
84 #define UX500_CRYP_K4L 0x00000040
85 #define UX500_CRYP_K4R 0x00000044
86 #define UX500_CRYP_IV0L 0x00000048
87 #define UX500_CRYP_IV0R 0x0000004C
88 #define UX500_CRYP_IV1L 0x00000050
89 #define UX500_CRYP_IV1R 0x00000054
90
91 /* Registers values */
92 #define CR_DEC_NOT_ENC 0x00000004
93 #define CR_TDES_ECB 0x00000000
94 #define CR_TDES_CBC 0x00000008
95 #define CR_DES_ECB 0x00000010
96 #define CR_DES_CBC 0x00000018
97 #define CR_AES_ECB 0x00000020
98 #define CR_AES_CBC 0x00000028
99 #define CR_AES_CTR 0x00000030
100 #define CR_AES_KP 0x00000038 /* Not on Ux500 */
101 #define CR_AES_XTS 0x00000038 /* Only on Ux500 */
102 #define CR_AES_GCM 0x00080000
103 #define CR_AES_CCM 0x00080008
104 #define CR_AES_UNKNOWN 0xFFFFFFFF
105 #define CR_ALGO_MASK 0x00080038
106 #define CR_DATA32 0x00000000
107 #define CR_DATA16 0x00000040
108 #define CR_DATA8 0x00000080
109 #define CR_DATA1 0x000000C0
110 #define CR_KEY128 0x00000000
111 #define CR_KEY192 0x00000100
112 #define CR_KEY256 0x00000200
113 #define CR_KEYRDEN 0x00000400 /* Only on Ux500 */
114 #define CR_KSE 0x00000800 /* Only on Ux500 */
115 #define CR_FFLUSH 0x00004000
116 #define CR_CRYPEN 0x00008000
117 #define CR_PH_INIT 0x00000000
118 #define CR_PH_HEADER 0x00010000
119 #define CR_PH_PAYLOAD 0x00020000
120 #define CR_PH_FINAL 0x00030000
121 #define CR_PH_MASK 0x00030000
122 #define CR_NBPBL_SHIFT 20
123
124 #define SR_BUSY 0x00000010
125 #define SR_OFNE 0x00000004
126
127 #define IMSCR_IN BIT(0)
128 #define IMSCR_OUT BIT(1)
129
130 #define MISR_IN BIT(0)
131 #define MISR_OUT BIT(1)
132
133 /* Misc */
134 #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
135 #define GCM_CTR_INIT 2
136 #define CRYP_AUTOSUSPEND_DELAY 50
137
138 struct stm32_cryp_caps {
139 bool aeads_support;
140 bool linear_aes_key;
141 bool kp_mode;
142 bool iv_protection;
143 bool swap_final;
144 bool padding_wa;
145 u32 cr;
146 u32 sr;
147 u32 din;
148 u32 dout;
149 u32 imsc;
150 u32 mis;
151 u32 k1l;
152 u32 k1r;
153 u32 k3r;
154 u32 iv0l;
155 u32 iv0r;
156 u32 iv1l;
157 u32 iv1r;
158 };
159
160 struct stm32_cryp_ctx {
161 struct stm32_cryp *cryp;
162 int keylen;
163 __be32 key[AES_KEYSIZE_256 / sizeof(u32)];
164 unsigned long flags;
165 };
166
167 struct stm32_cryp_reqctx {
168 unsigned long mode;
169 };
170
171 struct stm32_cryp {
172 struct list_head list;
173 struct device *dev;
174 void __iomem *regs;
175 struct clk *clk;
176 unsigned long flags;
177 u32 irq_status;
178 const struct stm32_cryp_caps *caps;
179 struct stm32_cryp_ctx *ctx;
180
181 struct crypto_engine *engine;
182
183 struct skcipher_request *req;
184 struct aead_request *areq;
185
186 size_t authsize;
187 size_t hw_blocksize;
188
189 size_t payload_in;
190 size_t header_in;
191 size_t payload_out;
192
193 struct scatterlist *out_sg;
194
195 struct scatter_walk in_walk;
196 struct scatter_walk out_walk;
197
198 __be32 last_ctr[4];
199 u32 gcm_ctr;
200 };
201
202 struct stm32_cryp_list {
203 struct list_head dev_list;
204 spinlock_t lock; /* protect dev_list */
205 };
206
207 static struct stm32_cryp_list cryp_list = {
208 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
209 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
210 };
211
is_aes(struct stm32_cryp * cryp)212 static inline bool is_aes(struct stm32_cryp *cryp)
213 {
214 return cryp->flags & FLG_AES;
215 }
216
is_des(struct stm32_cryp * cryp)217 static inline bool is_des(struct stm32_cryp *cryp)
218 {
219 return cryp->flags & FLG_DES;
220 }
221
is_tdes(struct stm32_cryp * cryp)222 static inline bool is_tdes(struct stm32_cryp *cryp)
223 {
224 return cryp->flags & FLG_TDES;
225 }
226
is_ecb(struct stm32_cryp * cryp)227 static inline bool is_ecb(struct stm32_cryp *cryp)
228 {
229 return cryp->flags & FLG_ECB;
230 }
231
is_cbc(struct stm32_cryp * cryp)232 static inline bool is_cbc(struct stm32_cryp *cryp)
233 {
234 return cryp->flags & FLG_CBC;
235 }
236
is_ctr(struct stm32_cryp * cryp)237 static inline bool is_ctr(struct stm32_cryp *cryp)
238 {
239 return cryp->flags & FLG_CTR;
240 }
241
is_gcm(struct stm32_cryp * cryp)242 static inline bool is_gcm(struct stm32_cryp *cryp)
243 {
244 return cryp->flags & FLG_GCM;
245 }
246
is_ccm(struct stm32_cryp * cryp)247 static inline bool is_ccm(struct stm32_cryp *cryp)
248 {
249 return cryp->flags & FLG_CCM;
250 }
251
is_encrypt(struct stm32_cryp * cryp)252 static inline bool is_encrypt(struct stm32_cryp *cryp)
253 {
254 return cryp->flags & FLG_ENCRYPT;
255 }
256
is_decrypt(struct stm32_cryp * cryp)257 static inline bool is_decrypt(struct stm32_cryp *cryp)
258 {
259 return !is_encrypt(cryp);
260 }
261
stm32_cryp_read(struct stm32_cryp * cryp,u32 ofst)262 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
263 {
264 return readl_relaxed(cryp->regs + ofst);
265 }
266
stm32_cryp_write(struct stm32_cryp * cryp,u32 ofst,u32 val)267 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
268 {
269 writel_relaxed(val, cryp->regs + ofst);
270 }
271
stm32_cryp_wait_busy(struct stm32_cryp * cryp)272 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
273 {
274 u32 status;
275
276 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
277 !(status & SR_BUSY), 10, 100000);
278 }
279
stm32_cryp_enable(struct stm32_cryp * cryp)280 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
281 {
282 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
283 cryp->regs + cryp->caps->cr);
284 }
285
stm32_cryp_wait_enable(struct stm32_cryp * cryp)286 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
287 {
288 u32 status;
289
290 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
291 !(status & CR_CRYPEN), 10, 100000);
292 }
293
stm32_cryp_wait_output(struct stm32_cryp * cryp)294 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
295 {
296 u32 status;
297
298 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
299 status & SR_OFNE, 10, 100000);
300 }
301
stm32_cryp_key_read_enable(struct stm32_cryp * cryp)302 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
303 {
304 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
305 cryp->regs + cryp->caps->cr);
306 }
307
stm32_cryp_key_read_disable(struct stm32_cryp * cryp)308 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
309 {
310 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
311 cryp->regs + cryp->caps->cr);
312 }
313
314 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
315 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
316
stm32_cryp_find_dev(struct stm32_cryp_ctx * ctx)317 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
318 {
319 struct stm32_cryp *tmp, *cryp = NULL;
320
321 spin_lock_bh(&cryp_list.lock);
322 if (!ctx->cryp) {
323 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
324 cryp = tmp;
325 break;
326 }
327 ctx->cryp = cryp;
328 } else {
329 cryp = ctx->cryp;
330 }
331
332 spin_unlock_bh(&cryp_list.lock);
333
334 return cryp;
335 }
336
stm32_cryp_hw_write_iv(struct stm32_cryp * cryp,__be32 * iv)337 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
338 {
339 if (!iv)
340 return;
341
342 stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
343 stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
344
345 if (is_aes(cryp)) {
346 stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
347 stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
348 }
349 }
350
stm32_cryp_get_iv(struct stm32_cryp * cryp)351 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
352 {
353 struct skcipher_request *req = cryp->req;
354 __be32 *tmp = (void *)req->iv;
355
356 if (!tmp)
357 return;
358
359 if (cryp->caps->iv_protection)
360 stm32_cryp_key_read_enable(cryp);
361
362 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
363 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
364
365 if (is_aes(cryp)) {
366 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
367 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
368 }
369
370 if (cryp->caps->iv_protection)
371 stm32_cryp_key_read_disable(cryp);
372 }
373
374 /**
375 * ux500_swap_bits_in_byte() - mirror the bits in a byte
376 * @b: the byte to be mirrored
377 *
378 * The bits are swapped the following way:
379 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
380 * nibble 2 (n2) bits 4-7.
381 *
382 * Nibble 1 (n1):
383 * (The "old" (moved) bit is replaced with a zero)
384 * 1. Move bit 6 and 7, 4 positions to the left.
385 * 2. Move bit 3 and 5, 2 positions to the left.
386 * 3. Move bit 1-4, 1 position to the left.
387 *
388 * Nibble 2 (n2):
389 * 1. Move bit 0 and 1, 4 positions to the right.
390 * 2. Move bit 2 and 4, 2 positions to the right.
391 * 3. Move bit 3-6, 1 position to the right.
392 *
393 * Combine the two nibbles to a complete and swapped byte.
394 */
ux500_swap_bits_in_byte(u8 b)395 static inline u8 ux500_swap_bits_in_byte(u8 b)
396 {
397 #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
398 #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
399 right shift 2 */
400 #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
401 right shift 1 */
402 #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
403 #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
404 left shift 2 */
405 #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
406 left shift 1 */
407
408 u8 n1;
409 u8 n2;
410
411 /* Swap most significant nibble */
412 /* Right shift 4, bits 6 and 7 */
413 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
414 /* Right shift 2, bits 3 and 5 */
415 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
416 /* Right shift 1, bits 1-4 */
417 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
418
419 /* Swap least significant nibble */
420 /* Left shift 4, bits 0 and 1 */
421 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
422 /* Left shift 2, bits 2 and 4 */
423 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
424 /* Left shift 1, bits 3-6 */
425 n2 = (n2 & L_SHIFT_1_MASK) << 1;
426
427 return n1 | n2;
428 }
429
430 /**
431 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
432 * @in: key to swizzle
433 * @out: swizzled key
434 * @len: length of key, in bytes
435 *
436 * This "key swizzling procedure" is described in the examples in the
437 * DB8500 design specification. There is no real description of why
438 * the bits have been arranged like this in the hardware.
439 */
ux500_swizzle_key(const u8 * in,u8 * out,u32 len)440 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
441 {
442 int i = 0;
443 int bpw = sizeof(u32);
444 int j;
445 int index = 0;
446
447 j = len - bpw;
448 while (j >= 0) {
449 for (i = 0; i < bpw; i++) {
450 index = len - j - bpw + i;
451 out[j + i] =
452 ux500_swap_bits_in_byte(in[index]);
453 }
454 j -= bpw;
455 }
456 }
457
stm32_cryp_hw_write_key(struct stm32_cryp * c)458 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
459 {
460 unsigned int i;
461 int r_id;
462
463 if (is_des(c)) {
464 stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
465 stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
466 return;
467 }
468
469 /*
470 * On the Ux500 the AES key is considered as a single bit sequence
471 * of 128, 192 or 256 bits length. It is written linearly into the
472 * registers from K1L and down, and need to be processed to become
473 * a proper big-endian bit sequence.
474 */
475 if (is_aes(c) && c->caps->linear_aes_key) {
476 u32 tmpkey[8];
477
478 ux500_swizzle_key((u8 *)c->ctx->key,
479 (u8 *)tmpkey, c->ctx->keylen);
480
481 r_id = c->caps->k1l;
482 for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
483 stm32_cryp_write(c, r_id, tmpkey[i]);
484
485 return;
486 }
487
488 r_id = c->caps->k3r;
489 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
490 stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
491 }
492
stm32_cryp_get_hw_mode(struct stm32_cryp * cryp)493 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
494 {
495 if (is_aes(cryp) && is_ecb(cryp))
496 return CR_AES_ECB;
497
498 if (is_aes(cryp) && is_cbc(cryp))
499 return CR_AES_CBC;
500
501 if (is_aes(cryp) && is_ctr(cryp))
502 return CR_AES_CTR;
503
504 if (is_aes(cryp) && is_gcm(cryp))
505 return CR_AES_GCM;
506
507 if (is_aes(cryp) && is_ccm(cryp))
508 return CR_AES_CCM;
509
510 if (is_des(cryp) && is_ecb(cryp))
511 return CR_DES_ECB;
512
513 if (is_des(cryp) && is_cbc(cryp))
514 return CR_DES_CBC;
515
516 if (is_tdes(cryp) && is_ecb(cryp))
517 return CR_TDES_ECB;
518
519 if (is_tdes(cryp) && is_cbc(cryp))
520 return CR_TDES_CBC;
521
522 dev_err(cryp->dev, "Unknown mode\n");
523 return CR_AES_UNKNOWN;
524 }
525
stm32_cryp_get_input_text_len(struct stm32_cryp * cryp)526 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
527 {
528 return is_encrypt(cryp) ? cryp->areq->cryptlen :
529 cryp->areq->cryptlen - cryp->authsize;
530 }
531
stm32_cryp_gcm_init(struct stm32_cryp * cryp,u32 cfg)532 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
533 {
534 int ret;
535 __be32 iv[4];
536
537 /* Phase 1 : init */
538 memcpy(iv, cryp->areq->iv, 12);
539 iv[3] = cpu_to_be32(GCM_CTR_INIT);
540 cryp->gcm_ctr = GCM_CTR_INIT;
541 stm32_cryp_hw_write_iv(cryp, iv);
542
543 stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
544
545 /* Wait for end of processing */
546 ret = stm32_cryp_wait_enable(cryp);
547 if (ret) {
548 dev_err(cryp->dev, "Timeout (gcm init)\n");
549 return ret;
550 }
551
552 /* Prepare next phase */
553 if (cryp->areq->assoclen) {
554 cfg |= CR_PH_HEADER;
555 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
556 } else if (stm32_cryp_get_input_text_len(cryp)) {
557 cfg |= CR_PH_PAYLOAD;
558 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
559 }
560
561 return 0;
562 }
563
stm32_crypt_gcmccm_end_header(struct stm32_cryp * cryp)564 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
565 {
566 u32 cfg;
567 int err;
568
569 /* Check if whole header written */
570 if (!cryp->header_in) {
571 /* Wait for completion */
572 err = stm32_cryp_wait_busy(cryp);
573 if (err) {
574 dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
575 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
576 stm32_cryp_finish_req(cryp, err);
577 return;
578 }
579
580 if (stm32_cryp_get_input_text_len(cryp)) {
581 /* Phase 3 : payload */
582 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
583 cfg &= ~CR_CRYPEN;
584 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
585
586 cfg &= ~CR_PH_MASK;
587 cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
588 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
589 } else {
590 /*
591 * Phase 4 : tag.
592 * Nothing to read, nothing to write, caller have to
593 * end request
594 */
595 }
596 }
597 }
598
stm32_cryp_write_ccm_first_header(struct stm32_cryp * cryp)599 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
600 {
601 size_t written;
602 size_t len;
603 u32 alen = cryp->areq->assoclen;
604 u32 block[AES_BLOCK_32] = {0};
605 u8 *b8 = (u8 *)block;
606
607 if (alen <= 65280) {
608 /* Write first u32 of B1 */
609 b8[0] = (alen >> 8) & 0xFF;
610 b8[1] = alen & 0xFF;
611 len = 2;
612 } else {
613 /* Build the two first u32 of B1 */
614 b8[0] = 0xFF;
615 b8[1] = 0xFE;
616 b8[2] = (alen & 0xFF000000) >> 24;
617 b8[3] = (alen & 0x00FF0000) >> 16;
618 b8[4] = (alen & 0x0000FF00) >> 8;
619 b8[5] = alen & 0x000000FF;
620 len = 6;
621 }
622
623 written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
624
625 scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
626
627 writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
628
629 cryp->header_in -= written;
630
631 stm32_crypt_gcmccm_end_header(cryp);
632 }
633
stm32_cryp_ccm_init(struct stm32_cryp * cryp,u32 cfg)634 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
635 {
636 int ret;
637 u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
638 u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
639 __be32 *bd;
640 u32 *d;
641 unsigned int i, textlen;
642
643 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
644 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
645 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
646 iv[AES_BLOCK_SIZE - 1] = 1;
647 stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
648
649 /* Build B0 */
650 memcpy(b0, iv, AES_BLOCK_SIZE);
651
652 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
653
654 if (cryp->areq->assoclen)
655 b0[0] |= 0x40;
656
657 textlen = stm32_cryp_get_input_text_len(cryp);
658
659 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
660 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
661
662 /* Enable HW */
663 stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
664
665 /* Write B0 */
666 d = (u32 *)b0;
667 bd = (__be32 *)b0;
668
669 for (i = 0; i < AES_BLOCK_32; i++) {
670 u32 xd = d[i];
671
672 if (!cryp->caps->padding_wa)
673 xd = be32_to_cpu(bd[i]);
674 stm32_cryp_write(cryp, cryp->caps->din, xd);
675 }
676
677 /* Wait for end of processing */
678 ret = stm32_cryp_wait_enable(cryp);
679 if (ret) {
680 dev_err(cryp->dev, "Timeout (ccm init)\n");
681 return ret;
682 }
683
684 /* Prepare next phase */
685 if (cryp->areq->assoclen) {
686 cfg |= CR_PH_HEADER | CR_CRYPEN;
687 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
688
689 /* Write first (special) block (may move to next phase [payload]) */
690 stm32_cryp_write_ccm_first_header(cryp);
691 } else if (stm32_cryp_get_input_text_len(cryp)) {
692 cfg |= CR_PH_PAYLOAD;
693 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
694 }
695
696 return 0;
697 }
698
stm32_cryp_hw_init(struct stm32_cryp * cryp)699 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
700 {
701 int ret;
702 u32 cfg, hw_mode;
703
704 pm_runtime_get_sync(cryp->dev);
705
706 /* Disable interrupt */
707 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
708
709 /* Set configuration */
710 cfg = CR_DATA8 | CR_FFLUSH;
711
712 switch (cryp->ctx->keylen) {
713 case AES_KEYSIZE_128:
714 cfg |= CR_KEY128;
715 break;
716
717 case AES_KEYSIZE_192:
718 cfg |= CR_KEY192;
719 break;
720
721 default:
722 case AES_KEYSIZE_256:
723 cfg |= CR_KEY256;
724 break;
725 }
726
727 hw_mode = stm32_cryp_get_hw_mode(cryp);
728 if (hw_mode == CR_AES_UNKNOWN)
729 return -EINVAL;
730
731 /* AES ECB/CBC decrypt: run key preparation first */
732 if (is_decrypt(cryp) &&
733 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
734 /* Configure in key preparation mode */
735 if (cryp->caps->kp_mode)
736 stm32_cryp_write(cryp, cryp->caps->cr,
737 cfg | CR_AES_KP);
738 else
739 stm32_cryp_write(cryp,
740 cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
741
742 /* Set key only after full configuration done */
743 stm32_cryp_hw_write_key(cryp);
744
745 /* Start prepare key */
746 stm32_cryp_enable(cryp);
747 /* Wait for end of processing */
748 ret = stm32_cryp_wait_busy(cryp);
749 if (ret) {
750 dev_err(cryp->dev, "Timeout (key preparation)\n");
751 return ret;
752 }
753
754 cfg |= hw_mode | CR_DEC_NOT_ENC;
755
756 /* Apply updated config (Decrypt + algo) and flush */
757 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
758 } else {
759 cfg |= hw_mode;
760 if (is_decrypt(cryp))
761 cfg |= CR_DEC_NOT_ENC;
762
763 /* Apply config and flush */
764 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
765
766 /* Set key only after configuration done */
767 stm32_cryp_hw_write_key(cryp);
768 }
769
770 switch (hw_mode) {
771 case CR_AES_GCM:
772 case CR_AES_CCM:
773 /* Phase 1 : init */
774 if (hw_mode == CR_AES_CCM)
775 ret = stm32_cryp_ccm_init(cryp, cfg);
776 else
777 ret = stm32_cryp_gcm_init(cryp, cfg);
778
779 if (ret)
780 return ret;
781
782 break;
783
784 case CR_DES_CBC:
785 case CR_TDES_CBC:
786 case CR_AES_CBC:
787 case CR_AES_CTR:
788 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
789 break;
790
791 default:
792 break;
793 }
794
795 /* Enable now */
796 stm32_cryp_enable(cryp);
797
798 return 0;
799 }
800
stm32_cryp_finish_req(struct stm32_cryp * cryp,int err)801 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
802 {
803 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
804 /* Phase 4 : output tag */
805 err = stm32_cryp_read_auth_tag(cryp);
806
807 if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
808 stm32_cryp_get_iv(cryp);
809
810 pm_runtime_mark_last_busy(cryp->dev);
811 pm_runtime_put_autosuspend(cryp->dev);
812
813 if (is_gcm(cryp) || is_ccm(cryp))
814 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
815 else
816 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
817 err);
818 }
819
stm32_cryp_cpu_start(struct stm32_cryp * cryp)820 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
821 {
822 /* Enable interrupt and let the IRQ handler do everything */
823 stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
824
825 return 0;
826 }
827
828 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
829
stm32_cryp_init_tfm(struct crypto_skcipher * tfm)830 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
831 {
832 crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
833
834 return 0;
835 }
836
837 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
838
stm32_cryp_aes_aead_init(struct crypto_aead * tfm)839 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
840 {
841 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
842
843 return 0;
844 }
845
stm32_cryp_crypt(struct skcipher_request * req,unsigned long mode)846 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
847 {
848 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
849 crypto_skcipher_reqtfm(req));
850 struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
851 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
852
853 if (!cryp)
854 return -ENODEV;
855
856 rctx->mode = mode;
857
858 return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
859 }
860
stm32_cryp_aead_crypt(struct aead_request * req,unsigned long mode)861 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
862 {
863 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
864 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
865 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
866
867 if (!cryp)
868 return -ENODEV;
869
870 rctx->mode = mode;
871
872 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
873 }
874
stm32_cryp_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)875 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
876 unsigned int keylen)
877 {
878 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
879
880 memcpy(ctx->key, key, keylen);
881 ctx->keylen = keylen;
882
883 return 0;
884 }
885
stm32_cryp_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)886 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
887 unsigned int keylen)
888 {
889 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
890 keylen != AES_KEYSIZE_256)
891 return -EINVAL;
892 else
893 return stm32_cryp_setkey(tfm, key, keylen);
894 }
895
stm32_cryp_des_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)896 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
897 unsigned int keylen)
898 {
899 return verify_skcipher_des_key(tfm, key) ?:
900 stm32_cryp_setkey(tfm, key, keylen);
901 }
902
stm32_cryp_tdes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)903 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
904 unsigned int keylen)
905 {
906 return verify_skcipher_des3_key(tfm, key) ?:
907 stm32_cryp_setkey(tfm, key, keylen);
908 }
909
stm32_cryp_aes_aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)910 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
911 unsigned int keylen)
912 {
913 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
914
915 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
916 keylen != AES_KEYSIZE_256)
917 return -EINVAL;
918
919 memcpy(ctx->key, key, keylen);
920 ctx->keylen = keylen;
921
922 return 0;
923 }
924
stm32_cryp_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)925 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
926 unsigned int authsize)
927 {
928 switch (authsize) {
929 case 4:
930 case 8:
931 case 12:
932 case 13:
933 case 14:
934 case 15:
935 case 16:
936 break;
937 default:
938 return -EINVAL;
939 }
940
941 return 0;
942 }
943
stm32_cryp_aes_ccm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)944 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
945 unsigned int authsize)
946 {
947 switch (authsize) {
948 case 4:
949 case 6:
950 case 8:
951 case 10:
952 case 12:
953 case 14:
954 case 16:
955 break;
956 default:
957 return -EINVAL;
958 }
959
960 return 0;
961 }
962
stm32_cryp_aes_ecb_encrypt(struct skcipher_request * req)963 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
964 {
965 if (req->cryptlen % AES_BLOCK_SIZE)
966 return -EINVAL;
967
968 if (req->cryptlen == 0)
969 return 0;
970
971 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
972 }
973
stm32_cryp_aes_ecb_decrypt(struct skcipher_request * req)974 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
975 {
976 if (req->cryptlen % AES_BLOCK_SIZE)
977 return -EINVAL;
978
979 if (req->cryptlen == 0)
980 return 0;
981
982 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
983 }
984
stm32_cryp_aes_cbc_encrypt(struct skcipher_request * req)985 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
986 {
987 if (req->cryptlen % AES_BLOCK_SIZE)
988 return -EINVAL;
989
990 if (req->cryptlen == 0)
991 return 0;
992
993 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
994 }
995
stm32_cryp_aes_cbc_decrypt(struct skcipher_request * req)996 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
997 {
998 if (req->cryptlen % AES_BLOCK_SIZE)
999 return -EINVAL;
1000
1001 if (req->cryptlen == 0)
1002 return 0;
1003
1004 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1005 }
1006
stm32_cryp_aes_ctr_encrypt(struct skcipher_request * req)1007 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1008 {
1009 if (req->cryptlen == 0)
1010 return 0;
1011
1012 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1013 }
1014
stm32_cryp_aes_ctr_decrypt(struct skcipher_request * req)1015 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1016 {
1017 if (req->cryptlen == 0)
1018 return 0;
1019
1020 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1021 }
1022
stm32_cryp_aes_gcm_encrypt(struct aead_request * req)1023 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1024 {
1025 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1026 }
1027
stm32_cryp_aes_gcm_decrypt(struct aead_request * req)1028 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1029 {
1030 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1031 }
1032
crypto_ccm_check_iv(const u8 * iv)1033 static inline int crypto_ccm_check_iv(const u8 *iv)
1034 {
1035 /* 2 <= L <= 8, so 1 <= L' <= 7. */
1036 if (iv[0] < 1 || iv[0] > 7)
1037 return -EINVAL;
1038
1039 return 0;
1040 }
1041
stm32_cryp_aes_ccm_encrypt(struct aead_request * req)1042 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1043 {
1044 int err;
1045
1046 err = crypto_ccm_check_iv(req->iv);
1047 if (err)
1048 return err;
1049
1050 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1051 }
1052
stm32_cryp_aes_ccm_decrypt(struct aead_request * req)1053 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1054 {
1055 int err;
1056
1057 err = crypto_ccm_check_iv(req->iv);
1058 if (err)
1059 return err;
1060
1061 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1062 }
1063
stm32_cryp_des_ecb_encrypt(struct skcipher_request * req)1064 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1065 {
1066 if (req->cryptlen % DES_BLOCK_SIZE)
1067 return -EINVAL;
1068
1069 if (req->cryptlen == 0)
1070 return 0;
1071
1072 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1073 }
1074
stm32_cryp_des_ecb_decrypt(struct skcipher_request * req)1075 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1076 {
1077 if (req->cryptlen % DES_BLOCK_SIZE)
1078 return -EINVAL;
1079
1080 if (req->cryptlen == 0)
1081 return 0;
1082
1083 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1084 }
1085
stm32_cryp_des_cbc_encrypt(struct skcipher_request * req)1086 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1087 {
1088 if (req->cryptlen % DES_BLOCK_SIZE)
1089 return -EINVAL;
1090
1091 if (req->cryptlen == 0)
1092 return 0;
1093
1094 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1095 }
1096
stm32_cryp_des_cbc_decrypt(struct skcipher_request * req)1097 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1098 {
1099 if (req->cryptlen % DES_BLOCK_SIZE)
1100 return -EINVAL;
1101
1102 if (req->cryptlen == 0)
1103 return 0;
1104
1105 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1106 }
1107
stm32_cryp_tdes_ecb_encrypt(struct skcipher_request * req)1108 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1109 {
1110 if (req->cryptlen % DES_BLOCK_SIZE)
1111 return -EINVAL;
1112
1113 if (req->cryptlen == 0)
1114 return 0;
1115
1116 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1117 }
1118
stm32_cryp_tdes_ecb_decrypt(struct skcipher_request * req)1119 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1120 {
1121 if (req->cryptlen % DES_BLOCK_SIZE)
1122 return -EINVAL;
1123
1124 if (req->cryptlen == 0)
1125 return 0;
1126
1127 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1128 }
1129
stm32_cryp_tdes_cbc_encrypt(struct skcipher_request * req)1130 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1131 {
1132 if (req->cryptlen % DES_BLOCK_SIZE)
1133 return -EINVAL;
1134
1135 if (req->cryptlen == 0)
1136 return 0;
1137
1138 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1139 }
1140
stm32_cryp_tdes_cbc_decrypt(struct skcipher_request * req)1141 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1142 {
1143 if (req->cryptlen % DES_BLOCK_SIZE)
1144 return -EINVAL;
1145
1146 if (req->cryptlen == 0)
1147 return 0;
1148
1149 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1150 }
1151
stm32_cryp_prepare_req(struct skcipher_request * req,struct aead_request * areq)1152 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1153 struct aead_request *areq)
1154 {
1155 struct stm32_cryp_ctx *ctx;
1156 struct stm32_cryp *cryp;
1157 struct stm32_cryp_reqctx *rctx;
1158 struct scatterlist *in_sg;
1159 int ret;
1160
1161 if (!req && !areq)
1162 return -EINVAL;
1163
1164 ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1165 crypto_aead_ctx(crypto_aead_reqtfm(areq));
1166
1167 cryp = ctx->cryp;
1168
1169 rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1170 rctx->mode &= FLG_MODE_MASK;
1171
1172 ctx->cryp = cryp;
1173
1174 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1175 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1176 cryp->ctx = ctx;
1177
1178 if (req) {
1179 cryp->req = req;
1180 cryp->areq = NULL;
1181 cryp->header_in = 0;
1182 cryp->payload_in = req->cryptlen;
1183 cryp->payload_out = req->cryptlen;
1184 cryp->authsize = 0;
1185 } else {
1186 /*
1187 * Length of input and output data:
1188 * Encryption case:
1189 * INPUT = AssocData || PlainText
1190 * <- assoclen -> <- cryptlen ->
1191 *
1192 * OUTPUT = AssocData || CipherText || AuthTag
1193 * <- assoclen -> <-- cryptlen --> <- authsize ->
1194 *
1195 * Decryption case:
1196 * INPUT = AssocData || CipherTex || AuthTag
1197 * <- assoclen ---> <---------- cryptlen ---------->
1198 *
1199 * OUTPUT = AssocData || PlainText
1200 * <- assoclen -> <- cryptlen - authsize ->
1201 */
1202 cryp->areq = areq;
1203 cryp->req = NULL;
1204 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1205 if (is_encrypt(cryp)) {
1206 cryp->payload_in = areq->cryptlen;
1207 cryp->header_in = areq->assoclen;
1208 cryp->payload_out = areq->cryptlen;
1209 } else {
1210 cryp->payload_in = areq->cryptlen - cryp->authsize;
1211 cryp->header_in = areq->assoclen;
1212 cryp->payload_out = cryp->payload_in;
1213 }
1214 }
1215
1216 in_sg = req ? req->src : areq->src;
1217 scatterwalk_start(&cryp->in_walk, in_sg);
1218
1219 cryp->out_sg = req ? req->dst : areq->dst;
1220 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1221
1222 if (is_gcm(cryp) || is_ccm(cryp)) {
1223 /* In output, jump after assoc data */
1224 scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1225 }
1226
1227 if (is_ctr(cryp))
1228 memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1229
1230 ret = stm32_cryp_hw_init(cryp);
1231 return ret;
1232 }
1233
stm32_cryp_cipher_one_req(struct crypto_engine * engine,void * areq)1234 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1235 {
1236 struct skcipher_request *req = container_of(areq,
1237 struct skcipher_request,
1238 base);
1239 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1240 crypto_skcipher_reqtfm(req));
1241 struct stm32_cryp *cryp = ctx->cryp;
1242
1243 if (!cryp)
1244 return -ENODEV;
1245
1246 return stm32_cryp_prepare_req(req, NULL) ?:
1247 stm32_cryp_cpu_start(cryp);
1248 }
1249
stm32_cryp_aead_one_req(struct crypto_engine * engine,void * areq)1250 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1251 {
1252 struct aead_request *req = container_of(areq, struct aead_request,
1253 base);
1254 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1255 struct stm32_cryp *cryp = ctx->cryp;
1256 int err;
1257
1258 if (!cryp)
1259 return -ENODEV;
1260
1261 err = stm32_cryp_prepare_req(NULL, req);
1262 if (err)
1263 return err;
1264
1265 if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1266 /* No input data to process: get tag and finish */
1267 stm32_cryp_finish_req(cryp, 0);
1268 return 0;
1269 }
1270
1271 return stm32_cryp_cpu_start(cryp);
1272 }
1273
stm32_cryp_read_auth_tag(struct stm32_cryp * cryp)1274 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1275 {
1276 u32 cfg, size_bit;
1277 unsigned int i;
1278 int ret = 0;
1279
1280 /* Update Config */
1281 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1282
1283 cfg &= ~CR_PH_MASK;
1284 cfg |= CR_PH_FINAL;
1285 cfg &= ~CR_DEC_NOT_ENC;
1286 cfg |= CR_CRYPEN;
1287
1288 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1289
1290 if (is_gcm(cryp)) {
1291 /* GCM: write aad and payload size (in bits) */
1292 size_bit = cryp->areq->assoclen * 8;
1293 if (cryp->caps->swap_final)
1294 size_bit = (__force u32)cpu_to_be32(size_bit);
1295
1296 stm32_cryp_write(cryp, cryp->caps->din, 0);
1297 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1298
1299 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1300 cryp->areq->cryptlen - cryp->authsize;
1301 size_bit *= 8;
1302 if (cryp->caps->swap_final)
1303 size_bit = (__force u32)cpu_to_be32(size_bit);
1304
1305 stm32_cryp_write(cryp, cryp->caps->din, 0);
1306 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1307 } else {
1308 /* CCM: write CTR0 */
1309 u32 iv32[AES_BLOCK_32];
1310 u8 *iv = (u8 *)iv32;
1311 __be32 *biv = (__be32 *)iv32;
1312
1313 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1314 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1315
1316 for (i = 0; i < AES_BLOCK_32; i++) {
1317 u32 xiv = iv32[i];
1318
1319 if (!cryp->caps->padding_wa)
1320 xiv = be32_to_cpu(biv[i]);
1321 stm32_cryp_write(cryp, cryp->caps->din, xiv);
1322 }
1323 }
1324
1325 /* Wait for output data */
1326 ret = stm32_cryp_wait_output(cryp);
1327 if (ret) {
1328 dev_err(cryp->dev, "Timeout (read tag)\n");
1329 return ret;
1330 }
1331
1332 if (is_encrypt(cryp)) {
1333 u32 out_tag[AES_BLOCK_32];
1334
1335 /* Get and write tag */
1336 readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1337 scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1338 } else {
1339 /* Get and check tag */
1340 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1341
1342 scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1343 readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1344
1345 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1346 ret = -EBADMSG;
1347 }
1348
1349 /* Disable cryp */
1350 cfg &= ~CR_CRYPEN;
1351 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1352
1353 return ret;
1354 }
1355
stm32_cryp_check_ctr_counter(struct stm32_cryp * cryp)1356 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1357 {
1358 u32 cr;
1359
1360 if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1361 /*
1362 * In this case, we need to increment manually the ctr counter,
1363 * as HW doesn't handle the U32 carry.
1364 */
1365 crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1366
1367 cr = stm32_cryp_read(cryp, cryp->caps->cr);
1368 stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1369
1370 stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1371
1372 stm32_cryp_write(cryp, cryp->caps->cr, cr);
1373 }
1374
1375 /* The IV registers are BE */
1376 cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1377 cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1378 cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1379 cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1380 }
1381
stm32_cryp_irq_read_data(struct stm32_cryp * cryp)1382 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1383 {
1384 u32 block[AES_BLOCK_32];
1385
1386 readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1387 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1388 cryp->payload_out), 1);
1389 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1390 cryp->payload_out);
1391 }
1392
stm32_cryp_irq_write_block(struct stm32_cryp * cryp)1393 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1394 {
1395 u32 block[AES_BLOCK_32] = {0};
1396
1397 scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1398 cryp->payload_in), 0);
1399 writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1400 cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1401 }
1402
stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp * cryp)1403 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1404 {
1405 int err;
1406 u32 cfg, block[AES_BLOCK_32] = {0};
1407 unsigned int i;
1408
1409 /* 'Special workaround' procedure described in the datasheet */
1410
1411 /* a) disable ip */
1412 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1413 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1414 cfg &= ~CR_CRYPEN;
1415 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1416
1417 /* b) Update IV1R */
1418 stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1419
1420 /* c) change mode to CTR */
1421 cfg &= ~CR_ALGO_MASK;
1422 cfg |= CR_AES_CTR;
1423 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1424
1425 /* a) enable IP */
1426 cfg |= CR_CRYPEN;
1427 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1428
1429 /* b) pad and write the last block */
1430 stm32_cryp_irq_write_block(cryp);
1431 /* wait end of process */
1432 err = stm32_cryp_wait_output(cryp);
1433 if (err) {
1434 dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1435 return stm32_cryp_finish_req(cryp, err);
1436 }
1437
1438 /* c) get and store encrypted data */
1439 /*
1440 * Same code as stm32_cryp_irq_read_data(), but we want to store
1441 * block value
1442 */
1443 readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1444
1445 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1446 cryp->payload_out), 1);
1447 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1448 cryp->payload_out);
1449
1450 /* d) change mode back to AES GCM */
1451 cfg &= ~CR_ALGO_MASK;
1452 cfg |= CR_AES_GCM;
1453 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1454
1455 /* e) change phase to Final */
1456 cfg &= ~CR_PH_MASK;
1457 cfg |= CR_PH_FINAL;
1458 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1459
1460 /* f) write padded data */
1461 writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1462
1463 /* g) Empty fifo out */
1464 err = stm32_cryp_wait_output(cryp);
1465 if (err) {
1466 dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1467 return stm32_cryp_finish_req(cryp, err);
1468 }
1469
1470 for (i = 0; i < AES_BLOCK_32; i++)
1471 stm32_cryp_read(cryp, cryp->caps->dout);
1472
1473 /* h) run the he normal Final phase */
1474 stm32_cryp_finish_req(cryp, 0);
1475 }
1476
stm32_cryp_irq_set_npblb(struct stm32_cryp * cryp)1477 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1478 {
1479 u32 cfg;
1480
1481 /* disable ip, set NPBLB and reneable ip */
1482 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1483 cfg &= ~CR_CRYPEN;
1484 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1485
1486 cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1487 cfg |= CR_CRYPEN;
1488 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1489 }
1490
stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp * cryp)1491 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1492 {
1493 int err = 0;
1494 u32 cfg, iv1tmp;
1495 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1496 u32 block[AES_BLOCK_32] = {0};
1497 unsigned int i;
1498
1499 /* 'Special workaround' procedure described in the datasheet */
1500
1501 /* a) disable ip */
1502 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1503
1504 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1505 cfg &= ~CR_CRYPEN;
1506 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1507
1508 /* b) get IV1 from CRYP_CSGCMCCM7 */
1509 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1510
1511 /* c) Load CRYP_CSGCMCCMxR */
1512 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1513 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1514
1515 /* d) Write IV1R */
1516 stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1517
1518 /* e) change mode to CTR */
1519 cfg &= ~CR_ALGO_MASK;
1520 cfg |= CR_AES_CTR;
1521 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1522
1523 /* a) enable IP */
1524 cfg |= CR_CRYPEN;
1525 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1526
1527 /* b) pad and write the last block */
1528 stm32_cryp_irq_write_block(cryp);
1529 /* wait end of process */
1530 err = stm32_cryp_wait_output(cryp);
1531 if (err) {
1532 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1533 return stm32_cryp_finish_req(cryp, err);
1534 }
1535
1536 /* c) get and store decrypted data */
1537 /*
1538 * Same code as stm32_cryp_irq_read_data(), but we want to store
1539 * block value
1540 */
1541 readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1542
1543 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1544 cryp->payload_out), 1);
1545 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1546
1547 /* d) Load again CRYP_CSGCMCCMxR */
1548 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1549 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1550
1551 /* e) change mode back to AES CCM */
1552 cfg &= ~CR_ALGO_MASK;
1553 cfg |= CR_AES_CCM;
1554 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1555
1556 /* f) change phase to header */
1557 cfg &= ~CR_PH_MASK;
1558 cfg |= CR_PH_HEADER;
1559 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1560
1561 /* g) XOR and write padded data */
1562 for (i = 0; i < ARRAY_SIZE(block); i++) {
1563 block[i] ^= cstmp1[i];
1564 block[i] ^= cstmp2[i];
1565 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1566 }
1567
1568 /* h) wait for completion */
1569 err = stm32_cryp_wait_busy(cryp);
1570 if (err)
1571 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1572
1573 /* i) run the he normal Final phase */
1574 stm32_cryp_finish_req(cryp, err);
1575 }
1576
stm32_cryp_irq_write_data(struct stm32_cryp * cryp)1577 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1578 {
1579 if (unlikely(!cryp->payload_in)) {
1580 dev_warn(cryp->dev, "No more data to process\n");
1581 return;
1582 }
1583
1584 if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1585 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1586 is_encrypt(cryp))) {
1587 /* Padding for AES GCM encryption */
1588 if (cryp->caps->padding_wa) {
1589 /* Special case 1 */
1590 stm32_cryp_irq_write_gcm_padded_data(cryp);
1591 return;
1592 }
1593
1594 /* Setting padding bytes (NBBLB) */
1595 stm32_cryp_irq_set_npblb(cryp);
1596 }
1597
1598 if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1599 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1600 is_decrypt(cryp))) {
1601 /* Padding for AES CCM decryption */
1602 if (cryp->caps->padding_wa) {
1603 /* Special case 2 */
1604 stm32_cryp_irq_write_ccm_padded_data(cryp);
1605 return;
1606 }
1607
1608 /* Setting padding bytes (NBBLB) */
1609 stm32_cryp_irq_set_npblb(cryp);
1610 }
1611
1612 if (is_aes(cryp) && is_ctr(cryp))
1613 stm32_cryp_check_ctr_counter(cryp);
1614
1615 stm32_cryp_irq_write_block(cryp);
1616 }
1617
stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp * cryp)1618 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1619 {
1620 u32 block[AES_BLOCK_32] = {0};
1621 size_t written;
1622
1623 written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1624
1625 scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1626
1627 writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1628
1629 cryp->header_in -= written;
1630
1631 stm32_crypt_gcmccm_end_header(cryp);
1632 }
1633
stm32_cryp_irq_thread(int irq,void * arg)1634 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1635 {
1636 struct stm32_cryp *cryp = arg;
1637 u32 ph;
1638 u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1639
1640 if (cryp->irq_status & MISR_OUT)
1641 /* Output FIFO IRQ: read data */
1642 stm32_cryp_irq_read_data(cryp);
1643
1644 if (cryp->irq_status & MISR_IN) {
1645 if (is_gcm(cryp) || is_ccm(cryp)) {
1646 ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1647 if (unlikely(ph == CR_PH_HEADER))
1648 /* Write Header */
1649 stm32_cryp_irq_write_gcmccm_header(cryp);
1650 else
1651 /* Input FIFO IRQ: write data */
1652 stm32_cryp_irq_write_data(cryp);
1653 if (is_gcm(cryp))
1654 cryp->gcm_ctr++;
1655 } else {
1656 /* Input FIFO IRQ: write data */
1657 stm32_cryp_irq_write_data(cryp);
1658 }
1659 }
1660
1661 /* Mask useless interrupts */
1662 if (!cryp->payload_in && !cryp->header_in)
1663 it_mask &= ~IMSCR_IN;
1664 if (!cryp->payload_out)
1665 it_mask &= ~IMSCR_OUT;
1666 stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1667
1668 if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1669 stm32_cryp_finish_req(cryp, 0);
1670
1671 return IRQ_HANDLED;
1672 }
1673
stm32_cryp_irq(int irq,void * arg)1674 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1675 {
1676 struct stm32_cryp *cryp = arg;
1677
1678 cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1679
1680 return IRQ_WAKE_THREAD;
1681 }
1682
1683 static struct skcipher_engine_alg crypto_algs[] = {
1684 {
1685 .base = {
1686 .base.cra_name = "ecb(aes)",
1687 .base.cra_driver_name = "stm32-ecb-aes",
1688 .base.cra_priority = 200,
1689 .base.cra_flags = CRYPTO_ALG_ASYNC,
1690 .base.cra_blocksize = AES_BLOCK_SIZE,
1691 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1692 .base.cra_alignmask = 0,
1693 .base.cra_module = THIS_MODULE,
1694
1695 .init = stm32_cryp_init_tfm,
1696 .min_keysize = AES_MIN_KEY_SIZE,
1697 .max_keysize = AES_MAX_KEY_SIZE,
1698 .setkey = stm32_cryp_aes_setkey,
1699 .encrypt = stm32_cryp_aes_ecb_encrypt,
1700 .decrypt = stm32_cryp_aes_ecb_decrypt,
1701 },
1702 .op = {
1703 .do_one_request = stm32_cryp_cipher_one_req,
1704 },
1705 },
1706 {
1707 .base = {
1708 .base.cra_name = "cbc(aes)",
1709 .base.cra_driver_name = "stm32-cbc-aes",
1710 .base.cra_priority = 200,
1711 .base.cra_flags = CRYPTO_ALG_ASYNC,
1712 .base.cra_blocksize = AES_BLOCK_SIZE,
1713 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1714 .base.cra_alignmask = 0,
1715 .base.cra_module = THIS_MODULE,
1716
1717 .init = stm32_cryp_init_tfm,
1718 .min_keysize = AES_MIN_KEY_SIZE,
1719 .max_keysize = AES_MAX_KEY_SIZE,
1720 .ivsize = AES_BLOCK_SIZE,
1721 .setkey = stm32_cryp_aes_setkey,
1722 .encrypt = stm32_cryp_aes_cbc_encrypt,
1723 .decrypt = stm32_cryp_aes_cbc_decrypt,
1724 },
1725 .op = {
1726 .do_one_request = stm32_cryp_cipher_one_req,
1727 },
1728 },
1729 {
1730 .base = {
1731 .base.cra_name = "ctr(aes)",
1732 .base.cra_driver_name = "stm32-ctr-aes",
1733 .base.cra_priority = 200,
1734 .base.cra_flags = CRYPTO_ALG_ASYNC,
1735 .base.cra_blocksize = 1,
1736 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1737 .base.cra_alignmask = 0,
1738 .base.cra_module = THIS_MODULE,
1739
1740 .init = stm32_cryp_init_tfm,
1741 .min_keysize = AES_MIN_KEY_SIZE,
1742 .max_keysize = AES_MAX_KEY_SIZE,
1743 .ivsize = AES_BLOCK_SIZE,
1744 .setkey = stm32_cryp_aes_setkey,
1745 .encrypt = stm32_cryp_aes_ctr_encrypt,
1746 .decrypt = stm32_cryp_aes_ctr_decrypt,
1747 },
1748 .op = {
1749 .do_one_request = stm32_cryp_cipher_one_req,
1750 },
1751 },
1752 {
1753 .base = {
1754 .base.cra_name = "ecb(des)",
1755 .base.cra_driver_name = "stm32-ecb-des",
1756 .base.cra_priority = 200,
1757 .base.cra_flags = CRYPTO_ALG_ASYNC,
1758 .base.cra_blocksize = DES_BLOCK_SIZE,
1759 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1760 .base.cra_alignmask = 0,
1761 .base.cra_module = THIS_MODULE,
1762
1763 .init = stm32_cryp_init_tfm,
1764 .min_keysize = DES_BLOCK_SIZE,
1765 .max_keysize = DES_BLOCK_SIZE,
1766 .setkey = stm32_cryp_des_setkey,
1767 .encrypt = stm32_cryp_des_ecb_encrypt,
1768 .decrypt = stm32_cryp_des_ecb_decrypt,
1769 },
1770 .op = {
1771 .do_one_request = stm32_cryp_cipher_one_req,
1772 },
1773 },
1774 {
1775 .base = {
1776 .base.cra_name = "cbc(des)",
1777 .base.cra_driver_name = "stm32-cbc-des",
1778 .base.cra_priority = 200,
1779 .base.cra_flags = CRYPTO_ALG_ASYNC,
1780 .base.cra_blocksize = DES_BLOCK_SIZE,
1781 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1782 .base.cra_alignmask = 0,
1783 .base.cra_module = THIS_MODULE,
1784
1785 .init = stm32_cryp_init_tfm,
1786 .min_keysize = DES_BLOCK_SIZE,
1787 .max_keysize = DES_BLOCK_SIZE,
1788 .ivsize = DES_BLOCK_SIZE,
1789 .setkey = stm32_cryp_des_setkey,
1790 .encrypt = stm32_cryp_des_cbc_encrypt,
1791 .decrypt = stm32_cryp_des_cbc_decrypt,
1792 },
1793 .op = {
1794 .do_one_request = stm32_cryp_cipher_one_req,
1795 },
1796 },
1797 {
1798 .base = {
1799 .base.cra_name = "ecb(des3_ede)",
1800 .base.cra_driver_name = "stm32-ecb-des3",
1801 .base.cra_priority = 200,
1802 .base.cra_flags = CRYPTO_ALG_ASYNC,
1803 .base.cra_blocksize = DES_BLOCK_SIZE,
1804 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1805 .base.cra_alignmask = 0,
1806 .base.cra_module = THIS_MODULE,
1807
1808 .init = stm32_cryp_init_tfm,
1809 .min_keysize = 3 * DES_BLOCK_SIZE,
1810 .max_keysize = 3 * DES_BLOCK_SIZE,
1811 .setkey = stm32_cryp_tdes_setkey,
1812 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1813 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1814 },
1815 .op = {
1816 .do_one_request = stm32_cryp_cipher_one_req,
1817 },
1818 },
1819 {
1820 .base = {
1821 .base.cra_name = "cbc(des3_ede)",
1822 .base.cra_driver_name = "stm32-cbc-des3",
1823 .base.cra_priority = 200,
1824 .base.cra_flags = CRYPTO_ALG_ASYNC,
1825 .base.cra_blocksize = DES_BLOCK_SIZE,
1826 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1827 .base.cra_alignmask = 0,
1828 .base.cra_module = THIS_MODULE,
1829
1830 .init = stm32_cryp_init_tfm,
1831 .min_keysize = 3 * DES_BLOCK_SIZE,
1832 .max_keysize = 3 * DES_BLOCK_SIZE,
1833 .ivsize = DES_BLOCK_SIZE,
1834 .setkey = stm32_cryp_tdes_setkey,
1835 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1836 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1837 },
1838 .op = {
1839 .do_one_request = stm32_cryp_cipher_one_req,
1840 },
1841 },
1842 };
1843
1844 static struct aead_engine_alg aead_algs[] = {
1845 {
1846 .base.setkey = stm32_cryp_aes_aead_setkey,
1847 .base.setauthsize = stm32_cryp_aes_gcm_setauthsize,
1848 .base.encrypt = stm32_cryp_aes_gcm_encrypt,
1849 .base.decrypt = stm32_cryp_aes_gcm_decrypt,
1850 .base.init = stm32_cryp_aes_aead_init,
1851 .base.ivsize = 12,
1852 .base.maxauthsize = AES_BLOCK_SIZE,
1853
1854 .base.base = {
1855 .cra_name = "gcm(aes)",
1856 .cra_driver_name = "stm32-gcm-aes",
1857 .cra_priority = 200,
1858 .cra_flags = CRYPTO_ALG_ASYNC,
1859 .cra_blocksize = 1,
1860 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1861 .cra_alignmask = 0,
1862 .cra_module = THIS_MODULE,
1863 },
1864 .op = {
1865 .do_one_request = stm32_cryp_aead_one_req,
1866 },
1867 },
1868 {
1869 .base.setkey = stm32_cryp_aes_aead_setkey,
1870 .base.setauthsize = stm32_cryp_aes_ccm_setauthsize,
1871 .base.encrypt = stm32_cryp_aes_ccm_encrypt,
1872 .base.decrypt = stm32_cryp_aes_ccm_decrypt,
1873 .base.init = stm32_cryp_aes_aead_init,
1874 .base.ivsize = AES_BLOCK_SIZE,
1875 .base.maxauthsize = AES_BLOCK_SIZE,
1876
1877 .base.base = {
1878 .cra_name = "ccm(aes)",
1879 .cra_driver_name = "stm32-ccm-aes",
1880 .cra_priority = 200,
1881 .cra_flags = CRYPTO_ALG_ASYNC,
1882 .cra_blocksize = 1,
1883 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1884 .cra_alignmask = 0,
1885 .cra_module = THIS_MODULE,
1886 },
1887 .op = {
1888 .do_one_request = stm32_cryp_aead_one_req,
1889 },
1890 },
1891 };
1892
1893 static const struct stm32_cryp_caps ux500_data = {
1894 .aeads_support = false,
1895 .linear_aes_key = true,
1896 .kp_mode = false,
1897 .iv_protection = true,
1898 .swap_final = true,
1899 .padding_wa = true,
1900 .cr = UX500_CRYP_CR,
1901 .sr = UX500_CRYP_SR,
1902 .din = UX500_CRYP_DIN,
1903 .dout = UX500_CRYP_DOUT,
1904 .imsc = UX500_CRYP_IMSC,
1905 .mis = UX500_CRYP_MIS,
1906 .k1l = UX500_CRYP_K1L,
1907 .k1r = UX500_CRYP_K1R,
1908 .k3r = UX500_CRYP_K3R,
1909 .iv0l = UX500_CRYP_IV0L,
1910 .iv0r = UX500_CRYP_IV0R,
1911 .iv1l = UX500_CRYP_IV1L,
1912 .iv1r = UX500_CRYP_IV1R,
1913 };
1914
1915 static const struct stm32_cryp_caps f7_data = {
1916 .aeads_support = true,
1917 .linear_aes_key = false,
1918 .kp_mode = true,
1919 .iv_protection = false,
1920 .swap_final = true,
1921 .padding_wa = true,
1922 .cr = CRYP_CR,
1923 .sr = CRYP_SR,
1924 .din = CRYP_DIN,
1925 .dout = CRYP_DOUT,
1926 .imsc = CRYP_IMSCR,
1927 .mis = CRYP_MISR,
1928 .k1l = CRYP_K1LR,
1929 .k1r = CRYP_K1RR,
1930 .k3r = CRYP_K3RR,
1931 .iv0l = CRYP_IV0LR,
1932 .iv0r = CRYP_IV0RR,
1933 .iv1l = CRYP_IV1LR,
1934 .iv1r = CRYP_IV1RR,
1935 };
1936
1937 static const struct stm32_cryp_caps mp1_data = {
1938 .aeads_support = true,
1939 .linear_aes_key = false,
1940 .kp_mode = true,
1941 .iv_protection = false,
1942 .swap_final = false,
1943 .padding_wa = false,
1944 .cr = CRYP_CR,
1945 .sr = CRYP_SR,
1946 .din = CRYP_DIN,
1947 .dout = CRYP_DOUT,
1948 .imsc = CRYP_IMSCR,
1949 .mis = CRYP_MISR,
1950 .k1l = CRYP_K1LR,
1951 .k1r = CRYP_K1RR,
1952 .k3r = CRYP_K3RR,
1953 .iv0l = CRYP_IV0LR,
1954 .iv0r = CRYP_IV0RR,
1955 .iv1l = CRYP_IV1LR,
1956 .iv1r = CRYP_IV1RR,
1957 };
1958
1959 static const struct of_device_id stm32_dt_ids[] = {
1960 { .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1961 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1962 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1963 {},
1964 };
1965 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1966
stm32_cryp_probe(struct platform_device * pdev)1967 static int stm32_cryp_probe(struct platform_device *pdev)
1968 {
1969 struct device *dev = &pdev->dev;
1970 struct stm32_cryp *cryp;
1971 struct reset_control *rst;
1972 int irq, ret;
1973
1974 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1975 if (!cryp)
1976 return -ENOMEM;
1977
1978 cryp->caps = of_device_get_match_data(dev);
1979 if (!cryp->caps)
1980 return -ENODEV;
1981
1982 cryp->dev = dev;
1983
1984 cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1985 if (IS_ERR(cryp->regs))
1986 return PTR_ERR(cryp->regs);
1987
1988 irq = platform_get_irq(pdev, 0);
1989 if (irq < 0)
1990 return irq;
1991
1992 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1993 stm32_cryp_irq_thread, IRQF_ONESHOT,
1994 dev_name(dev), cryp);
1995 if (ret) {
1996 dev_err(dev, "Cannot grab IRQ\n");
1997 return ret;
1998 }
1999
2000 cryp->clk = devm_clk_get(dev, NULL);
2001 if (IS_ERR(cryp->clk)) {
2002 dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2003
2004 return PTR_ERR(cryp->clk);
2005 }
2006
2007 ret = clk_prepare_enable(cryp->clk);
2008 if (ret) {
2009 dev_err(cryp->dev, "Failed to enable clock\n");
2010 return ret;
2011 }
2012
2013 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2014 pm_runtime_use_autosuspend(dev);
2015
2016 pm_runtime_get_noresume(dev);
2017 pm_runtime_set_active(dev);
2018 pm_runtime_enable(dev);
2019
2020 rst = devm_reset_control_get(dev, NULL);
2021 if (IS_ERR(rst)) {
2022 ret = PTR_ERR(rst);
2023 if (ret == -EPROBE_DEFER)
2024 goto err_rst;
2025 } else {
2026 reset_control_assert(rst);
2027 udelay(2);
2028 reset_control_deassert(rst);
2029 }
2030
2031 platform_set_drvdata(pdev, cryp);
2032
2033 spin_lock(&cryp_list.lock);
2034 list_add(&cryp->list, &cryp_list.dev_list);
2035 spin_unlock(&cryp_list.lock);
2036
2037 /* Initialize crypto engine */
2038 cryp->engine = crypto_engine_alloc_init(dev, 1);
2039 if (!cryp->engine) {
2040 dev_err(dev, "Could not init crypto engine\n");
2041 ret = -ENOMEM;
2042 goto err_engine1;
2043 }
2044
2045 ret = crypto_engine_start(cryp->engine);
2046 if (ret) {
2047 dev_err(dev, "Could not start crypto engine\n");
2048 goto err_engine2;
2049 }
2050
2051 ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2052 if (ret) {
2053 dev_err(dev, "Could not register algs\n");
2054 goto err_algs;
2055 }
2056
2057 if (cryp->caps->aeads_support) {
2058 ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2059 if (ret)
2060 goto err_aead_algs;
2061 }
2062
2063 dev_info(dev, "Initialized\n");
2064
2065 pm_runtime_put_sync(dev);
2066
2067 return 0;
2068
2069 err_aead_algs:
2070 crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2071 err_algs:
2072 err_engine2:
2073 crypto_engine_exit(cryp->engine);
2074 err_engine1:
2075 spin_lock(&cryp_list.lock);
2076 list_del(&cryp->list);
2077 spin_unlock(&cryp_list.lock);
2078 err_rst:
2079 pm_runtime_disable(dev);
2080 pm_runtime_put_noidle(dev);
2081
2082 clk_disable_unprepare(cryp->clk);
2083
2084 return ret;
2085 }
2086
stm32_cryp_remove(struct platform_device * pdev)2087 static int stm32_cryp_remove(struct platform_device *pdev)
2088 {
2089 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2090 int ret;
2091
2092 if (!cryp)
2093 return -ENODEV;
2094
2095 ret = pm_runtime_resume_and_get(cryp->dev);
2096 if (ret < 0)
2097 return ret;
2098
2099 if (cryp->caps->aeads_support)
2100 crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2101 crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2102
2103 crypto_engine_exit(cryp->engine);
2104
2105 spin_lock(&cryp_list.lock);
2106 list_del(&cryp->list);
2107 spin_unlock(&cryp_list.lock);
2108
2109 pm_runtime_disable(cryp->dev);
2110 pm_runtime_put_noidle(cryp->dev);
2111
2112 clk_disable_unprepare(cryp->clk);
2113
2114 return 0;
2115 }
2116
2117 #ifdef CONFIG_PM
stm32_cryp_runtime_suspend(struct device * dev)2118 static int stm32_cryp_runtime_suspend(struct device *dev)
2119 {
2120 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2121
2122 clk_disable_unprepare(cryp->clk);
2123
2124 return 0;
2125 }
2126
stm32_cryp_runtime_resume(struct device * dev)2127 static int stm32_cryp_runtime_resume(struct device *dev)
2128 {
2129 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2130 int ret;
2131
2132 ret = clk_prepare_enable(cryp->clk);
2133 if (ret) {
2134 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2135 return ret;
2136 }
2137
2138 return 0;
2139 }
2140 #endif
2141
2142 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2143 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2144 pm_runtime_force_resume)
2145 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2146 stm32_cryp_runtime_resume, NULL)
2147 };
2148
2149 static struct platform_driver stm32_cryp_driver = {
2150 .probe = stm32_cryp_probe,
2151 .remove = stm32_cryp_remove,
2152 .driver = {
2153 .name = DRIVER_NAME,
2154 .pm = &stm32_cryp_pm_ops,
2155 .of_match_table = stm32_dt_ids,
2156 },
2157 };
2158
2159 module_platform_driver(stm32_cryp_driver);
2160
2161 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2162 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2163 MODULE_LICENSE("GPL");
2164