1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37
38 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
mul_fp(int32_t x,int32_t y)60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
div_fp(s64 x,s64 y)65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
ceiling_fp(int32_t x)70 static inline int ceiling_fp(int32_t x)
71 {
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79 }
80
mul_ext_fp(u64 x,u64 y)81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83 return (x * y) >> EXT_FRAC_BITS;
84 }
85
div_ext_fp(u64 x,u64 y)86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88 return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92 * struct sample - Store performance sample
93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
94 * performance during last sample period
95 * @busy_scaled: Scaled busy value which is used to calculate next
96 * P state. This can be different than core_avg_perf
97 * to account for cpu idle period
98 * @aperf: Difference of actual performance frequency clock count
99 * read from APERF MSR between last and current sample
100 * @mperf: Difference of maximum performance frequency clock count
101 * read from MPERF MSR between last and current sample
102 * @tsc: Difference of time stamp counter between last and
103 * current sample
104 * @time: Current time from scheduler
105 *
106 * This structure is used in the cpudata structure to store performance sample
107 * data for choosing next P State.
108 */
109 struct sample {
110 int32_t core_avg_perf;
111 int32_t busy_scaled;
112 u64 aperf;
113 u64 mperf;
114 u64 tsc;
115 u64 time;
116 };
117
118 /**
119 * struct pstate_data - Store P state data
120 * @current_pstate: Current requested P state
121 * @min_pstate: Min P state possible for this platform
122 * @max_pstate: Max P state possible for this platform
123 * @max_pstate_physical:This is physical Max P state for a processor
124 * This can be higher than the max_pstate which can
125 * be limited by platform thermal design power limits
126 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
127 * @scaling: Scaling factor between performance and frequency
128 * @turbo_pstate: Max Turbo P state possible for this platform
129 * @min_freq: @min_pstate frequency in cpufreq units
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int perf_ctl_scaling;
141 int scaling;
142 int turbo_pstate;
143 unsigned int min_freq;
144 unsigned int max_freq;
145 unsigned int turbo_freq;
146 };
147
148 /**
149 * struct vid_data - Stores voltage information data
150 * @min: VID data for this platform corresponding to
151 * the lowest P state
152 * @max: VID data corresponding to the highest P State.
153 * @turbo: VID data for turbo P state
154 * @ratio: Ratio of (vid max - vid min) /
155 * (max P state - Min P State)
156 *
157 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158 * This data is used in Atom platforms, where in addition to target P state,
159 * the voltage data needs to be specified to select next P State.
160 */
161 struct vid_data {
162 int min;
163 int max;
164 int turbo;
165 int32_t ratio;
166 };
167
168 /**
169 * struct global_params - Global parameters, mostly tunable via sysfs.
170 * @no_turbo: Whether or not to use turbo P-states.
171 * @turbo_disabled: Whether or not turbo P-states are available at all,
172 * based on the MSR_IA32_MISC_ENABLE value and whether or
173 * not the maximum reported turbo P-state is different from
174 * the maximum reported non-turbo one.
175 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
177 * P-state capacity.
178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
179 * P-state capacity.
180 */
181 struct global_params {
182 bool no_turbo;
183 bool turbo_disabled;
184 bool turbo_disabled_mf;
185 int max_perf_pct;
186 int min_perf_pct;
187 };
188
189 /**
190 * struct cpudata - Per CPU instance data storage
191 * @cpu: CPU number for this instance data
192 * @policy: CPUFreq policy value
193 * @update_util: CPUFreq utility callback information
194 * @update_util_set: CPUFreq utility callback is set
195 * @iowait_boost: iowait-related boost fraction
196 * @last_update: Time of the last update.
197 * @pstate: Stores P state limits for this CPU
198 * @vid: Stores VID limits for this CPU
199 * @last_sample_time: Last Sample time
200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
201 * @prev_aperf: Last APERF value read from APERF MSR
202 * @prev_mperf: Last MPERF value read from MPERF MSR
203 * @prev_tsc: Last timestamp counter (TSC) value
204 * @prev_cummulative_iowait: IO Wait time difference from last and
205 * current sample
206 * @sample: Storage for storing last Sample data
207 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
208 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
209 * @acpi_perf_data: Stores ACPI perf information read from _PSS
210 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
211 * @epp_powersave: Last saved HWP energy performance preference
212 * (EPP) or energy performance bias (EPB),
213 * when policy switched to performance
214 * @epp_policy: Last saved policy used to set EPP/EPB
215 * @epp_default: Power on default HWP energy performance
216 * preference/bias
217 * @epp_cached Cached HWP energy-performance preference value
218 * @hwp_req_cached: Cached value of the last HWP Request MSR
219 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
220 * @last_io_update: Last time when IO wake flag was set
221 * @sched_flags: Store scheduler flags for possible cross CPU update
222 * @hwp_boost_min: Last HWP boosted min performance
223 * @suspended: Whether or not the driver has been suspended.
224 * @hwp_notify_work: workqueue for HWP notifications.
225 *
226 * This structure stores per CPU instance data for all CPUs.
227 */
228 struct cpudata {
229 int cpu;
230
231 unsigned int policy;
232 struct update_util_data update_util;
233 bool update_util_set;
234
235 struct pstate_data pstate;
236 struct vid_data vid;
237
238 u64 last_update;
239 u64 last_sample_time;
240 u64 aperf_mperf_shift;
241 u64 prev_aperf;
242 u64 prev_mperf;
243 u64 prev_tsc;
244 u64 prev_cummulative_iowait;
245 struct sample sample;
246 int32_t min_perf_ratio;
247 int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 struct acpi_processor_performance acpi_perf_data;
250 bool valid_pss_table;
251 #endif
252 unsigned int iowait_boost;
253 s16 epp_powersave;
254 s16 epp_policy;
255 s16 epp_default;
256 s16 epp_cached;
257 u64 hwp_req_cached;
258 u64 hwp_cap_cached;
259 u64 last_io_update;
260 unsigned int sched_flags;
261 u32 hwp_boost_min;
262 bool suspended;
263 struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269 * struct pstate_funcs - Per CPU model specific callbacks
270 * @get_max: Callback to get maximum non turbo effective P state
271 * @get_max_physical: Callback to get maximum non turbo physical P state
272 * @get_min: Callback to get minimum P state
273 * @get_turbo: Callback to get turbo P state
274 * @get_scaling: Callback to get frequency scaling factor
275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
283 struct pstate_funcs {
284 int (*get_max)(int cpu);
285 int (*get_max_physical)(int cpu);
286 int (*get_min)(int cpu);
287 int (*get_turbo)(int cpu);
288 int (*get_scaling)(void);
289 int (*get_cpu_scaling)(int cpu);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #define HYBRID_SCALING_FACTOR 78741
306
core_get_scaling(void)307 static inline int core_get_scaling(void)
308 {
309 return 100000;
310 }
311
312 #ifdef CONFIG_ACPI
313 static bool acpi_ppc;
314 #endif
315
316 static struct global_params global;
317
318 static DEFINE_MUTEX(intel_pstate_driver_lock);
319 static DEFINE_MUTEX(intel_pstate_limits_lock);
320
321 #ifdef CONFIG_ACPI
322
intel_pstate_acpi_pm_profile_server(void)323 static bool intel_pstate_acpi_pm_profile_server(void)
324 {
325 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
326 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
327 return true;
328
329 return false;
330 }
331
intel_pstate_get_ppc_enable_status(void)332 static bool intel_pstate_get_ppc_enable_status(void)
333 {
334 if (intel_pstate_acpi_pm_profile_server())
335 return true;
336
337 return acpi_ppc;
338 }
339
340 #ifdef CONFIG_ACPI_CPPC_LIB
341
342 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
344 {
345 sched_set_itmt_support();
346 }
347
348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
349
350 #define CPPC_MAX_PERF U8_MAX
351
intel_pstate_set_itmt_prio(int cpu)352 static void intel_pstate_set_itmt_prio(int cpu)
353 {
354 struct cppc_perf_caps cppc_perf;
355 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
356 int ret;
357
358 ret = cppc_get_perf_caps(cpu, &cppc_perf);
359 if (ret)
360 return;
361
362 /*
363 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
364 * In this case we can't use CPPC.highest_perf to enable ITMT.
365 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
366 */
367 if (cppc_perf.highest_perf == CPPC_MAX_PERF)
368 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
369
370 /*
371 * The priorities can be set regardless of whether or not
372 * sched_set_itmt_support(true) has been called and it is valid to
373 * update them at any time after it has been called.
374 */
375 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
376
377 if (max_highest_perf <= min_highest_perf) {
378 if (cppc_perf.highest_perf > max_highest_perf)
379 max_highest_perf = cppc_perf.highest_perf;
380
381 if (cppc_perf.highest_perf < min_highest_perf)
382 min_highest_perf = cppc_perf.highest_perf;
383
384 if (max_highest_perf > min_highest_perf) {
385 /*
386 * This code can be run during CPU online under the
387 * CPU hotplug locks, so sched_set_itmt_support()
388 * cannot be called from here. Queue up a work item
389 * to invoke it.
390 */
391 schedule_work(&sched_itmt_work);
392 }
393 }
394 }
395
intel_pstate_get_cppc_guaranteed(int cpu)396 static int intel_pstate_get_cppc_guaranteed(int cpu)
397 {
398 struct cppc_perf_caps cppc_perf;
399 int ret;
400
401 ret = cppc_get_perf_caps(cpu, &cppc_perf);
402 if (ret)
403 return ret;
404
405 if (cppc_perf.guaranteed_perf)
406 return cppc_perf.guaranteed_perf;
407
408 return cppc_perf.nominal_perf;
409 }
410
intel_pstate_cppc_get_scaling(int cpu)411 static int intel_pstate_cppc_get_scaling(int cpu)
412 {
413 struct cppc_perf_caps cppc_perf;
414 int ret;
415
416 ret = cppc_get_perf_caps(cpu, &cppc_perf);
417
418 /*
419 * If the nominal frequency and the nominal performance are not
420 * zero and the ratio between them is not 100, return the hybrid
421 * scaling factor.
422 */
423 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
424 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
425 return HYBRID_SCALING_FACTOR;
426
427 return core_get_scaling();
428 }
429
430 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)431 static inline void intel_pstate_set_itmt_prio(int cpu)
432 {
433 }
434 #endif /* CONFIG_ACPI_CPPC_LIB */
435
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)436 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
437 {
438 struct cpudata *cpu;
439 int ret;
440 int i;
441
442 if (hwp_active) {
443 intel_pstate_set_itmt_prio(policy->cpu);
444 return;
445 }
446
447 if (!intel_pstate_get_ppc_enable_status())
448 return;
449
450 cpu = all_cpu_data[policy->cpu];
451
452 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
453 policy->cpu);
454 if (ret)
455 return;
456
457 /*
458 * Check if the control value in _PSS is for PERF_CTL MSR, which should
459 * guarantee that the states returned by it map to the states in our
460 * list directly.
461 */
462 if (cpu->acpi_perf_data.control_register.space_id !=
463 ACPI_ADR_SPACE_FIXED_HARDWARE)
464 goto err;
465
466 /*
467 * If there is only one entry _PSS, simply ignore _PSS and continue as
468 * usual without taking _PSS into account
469 */
470 if (cpu->acpi_perf_data.state_count < 2)
471 goto err;
472
473 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
474 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
475 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
476 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
477 (u32) cpu->acpi_perf_data.states[i].core_frequency,
478 (u32) cpu->acpi_perf_data.states[i].power,
479 (u32) cpu->acpi_perf_data.states[i].control);
480 }
481
482 cpu->valid_pss_table = true;
483 pr_debug("_PPC limits will be enforced\n");
484
485 return;
486
487 err:
488 cpu->valid_pss_table = false;
489 acpi_processor_unregister_performance(policy->cpu);
490 }
491
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)492 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494 struct cpudata *cpu;
495
496 cpu = all_cpu_data[policy->cpu];
497 if (!cpu->valid_pss_table)
498 return;
499
500 acpi_processor_unregister_performance(policy->cpu);
501 }
502 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)503 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
504 {
505 }
506
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)507 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
508 {
509 }
510
intel_pstate_acpi_pm_profile_server(void)511 static inline bool intel_pstate_acpi_pm_profile_server(void)
512 {
513 return false;
514 }
515 #endif /* CONFIG_ACPI */
516
517 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)518 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
519 {
520 return -ENOTSUPP;
521 }
522
intel_pstate_cppc_get_scaling(int cpu)523 static int intel_pstate_cppc_get_scaling(int cpu)
524 {
525 return core_get_scaling();
526 }
527 #endif /* CONFIG_ACPI_CPPC_LIB */
528
intel_pstate_freq_to_hwp_rel(struct cpudata * cpu,int freq,unsigned int relation)529 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
530 unsigned int relation)
531 {
532 if (freq == cpu->pstate.turbo_freq)
533 return cpu->pstate.turbo_pstate;
534
535 if (freq == cpu->pstate.max_freq)
536 return cpu->pstate.max_pstate;
537
538 switch (relation) {
539 case CPUFREQ_RELATION_H:
540 return freq / cpu->pstate.scaling;
541 case CPUFREQ_RELATION_C:
542 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
543 }
544
545 return DIV_ROUND_UP(freq, cpu->pstate.scaling);
546 }
547
intel_pstate_freq_to_hwp(struct cpudata * cpu,int freq)548 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
549 {
550 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
551 }
552
553 /**
554 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
555 * @cpu: Target CPU.
556 *
557 * On hybrid processors, HWP may expose more performance levels than there are
558 * P-states accessible through the PERF_CTL interface. If that happens, the
559 * scaling factor between HWP performance levels and CPU frequency will be less
560 * than the scaling factor between P-state values and CPU frequency.
561 *
562 * In that case, adjust the CPU parameters used in computations accordingly.
563 */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)564 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
565 {
566 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
567 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
568 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
569 int scaling = cpu->pstate.scaling;
570 int freq;
571
572 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
573 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
574 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
575 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
576 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
577 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
578
579 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
580 perf_ctl_scaling);
581 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
582 perf_ctl_scaling);
583
584 freq = perf_ctl_max_phys * perf_ctl_scaling;
585 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
586
587 freq = cpu->pstate.min_pstate * perf_ctl_scaling;
588 cpu->pstate.min_freq = freq;
589 /*
590 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
591 * the effective range of HWP performance levels.
592 */
593 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
594 }
595
update_turbo_state(void)596 static inline void update_turbo_state(void)
597 {
598 u64 misc_en;
599 struct cpudata *cpu;
600
601 cpu = all_cpu_data[0];
602 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
603 global.turbo_disabled =
604 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
605 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
606 }
607
min_perf_pct_min(void)608 static int min_perf_pct_min(void)
609 {
610 struct cpudata *cpu = all_cpu_data[0];
611 int turbo_pstate = cpu->pstate.turbo_pstate;
612
613 return turbo_pstate ?
614 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
615 }
616
intel_pstate_get_epb(struct cpudata * cpu_data)617 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
618 {
619 u64 epb;
620 int ret;
621
622 if (!boot_cpu_has(X86_FEATURE_EPB))
623 return -ENXIO;
624
625 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 if (ret)
627 return (s16)ret;
628
629 return (s16)(epb & 0x0f);
630 }
631
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)632 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
633 {
634 s16 epp;
635
636 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
637 /*
638 * When hwp_req_data is 0, means that caller didn't read
639 * MSR_HWP_REQUEST, so need to read and get EPP.
640 */
641 if (!hwp_req_data) {
642 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
643 &hwp_req_data);
644 if (epp)
645 return epp;
646 }
647 epp = (hwp_req_data >> 24) & 0xff;
648 } else {
649 /* When there is no EPP present, HWP uses EPB settings */
650 epp = intel_pstate_get_epb(cpu_data);
651 }
652
653 return epp;
654 }
655
intel_pstate_set_epb(int cpu,s16 pref)656 static int intel_pstate_set_epb(int cpu, s16 pref)
657 {
658 u64 epb;
659 int ret;
660
661 if (!boot_cpu_has(X86_FEATURE_EPB))
662 return -ENXIO;
663
664 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
665 if (ret)
666 return ret;
667
668 epb = (epb & ~0x0f) | pref;
669 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
670
671 return 0;
672 }
673
674 /*
675 * EPP/EPB display strings corresponding to EPP index in the
676 * energy_perf_strings[]
677 * index String
678 *-------------------------------------
679 * 0 default
680 * 1 performance
681 * 2 balance_performance
682 * 3 balance_power
683 * 4 power
684 */
685
686 enum energy_perf_value_index {
687 EPP_INDEX_DEFAULT = 0,
688 EPP_INDEX_PERFORMANCE,
689 EPP_INDEX_BALANCE_PERFORMANCE,
690 EPP_INDEX_BALANCE_POWERSAVE,
691 EPP_INDEX_POWERSAVE,
692 };
693
694 static const char * const energy_perf_strings[] = {
695 [EPP_INDEX_DEFAULT] = "default",
696 [EPP_INDEX_PERFORMANCE] = "performance",
697 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
698 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
699 [EPP_INDEX_POWERSAVE] = "power",
700 NULL
701 };
702 static unsigned int epp_values[] = {
703 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
704 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
705 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
706 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
707 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
708 };
709
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)710 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
711 {
712 s16 epp;
713 int index = -EINVAL;
714
715 *raw_epp = 0;
716 epp = intel_pstate_get_epp(cpu_data, 0);
717 if (epp < 0)
718 return epp;
719
720 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
721 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
722 return EPP_INDEX_PERFORMANCE;
723 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
724 return EPP_INDEX_BALANCE_PERFORMANCE;
725 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
726 return EPP_INDEX_BALANCE_POWERSAVE;
727 if (epp == epp_values[EPP_INDEX_POWERSAVE])
728 return EPP_INDEX_POWERSAVE;
729 *raw_epp = epp;
730 return 0;
731 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
732 /*
733 * Range:
734 * 0x00-0x03 : Performance
735 * 0x04-0x07 : Balance performance
736 * 0x08-0x0B : Balance power
737 * 0x0C-0x0F : Power
738 * The EPB is a 4 bit value, but our ranges restrict the
739 * value which can be set. Here only using top two bits
740 * effectively.
741 */
742 index = (epp >> 2) + 1;
743 }
744
745 return index;
746 }
747
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)748 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
749 {
750 int ret;
751
752 /*
753 * Use the cached HWP Request MSR value, because in the active mode the
754 * register itself may be updated by intel_pstate_hwp_boost_up() or
755 * intel_pstate_hwp_boost_down() at any time.
756 */
757 u64 value = READ_ONCE(cpu->hwp_req_cached);
758
759 value &= ~GENMASK_ULL(31, 24);
760 value |= (u64)epp << 24;
761 /*
762 * The only other updater of hwp_req_cached in the active mode,
763 * intel_pstate_hwp_set(), is called under the same lock as this
764 * function, so it cannot run in parallel with the update below.
765 */
766 WRITE_ONCE(cpu->hwp_req_cached, value);
767 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
768 if (!ret)
769 cpu->epp_cached = epp;
770
771 return ret;
772 }
773
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)774 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
775 int pref_index, bool use_raw,
776 u32 raw_epp)
777 {
778 int epp = -EINVAL;
779 int ret;
780
781 if (!pref_index)
782 epp = cpu_data->epp_default;
783
784 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
785 if (use_raw)
786 epp = raw_epp;
787 else if (epp == -EINVAL)
788 epp = epp_values[pref_index];
789
790 /*
791 * To avoid confusion, refuse to set EPP to any values different
792 * from 0 (performance) if the current policy is "performance",
793 * because those values would be overridden.
794 */
795 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
796 return -EBUSY;
797
798 ret = intel_pstate_set_epp(cpu_data, epp);
799 } else {
800 if (epp == -EINVAL)
801 epp = (pref_index - 1) << 2;
802 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
803 }
804
805 return ret;
806 }
807
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)808 static ssize_t show_energy_performance_available_preferences(
809 struct cpufreq_policy *policy, char *buf)
810 {
811 int i = 0;
812 int ret = 0;
813
814 while (energy_perf_strings[i] != NULL)
815 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
816
817 ret += sprintf(&buf[ret], "\n");
818
819 return ret;
820 }
821
822 cpufreq_freq_attr_ro(energy_performance_available_preferences);
823
824 static struct cpufreq_driver intel_pstate;
825
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)826 static ssize_t store_energy_performance_preference(
827 struct cpufreq_policy *policy, const char *buf, size_t count)
828 {
829 struct cpudata *cpu = all_cpu_data[policy->cpu];
830 char str_preference[21];
831 bool raw = false;
832 ssize_t ret;
833 u32 epp = 0;
834
835 ret = sscanf(buf, "%20s", str_preference);
836 if (ret != 1)
837 return -EINVAL;
838
839 ret = match_string(energy_perf_strings, -1, str_preference);
840 if (ret < 0) {
841 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
842 return ret;
843
844 ret = kstrtouint(buf, 10, &epp);
845 if (ret)
846 return ret;
847
848 if (epp > 255)
849 return -EINVAL;
850
851 raw = true;
852 }
853
854 /*
855 * This function runs with the policy R/W semaphore held, which
856 * guarantees that the driver pointer will not change while it is
857 * running.
858 */
859 if (!intel_pstate_driver)
860 return -EAGAIN;
861
862 mutex_lock(&intel_pstate_limits_lock);
863
864 if (intel_pstate_driver == &intel_pstate) {
865 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
866 } else {
867 /*
868 * In the passive mode the governor needs to be stopped on the
869 * target CPU before the EPP update and restarted after it,
870 * which is super-heavy-weight, so make sure it is worth doing
871 * upfront.
872 */
873 if (!raw)
874 epp = ret ? epp_values[ret] : cpu->epp_default;
875
876 if (cpu->epp_cached != epp) {
877 int err;
878
879 cpufreq_stop_governor(policy);
880 ret = intel_pstate_set_epp(cpu, epp);
881 err = cpufreq_start_governor(policy);
882 if (!ret)
883 ret = err;
884 } else {
885 ret = 0;
886 }
887 }
888
889 mutex_unlock(&intel_pstate_limits_lock);
890
891 return ret ?: count;
892 }
893
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)894 static ssize_t show_energy_performance_preference(
895 struct cpufreq_policy *policy, char *buf)
896 {
897 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
898 int preference, raw_epp;
899
900 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
901 if (preference < 0)
902 return preference;
903
904 if (raw_epp)
905 return sprintf(buf, "%d\n", raw_epp);
906 else
907 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
908 }
909
910 cpufreq_freq_attr_rw(energy_performance_preference);
911
show_base_frequency(struct cpufreq_policy * policy,char * buf)912 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
913 {
914 struct cpudata *cpu = all_cpu_data[policy->cpu];
915 int ratio, freq;
916
917 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
918 if (ratio <= 0) {
919 u64 cap;
920
921 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
922 ratio = HWP_GUARANTEED_PERF(cap);
923 }
924
925 freq = ratio * cpu->pstate.scaling;
926 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
927 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
928
929 return sprintf(buf, "%d\n", freq);
930 }
931
932 cpufreq_freq_attr_ro(base_frequency);
933
934 static struct freq_attr *hwp_cpufreq_attrs[] = {
935 &energy_performance_preference,
936 &energy_performance_available_preferences,
937 &base_frequency,
938 NULL,
939 };
940
__intel_pstate_get_hwp_cap(struct cpudata * cpu)941 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
942 {
943 u64 cap;
944
945 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
946 WRITE_ONCE(cpu->hwp_cap_cached, cap);
947 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
948 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
949 }
950
intel_pstate_get_hwp_cap(struct cpudata * cpu)951 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
952 {
953 int scaling = cpu->pstate.scaling;
954
955 __intel_pstate_get_hwp_cap(cpu);
956
957 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
958 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
959 if (scaling != cpu->pstate.perf_ctl_scaling) {
960 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
961
962 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
963 perf_ctl_scaling);
964 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
965 perf_ctl_scaling);
966 }
967 }
968
intel_pstate_hwp_set(unsigned int cpu)969 static void intel_pstate_hwp_set(unsigned int cpu)
970 {
971 struct cpudata *cpu_data = all_cpu_data[cpu];
972 int max, min;
973 u64 value;
974 s16 epp;
975
976 max = cpu_data->max_perf_ratio;
977 min = cpu_data->min_perf_ratio;
978
979 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
980 min = max;
981
982 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
983
984 value &= ~HWP_MIN_PERF(~0L);
985 value |= HWP_MIN_PERF(min);
986
987 value &= ~HWP_MAX_PERF(~0L);
988 value |= HWP_MAX_PERF(max);
989
990 if (cpu_data->epp_policy == cpu_data->policy)
991 goto skip_epp;
992
993 cpu_data->epp_policy = cpu_data->policy;
994
995 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
996 epp = intel_pstate_get_epp(cpu_data, value);
997 cpu_data->epp_powersave = epp;
998 /* If EPP read was failed, then don't try to write */
999 if (epp < 0)
1000 goto skip_epp;
1001
1002 epp = 0;
1003 } else {
1004 /* skip setting EPP, when saved value is invalid */
1005 if (cpu_data->epp_powersave < 0)
1006 goto skip_epp;
1007
1008 /*
1009 * No need to restore EPP when it is not zero. This
1010 * means:
1011 * - Policy is not changed
1012 * - user has manually changed
1013 * - Error reading EPB
1014 */
1015 epp = intel_pstate_get_epp(cpu_data, value);
1016 if (epp)
1017 goto skip_epp;
1018
1019 epp = cpu_data->epp_powersave;
1020 }
1021 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1022 value &= ~GENMASK_ULL(31, 24);
1023 value |= (u64)epp << 24;
1024 } else {
1025 intel_pstate_set_epb(cpu, epp);
1026 }
1027 skip_epp:
1028 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1029 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1030 }
1031
1032 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1033
intel_pstate_hwp_offline(struct cpudata * cpu)1034 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1035 {
1036 u64 value = READ_ONCE(cpu->hwp_req_cached);
1037 int min_perf;
1038
1039 intel_pstate_disable_hwp_interrupt(cpu);
1040
1041 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1042 /*
1043 * In case the EPP has been set to "performance" by the
1044 * active mode "performance" scaling algorithm, replace that
1045 * temporary value with the cached EPP one.
1046 */
1047 value &= ~GENMASK_ULL(31, 24);
1048 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1049 /*
1050 * However, make sure that EPP will be set to "performance" when
1051 * the CPU is brought back online again and the "performance"
1052 * scaling algorithm is still in effect.
1053 */
1054 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1055 }
1056
1057 /*
1058 * Clear the desired perf field in the cached HWP request value to
1059 * prevent nonzero desired values from being leaked into the active
1060 * mode.
1061 */
1062 value &= ~HWP_DESIRED_PERF(~0L);
1063 WRITE_ONCE(cpu->hwp_req_cached, value);
1064
1065 value &= ~GENMASK_ULL(31, 0);
1066 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1067
1068 /* Set hwp_max = hwp_min */
1069 value |= HWP_MAX_PERF(min_perf);
1070 value |= HWP_MIN_PERF(min_perf);
1071
1072 /* Set EPP to min */
1073 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1074 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1075
1076 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1077 }
1078
1079 #define POWER_CTL_EE_ENABLE 1
1080 #define POWER_CTL_EE_DISABLE 2
1081
1082 static int power_ctl_ee_state;
1083
set_power_ctl_ee_state(bool input)1084 static void set_power_ctl_ee_state(bool input)
1085 {
1086 u64 power_ctl;
1087
1088 mutex_lock(&intel_pstate_driver_lock);
1089 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1090 if (input) {
1091 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1092 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1093 } else {
1094 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1095 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1096 }
1097 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1098 mutex_unlock(&intel_pstate_driver_lock);
1099 }
1100
1101 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1102
intel_pstate_hwp_reenable(struct cpudata * cpu)1103 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1104 {
1105 intel_pstate_hwp_enable(cpu);
1106 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1107 }
1108
intel_pstate_suspend(struct cpufreq_policy * policy)1109 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1110 {
1111 struct cpudata *cpu = all_cpu_data[policy->cpu];
1112
1113 pr_debug("CPU %d suspending\n", cpu->cpu);
1114
1115 cpu->suspended = true;
1116
1117 /* disable HWP interrupt and cancel any pending work */
1118 intel_pstate_disable_hwp_interrupt(cpu);
1119
1120 return 0;
1121 }
1122
intel_pstate_resume(struct cpufreq_policy * policy)1123 static int intel_pstate_resume(struct cpufreq_policy *policy)
1124 {
1125 struct cpudata *cpu = all_cpu_data[policy->cpu];
1126
1127 pr_debug("CPU %d resuming\n", cpu->cpu);
1128
1129 /* Only restore if the system default is changed */
1130 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1131 set_power_ctl_ee_state(true);
1132 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1133 set_power_ctl_ee_state(false);
1134
1135 if (cpu->suspended && hwp_active) {
1136 mutex_lock(&intel_pstate_limits_lock);
1137
1138 /* Re-enable HWP, because "online" has not done that. */
1139 intel_pstate_hwp_reenable(cpu);
1140
1141 mutex_unlock(&intel_pstate_limits_lock);
1142 }
1143
1144 cpu->suspended = false;
1145
1146 return 0;
1147 }
1148
intel_pstate_update_policies(void)1149 static void intel_pstate_update_policies(void)
1150 {
1151 int cpu;
1152
1153 for_each_possible_cpu(cpu)
1154 cpufreq_update_policy(cpu);
1155 }
1156
__intel_pstate_update_max_freq(struct cpudata * cpudata,struct cpufreq_policy * policy)1157 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1158 struct cpufreq_policy *policy)
1159 {
1160 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1161 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1162 refresh_frequency_limits(policy);
1163 }
1164
intel_pstate_update_max_freq(unsigned int cpu)1165 static void intel_pstate_update_max_freq(unsigned int cpu)
1166 {
1167 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1168
1169 if (!policy)
1170 return;
1171
1172 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1173
1174 cpufreq_cpu_release(policy);
1175 }
1176
intel_pstate_update_limits(unsigned int cpu)1177 static void intel_pstate_update_limits(unsigned int cpu)
1178 {
1179 mutex_lock(&intel_pstate_driver_lock);
1180
1181 update_turbo_state();
1182 /*
1183 * If turbo has been turned on or off globally, policy limits for
1184 * all CPUs need to be updated to reflect that.
1185 */
1186 if (global.turbo_disabled_mf != global.turbo_disabled) {
1187 global.turbo_disabled_mf = global.turbo_disabled;
1188 arch_set_max_freq_ratio(global.turbo_disabled);
1189 for_each_possible_cpu(cpu)
1190 intel_pstate_update_max_freq(cpu);
1191 } else {
1192 cpufreq_update_policy(cpu);
1193 }
1194
1195 mutex_unlock(&intel_pstate_driver_lock);
1196 }
1197
1198 /************************** sysfs begin ************************/
1199 #define show_one(file_name, object) \
1200 static ssize_t show_##file_name \
1201 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1202 { \
1203 return sprintf(buf, "%u\n", global.object); \
1204 }
1205
1206 static ssize_t intel_pstate_show_status(char *buf);
1207 static int intel_pstate_update_status(const char *buf, size_t size);
1208
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1209 static ssize_t show_status(struct kobject *kobj,
1210 struct kobj_attribute *attr, char *buf)
1211 {
1212 ssize_t ret;
1213
1214 mutex_lock(&intel_pstate_driver_lock);
1215 ret = intel_pstate_show_status(buf);
1216 mutex_unlock(&intel_pstate_driver_lock);
1217
1218 return ret;
1219 }
1220
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1221 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1222 const char *buf, size_t count)
1223 {
1224 char *p = memchr(buf, '\n', count);
1225 int ret;
1226
1227 mutex_lock(&intel_pstate_driver_lock);
1228 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1229 mutex_unlock(&intel_pstate_driver_lock);
1230
1231 return ret < 0 ? ret : count;
1232 }
1233
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1234 static ssize_t show_turbo_pct(struct kobject *kobj,
1235 struct kobj_attribute *attr, char *buf)
1236 {
1237 struct cpudata *cpu;
1238 int total, no_turbo, turbo_pct;
1239 uint32_t turbo_fp;
1240
1241 mutex_lock(&intel_pstate_driver_lock);
1242
1243 if (!intel_pstate_driver) {
1244 mutex_unlock(&intel_pstate_driver_lock);
1245 return -EAGAIN;
1246 }
1247
1248 cpu = all_cpu_data[0];
1249
1250 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1251 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1252 turbo_fp = div_fp(no_turbo, total);
1253 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1254
1255 mutex_unlock(&intel_pstate_driver_lock);
1256
1257 return sprintf(buf, "%u\n", turbo_pct);
1258 }
1259
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1260 static ssize_t show_num_pstates(struct kobject *kobj,
1261 struct kobj_attribute *attr, char *buf)
1262 {
1263 struct cpudata *cpu;
1264 int total;
1265
1266 mutex_lock(&intel_pstate_driver_lock);
1267
1268 if (!intel_pstate_driver) {
1269 mutex_unlock(&intel_pstate_driver_lock);
1270 return -EAGAIN;
1271 }
1272
1273 cpu = all_cpu_data[0];
1274 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1275
1276 mutex_unlock(&intel_pstate_driver_lock);
1277
1278 return sprintf(buf, "%u\n", total);
1279 }
1280
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1281 static ssize_t show_no_turbo(struct kobject *kobj,
1282 struct kobj_attribute *attr, char *buf)
1283 {
1284 ssize_t ret;
1285
1286 mutex_lock(&intel_pstate_driver_lock);
1287
1288 if (!intel_pstate_driver) {
1289 mutex_unlock(&intel_pstate_driver_lock);
1290 return -EAGAIN;
1291 }
1292
1293 update_turbo_state();
1294 if (global.turbo_disabled)
1295 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1296 else
1297 ret = sprintf(buf, "%u\n", global.no_turbo);
1298
1299 mutex_unlock(&intel_pstate_driver_lock);
1300
1301 return ret;
1302 }
1303
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1304 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1305 const char *buf, size_t count)
1306 {
1307 unsigned int input;
1308 int ret;
1309
1310 ret = sscanf(buf, "%u", &input);
1311 if (ret != 1)
1312 return -EINVAL;
1313
1314 mutex_lock(&intel_pstate_driver_lock);
1315
1316 if (!intel_pstate_driver) {
1317 mutex_unlock(&intel_pstate_driver_lock);
1318 return -EAGAIN;
1319 }
1320
1321 mutex_lock(&intel_pstate_limits_lock);
1322
1323 update_turbo_state();
1324 if (global.turbo_disabled) {
1325 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1326 mutex_unlock(&intel_pstate_limits_lock);
1327 mutex_unlock(&intel_pstate_driver_lock);
1328 return -EPERM;
1329 }
1330
1331 global.no_turbo = clamp_t(int, input, 0, 1);
1332
1333 if (global.no_turbo) {
1334 struct cpudata *cpu = all_cpu_data[0];
1335 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1336
1337 /* Squash the global minimum into the permitted range. */
1338 if (global.min_perf_pct > pct)
1339 global.min_perf_pct = pct;
1340 }
1341
1342 mutex_unlock(&intel_pstate_limits_lock);
1343
1344 intel_pstate_update_policies();
1345 arch_set_max_freq_ratio(global.no_turbo);
1346
1347 mutex_unlock(&intel_pstate_driver_lock);
1348
1349 return count;
1350 }
1351
update_qos_request(enum freq_qos_req_type type)1352 static void update_qos_request(enum freq_qos_req_type type)
1353 {
1354 struct freq_qos_request *req;
1355 struct cpufreq_policy *policy;
1356 int i;
1357
1358 for_each_possible_cpu(i) {
1359 struct cpudata *cpu = all_cpu_data[i];
1360 unsigned int freq, perf_pct;
1361
1362 policy = cpufreq_cpu_get(i);
1363 if (!policy)
1364 continue;
1365
1366 req = policy->driver_data;
1367 cpufreq_cpu_put(policy);
1368
1369 if (!req)
1370 continue;
1371
1372 if (hwp_active)
1373 intel_pstate_get_hwp_cap(cpu);
1374
1375 if (type == FREQ_QOS_MIN) {
1376 perf_pct = global.min_perf_pct;
1377 } else {
1378 req++;
1379 perf_pct = global.max_perf_pct;
1380 }
1381
1382 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1383
1384 if (freq_qos_update_request(req, freq) < 0)
1385 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1386 }
1387 }
1388
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1389 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1390 const char *buf, size_t count)
1391 {
1392 unsigned int input;
1393 int ret;
1394
1395 ret = sscanf(buf, "%u", &input);
1396 if (ret != 1)
1397 return -EINVAL;
1398
1399 mutex_lock(&intel_pstate_driver_lock);
1400
1401 if (!intel_pstate_driver) {
1402 mutex_unlock(&intel_pstate_driver_lock);
1403 return -EAGAIN;
1404 }
1405
1406 mutex_lock(&intel_pstate_limits_lock);
1407
1408 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1409
1410 mutex_unlock(&intel_pstate_limits_lock);
1411
1412 if (intel_pstate_driver == &intel_pstate)
1413 intel_pstate_update_policies();
1414 else
1415 update_qos_request(FREQ_QOS_MAX);
1416
1417 mutex_unlock(&intel_pstate_driver_lock);
1418
1419 return count;
1420 }
1421
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1422 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1423 const char *buf, size_t count)
1424 {
1425 unsigned int input;
1426 int ret;
1427
1428 ret = sscanf(buf, "%u", &input);
1429 if (ret != 1)
1430 return -EINVAL;
1431
1432 mutex_lock(&intel_pstate_driver_lock);
1433
1434 if (!intel_pstate_driver) {
1435 mutex_unlock(&intel_pstate_driver_lock);
1436 return -EAGAIN;
1437 }
1438
1439 mutex_lock(&intel_pstate_limits_lock);
1440
1441 global.min_perf_pct = clamp_t(int, input,
1442 min_perf_pct_min(), global.max_perf_pct);
1443
1444 mutex_unlock(&intel_pstate_limits_lock);
1445
1446 if (intel_pstate_driver == &intel_pstate)
1447 intel_pstate_update_policies();
1448 else
1449 update_qos_request(FREQ_QOS_MIN);
1450
1451 mutex_unlock(&intel_pstate_driver_lock);
1452
1453 return count;
1454 }
1455
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1456 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1457 struct kobj_attribute *attr, char *buf)
1458 {
1459 return sprintf(buf, "%u\n", hwp_boost);
1460 }
1461
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1462 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1463 struct kobj_attribute *b,
1464 const char *buf, size_t count)
1465 {
1466 unsigned int input;
1467 int ret;
1468
1469 ret = kstrtouint(buf, 10, &input);
1470 if (ret)
1471 return ret;
1472
1473 mutex_lock(&intel_pstate_driver_lock);
1474 hwp_boost = !!input;
1475 intel_pstate_update_policies();
1476 mutex_unlock(&intel_pstate_driver_lock);
1477
1478 return count;
1479 }
1480
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1481 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1482 char *buf)
1483 {
1484 u64 power_ctl;
1485 int enable;
1486
1487 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1488 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1489 return sprintf(buf, "%d\n", !enable);
1490 }
1491
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1492 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1493 const char *buf, size_t count)
1494 {
1495 bool input;
1496 int ret;
1497
1498 ret = kstrtobool(buf, &input);
1499 if (ret)
1500 return ret;
1501
1502 set_power_ctl_ee_state(input);
1503
1504 return count;
1505 }
1506
1507 show_one(max_perf_pct, max_perf_pct);
1508 show_one(min_perf_pct, min_perf_pct);
1509
1510 define_one_global_rw(status);
1511 define_one_global_rw(no_turbo);
1512 define_one_global_rw(max_perf_pct);
1513 define_one_global_rw(min_perf_pct);
1514 define_one_global_ro(turbo_pct);
1515 define_one_global_ro(num_pstates);
1516 define_one_global_rw(hwp_dynamic_boost);
1517 define_one_global_rw(energy_efficiency);
1518
1519 static struct attribute *intel_pstate_attributes[] = {
1520 &status.attr,
1521 &no_turbo.attr,
1522 NULL
1523 };
1524
1525 static const struct attribute_group intel_pstate_attr_group = {
1526 .attrs = intel_pstate_attributes,
1527 };
1528
1529 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1530
1531 static struct kobject *intel_pstate_kobject;
1532
intel_pstate_sysfs_expose_params(void)1533 static void __init intel_pstate_sysfs_expose_params(void)
1534 {
1535 struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1536 int rc;
1537
1538 if (dev_root) {
1539 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1540 put_device(dev_root);
1541 }
1542 if (WARN_ON(!intel_pstate_kobject))
1543 return;
1544
1545 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1546 if (WARN_ON(rc))
1547 return;
1548
1549 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1550 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1551 WARN_ON(rc);
1552
1553 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1554 WARN_ON(rc);
1555 }
1556
1557 /*
1558 * If per cpu limits are enforced there are no global limits, so
1559 * return without creating max/min_perf_pct attributes
1560 */
1561 if (per_cpu_limits)
1562 return;
1563
1564 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1565 WARN_ON(rc);
1566
1567 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1568 WARN_ON(rc);
1569
1570 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1571 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1572 WARN_ON(rc);
1573 }
1574 }
1575
intel_pstate_sysfs_remove(void)1576 static void __init intel_pstate_sysfs_remove(void)
1577 {
1578 if (!intel_pstate_kobject)
1579 return;
1580
1581 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1582
1583 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1584 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1585 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1586 }
1587
1588 if (!per_cpu_limits) {
1589 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1590 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1591
1592 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1593 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1594 }
1595
1596 kobject_put(intel_pstate_kobject);
1597 }
1598
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1599 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1600 {
1601 int rc;
1602
1603 if (!hwp_active)
1604 return;
1605
1606 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1607 WARN_ON_ONCE(rc);
1608 }
1609
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1610 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1611 {
1612 if (!hwp_active)
1613 return;
1614
1615 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1616 }
1617
1618 /************************** sysfs end ************************/
1619
intel_pstate_notify_work(struct work_struct * work)1620 static void intel_pstate_notify_work(struct work_struct *work)
1621 {
1622 struct cpudata *cpudata =
1623 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1624 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1625
1626 if (policy) {
1627 intel_pstate_get_hwp_cap(cpudata);
1628 __intel_pstate_update_max_freq(cpudata, policy);
1629
1630 cpufreq_cpu_release(policy);
1631 }
1632
1633 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1634 }
1635
1636 static DEFINE_SPINLOCK(hwp_notify_lock);
1637 static cpumask_t hwp_intr_enable_mask;
1638
notify_hwp_interrupt(void)1639 void notify_hwp_interrupt(void)
1640 {
1641 unsigned int this_cpu = smp_processor_id();
1642 struct cpudata *cpudata;
1643 unsigned long flags;
1644 u64 value;
1645
1646 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1647 return;
1648
1649 rdmsrl_safe(MSR_HWP_STATUS, &value);
1650 if (!(value & 0x01))
1651 return;
1652
1653 spin_lock_irqsave(&hwp_notify_lock, flags);
1654
1655 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1656 goto ack_intr;
1657
1658 /*
1659 * Currently we never free all_cpu_data. And we can't reach here
1660 * without this allocated. But for safety for future changes, added
1661 * check.
1662 */
1663 if (unlikely(!READ_ONCE(all_cpu_data)))
1664 goto ack_intr;
1665
1666 /*
1667 * The free is done during cleanup, when cpufreq registry is failed.
1668 * We wouldn't be here if it fails on init or switch status. But for
1669 * future changes, added check.
1670 */
1671 cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1672 if (unlikely(!cpudata))
1673 goto ack_intr;
1674
1675 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1676
1677 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1678
1679 return;
1680
1681 ack_intr:
1682 wrmsrl_safe(MSR_HWP_STATUS, 0);
1683 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1684 }
1685
intel_pstate_disable_hwp_interrupt(struct cpudata * cpudata)1686 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1687 {
1688 unsigned long flags;
1689
1690 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1691 return;
1692
1693 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1694 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1695
1696 spin_lock_irqsave(&hwp_notify_lock, flags);
1697 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1698 cancel_delayed_work(&cpudata->hwp_notify_work);
1699 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1700 }
1701
intel_pstate_enable_hwp_interrupt(struct cpudata * cpudata)1702 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1703 {
1704 /* Enable HWP notification interrupt for guaranteed performance change */
1705 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1706 unsigned long flags;
1707
1708 spin_lock_irqsave(&hwp_notify_lock, flags);
1709 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1710 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1711 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1712
1713 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1714 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1715 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1716 }
1717 }
1718
intel_pstate_update_epp_defaults(struct cpudata * cpudata)1719 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1720 {
1721 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1722
1723 /*
1724 * If this CPU gen doesn't call for change in balance_perf
1725 * EPP return.
1726 */
1727 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1728 return;
1729
1730 /*
1731 * If the EPP is set by firmware, which means that firmware enabled HWP
1732 * - Is equal or less than 0x80 (default balance_perf EPP)
1733 * - But less performance oriented than performance EPP
1734 * then use this as new balance_perf EPP.
1735 */
1736 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1737 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1738 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1739 return;
1740 }
1741
1742 /*
1743 * Use hard coded value per gen to update the balance_perf
1744 * and default EPP.
1745 */
1746 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1747 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1748 }
1749
intel_pstate_hwp_enable(struct cpudata * cpudata)1750 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1751 {
1752 /* First disable HWP notification interrupt till we activate again */
1753 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1754 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1755
1756 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1757
1758 intel_pstate_enable_hwp_interrupt(cpudata);
1759
1760 if (cpudata->epp_default >= 0)
1761 return;
1762
1763 intel_pstate_update_epp_defaults(cpudata);
1764 }
1765
atom_get_min_pstate(int not_used)1766 static int atom_get_min_pstate(int not_used)
1767 {
1768 u64 value;
1769
1770 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1771 return (value >> 8) & 0x7F;
1772 }
1773
atom_get_max_pstate(int not_used)1774 static int atom_get_max_pstate(int not_used)
1775 {
1776 u64 value;
1777
1778 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1779 return (value >> 16) & 0x7F;
1780 }
1781
atom_get_turbo_pstate(int not_used)1782 static int atom_get_turbo_pstate(int not_used)
1783 {
1784 u64 value;
1785
1786 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1787 return value & 0x7F;
1788 }
1789
atom_get_val(struct cpudata * cpudata,int pstate)1790 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1791 {
1792 u64 val;
1793 int32_t vid_fp;
1794 u32 vid;
1795
1796 val = (u64)pstate << 8;
1797 if (global.no_turbo && !global.turbo_disabled)
1798 val |= (u64)1 << 32;
1799
1800 vid_fp = cpudata->vid.min + mul_fp(
1801 int_tofp(pstate - cpudata->pstate.min_pstate),
1802 cpudata->vid.ratio);
1803
1804 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1805 vid = ceiling_fp(vid_fp);
1806
1807 if (pstate > cpudata->pstate.max_pstate)
1808 vid = cpudata->vid.turbo;
1809
1810 return val | vid;
1811 }
1812
silvermont_get_scaling(void)1813 static int silvermont_get_scaling(void)
1814 {
1815 u64 value;
1816 int i;
1817 /* Defined in Table 35-6 from SDM (Sept 2015) */
1818 static int silvermont_freq_table[] = {
1819 83300, 100000, 133300, 116700, 80000};
1820
1821 rdmsrl(MSR_FSB_FREQ, value);
1822 i = value & 0x7;
1823 WARN_ON(i > 4);
1824
1825 return silvermont_freq_table[i];
1826 }
1827
airmont_get_scaling(void)1828 static int airmont_get_scaling(void)
1829 {
1830 u64 value;
1831 int i;
1832 /* Defined in Table 35-10 from SDM (Sept 2015) */
1833 static int airmont_freq_table[] = {
1834 83300, 100000, 133300, 116700, 80000,
1835 93300, 90000, 88900, 87500};
1836
1837 rdmsrl(MSR_FSB_FREQ, value);
1838 i = value & 0xF;
1839 WARN_ON(i > 8);
1840
1841 return airmont_freq_table[i];
1842 }
1843
atom_get_vid(struct cpudata * cpudata)1844 static void atom_get_vid(struct cpudata *cpudata)
1845 {
1846 u64 value;
1847
1848 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1849 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1850 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1851 cpudata->vid.ratio = div_fp(
1852 cpudata->vid.max - cpudata->vid.min,
1853 int_tofp(cpudata->pstate.max_pstate -
1854 cpudata->pstate.min_pstate));
1855
1856 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1857 cpudata->vid.turbo = value & 0x7f;
1858 }
1859
core_get_min_pstate(int cpu)1860 static int core_get_min_pstate(int cpu)
1861 {
1862 u64 value;
1863
1864 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1865 return (value >> 40) & 0xFF;
1866 }
1867
core_get_max_pstate_physical(int cpu)1868 static int core_get_max_pstate_physical(int cpu)
1869 {
1870 u64 value;
1871
1872 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1873 return (value >> 8) & 0xFF;
1874 }
1875
core_get_tdp_ratio(int cpu,u64 plat_info)1876 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1877 {
1878 /* Check how many TDP levels present */
1879 if (plat_info & 0x600000000) {
1880 u64 tdp_ctrl;
1881 u64 tdp_ratio;
1882 int tdp_msr;
1883 int err;
1884
1885 /* Get the TDP level (0, 1, 2) to get ratios */
1886 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1887 if (err)
1888 return err;
1889
1890 /* TDP MSR are continuous starting at 0x648 */
1891 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1892 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1893 if (err)
1894 return err;
1895
1896 /* For level 1 and 2, bits[23:16] contain the ratio */
1897 if (tdp_ctrl & 0x03)
1898 tdp_ratio >>= 16;
1899
1900 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1901 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1902
1903 return (int)tdp_ratio;
1904 }
1905
1906 return -ENXIO;
1907 }
1908
core_get_max_pstate(int cpu)1909 static int core_get_max_pstate(int cpu)
1910 {
1911 u64 tar;
1912 u64 plat_info;
1913 int max_pstate;
1914 int tdp_ratio;
1915 int err;
1916
1917 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1918 max_pstate = (plat_info >> 8) & 0xFF;
1919
1920 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1921 if (tdp_ratio <= 0)
1922 return max_pstate;
1923
1924 if (hwp_active) {
1925 /* Turbo activation ratio is not used on HWP platforms */
1926 return tdp_ratio;
1927 }
1928
1929 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1930 if (!err) {
1931 int tar_levels;
1932
1933 /* Do some sanity checking for safety */
1934 tar_levels = tar & 0xff;
1935 if (tdp_ratio - 1 == tar_levels) {
1936 max_pstate = tar_levels;
1937 pr_debug("max_pstate=TAC %x\n", max_pstate);
1938 }
1939 }
1940
1941 return max_pstate;
1942 }
1943
core_get_turbo_pstate(int cpu)1944 static int core_get_turbo_pstate(int cpu)
1945 {
1946 u64 value;
1947 int nont, ret;
1948
1949 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1950 nont = core_get_max_pstate(cpu);
1951 ret = (value) & 255;
1952 if (ret <= nont)
1953 ret = nont;
1954 return ret;
1955 }
1956
core_get_val(struct cpudata * cpudata,int pstate)1957 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1958 {
1959 u64 val;
1960
1961 val = (u64)pstate << 8;
1962 if (global.no_turbo && !global.turbo_disabled)
1963 val |= (u64)1 << 32;
1964
1965 return val;
1966 }
1967
knl_get_aperf_mperf_shift(void)1968 static int knl_get_aperf_mperf_shift(void)
1969 {
1970 return 10;
1971 }
1972
knl_get_turbo_pstate(int cpu)1973 static int knl_get_turbo_pstate(int cpu)
1974 {
1975 u64 value;
1976 int nont, ret;
1977
1978 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1979 nont = core_get_max_pstate(cpu);
1980 ret = (((value) >> 8) & 0xFF);
1981 if (ret <= nont)
1982 ret = nont;
1983 return ret;
1984 }
1985
hybrid_get_type(void * data)1986 static void hybrid_get_type(void *data)
1987 {
1988 u8 *cpu_type = data;
1989
1990 *cpu_type = get_this_hybrid_cpu_type();
1991 }
1992
hwp_get_cpu_scaling(int cpu)1993 static int hwp_get_cpu_scaling(int cpu)
1994 {
1995 u8 cpu_type = 0;
1996
1997 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1998 /* P-cores have a smaller perf level-to-freqency scaling factor. */
1999 if (cpu_type == 0x40)
2000 return HYBRID_SCALING_FACTOR;
2001
2002 /* Use default core scaling for E-cores */
2003 if (cpu_type == 0x20)
2004 return core_get_scaling();
2005
2006 /*
2007 * If reached here, this system is either non-hybrid (like Tiger
2008 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2009 * no E cores (in which case CPUID for hybrid support is 0).
2010 *
2011 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2012 * so the default core scaling will be used for them.
2013 */
2014 return intel_pstate_cppc_get_scaling(cpu);
2015 }
2016
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)2017 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2018 {
2019 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2020 cpu->pstate.current_pstate = pstate;
2021 /*
2022 * Generally, there is no guarantee that this code will always run on
2023 * the CPU being updated, so force the register update to run on the
2024 * right CPU.
2025 */
2026 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2027 pstate_funcs.get_val(cpu, pstate));
2028 }
2029
intel_pstate_set_min_pstate(struct cpudata * cpu)2030 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2031 {
2032 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2033 }
2034
intel_pstate_max_within_limits(struct cpudata * cpu)2035 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2036 {
2037 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2038
2039 update_turbo_state();
2040 intel_pstate_set_pstate(cpu, pstate);
2041 }
2042
intel_pstate_get_cpu_pstates(struct cpudata * cpu)2043 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2044 {
2045 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2046 int perf_ctl_scaling = pstate_funcs.get_scaling();
2047
2048 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2049 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2050 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2051
2052 if (hwp_active && !hwp_mode_bdw) {
2053 __intel_pstate_get_hwp_cap(cpu);
2054
2055 if (pstate_funcs.get_cpu_scaling) {
2056 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2057 if (cpu->pstate.scaling != perf_ctl_scaling)
2058 intel_pstate_hybrid_hwp_adjust(cpu);
2059 } else {
2060 cpu->pstate.scaling = perf_ctl_scaling;
2061 }
2062 } else {
2063 cpu->pstate.scaling = perf_ctl_scaling;
2064 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2065 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2066 }
2067
2068 if (cpu->pstate.scaling == perf_ctl_scaling) {
2069 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2070 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2071 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2072 }
2073
2074 if (pstate_funcs.get_aperf_mperf_shift)
2075 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2076
2077 if (pstate_funcs.get_vid)
2078 pstate_funcs.get_vid(cpu);
2079
2080 intel_pstate_set_min_pstate(cpu);
2081 }
2082
2083 /*
2084 * Long hold time will keep high perf limits for long time,
2085 * which negatively impacts perf/watt for some workloads,
2086 * like specpower. 3ms is based on experiements on some
2087 * workoads.
2088 */
2089 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2090
intel_pstate_hwp_boost_up(struct cpudata * cpu)2091 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2092 {
2093 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2094 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2095 u32 max_limit = (hwp_req & 0xff00) >> 8;
2096 u32 min_limit = (hwp_req & 0xff);
2097 u32 boost_level1;
2098
2099 /*
2100 * Cases to consider (User changes via sysfs or boot time):
2101 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2102 * No boost, return.
2103 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2104 * Should result in one level boost only for P0.
2105 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2106 * Should result in two level boost:
2107 * (min + p1)/2 and P1.
2108 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2109 * Should result in three level boost:
2110 * (min + p1)/2, P1 and P0.
2111 */
2112
2113 /* If max and min are equal or already at max, nothing to boost */
2114 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2115 return;
2116
2117 if (!cpu->hwp_boost_min)
2118 cpu->hwp_boost_min = min_limit;
2119
2120 /* level at half way mark between min and guranteed */
2121 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2122
2123 if (cpu->hwp_boost_min < boost_level1)
2124 cpu->hwp_boost_min = boost_level1;
2125 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2126 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2127 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2128 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2129 cpu->hwp_boost_min = max_limit;
2130 else
2131 return;
2132
2133 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2134 wrmsrl(MSR_HWP_REQUEST, hwp_req);
2135 cpu->last_update = cpu->sample.time;
2136 }
2137
intel_pstate_hwp_boost_down(struct cpudata * cpu)2138 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2139 {
2140 if (cpu->hwp_boost_min) {
2141 bool expired;
2142
2143 /* Check if we are idle for hold time to boost down */
2144 expired = time_after64(cpu->sample.time, cpu->last_update +
2145 hwp_boost_hold_time_ns);
2146 if (expired) {
2147 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2148 cpu->hwp_boost_min = 0;
2149 }
2150 }
2151 cpu->last_update = cpu->sample.time;
2152 }
2153
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)2154 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2155 u64 time)
2156 {
2157 cpu->sample.time = time;
2158
2159 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2160 bool do_io = false;
2161
2162 cpu->sched_flags = 0;
2163 /*
2164 * Set iowait_boost flag and update time. Since IO WAIT flag
2165 * is set all the time, we can't just conclude that there is
2166 * some IO bound activity is scheduled on this CPU with just
2167 * one occurrence. If we receive at least two in two
2168 * consecutive ticks, then we treat as boost candidate.
2169 */
2170 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2171 do_io = true;
2172
2173 cpu->last_io_update = time;
2174
2175 if (do_io)
2176 intel_pstate_hwp_boost_up(cpu);
2177
2178 } else {
2179 intel_pstate_hwp_boost_down(cpu);
2180 }
2181 }
2182
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)2183 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2184 u64 time, unsigned int flags)
2185 {
2186 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2187
2188 cpu->sched_flags |= flags;
2189
2190 if (smp_processor_id() == cpu->cpu)
2191 intel_pstate_update_util_hwp_local(cpu, time);
2192 }
2193
intel_pstate_calc_avg_perf(struct cpudata * cpu)2194 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2195 {
2196 struct sample *sample = &cpu->sample;
2197
2198 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2199 }
2200
intel_pstate_sample(struct cpudata * cpu,u64 time)2201 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2202 {
2203 u64 aperf, mperf;
2204 unsigned long flags;
2205 u64 tsc;
2206
2207 local_irq_save(flags);
2208 rdmsrl(MSR_IA32_APERF, aperf);
2209 rdmsrl(MSR_IA32_MPERF, mperf);
2210 tsc = rdtsc();
2211 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2212 local_irq_restore(flags);
2213 return false;
2214 }
2215 local_irq_restore(flags);
2216
2217 cpu->last_sample_time = cpu->sample.time;
2218 cpu->sample.time = time;
2219 cpu->sample.aperf = aperf;
2220 cpu->sample.mperf = mperf;
2221 cpu->sample.tsc = tsc;
2222 cpu->sample.aperf -= cpu->prev_aperf;
2223 cpu->sample.mperf -= cpu->prev_mperf;
2224 cpu->sample.tsc -= cpu->prev_tsc;
2225
2226 cpu->prev_aperf = aperf;
2227 cpu->prev_mperf = mperf;
2228 cpu->prev_tsc = tsc;
2229 /*
2230 * First time this function is invoked in a given cycle, all of the
2231 * previous sample data fields are equal to zero or stale and they must
2232 * be populated with meaningful numbers for things to work, so assume
2233 * that sample.time will always be reset before setting the utilization
2234 * update hook and make the caller skip the sample then.
2235 */
2236 if (cpu->last_sample_time) {
2237 intel_pstate_calc_avg_perf(cpu);
2238 return true;
2239 }
2240 return false;
2241 }
2242
get_avg_frequency(struct cpudata * cpu)2243 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2244 {
2245 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2246 }
2247
get_avg_pstate(struct cpudata * cpu)2248 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2249 {
2250 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2251 cpu->sample.core_avg_perf);
2252 }
2253
get_target_pstate(struct cpudata * cpu)2254 static inline int32_t get_target_pstate(struct cpudata *cpu)
2255 {
2256 struct sample *sample = &cpu->sample;
2257 int32_t busy_frac;
2258 int target, avg_pstate;
2259
2260 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2261 sample->tsc);
2262
2263 if (busy_frac < cpu->iowait_boost)
2264 busy_frac = cpu->iowait_boost;
2265
2266 sample->busy_scaled = busy_frac * 100;
2267
2268 target = global.no_turbo || global.turbo_disabled ?
2269 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2270 target += target >> 2;
2271 target = mul_fp(target, busy_frac);
2272 if (target < cpu->pstate.min_pstate)
2273 target = cpu->pstate.min_pstate;
2274
2275 /*
2276 * If the average P-state during the previous cycle was higher than the
2277 * current target, add 50% of the difference to the target to reduce
2278 * possible performance oscillations and offset possible performance
2279 * loss related to moving the workload from one CPU to another within
2280 * a package/module.
2281 */
2282 avg_pstate = get_avg_pstate(cpu);
2283 if (avg_pstate > target)
2284 target += (avg_pstate - target) >> 1;
2285
2286 return target;
2287 }
2288
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2289 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2290 {
2291 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2292 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2293
2294 return clamp_t(int, pstate, min_pstate, max_pstate);
2295 }
2296
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2297 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2298 {
2299 if (pstate == cpu->pstate.current_pstate)
2300 return;
2301
2302 cpu->pstate.current_pstate = pstate;
2303 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2304 }
2305
intel_pstate_adjust_pstate(struct cpudata * cpu)2306 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2307 {
2308 int from = cpu->pstate.current_pstate;
2309 struct sample *sample;
2310 int target_pstate;
2311
2312 update_turbo_state();
2313
2314 target_pstate = get_target_pstate(cpu);
2315 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2316 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2317 intel_pstate_update_pstate(cpu, target_pstate);
2318
2319 sample = &cpu->sample;
2320 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2321 fp_toint(sample->busy_scaled),
2322 from,
2323 cpu->pstate.current_pstate,
2324 sample->mperf,
2325 sample->aperf,
2326 sample->tsc,
2327 get_avg_frequency(cpu),
2328 fp_toint(cpu->iowait_boost * 100));
2329 }
2330
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2331 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2332 unsigned int flags)
2333 {
2334 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2335 u64 delta_ns;
2336
2337 /* Don't allow remote callbacks */
2338 if (smp_processor_id() != cpu->cpu)
2339 return;
2340
2341 delta_ns = time - cpu->last_update;
2342 if (flags & SCHED_CPUFREQ_IOWAIT) {
2343 /* Start over if the CPU may have been idle. */
2344 if (delta_ns > TICK_NSEC) {
2345 cpu->iowait_boost = ONE_EIGHTH_FP;
2346 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2347 cpu->iowait_boost <<= 1;
2348 if (cpu->iowait_boost > int_tofp(1))
2349 cpu->iowait_boost = int_tofp(1);
2350 } else {
2351 cpu->iowait_boost = ONE_EIGHTH_FP;
2352 }
2353 } else if (cpu->iowait_boost) {
2354 /* Clear iowait_boost if the CPU may have been idle. */
2355 if (delta_ns > TICK_NSEC)
2356 cpu->iowait_boost = 0;
2357 else
2358 cpu->iowait_boost >>= 1;
2359 }
2360 cpu->last_update = time;
2361 delta_ns = time - cpu->sample.time;
2362 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2363 return;
2364
2365 if (intel_pstate_sample(cpu, time))
2366 intel_pstate_adjust_pstate(cpu);
2367 }
2368
2369 static struct pstate_funcs core_funcs = {
2370 .get_max = core_get_max_pstate,
2371 .get_max_physical = core_get_max_pstate_physical,
2372 .get_min = core_get_min_pstate,
2373 .get_turbo = core_get_turbo_pstate,
2374 .get_scaling = core_get_scaling,
2375 .get_val = core_get_val,
2376 };
2377
2378 static const struct pstate_funcs silvermont_funcs = {
2379 .get_max = atom_get_max_pstate,
2380 .get_max_physical = atom_get_max_pstate,
2381 .get_min = atom_get_min_pstate,
2382 .get_turbo = atom_get_turbo_pstate,
2383 .get_val = atom_get_val,
2384 .get_scaling = silvermont_get_scaling,
2385 .get_vid = atom_get_vid,
2386 };
2387
2388 static const struct pstate_funcs airmont_funcs = {
2389 .get_max = atom_get_max_pstate,
2390 .get_max_physical = atom_get_max_pstate,
2391 .get_min = atom_get_min_pstate,
2392 .get_turbo = atom_get_turbo_pstate,
2393 .get_val = atom_get_val,
2394 .get_scaling = airmont_get_scaling,
2395 .get_vid = atom_get_vid,
2396 };
2397
2398 static const struct pstate_funcs knl_funcs = {
2399 .get_max = core_get_max_pstate,
2400 .get_max_physical = core_get_max_pstate_physical,
2401 .get_min = core_get_min_pstate,
2402 .get_turbo = knl_get_turbo_pstate,
2403 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2404 .get_scaling = core_get_scaling,
2405 .get_val = core_get_val,
2406 };
2407
2408 #define X86_MATCH(model, policy) \
2409 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2410 X86_FEATURE_APERFMPERF, &policy)
2411
2412 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2413 X86_MATCH(SANDYBRIDGE, core_funcs),
2414 X86_MATCH(SANDYBRIDGE_X, core_funcs),
2415 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
2416 X86_MATCH(IVYBRIDGE, core_funcs),
2417 X86_MATCH(HASWELL, core_funcs),
2418 X86_MATCH(BROADWELL, core_funcs),
2419 X86_MATCH(IVYBRIDGE_X, core_funcs),
2420 X86_MATCH(HASWELL_X, core_funcs),
2421 X86_MATCH(HASWELL_L, core_funcs),
2422 X86_MATCH(HASWELL_G, core_funcs),
2423 X86_MATCH(BROADWELL_G, core_funcs),
2424 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
2425 X86_MATCH(SKYLAKE_L, core_funcs),
2426 X86_MATCH(BROADWELL_X, core_funcs),
2427 X86_MATCH(SKYLAKE, core_funcs),
2428 X86_MATCH(BROADWELL_D, core_funcs),
2429 X86_MATCH(XEON_PHI_KNL, knl_funcs),
2430 X86_MATCH(XEON_PHI_KNM, knl_funcs),
2431 X86_MATCH(ATOM_GOLDMONT, core_funcs),
2432 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
2433 X86_MATCH(SKYLAKE_X, core_funcs),
2434 X86_MATCH(COMETLAKE, core_funcs),
2435 X86_MATCH(ICELAKE_X, core_funcs),
2436 X86_MATCH(TIGERLAKE, core_funcs),
2437 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs),
2438 {}
2439 };
2440 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2441
2442 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2443 X86_MATCH(BROADWELL_D, core_funcs),
2444 X86_MATCH(BROADWELL_X, core_funcs),
2445 X86_MATCH(SKYLAKE_X, core_funcs),
2446 X86_MATCH(ICELAKE_X, core_funcs),
2447 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs),
2448 {}
2449 };
2450
2451 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2452 X86_MATCH(KABYLAKE, core_funcs),
2453 {}
2454 };
2455
intel_pstate_init_cpu(unsigned int cpunum)2456 static int intel_pstate_init_cpu(unsigned int cpunum)
2457 {
2458 struct cpudata *cpu;
2459
2460 cpu = all_cpu_data[cpunum];
2461
2462 if (!cpu) {
2463 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2464 if (!cpu)
2465 return -ENOMEM;
2466
2467 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2468
2469 cpu->cpu = cpunum;
2470
2471 cpu->epp_default = -EINVAL;
2472
2473 if (hwp_active) {
2474 intel_pstate_hwp_enable(cpu);
2475
2476 if (intel_pstate_acpi_pm_profile_server())
2477 hwp_boost = true;
2478 }
2479 } else if (hwp_active) {
2480 /*
2481 * Re-enable HWP in case this happens after a resume from ACPI
2482 * S3 if the CPU was offline during the whole system/resume
2483 * cycle.
2484 */
2485 intel_pstate_hwp_reenable(cpu);
2486 }
2487
2488 cpu->epp_powersave = -EINVAL;
2489 cpu->epp_policy = 0;
2490
2491 intel_pstate_get_cpu_pstates(cpu);
2492
2493 pr_debug("controlling: cpu %d\n", cpunum);
2494
2495 return 0;
2496 }
2497
intel_pstate_set_update_util_hook(unsigned int cpu_num)2498 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2499 {
2500 struct cpudata *cpu = all_cpu_data[cpu_num];
2501
2502 if (hwp_active && !hwp_boost)
2503 return;
2504
2505 if (cpu->update_util_set)
2506 return;
2507
2508 /* Prevent intel_pstate_update_util() from using stale data. */
2509 cpu->sample.time = 0;
2510 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2511 (hwp_active ?
2512 intel_pstate_update_util_hwp :
2513 intel_pstate_update_util));
2514 cpu->update_util_set = true;
2515 }
2516
intel_pstate_clear_update_util_hook(unsigned int cpu)2517 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2518 {
2519 struct cpudata *cpu_data = all_cpu_data[cpu];
2520
2521 if (!cpu_data->update_util_set)
2522 return;
2523
2524 cpufreq_remove_update_util_hook(cpu);
2525 cpu_data->update_util_set = false;
2526 synchronize_rcu();
2527 }
2528
intel_pstate_get_max_freq(struct cpudata * cpu)2529 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2530 {
2531 return global.turbo_disabled || global.no_turbo ?
2532 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2533 }
2534
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2535 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2536 unsigned int policy_min,
2537 unsigned int policy_max)
2538 {
2539 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2540 int32_t max_policy_perf, min_policy_perf;
2541
2542 max_policy_perf = policy_max / perf_ctl_scaling;
2543 if (policy_max == policy_min) {
2544 min_policy_perf = max_policy_perf;
2545 } else {
2546 min_policy_perf = policy_min / perf_ctl_scaling;
2547 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2548 0, max_policy_perf);
2549 }
2550
2551 /*
2552 * HWP needs some special consideration, because HWP_REQUEST uses
2553 * abstract values to represent performance rather than pure ratios.
2554 */
2555 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2556 int freq;
2557
2558 freq = max_policy_perf * perf_ctl_scaling;
2559 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2560 freq = min_policy_perf * perf_ctl_scaling;
2561 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2562 }
2563
2564 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2565 cpu->cpu, min_policy_perf, max_policy_perf);
2566
2567 /* Normalize user input to [min_perf, max_perf] */
2568 if (per_cpu_limits) {
2569 cpu->min_perf_ratio = min_policy_perf;
2570 cpu->max_perf_ratio = max_policy_perf;
2571 } else {
2572 int turbo_max = cpu->pstate.turbo_pstate;
2573 int32_t global_min, global_max;
2574
2575 /* Global limits are in percent of the maximum turbo P-state. */
2576 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2577 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2578 global_min = clamp_t(int32_t, global_min, 0, global_max);
2579
2580 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2581 global_min, global_max);
2582
2583 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2584 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2585 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2586 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2587
2588 /* Make sure min_perf <= max_perf */
2589 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2590 cpu->max_perf_ratio);
2591
2592 }
2593 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2594 cpu->max_perf_ratio,
2595 cpu->min_perf_ratio);
2596 }
2597
intel_pstate_set_policy(struct cpufreq_policy * policy)2598 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2599 {
2600 struct cpudata *cpu;
2601
2602 if (!policy->cpuinfo.max_freq)
2603 return -ENODEV;
2604
2605 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2606 policy->cpuinfo.max_freq, policy->max);
2607
2608 cpu = all_cpu_data[policy->cpu];
2609 cpu->policy = policy->policy;
2610
2611 mutex_lock(&intel_pstate_limits_lock);
2612
2613 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2614
2615 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2616 /*
2617 * NOHZ_FULL CPUs need this as the governor callback may not
2618 * be invoked on them.
2619 */
2620 intel_pstate_clear_update_util_hook(policy->cpu);
2621 intel_pstate_max_within_limits(cpu);
2622 } else {
2623 intel_pstate_set_update_util_hook(policy->cpu);
2624 }
2625
2626 if (hwp_active) {
2627 /*
2628 * When hwp_boost was active before and dynamically it
2629 * was turned off, in that case we need to clear the
2630 * update util hook.
2631 */
2632 if (!hwp_boost)
2633 intel_pstate_clear_update_util_hook(policy->cpu);
2634 intel_pstate_hwp_set(policy->cpu);
2635 }
2636 /*
2637 * policy->cur is never updated with the intel_pstate driver, but it
2638 * is used as a stale frequency value. So, keep it within limits.
2639 */
2640 policy->cur = policy->min;
2641
2642 mutex_unlock(&intel_pstate_limits_lock);
2643
2644 return 0;
2645 }
2646
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2647 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2648 struct cpufreq_policy_data *policy)
2649 {
2650 if (!hwp_active &&
2651 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2652 policy->max < policy->cpuinfo.max_freq &&
2653 policy->max > cpu->pstate.max_freq) {
2654 pr_debug("policy->max > max non turbo frequency\n");
2655 policy->max = policy->cpuinfo.max_freq;
2656 }
2657 }
2658
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2659 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2660 struct cpufreq_policy_data *policy)
2661 {
2662 int max_freq;
2663
2664 update_turbo_state();
2665 if (hwp_active) {
2666 intel_pstate_get_hwp_cap(cpu);
2667 max_freq = global.no_turbo || global.turbo_disabled ?
2668 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2669 } else {
2670 max_freq = intel_pstate_get_max_freq(cpu);
2671 }
2672 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2673
2674 intel_pstate_adjust_policy_max(cpu, policy);
2675 }
2676
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2677 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2678 {
2679 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2680
2681 return 0;
2682 }
2683
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)2684 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2685 {
2686 struct cpudata *cpu = all_cpu_data[policy->cpu];
2687
2688 pr_debug("CPU %d going offline\n", cpu->cpu);
2689
2690 if (cpu->suspended)
2691 return 0;
2692
2693 /*
2694 * If the CPU is an SMT thread and it goes offline with the performance
2695 * settings different from the minimum, it will prevent its sibling
2696 * from getting to lower performance levels, so force the minimum
2697 * performance on CPU offline to prevent that from happening.
2698 */
2699 if (hwp_active)
2700 intel_pstate_hwp_offline(cpu);
2701 else
2702 intel_pstate_set_min_pstate(cpu);
2703
2704 intel_pstate_exit_perf_limits(policy);
2705
2706 return 0;
2707 }
2708
intel_pstate_cpu_online(struct cpufreq_policy * policy)2709 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2710 {
2711 struct cpudata *cpu = all_cpu_data[policy->cpu];
2712
2713 pr_debug("CPU %d going online\n", cpu->cpu);
2714
2715 intel_pstate_init_acpi_perf_limits(policy);
2716
2717 if (hwp_active) {
2718 /*
2719 * Re-enable HWP and clear the "suspended" flag to let "resume"
2720 * know that it need not do that.
2721 */
2722 intel_pstate_hwp_reenable(cpu);
2723 cpu->suspended = false;
2724 }
2725
2726 return 0;
2727 }
2728
intel_pstate_cpu_offline(struct cpufreq_policy * policy)2729 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2730 {
2731 intel_pstate_clear_update_util_hook(policy->cpu);
2732
2733 return intel_cpufreq_cpu_offline(policy);
2734 }
2735
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2736 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2737 {
2738 pr_debug("CPU %d exiting\n", policy->cpu);
2739
2740 policy->fast_switch_possible = false;
2741
2742 return 0;
2743 }
2744
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2745 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2746 {
2747 struct cpudata *cpu;
2748 int rc;
2749
2750 rc = intel_pstate_init_cpu(policy->cpu);
2751 if (rc)
2752 return rc;
2753
2754 cpu = all_cpu_data[policy->cpu];
2755
2756 cpu->max_perf_ratio = 0xFF;
2757 cpu->min_perf_ratio = 0;
2758
2759 /* cpuinfo and default policy values */
2760 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2761 update_turbo_state();
2762 global.turbo_disabled_mf = global.turbo_disabled;
2763 policy->cpuinfo.max_freq = global.turbo_disabled ?
2764 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2765
2766 policy->min = policy->cpuinfo.min_freq;
2767 policy->max = policy->cpuinfo.max_freq;
2768
2769 intel_pstate_init_acpi_perf_limits(policy);
2770
2771 policy->fast_switch_possible = true;
2772
2773 return 0;
2774 }
2775
intel_pstate_cpu_init(struct cpufreq_policy * policy)2776 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2777 {
2778 int ret = __intel_pstate_cpu_init(policy);
2779
2780 if (ret)
2781 return ret;
2782
2783 /*
2784 * Set the policy to powersave to provide a valid fallback value in case
2785 * the default cpufreq governor is neither powersave nor performance.
2786 */
2787 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2788
2789 if (hwp_active) {
2790 struct cpudata *cpu = all_cpu_data[policy->cpu];
2791
2792 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2793 }
2794
2795 return 0;
2796 }
2797
2798 static struct cpufreq_driver intel_pstate = {
2799 .flags = CPUFREQ_CONST_LOOPS,
2800 .verify = intel_pstate_verify_policy,
2801 .setpolicy = intel_pstate_set_policy,
2802 .suspend = intel_pstate_suspend,
2803 .resume = intel_pstate_resume,
2804 .init = intel_pstate_cpu_init,
2805 .exit = intel_pstate_cpu_exit,
2806 .offline = intel_pstate_cpu_offline,
2807 .online = intel_pstate_cpu_online,
2808 .update_limits = intel_pstate_update_limits,
2809 .name = "intel_pstate",
2810 };
2811
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)2812 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2813 {
2814 struct cpudata *cpu = all_cpu_data[policy->cpu];
2815
2816 intel_pstate_verify_cpu_policy(cpu, policy);
2817 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2818
2819 return 0;
2820 }
2821
2822 /* Use of trace in passive mode:
2823 *
2824 * In passive mode the trace core_busy field (also known as the
2825 * performance field, and lablelled as such on the graphs; also known as
2826 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2827 * driver call was via the normal or fast switch path. Various graphs
2828 * output from the intel_pstate_tracer.py utility that include core_busy
2829 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2830 * so we use 10 to indicate the normal path through the driver, and
2831 * 90 to indicate the fast switch path through the driver.
2832 * The scaled_busy field is not used, and is set to 0.
2833 */
2834
2835 #define INTEL_PSTATE_TRACE_TARGET 10
2836 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2837
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)2838 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2839 {
2840 struct sample *sample;
2841
2842 if (!trace_pstate_sample_enabled())
2843 return;
2844
2845 if (!intel_pstate_sample(cpu, ktime_get()))
2846 return;
2847
2848 sample = &cpu->sample;
2849 trace_pstate_sample(trace_type,
2850 0,
2851 old_pstate,
2852 cpu->pstate.current_pstate,
2853 sample->mperf,
2854 sample->aperf,
2855 sample->tsc,
2856 get_avg_frequency(cpu),
2857 fp_toint(cpu->iowait_boost * 100));
2858 }
2859
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)2860 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2861 u32 desired, bool fast_switch)
2862 {
2863 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2864
2865 value &= ~HWP_MIN_PERF(~0L);
2866 value |= HWP_MIN_PERF(min);
2867
2868 value &= ~HWP_MAX_PERF(~0L);
2869 value |= HWP_MAX_PERF(max);
2870
2871 value &= ~HWP_DESIRED_PERF(~0L);
2872 value |= HWP_DESIRED_PERF(desired);
2873
2874 if (value == prev)
2875 return;
2876
2877 WRITE_ONCE(cpu->hwp_req_cached, value);
2878 if (fast_switch)
2879 wrmsrl(MSR_HWP_REQUEST, value);
2880 else
2881 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2882 }
2883
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)2884 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2885 u32 target_pstate, bool fast_switch)
2886 {
2887 if (fast_switch)
2888 wrmsrl(MSR_IA32_PERF_CTL,
2889 pstate_funcs.get_val(cpu, target_pstate));
2890 else
2891 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2892 pstate_funcs.get_val(cpu, target_pstate));
2893 }
2894
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)2895 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2896 int target_pstate, bool fast_switch)
2897 {
2898 struct cpudata *cpu = all_cpu_data[policy->cpu];
2899 int old_pstate = cpu->pstate.current_pstate;
2900
2901 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2902 if (hwp_active) {
2903 int max_pstate = policy->strict_target ?
2904 target_pstate : cpu->max_perf_ratio;
2905
2906 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2907 fast_switch);
2908 } else if (target_pstate != old_pstate) {
2909 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2910 }
2911
2912 cpu->pstate.current_pstate = target_pstate;
2913
2914 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2915 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2916
2917 return target_pstate;
2918 }
2919
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2920 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2921 unsigned int target_freq,
2922 unsigned int relation)
2923 {
2924 struct cpudata *cpu = all_cpu_data[policy->cpu];
2925 struct cpufreq_freqs freqs;
2926 int target_pstate;
2927
2928 update_turbo_state();
2929
2930 freqs.old = policy->cur;
2931 freqs.new = target_freq;
2932
2933 cpufreq_freq_transition_begin(policy, &freqs);
2934
2935 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
2936 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2937
2938 freqs.new = target_pstate * cpu->pstate.scaling;
2939
2940 cpufreq_freq_transition_end(policy, &freqs, false);
2941
2942 return 0;
2943 }
2944
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2945 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2946 unsigned int target_freq)
2947 {
2948 struct cpudata *cpu = all_cpu_data[policy->cpu];
2949 int target_pstate;
2950
2951 update_turbo_state();
2952
2953 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
2954
2955 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2956
2957 return target_pstate * cpu->pstate.scaling;
2958 }
2959
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2960 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2961 unsigned long min_perf,
2962 unsigned long target_perf,
2963 unsigned long capacity)
2964 {
2965 struct cpudata *cpu = all_cpu_data[cpunum];
2966 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2967 int old_pstate = cpu->pstate.current_pstate;
2968 int cap_pstate, min_pstate, max_pstate, target_pstate;
2969
2970 update_turbo_state();
2971 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2972 HWP_HIGHEST_PERF(hwp_cap);
2973
2974 /* Optimization: Avoid unnecessary divisions. */
2975
2976 target_pstate = cap_pstate;
2977 if (target_perf < capacity)
2978 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2979
2980 min_pstate = cap_pstate;
2981 if (min_perf < capacity)
2982 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2983
2984 if (min_pstate < cpu->pstate.min_pstate)
2985 min_pstate = cpu->pstate.min_pstate;
2986
2987 if (min_pstate < cpu->min_perf_ratio)
2988 min_pstate = cpu->min_perf_ratio;
2989
2990 if (min_pstate > cpu->max_perf_ratio)
2991 min_pstate = cpu->max_perf_ratio;
2992
2993 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2994 if (max_pstate < min_pstate)
2995 max_pstate = min_pstate;
2996
2997 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2998
2999 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3000
3001 cpu->pstate.current_pstate = target_pstate;
3002 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3003 }
3004
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)3005 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3006 {
3007 struct freq_qos_request *req;
3008 struct cpudata *cpu;
3009 struct device *dev;
3010 int ret, freq;
3011
3012 dev = get_cpu_device(policy->cpu);
3013 if (!dev)
3014 return -ENODEV;
3015
3016 ret = __intel_pstate_cpu_init(policy);
3017 if (ret)
3018 return ret;
3019
3020 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3021 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3022 policy->cur = policy->cpuinfo.min_freq;
3023
3024 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3025 if (!req) {
3026 ret = -ENOMEM;
3027 goto pstate_exit;
3028 }
3029
3030 cpu = all_cpu_data[policy->cpu];
3031
3032 if (hwp_active) {
3033 u64 value;
3034
3035 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3036
3037 intel_pstate_get_hwp_cap(cpu);
3038
3039 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3040 WRITE_ONCE(cpu->hwp_req_cached, value);
3041
3042 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3043 } else {
3044 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3045 }
3046
3047 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3048
3049 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3050 freq);
3051 if (ret < 0) {
3052 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3053 goto free_req;
3054 }
3055
3056 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3057
3058 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3059 freq);
3060 if (ret < 0) {
3061 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3062 goto remove_min_req;
3063 }
3064
3065 policy->driver_data = req;
3066
3067 return 0;
3068
3069 remove_min_req:
3070 freq_qos_remove_request(req);
3071 free_req:
3072 kfree(req);
3073 pstate_exit:
3074 intel_pstate_exit_perf_limits(policy);
3075
3076 return ret;
3077 }
3078
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)3079 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3080 {
3081 struct freq_qos_request *req;
3082
3083 req = policy->driver_data;
3084
3085 freq_qos_remove_request(req + 1);
3086 freq_qos_remove_request(req);
3087 kfree(req);
3088
3089 return intel_pstate_cpu_exit(policy);
3090 }
3091
intel_cpufreq_suspend(struct cpufreq_policy * policy)3092 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3093 {
3094 intel_pstate_suspend(policy);
3095
3096 if (hwp_active) {
3097 struct cpudata *cpu = all_cpu_data[policy->cpu];
3098 u64 value = READ_ONCE(cpu->hwp_req_cached);
3099
3100 /*
3101 * Clear the desired perf field in MSR_HWP_REQUEST in case
3102 * intel_cpufreq_adjust_perf() is in use and the last value
3103 * written by it may not be suitable.
3104 */
3105 value &= ~HWP_DESIRED_PERF(~0L);
3106 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3107 WRITE_ONCE(cpu->hwp_req_cached, value);
3108 }
3109
3110 return 0;
3111 }
3112
3113 static struct cpufreq_driver intel_cpufreq = {
3114 .flags = CPUFREQ_CONST_LOOPS,
3115 .verify = intel_cpufreq_verify_policy,
3116 .target = intel_cpufreq_target,
3117 .fast_switch = intel_cpufreq_fast_switch,
3118 .init = intel_cpufreq_cpu_init,
3119 .exit = intel_cpufreq_cpu_exit,
3120 .offline = intel_cpufreq_cpu_offline,
3121 .online = intel_pstate_cpu_online,
3122 .suspend = intel_cpufreq_suspend,
3123 .resume = intel_pstate_resume,
3124 .update_limits = intel_pstate_update_limits,
3125 .name = "intel_cpufreq",
3126 };
3127
3128 static struct cpufreq_driver *default_driver;
3129
intel_pstate_driver_cleanup(void)3130 static void intel_pstate_driver_cleanup(void)
3131 {
3132 unsigned int cpu;
3133
3134 cpus_read_lock();
3135 for_each_online_cpu(cpu) {
3136 if (all_cpu_data[cpu]) {
3137 if (intel_pstate_driver == &intel_pstate)
3138 intel_pstate_clear_update_util_hook(cpu);
3139
3140 spin_lock(&hwp_notify_lock);
3141 kfree(all_cpu_data[cpu]);
3142 WRITE_ONCE(all_cpu_data[cpu], NULL);
3143 spin_unlock(&hwp_notify_lock);
3144 }
3145 }
3146 cpus_read_unlock();
3147
3148 intel_pstate_driver = NULL;
3149 }
3150
intel_pstate_register_driver(struct cpufreq_driver * driver)3151 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3152 {
3153 int ret;
3154
3155 if (driver == &intel_pstate)
3156 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3157
3158 memset(&global, 0, sizeof(global));
3159 global.max_perf_pct = 100;
3160
3161 intel_pstate_driver = driver;
3162 ret = cpufreq_register_driver(intel_pstate_driver);
3163 if (ret) {
3164 intel_pstate_driver_cleanup();
3165 return ret;
3166 }
3167
3168 global.min_perf_pct = min_perf_pct_min();
3169
3170 return 0;
3171 }
3172
intel_pstate_show_status(char * buf)3173 static ssize_t intel_pstate_show_status(char *buf)
3174 {
3175 if (!intel_pstate_driver)
3176 return sprintf(buf, "off\n");
3177
3178 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3179 "active" : "passive");
3180 }
3181
intel_pstate_update_status(const char * buf,size_t size)3182 static int intel_pstate_update_status(const char *buf, size_t size)
3183 {
3184 if (size == 3 && !strncmp(buf, "off", size)) {
3185 if (!intel_pstate_driver)
3186 return -EINVAL;
3187
3188 if (hwp_active)
3189 return -EBUSY;
3190
3191 cpufreq_unregister_driver(intel_pstate_driver);
3192 intel_pstate_driver_cleanup();
3193 return 0;
3194 }
3195
3196 if (size == 6 && !strncmp(buf, "active", size)) {
3197 if (intel_pstate_driver) {
3198 if (intel_pstate_driver == &intel_pstate)
3199 return 0;
3200
3201 cpufreq_unregister_driver(intel_pstate_driver);
3202 }
3203
3204 return intel_pstate_register_driver(&intel_pstate);
3205 }
3206
3207 if (size == 7 && !strncmp(buf, "passive", size)) {
3208 if (intel_pstate_driver) {
3209 if (intel_pstate_driver == &intel_cpufreq)
3210 return 0;
3211
3212 cpufreq_unregister_driver(intel_pstate_driver);
3213 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3214 }
3215
3216 return intel_pstate_register_driver(&intel_cpufreq);
3217 }
3218
3219 return -EINVAL;
3220 }
3221
3222 static int no_load __initdata;
3223 static int no_hwp __initdata;
3224 static int hwp_only __initdata;
3225 static unsigned int force_load __initdata;
3226
intel_pstate_msrs_not_valid(void)3227 static int __init intel_pstate_msrs_not_valid(void)
3228 {
3229 if (!pstate_funcs.get_max(0) ||
3230 !pstate_funcs.get_min(0) ||
3231 !pstate_funcs.get_turbo(0))
3232 return -ENODEV;
3233
3234 return 0;
3235 }
3236
copy_cpu_funcs(struct pstate_funcs * funcs)3237 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3238 {
3239 pstate_funcs.get_max = funcs->get_max;
3240 pstate_funcs.get_max_physical = funcs->get_max_physical;
3241 pstate_funcs.get_min = funcs->get_min;
3242 pstate_funcs.get_turbo = funcs->get_turbo;
3243 pstate_funcs.get_scaling = funcs->get_scaling;
3244 pstate_funcs.get_val = funcs->get_val;
3245 pstate_funcs.get_vid = funcs->get_vid;
3246 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3247 }
3248
3249 #ifdef CONFIG_ACPI
3250
intel_pstate_no_acpi_pss(void)3251 static bool __init intel_pstate_no_acpi_pss(void)
3252 {
3253 int i;
3254
3255 for_each_possible_cpu(i) {
3256 acpi_status status;
3257 union acpi_object *pss;
3258 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3259 struct acpi_processor *pr = per_cpu(processors, i);
3260
3261 if (!pr)
3262 continue;
3263
3264 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3265 if (ACPI_FAILURE(status))
3266 continue;
3267
3268 pss = buffer.pointer;
3269 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3270 kfree(pss);
3271 return false;
3272 }
3273
3274 kfree(pss);
3275 }
3276
3277 pr_debug("ACPI _PSS not found\n");
3278 return true;
3279 }
3280
intel_pstate_no_acpi_pcch(void)3281 static bool __init intel_pstate_no_acpi_pcch(void)
3282 {
3283 acpi_status status;
3284 acpi_handle handle;
3285
3286 status = acpi_get_handle(NULL, "\\_SB", &handle);
3287 if (ACPI_FAILURE(status))
3288 goto not_found;
3289
3290 if (acpi_has_method(handle, "PCCH"))
3291 return false;
3292
3293 not_found:
3294 pr_debug("ACPI PCCH not found\n");
3295 return true;
3296 }
3297
intel_pstate_has_acpi_ppc(void)3298 static bool __init intel_pstate_has_acpi_ppc(void)
3299 {
3300 int i;
3301
3302 for_each_possible_cpu(i) {
3303 struct acpi_processor *pr = per_cpu(processors, i);
3304
3305 if (!pr)
3306 continue;
3307 if (acpi_has_method(pr->handle, "_PPC"))
3308 return true;
3309 }
3310 pr_debug("ACPI _PPC not found\n");
3311 return false;
3312 }
3313
3314 enum {
3315 PSS,
3316 PPC,
3317 };
3318
3319 /* Hardware vendor-specific info that has its own power management modes */
3320 static struct acpi_platform_list plat_info[] __initdata = {
3321 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3322 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3323 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3324 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3325 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3326 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3327 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3328 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3329 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3330 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3331 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3332 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3333 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3334 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3335 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3336 { } /* End */
3337 };
3338
3339 #define BITMASK_OOB (BIT(8) | BIT(18))
3340
intel_pstate_platform_pwr_mgmt_exists(void)3341 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3342 {
3343 const struct x86_cpu_id *id;
3344 u64 misc_pwr;
3345 int idx;
3346
3347 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3348 if (id) {
3349 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3350 if (misc_pwr & BITMASK_OOB) {
3351 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3352 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3353 return true;
3354 }
3355 }
3356
3357 idx = acpi_match_platform_list(plat_info);
3358 if (idx < 0)
3359 return false;
3360
3361 switch (plat_info[idx].data) {
3362 case PSS:
3363 if (!intel_pstate_no_acpi_pss())
3364 return false;
3365
3366 return intel_pstate_no_acpi_pcch();
3367 case PPC:
3368 return intel_pstate_has_acpi_ppc() && !force_load;
3369 }
3370
3371 return false;
3372 }
3373
intel_pstate_request_control_from_smm(void)3374 static void intel_pstate_request_control_from_smm(void)
3375 {
3376 /*
3377 * It may be unsafe to request P-states control from SMM if _PPC support
3378 * has not been enabled.
3379 */
3380 if (acpi_ppc)
3381 acpi_processor_pstate_control();
3382 }
3383 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3384 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3385 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3386 static inline void intel_pstate_request_control_from_smm(void) {}
3387 #endif /* CONFIG_ACPI */
3388
3389 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3390
3391 #define X86_MATCH_HWP(model, hwp_mode) \
3392 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3393 X86_FEATURE_HWP, hwp_mode)
3394
3395 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3396 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3397 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3398 X86_MATCH_HWP(ANY, 0),
3399 {}
3400 };
3401
intel_pstate_hwp_is_enabled(void)3402 static bool intel_pstate_hwp_is_enabled(void)
3403 {
3404 u64 value;
3405
3406 rdmsrl(MSR_PM_ENABLE, value);
3407 return !!(value & 0x1);
3408 }
3409
3410 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3411 /*
3412 * Set EPP value as 102, this is the max suggested EPP
3413 * which can result in one core turbo frequency for
3414 * AlderLake Mobile CPUs.
3415 */
3416 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3417 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3418 {}
3419 };
3420
intel_pstate_init(void)3421 static int __init intel_pstate_init(void)
3422 {
3423 static struct cpudata **_all_cpu_data;
3424 const struct x86_cpu_id *id;
3425 int rc;
3426
3427 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3428 return -ENODEV;
3429
3430 id = x86_match_cpu(hwp_support_ids);
3431 if (id) {
3432 hwp_forced = intel_pstate_hwp_is_enabled();
3433
3434 if (hwp_forced)
3435 pr_info("HWP enabled by BIOS\n");
3436 else if (no_load)
3437 return -ENODEV;
3438
3439 copy_cpu_funcs(&core_funcs);
3440 /*
3441 * Avoid enabling HWP for processors without EPP support,
3442 * because that means incomplete HWP implementation which is a
3443 * corner case and supporting it is generally problematic.
3444 *
3445 * If HWP is enabled already, though, there is no choice but to
3446 * deal with it.
3447 */
3448 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3449 WRITE_ONCE(hwp_active, 1);
3450 hwp_mode_bdw = id->driver_data;
3451 intel_pstate.attr = hwp_cpufreq_attrs;
3452 intel_cpufreq.attr = hwp_cpufreq_attrs;
3453 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3454 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3455 if (!default_driver)
3456 default_driver = &intel_pstate;
3457
3458 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3459
3460 goto hwp_cpu_matched;
3461 }
3462 pr_info("HWP not enabled\n");
3463 } else {
3464 if (no_load)
3465 return -ENODEV;
3466
3467 id = x86_match_cpu(intel_pstate_cpu_ids);
3468 if (!id) {
3469 pr_info("CPU model not supported\n");
3470 return -ENODEV;
3471 }
3472
3473 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3474 }
3475
3476 if (intel_pstate_msrs_not_valid()) {
3477 pr_info("Invalid MSRs\n");
3478 return -ENODEV;
3479 }
3480 /* Without HWP start in the passive mode. */
3481 if (!default_driver)
3482 default_driver = &intel_cpufreq;
3483
3484 hwp_cpu_matched:
3485 /*
3486 * The Intel pstate driver will be ignored if the platform
3487 * firmware has its own power management modes.
3488 */
3489 if (intel_pstate_platform_pwr_mgmt_exists()) {
3490 pr_info("P-states controlled by the platform\n");
3491 return -ENODEV;
3492 }
3493
3494 if (!hwp_active && hwp_only)
3495 return -ENOTSUPP;
3496
3497 pr_info("Intel P-state driver initializing\n");
3498
3499 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3500 if (!_all_cpu_data)
3501 return -ENOMEM;
3502
3503 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3504
3505 intel_pstate_request_control_from_smm();
3506
3507 intel_pstate_sysfs_expose_params();
3508
3509 if (hwp_active) {
3510 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3511
3512 if (id)
3513 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3514 }
3515
3516 mutex_lock(&intel_pstate_driver_lock);
3517 rc = intel_pstate_register_driver(default_driver);
3518 mutex_unlock(&intel_pstate_driver_lock);
3519 if (rc) {
3520 intel_pstate_sysfs_remove();
3521 return rc;
3522 }
3523
3524 if (hwp_active) {
3525 const struct x86_cpu_id *id;
3526
3527 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3528 if (id) {
3529 set_power_ctl_ee_state(false);
3530 pr_info("Disabling energy efficiency optimization\n");
3531 }
3532
3533 pr_info("HWP enabled\n");
3534 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3535 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3536 }
3537
3538 return 0;
3539 }
3540 device_initcall(intel_pstate_init);
3541
intel_pstate_setup(char * str)3542 static int __init intel_pstate_setup(char *str)
3543 {
3544 if (!str)
3545 return -EINVAL;
3546
3547 if (!strcmp(str, "disable"))
3548 no_load = 1;
3549 else if (!strcmp(str, "active"))
3550 default_driver = &intel_pstate;
3551 else if (!strcmp(str, "passive"))
3552 default_driver = &intel_cpufreq;
3553
3554 if (!strcmp(str, "no_hwp"))
3555 no_hwp = 1;
3556
3557 if (!strcmp(str, "force"))
3558 force_load = 1;
3559 if (!strcmp(str, "hwp_only"))
3560 hwp_only = 1;
3561 if (!strcmp(str, "per_cpu_perf_limits"))
3562 per_cpu_limits = true;
3563
3564 #ifdef CONFIG_ACPI
3565 if (!strcmp(str, "support_acpi_ppc"))
3566 acpi_ppc = true;
3567 #endif
3568
3569 return 0;
3570 }
3571 early_param("intel_pstate", intel_pstate_setup);
3572
3573 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3574 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3575