1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 1993 by Theodore Ts'o.
4  */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39 
40 /* Possible states of device */
41 enum {
42 	Lo_unbound,
43 	Lo_bound,
44 	Lo_rundown,
45 	Lo_deleting,
46 };
47 
48 struct loop_func_table;
49 
50 struct loop_device {
51 	int		lo_number;
52 	loff_t		lo_offset;
53 	loff_t		lo_sizelimit;
54 	int		lo_flags;
55 	char		lo_file_name[LO_NAME_SIZE];
56 
57 	struct file *	lo_backing_file;
58 	struct block_device *lo_device;
59 
60 	gfp_t		old_gfp_mask;
61 
62 	spinlock_t		lo_lock;
63 	int			lo_state;
64 	spinlock_t              lo_work_lock;
65 	struct workqueue_struct *workqueue;
66 	struct work_struct      rootcg_work;
67 	struct list_head        rootcg_cmd_list;
68 	struct list_head        idle_worker_list;
69 	struct rb_root          worker_tree;
70 	struct timer_list       timer;
71 	bool			use_dio;
72 	bool			sysfs_inited;
73 
74 	struct request_queue	*lo_queue;
75 	struct blk_mq_tag_set	tag_set;
76 	struct gendisk		*lo_disk;
77 	struct mutex		lo_mutex;
78 	bool			idr_visible;
79 };
80 
81 struct loop_cmd {
82 	struct list_head list_entry;
83 	bool use_aio; /* use AIO interface to handle I/O */
84 	atomic_t ref; /* only for aio */
85 	long ret;
86 	struct kiocb iocb;
87 	struct bio_vec *bvec;
88 	struct cgroup_subsys_state *blkcg_css;
89 	struct cgroup_subsys_state *memcg_css;
90 };
91 
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
94 
95 static DEFINE_IDR(loop_index_idr);
96 static DEFINE_MUTEX(loop_ctl_mutex);
97 static DEFINE_MUTEX(loop_validate_mutex);
98 
99 /**
100  * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101  *
102  * @lo: struct loop_device
103  * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104  *
105  * Returns 0 on success, -EINTR otherwise.
106  *
107  * Since loop_validate_file() traverses on other "struct loop_device" if
108  * is_loop_device() is true, we need a global lock for serializing concurrent
109  * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110  */
loop_global_lock_killable(struct loop_device * lo,bool global)111 static int loop_global_lock_killable(struct loop_device *lo, bool global)
112 {
113 	int err;
114 
115 	if (global) {
116 		err = mutex_lock_killable(&loop_validate_mutex);
117 		if (err)
118 			return err;
119 	}
120 	err = mutex_lock_killable(&lo->lo_mutex);
121 	if (err && global)
122 		mutex_unlock(&loop_validate_mutex);
123 	return err;
124 }
125 
126 /**
127  * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128  *
129  * @lo: struct loop_device
130  * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131  */
loop_global_unlock(struct loop_device * lo,bool global)132 static void loop_global_unlock(struct loop_device *lo, bool global)
133 {
134 	mutex_unlock(&lo->lo_mutex);
135 	if (global)
136 		mutex_unlock(&loop_validate_mutex);
137 }
138 
139 static int max_part;
140 static int part_shift;
141 
get_size(loff_t offset,loff_t sizelimit,struct file * file)142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 {
144 	loff_t loopsize;
145 
146 	/* Compute loopsize in bytes */
147 	loopsize = i_size_read(file->f_mapping->host);
148 	if (offset > 0)
149 		loopsize -= offset;
150 	/* offset is beyond i_size, weird but possible */
151 	if (loopsize < 0)
152 		return 0;
153 
154 	if (sizelimit > 0 && sizelimit < loopsize)
155 		loopsize = sizelimit;
156 	/*
157 	 * Unfortunately, if we want to do I/O on the device,
158 	 * the number of 512-byte sectors has to fit into a sector_t.
159 	 */
160 	return loopsize >> 9;
161 }
162 
get_loop_size(struct loop_device * lo,struct file * file)163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166 }
167 
168 /*
169  * We support direct I/O only if lo_offset is aligned with the logical I/O size
170  * of backing device, and the logical block size of loop is bigger than that of
171  * the backing device.
172  */
lo_bdev_can_use_dio(struct loop_device * lo,struct block_device * backing_bdev)173 static bool lo_bdev_can_use_dio(struct loop_device *lo,
174 		struct block_device *backing_bdev)
175 {
176 	unsigned short sb_bsize = bdev_logical_block_size(backing_bdev);
177 
178 	if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179 		return false;
180 	if (lo->lo_offset & (sb_bsize - 1))
181 		return false;
182 	return true;
183 }
184 
__loop_update_dio(struct loop_device * lo,bool dio)185 static void __loop_update_dio(struct loop_device *lo, bool dio)
186 {
187 	struct file *file = lo->lo_backing_file;
188 	struct inode *inode = file->f_mapping->host;
189 	struct block_device *backing_bdev = NULL;
190 	bool use_dio;
191 
192 	if (S_ISBLK(inode->i_mode))
193 		backing_bdev = I_BDEV(inode);
194 	else if (inode->i_sb->s_bdev)
195 		backing_bdev = inode->i_sb->s_bdev;
196 
197 	use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198 		(!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199 
200 	if (lo->use_dio == use_dio)
201 		return;
202 
203 	/* flush dirty pages before changing direct IO */
204 	vfs_fsync(file, 0);
205 
206 	/*
207 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 	 * will get updated by ioctl(LOOP_GET_STATUS)
210 	 */
211 	if (lo->lo_state == Lo_bound)
212 		blk_mq_freeze_queue(lo->lo_queue);
213 	lo->use_dio = use_dio;
214 	if (use_dio) {
215 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
216 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
217 	} else {
218 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
219 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
220 	}
221 	if (lo->lo_state == Lo_bound)
222 		blk_mq_unfreeze_queue(lo->lo_queue);
223 }
224 
225 /**
226  * loop_set_size() - sets device size and notifies userspace
227  * @lo: struct loop_device to set the size for
228  * @size: new size of the loop device
229  *
230  * Callers must validate that the size passed into this function fits into
231  * a sector_t, eg using loop_validate_size()
232  */
loop_set_size(struct loop_device * lo,loff_t size)233 static void loop_set_size(struct loop_device *lo, loff_t size)
234 {
235 	if (!set_capacity_and_notify(lo->lo_disk, size))
236 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
237 }
238 
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)239 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
240 {
241 	struct iov_iter i;
242 	ssize_t bw;
243 
244 	iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
245 
246 	file_start_write(file);
247 	bw = vfs_iter_write(file, &i, ppos, 0);
248 	file_end_write(file);
249 
250 	if (likely(bw ==  bvec->bv_len))
251 		return 0;
252 
253 	printk_ratelimited(KERN_ERR
254 		"loop: Write error at byte offset %llu, length %i.\n",
255 		(unsigned long long)*ppos, bvec->bv_len);
256 	if (bw >= 0)
257 		bw = -EIO;
258 	return bw;
259 }
260 
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)261 static int lo_write_simple(struct loop_device *lo, struct request *rq,
262 		loff_t pos)
263 {
264 	struct bio_vec bvec;
265 	struct req_iterator iter;
266 	int ret = 0;
267 
268 	rq_for_each_segment(bvec, rq, iter) {
269 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
270 		if (ret < 0)
271 			break;
272 		cond_resched();
273 	}
274 
275 	return ret;
276 }
277 
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)278 static int lo_read_simple(struct loop_device *lo, struct request *rq,
279 		loff_t pos)
280 {
281 	struct bio_vec bvec;
282 	struct req_iterator iter;
283 	struct iov_iter i;
284 	ssize_t len;
285 
286 	rq_for_each_segment(bvec, rq, iter) {
287 		iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
288 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
289 		if (len < 0)
290 			return len;
291 
292 		flush_dcache_page(bvec.bv_page);
293 
294 		if (len != bvec.bv_len) {
295 			struct bio *bio;
296 
297 			__rq_for_each_bio(bio, rq)
298 				zero_fill_bio(bio);
299 			break;
300 		}
301 		cond_resched();
302 	}
303 
304 	return 0;
305 }
306 
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)307 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
308 			int mode)
309 {
310 	/*
311 	 * We use fallocate to manipulate the space mappings used by the image
312 	 * a.k.a. discard/zerorange.
313 	 */
314 	struct file *file = lo->lo_backing_file;
315 	int ret;
316 
317 	mode |= FALLOC_FL_KEEP_SIZE;
318 
319 	if (!bdev_max_discard_sectors(lo->lo_device))
320 		return -EOPNOTSUPP;
321 
322 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
323 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
324 		return -EIO;
325 	return ret;
326 }
327 
lo_req_flush(struct loop_device * lo,struct request * rq)328 static int lo_req_flush(struct loop_device *lo, struct request *rq)
329 {
330 	int ret = vfs_fsync(lo->lo_backing_file, 0);
331 	if (unlikely(ret && ret != -EINVAL))
332 		ret = -EIO;
333 
334 	return ret;
335 }
336 
lo_complete_rq(struct request * rq)337 static void lo_complete_rq(struct request *rq)
338 {
339 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
340 	blk_status_t ret = BLK_STS_OK;
341 
342 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
343 	    req_op(rq) != REQ_OP_READ) {
344 		if (cmd->ret < 0)
345 			ret = errno_to_blk_status(cmd->ret);
346 		goto end_io;
347 	}
348 
349 	/*
350 	 * Short READ - if we got some data, advance our request and
351 	 * retry it. If we got no data, end the rest with EIO.
352 	 */
353 	if (cmd->ret) {
354 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
355 		cmd->ret = 0;
356 		blk_mq_requeue_request(rq, true);
357 	} else {
358 		if (cmd->use_aio) {
359 			struct bio *bio = rq->bio;
360 
361 			while (bio) {
362 				zero_fill_bio(bio);
363 				bio = bio->bi_next;
364 			}
365 		}
366 		ret = BLK_STS_IOERR;
367 end_io:
368 		blk_mq_end_request(rq, ret);
369 	}
370 }
371 
lo_rw_aio_do_completion(struct loop_cmd * cmd)372 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
373 {
374 	struct request *rq = blk_mq_rq_from_pdu(cmd);
375 
376 	if (!atomic_dec_and_test(&cmd->ref))
377 		return;
378 	kfree(cmd->bvec);
379 	cmd->bvec = NULL;
380 	if (likely(!blk_should_fake_timeout(rq->q)))
381 		blk_mq_complete_request(rq);
382 }
383 
lo_rw_aio_complete(struct kiocb * iocb,long ret)384 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
385 {
386 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
387 
388 	cmd->ret = ret;
389 	lo_rw_aio_do_completion(cmd);
390 }
391 
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)392 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
393 		     loff_t pos, int rw)
394 {
395 	struct iov_iter iter;
396 	struct req_iterator rq_iter;
397 	struct bio_vec *bvec;
398 	struct request *rq = blk_mq_rq_from_pdu(cmd);
399 	struct bio *bio = rq->bio;
400 	struct file *file = lo->lo_backing_file;
401 	struct bio_vec tmp;
402 	unsigned int offset;
403 	int nr_bvec = 0;
404 	int ret;
405 
406 	rq_for_each_bvec(tmp, rq, rq_iter)
407 		nr_bvec++;
408 
409 	if (rq->bio != rq->biotail) {
410 
411 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
412 				     GFP_NOIO);
413 		if (!bvec)
414 			return -EIO;
415 		cmd->bvec = bvec;
416 
417 		/*
418 		 * The bios of the request may be started from the middle of
419 		 * the 'bvec' because of bio splitting, so we can't directly
420 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
421 		 * API will take care of all details for us.
422 		 */
423 		rq_for_each_bvec(tmp, rq, rq_iter) {
424 			*bvec = tmp;
425 			bvec++;
426 		}
427 		bvec = cmd->bvec;
428 		offset = 0;
429 	} else {
430 		/*
431 		 * Same here, this bio may be started from the middle of the
432 		 * 'bvec' because of bio splitting, so offset from the bvec
433 		 * must be passed to iov iterator
434 		 */
435 		offset = bio->bi_iter.bi_bvec_done;
436 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
437 	}
438 	atomic_set(&cmd->ref, 2);
439 
440 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
441 	iter.iov_offset = offset;
442 
443 	cmd->iocb.ki_pos = pos;
444 	cmd->iocb.ki_filp = file;
445 	cmd->iocb.ki_complete = lo_rw_aio_complete;
446 	cmd->iocb.ki_flags = IOCB_DIRECT;
447 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
448 
449 	if (rw == ITER_SOURCE)
450 		ret = call_write_iter(file, &cmd->iocb, &iter);
451 	else
452 		ret = call_read_iter(file, &cmd->iocb, &iter);
453 
454 	lo_rw_aio_do_completion(cmd);
455 
456 	if (ret != -EIOCBQUEUED)
457 		lo_rw_aio_complete(&cmd->iocb, ret);
458 	return 0;
459 }
460 
do_req_filebacked(struct loop_device * lo,struct request * rq)461 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
462 {
463 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
464 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
465 
466 	/*
467 	 * lo_write_simple and lo_read_simple should have been covered
468 	 * by io submit style function like lo_rw_aio(), one blocker
469 	 * is that lo_read_simple() need to call flush_dcache_page after
470 	 * the page is written from kernel, and it isn't easy to handle
471 	 * this in io submit style function which submits all segments
472 	 * of the req at one time. And direct read IO doesn't need to
473 	 * run flush_dcache_page().
474 	 */
475 	switch (req_op(rq)) {
476 	case REQ_OP_FLUSH:
477 		return lo_req_flush(lo, rq);
478 	case REQ_OP_WRITE_ZEROES:
479 		/*
480 		 * If the caller doesn't want deallocation, call zeroout to
481 		 * write zeroes the range.  Otherwise, punch them out.
482 		 */
483 		return lo_fallocate(lo, rq, pos,
484 			(rq->cmd_flags & REQ_NOUNMAP) ?
485 				FALLOC_FL_ZERO_RANGE :
486 				FALLOC_FL_PUNCH_HOLE);
487 	case REQ_OP_DISCARD:
488 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
489 	case REQ_OP_WRITE:
490 		if (cmd->use_aio)
491 			return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
492 		else
493 			return lo_write_simple(lo, rq, pos);
494 	case REQ_OP_READ:
495 		if (cmd->use_aio)
496 			return lo_rw_aio(lo, cmd, pos, ITER_DEST);
497 		else
498 			return lo_read_simple(lo, rq, pos);
499 	default:
500 		WARN_ON_ONCE(1);
501 		return -EIO;
502 	}
503 }
504 
loop_update_dio(struct loop_device * lo)505 static inline void loop_update_dio(struct loop_device *lo)
506 {
507 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
508 				lo->use_dio);
509 }
510 
loop_reread_partitions(struct loop_device * lo)511 static void loop_reread_partitions(struct loop_device *lo)
512 {
513 	int rc;
514 
515 	mutex_lock(&lo->lo_disk->open_mutex);
516 	rc = bdev_disk_changed(lo->lo_disk, false);
517 	mutex_unlock(&lo->lo_disk->open_mutex);
518 	if (rc)
519 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
520 			__func__, lo->lo_number, lo->lo_file_name, rc);
521 }
522 
is_loop_device(struct file * file)523 static inline int is_loop_device(struct file *file)
524 {
525 	struct inode *i = file->f_mapping->host;
526 
527 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
528 }
529 
loop_validate_file(struct file * file,struct block_device * bdev)530 static int loop_validate_file(struct file *file, struct block_device *bdev)
531 {
532 	struct inode	*inode = file->f_mapping->host;
533 	struct file	*f = file;
534 
535 	/* Avoid recursion */
536 	while (is_loop_device(f)) {
537 		struct loop_device *l;
538 
539 		lockdep_assert_held(&loop_validate_mutex);
540 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
541 			return -EBADF;
542 
543 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
544 		if (l->lo_state != Lo_bound)
545 			return -EINVAL;
546 		/* Order wrt setting lo->lo_backing_file in loop_configure(). */
547 		rmb();
548 		f = l->lo_backing_file;
549 	}
550 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
551 		return -EINVAL;
552 	return 0;
553 }
554 
555 /*
556  * loop_change_fd switched the backing store of a loopback device to
557  * a new file. This is useful for operating system installers to free up
558  * the original file and in High Availability environments to switch to
559  * an alternative location for the content in case of server meltdown.
560  * This can only work if the loop device is used read-only, and if the
561  * new backing store is the same size and type as the old backing store.
562  */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)563 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
564 			  unsigned int arg)
565 {
566 	struct file *file = fget(arg);
567 	struct file *old_file;
568 	int error;
569 	bool partscan;
570 	bool is_loop;
571 
572 	if (!file)
573 		return -EBADF;
574 
575 	/* suppress uevents while reconfiguring the device */
576 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
577 
578 	is_loop = is_loop_device(file);
579 	error = loop_global_lock_killable(lo, is_loop);
580 	if (error)
581 		goto out_putf;
582 	error = -ENXIO;
583 	if (lo->lo_state != Lo_bound)
584 		goto out_err;
585 
586 	/* the loop device has to be read-only */
587 	error = -EINVAL;
588 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
589 		goto out_err;
590 
591 	error = loop_validate_file(file, bdev);
592 	if (error)
593 		goto out_err;
594 
595 	old_file = lo->lo_backing_file;
596 
597 	error = -EINVAL;
598 
599 	/* size of the new backing store needs to be the same */
600 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
601 		goto out_err;
602 
603 	/* and ... switch */
604 	disk_force_media_change(lo->lo_disk);
605 	blk_mq_freeze_queue(lo->lo_queue);
606 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
607 	lo->lo_backing_file = file;
608 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
609 	mapping_set_gfp_mask(file->f_mapping,
610 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
611 	loop_update_dio(lo);
612 	blk_mq_unfreeze_queue(lo->lo_queue);
613 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
614 	loop_global_unlock(lo, is_loop);
615 
616 	/*
617 	 * Flush loop_validate_file() before fput(), for l->lo_backing_file
618 	 * might be pointing at old_file which might be the last reference.
619 	 */
620 	if (!is_loop) {
621 		mutex_lock(&loop_validate_mutex);
622 		mutex_unlock(&loop_validate_mutex);
623 	}
624 	/*
625 	 * We must drop file reference outside of lo_mutex as dropping
626 	 * the file ref can take open_mutex which creates circular locking
627 	 * dependency.
628 	 */
629 	fput(old_file);
630 	if (partscan)
631 		loop_reread_partitions(lo);
632 
633 	error = 0;
634 done:
635 	/* enable and uncork uevent now that we are done */
636 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
637 	return error;
638 
639 out_err:
640 	loop_global_unlock(lo, is_loop);
641 out_putf:
642 	fput(file);
643 	goto done;
644 }
645 
646 /* loop sysfs attributes */
647 
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))648 static ssize_t loop_attr_show(struct device *dev, char *page,
649 			      ssize_t (*callback)(struct loop_device *, char *))
650 {
651 	struct gendisk *disk = dev_to_disk(dev);
652 	struct loop_device *lo = disk->private_data;
653 
654 	return callback(lo, page);
655 }
656 
657 #define LOOP_ATTR_RO(_name)						\
658 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
659 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
660 				struct device_attribute *attr, char *b)	\
661 {									\
662 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
663 }									\
664 static struct device_attribute loop_attr_##_name =			\
665 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
666 
loop_attr_backing_file_show(struct loop_device * lo,char * buf)667 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
668 {
669 	ssize_t ret;
670 	char *p = NULL;
671 
672 	spin_lock_irq(&lo->lo_lock);
673 	if (lo->lo_backing_file)
674 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
675 	spin_unlock_irq(&lo->lo_lock);
676 
677 	if (IS_ERR_OR_NULL(p))
678 		ret = PTR_ERR(p);
679 	else {
680 		ret = strlen(p);
681 		memmove(buf, p, ret);
682 		buf[ret++] = '\n';
683 		buf[ret] = 0;
684 	}
685 
686 	return ret;
687 }
688 
loop_attr_offset_show(struct loop_device * lo,char * buf)689 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
690 {
691 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
692 }
693 
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)694 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
695 {
696 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
697 }
698 
loop_attr_autoclear_show(struct loop_device * lo,char * buf)699 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
700 {
701 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
702 
703 	return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
704 }
705 
loop_attr_partscan_show(struct loop_device * lo,char * buf)706 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
707 {
708 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
709 
710 	return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
711 }
712 
loop_attr_dio_show(struct loop_device * lo,char * buf)713 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
714 {
715 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
716 
717 	return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
718 }
719 
720 LOOP_ATTR_RO(backing_file);
721 LOOP_ATTR_RO(offset);
722 LOOP_ATTR_RO(sizelimit);
723 LOOP_ATTR_RO(autoclear);
724 LOOP_ATTR_RO(partscan);
725 LOOP_ATTR_RO(dio);
726 
727 static struct attribute *loop_attrs[] = {
728 	&loop_attr_backing_file.attr,
729 	&loop_attr_offset.attr,
730 	&loop_attr_sizelimit.attr,
731 	&loop_attr_autoclear.attr,
732 	&loop_attr_partscan.attr,
733 	&loop_attr_dio.attr,
734 	NULL,
735 };
736 
737 static struct attribute_group loop_attribute_group = {
738 	.name = "loop",
739 	.attrs= loop_attrs,
740 };
741 
loop_sysfs_init(struct loop_device * lo)742 static void loop_sysfs_init(struct loop_device *lo)
743 {
744 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
745 						&loop_attribute_group);
746 }
747 
loop_sysfs_exit(struct loop_device * lo)748 static void loop_sysfs_exit(struct loop_device *lo)
749 {
750 	if (lo->sysfs_inited)
751 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
752 				   &loop_attribute_group);
753 }
754 
loop_config_discard(struct loop_device * lo)755 static void loop_config_discard(struct loop_device *lo)
756 {
757 	struct file *file = lo->lo_backing_file;
758 	struct inode *inode = file->f_mapping->host;
759 	struct request_queue *q = lo->lo_queue;
760 	u32 granularity, max_discard_sectors;
761 
762 	/*
763 	 * If the backing device is a block device, mirror its zeroing
764 	 * capability. Set the discard sectors to the block device's zeroing
765 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
766 	 * not blkdev_issue_discard(). This maintains consistent behavior with
767 	 * file-backed loop devices: discarded regions read back as zero.
768 	 */
769 	if (S_ISBLK(inode->i_mode)) {
770 		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
771 
772 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
773 		granularity = bdev_discard_granularity(I_BDEV(inode)) ?:
774 			queue_physical_block_size(backingq);
775 
776 	/*
777 	 * We use punch hole to reclaim the free space used by the
778 	 * image a.k.a. discard.
779 	 */
780 	} else if (!file->f_op->fallocate) {
781 		max_discard_sectors = 0;
782 		granularity = 0;
783 
784 	} else {
785 		struct kstatfs sbuf;
786 
787 		max_discard_sectors = UINT_MAX >> 9;
788 		if (!vfs_statfs(&file->f_path, &sbuf))
789 			granularity = sbuf.f_bsize;
790 		else
791 			max_discard_sectors = 0;
792 	}
793 
794 	if (max_discard_sectors) {
795 		q->limits.discard_granularity = granularity;
796 		blk_queue_max_discard_sectors(q, max_discard_sectors);
797 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
798 	} else {
799 		q->limits.discard_granularity = 0;
800 		blk_queue_max_discard_sectors(q, 0);
801 		blk_queue_max_write_zeroes_sectors(q, 0);
802 	}
803 }
804 
805 struct loop_worker {
806 	struct rb_node rb_node;
807 	struct work_struct work;
808 	struct list_head cmd_list;
809 	struct list_head idle_list;
810 	struct loop_device *lo;
811 	struct cgroup_subsys_state *blkcg_css;
812 	unsigned long last_ran_at;
813 };
814 
815 static void loop_workfn(struct work_struct *work);
816 
817 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)818 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
819 {
820 	return !css || css == blkcg_root_css;
821 }
822 #else
queue_on_root_worker(struct cgroup_subsys_state * css)823 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
824 {
825 	return !css;
826 }
827 #endif
828 
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)829 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
830 {
831 	struct rb_node **node, *parent = NULL;
832 	struct loop_worker *cur_worker, *worker = NULL;
833 	struct work_struct *work;
834 	struct list_head *cmd_list;
835 
836 	spin_lock_irq(&lo->lo_work_lock);
837 
838 	if (queue_on_root_worker(cmd->blkcg_css))
839 		goto queue_work;
840 
841 	node = &lo->worker_tree.rb_node;
842 
843 	while (*node) {
844 		parent = *node;
845 		cur_worker = container_of(*node, struct loop_worker, rb_node);
846 		if (cur_worker->blkcg_css == cmd->blkcg_css) {
847 			worker = cur_worker;
848 			break;
849 		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
850 			node = &(*node)->rb_left;
851 		} else {
852 			node = &(*node)->rb_right;
853 		}
854 	}
855 	if (worker)
856 		goto queue_work;
857 
858 	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
859 	/*
860 	 * In the event we cannot allocate a worker, just queue on the
861 	 * rootcg worker and issue the I/O as the rootcg
862 	 */
863 	if (!worker) {
864 		cmd->blkcg_css = NULL;
865 		if (cmd->memcg_css)
866 			css_put(cmd->memcg_css);
867 		cmd->memcg_css = NULL;
868 		goto queue_work;
869 	}
870 
871 	worker->blkcg_css = cmd->blkcg_css;
872 	css_get(worker->blkcg_css);
873 	INIT_WORK(&worker->work, loop_workfn);
874 	INIT_LIST_HEAD(&worker->cmd_list);
875 	INIT_LIST_HEAD(&worker->idle_list);
876 	worker->lo = lo;
877 	rb_link_node(&worker->rb_node, parent, node);
878 	rb_insert_color(&worker->rb_node, &lo->worker_tree);
879 queue_work:
880 	if (worker) {
881 		/*
882 		 * We need to remove from the idle list here while
883 		 * holding the lock so that the idle timer doesn't
884 		 * free the worker
885 		 */
886 		if (!list_empty(&worker->idle_list))
887 			list_del_init(&worker->idle_list);
888 		work = &worker->work;
889 		cmd_list = &worker->cmd_list;
890 	} else {
891 		work = &lo->rootcg_work;
892 		cmd_list = &lo->rootcg_cmd_list;
893 	}
894 	list_add_tail(&cmd->list_entry, cmd_list);
895 	queue_work(lo->workqueue, work);
896 	spin_unlock_irq(&lo->lo_work_lock);
897 }
898 
loop_set_timer(struct loop_device * lo)899 static void loop_set_timer(struct loop_device *lo)
900 {
901 	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
902 }
903 
loop_free_idle_workers(struct loop_device * lo,bool delete_all)904 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
905 {
906 	struct loop_worker *pos, *worker;
907 
908 	spin_lock_irq(&lo->lo_work_lock);
909 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
910 				idle_list) {
911 		if (!delete_all &&
912 		    time_is_after_jiffies(worker->last_ran_at +
913 					  LOOP_IDLE_WORKER_TIMEOUT))
914 			break;
915 		list_del(&worker->idle_list);
916 		rb_erase(&worker->rb_node, &lo->worker_tree);
917 		css_put(worker->blkcg_css);
918 		kfree(worker);
919 	}
920 	if (!list_empty(&lo->idle_worker_list))
921 		loop_set_timer(lo);
922 	spin_unlock_irq(&lo->lo_work_lock);
923 }
924 
loop_free_idle_workers_timer(struct timer_list * timer)925 static void loop_free_idle_workers_timer(struct timer_list *timer)
926 {
927 	struct loop_device *lo = container_of(timer, struct loop_device, timer);
928 
929 	return loop_free_idle_workers(lo, false);
930 }
931 
loop_update_rotational(struct loop_device * lo)932 static void loop_update_rotational(struct loop_device *lo)
933 {
934 	struct file *file = lo->lo_backing_file;
935 	struct inode *file_inode = file->f_mapping->host;
936 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
937 	struct request_queue *q = lo->lo_queue;
938 	bool nonrot = true;
939 
940 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
941 	if (file_bdev)
942 		nonrot = bdev_nonrot(file_bdev);
943 
944 	if (nonrot)
945 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
946 	else
947 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
948 }
949 
950 /**
951  * loop_set_status_from_info - configure device from loop_info
952  * @lo: struct loop_device to configure
953  * @info: struct loop_info64 to configure the device with
954  *
955  * Configures the loop device parameters according to the passed
956  * in loop_info64 configuration.
957  */
958 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)959 loop_set_status_from_info(struct loop_device *lo,
960 			  const struct loop_info64 *info)
961 {
962 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
963 		return -EINVAL;
964 
965 	switch (info->lo_encrypt_type) {
966 	case LO_CRYPT_NONE:
967 		break;
968 	case LO_CRYPT_XOR:
969 		pr_warn("support for the xor transformation has been removed.\n");
970 		return -EINVAL;
971 	case LO_CRYPT_CRYPTOAPI:
972 		pr_warn("support for cryptoloop has been removed.  Use dm-crypt instead.\n");
973 		return -EINVAL;
974 	default:
975 		return -EINVAL;
976 	}
977 
978 	/* Avoid assigning overflow values */
979 	if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
980 		return -EOVERFLOW;
981 
982 	lo->lo_offset = info->lo_offset;
983 	lo->lo_sizelimit = info->lo_sizelimit;
984 
985 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
986 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
987 	lo->lo_flags = info->lo_flags;
988 	return 0;
989 }
990 
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)991 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
992 			  struct block_device *bdev,
993 			  const struct loop_config *config)
994 {
995 	struct file *file = fget(config->fd);
996 	struct inode *inode;
997 	struct address_space *mapping;
998 	int error;
999 	loff_t size;
1000 	bool partscan;
1001 	unsigned short bsize;
1002 	bool is_loop;
1003 
1004 	if (!file)
1005 		return -EBADF;
1006 	is_loop = is_loop_device(file);
1007 
1008 	/* This is safe, since we have a reference from open(). */
1009 	__module_get(THIS_MODULE);
1010 
1011 	/*
1012 	 * If we don't hold exclusive handle for the device, upgrade to it
1013 	 * here to avoid changing device under exclusive owner.
1014 	 */
1015 	if (!(mode & BLK_OPEN_EXCL)) {
1016 		error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1017 		if (error)
1018 			goto out_putf;
1019 	}
1020 
1021 	error = loop_global_lock_killable(lo, is_loop);
1022 	if (error)
1023 		goto out_bdev;
1024 
1025 	error = -EBUSY;
1026 	if (lo->lo_state != Lo_unbound)
1027 		goto out_unlock;
1028 
1029 	error = loop_validate_file(file, bdev);
1030 	if (error)
1031 		goto out_unlock;
1032 
1033 	mapping = file->f_mapping;
1034 	inode = mapping->host;
1035 
1036 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1037 		error = -EINVAL;
1038 		goto out_unlock;
1039 	}
1040 
1041 	if (config->block_size) {
1042 		error = blk_validate_block_size(config->block_size);
1043 		if (error)
1044 			goto out_unlock;
1045 	}
1046 
1047 	error = loop_set_status_from_info(lo, &config->info);
1048 	if (error)
1049 		goto out_unlock;
1050 
1051 	if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1052 	    !file->f_op->write_iter)
1053 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1054 
1055 	if (!lo->workqueue) {
1056 		lo->workqueue = alloc_workqueue("loop%d",
1057 						WQ_UNBOUND | WQ_FREEZABLE,
1058 						0, lo->lo_number);
1059 		if (!lo->workqueue) {
1060 			error = -ENOMEM;
1061 			goto out_unlock;
1062 		}
1063 	}
1064 
1065 	/* suppress uevents while reconfiguring the device */
1066 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1067 
1068 	disk_force_media_change(lo->lo_disk);
1069 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1070 
1071 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1072 	lo->lo_device = bdev;
1073 	lo->lo_backing_file = file;
1074 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1075 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1076 
1077 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1078 		blk_queue_write_cache(lo->lo_queue, true, false);
1079 
1080 	if (config->block_size)
1081 		bsize = config->block_size;
1082 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1083 		/* In case of direct I/O, match underlying block size */
1084 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1085 	else
1086 		bsize = 512;
1087 
1088 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1089 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1090 	blk_queue_io_min(lo->lo_queue, bsize);
1091 
1092 	loop_config_discard(lo);
1093 	loop_update_rotational(lo);
1094 	loop_update_dio(lo);
1095 	loop_sysfs_init(lo);
1096 
1097 	size = get_loop_size(lo, file);
1098 	loop_set_size(lo, size);
1099 
1100 	/* Order wrt reading lo_state in loop_validate_file(). */
1101 	wmb();
1102 
1103 	lo->lo_state = Lo_bound;
1104 	if (part_shift)
1105 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1106 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1107 	if (partscan)
1108 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1109 
1110 	/* enable and uncork uevent now that we are done */
1111 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1112 
1113 	loop_global_unlock(lo, is_loop);
1114 	if (partscan)
1115 		loop_reread_partitions(lo);
1116 
1117 	if (!(mode & BLK_OPEN_EXCL))
1118 		bd_abort_claiming(bdev, loop_configure);
1119 
1120 	return 0;
1121 
1122 out_unlock:
1123 	loop_global_unlock(lo, is_loop);
1124 out_bdev:
1125 	if (!(mode & BLK_OPEN_EXCL))
1126 		bd_abort_claiming(bdev, loop_configure);
1127 out_putf:
1128 	fput(file);
1129 	/* This is safe: open() is still holding a reference. */
1130 	module_put(THIS_MODULE);
1131 	return error;
1132 }
1133 
__loop_clr_fd(struct loop_device * lo,bool release)1134 static void __loop_clr_fd(struct loop_device *lo, bool release)
1135 {
1136 	struct file *filp;
1137 	gfp_t gfp = lo->old_gfp_mask;
1138 
1139 	if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1140 		blk_queue_write_cache(lo->lo_queue, false, false);
1141 
1142 	/*
1143 	 * Freeze the request queue when unbinding on a live file descriptor and
1144 	 * thus an open device.  When called from ->release we are guaranteed
1145 	 * that there is no I/O in progress already.
1146 	 */
1147 	if (!release)
1148 		blk_mq_freeze_queue(lo->lo_queue);
1149 
1150 	spin_lock_irq(&lo->lo_lock);
1151 	filp = lo->lo_backing_file;
1152 	lo->lo_backing_file = NULL;
1153 	spin_unlock_irq(&lo->lo_lock);
1154 
1155 	lo->lo_device = NULL;
1156 	lo->lo_offset = 0;
1157 	lo->lo_sizelimit = 0;
1158 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1159 	blk_queue_logical_block_size(lo->lo_queue, 512);
1160 	blk_queue_physical_block_size(lo->lo_queue, 512);
1161 	blk_queue_io_min(lo->lo_queue, 512);
1162 	invalidate_disk(lo->lo_disk);
1163 	loop_sysfs_exit(lo);
1164 	/* let user-space know about this change */
1165 	kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1166 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1167 	/* This is safe: open() is still holding a reference. */
1168 	module_put(THIS_MODULE);
1169 	if (!release)
1170 		blk_mq_unfreeze_queue(lo->lo_queue);
1171 
1172 	disk_force_media_change(lo->lo_disk);
1173 
1174 	if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1175 		int err;
1176 
1177 		/*
1178 		 * open_mutex has been held already in release path, so don't
1179 		 * acquire it if this function is called in such case.
1180 		 *
1181 		 * If the reread partition isn't from release path, lo_refcnt
1182 		 * must be at least one and it can only become zero when the
1183 		 * current holder is released.
1184 		 */
1185 		if (!release)
1186 			mutex_lock(&lo->lo_disk->open_mutex);
1187 		err = bdev_disk_changed(lo->lo_disk, false);
1188 		if (!release)
1189 			mutex_unlock(&lo->lo_disk->open_mutex);
1190 		if (err)
1191 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1192 				__func__, lo->lo_number, err);
1193 		/* Device is gone, no point in returning error */
1194 	}
1195 
1196 	/*
1197 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1198 	 * finished. There cannot be anybody else entering __loop_clr_fd() as
1199 	 * Lo_rundown state protects us from all the other places trying to
1200 	 * change the 'lo' device.
1201 	 */
1202 	lo->lo_flags = 0;
1203 	if (!part_shift)
1204 		set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1205 	mutex_lock(&lo->lo_mutex);
1206 	lo->lo_state = Lo_unbound;
1207 	mutex_unlock(&lo->lo_mutex);
1208 
1209 	/*
1210 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1211 	 * lo_mutex triggers a circular lock dependency possibility warning as
1212 	 * fput can take open_mutex which is usually taken before lo_mutex.
1213 	 */
1214 	fput(filp);
1215 }
1216 
loop_clr_fd(struct loop_device * lo)1217 static int loop_clr_fd(struct loop_device *lo)
1218 {
1219 	int err;
1220 
1221 	/*
1222 	 * Since lo_ioctl() is called without locks held, it is possible that
1223 	 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1224 	 *
1225 	 * Therefore, use global lock when setting Lo_rundown state in order to
1226 	 * make sure that loop_validate_file() will fail if the "struct file"
1227 	 * which loop_configure()/loop_change_fd() found via fget() was this
1228 	 * loop device.
1229 	 */
1230 	err = loop_global_lock_killable(lo, true);
1231 	if (err)
1232 		return err;
1233 	if (lo->lo_state != Lo_bound) {
1234 		loop_global_unlock(lo, true);
1235 		return -ENXIO;
1236 	}
1237 	/*
1238 	 * If we've explicitly asked to tear down the loop device,
1239 	 * and it has an elevated reference count, set it for auto-teardown when
1240 	 * the last reference goes away. This stops $!~#$@ udev from
1241 	 * preventing teardown because it decided that it needs to run blkid on
1242 	 * the loopback device whenever they appear. xfstests is notorious for
1243 	 * failing tests because blkid via udev races with a losetup
1244 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1245 	 * command to fail with EBUSY.
1246 	 */
1247 	if (disk_openers(lo->lo_disk) > 1) {
1248 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1249 		loop_global_unlock(lo, true);
1250 		return 0;
1251 	}
1252 	lo->lo_state = Lo_rundown;
1253 	loop_global_unlock(lo, true);
1254 
1255 	__loop_clr_fd(lo, false);
1256 	return 0;
1257 }
1258 
1259 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1260 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1261 {
1262 	int err;
1263 	int prev_lo_flags;
1264 	bool partscan = false;
1265 	bool size_changed = false;
1266 
1267 	err = mutex_lock_killable(&lo->lo_mutex);
1268 	if (err)
1269 		return err;
1270 	if (lo->lo_state != Lo_bound) {
1271 		err = -ENXIO;
1272 		goto out_unlock;
1273 	}
1274 
1275 	if (lo->lo_offset != info->lo_offset ||
1276 	    lo->lo_sizelimit != info->lo_sizelimit) {
1277 		size_changed = true;
1278 		sync_blockdev(lo->lo_device);
1279 		invalidate_bdev(lo->lo_device);
1280 	}
1281 
1282 	/* I/O need to be drained during transfer transition */
1283 	blk_mq_freeze_queue(lo->lo_queue);
1284 
1285 	prev_lo_flags = lo->lo_flags;
1286 
1287 	err = loop_set_status_from_info(lo, info);
1288 	if (err)
1289 		goto out_unfreeze;
1290 
1291 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1292 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1293 	/* For those flags, use the previous values instead */
1294 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1295 	/* For flags that can't be cleared, use previous values too */
1296 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1297 
1298 	if (size_changed) {
1299 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1300 					   lo->lo_backing_file);
1301 		loop_set_size(lo, new_size);
1302 	}
1303 
1304 	loop_config_discard(lo);
1305 
1306 	/* update dio if lo_offset or transfer is changed */
1307 	__loop_update_dio(lo, lo->use_dio);
1308 
1309 out_unfreeze:
1310 	blk_mq_unfreeze_queue(lo->lo_queue);
1311 
1312 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1313 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1314 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1315 		partscan = true;
1316 	}
1317 out_unlock:
1318 	mutex_unlock(&lo->lo_mutex);
1319 	if (partscan)
1320 		loop_reread_partitions(lo);
1321 
1322 	return err;
1323 }
1324 
1325 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1326 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1327 {
1328 	struct path path;
1329 	struct kstat stat;
1330 	int ret;
1331 
1332 	ret = mutex_lock_killable(&lo->lo_mutex);
1333 	if (ret)
1334 		return ret;
1335 	if (lo->lo_state != Lo_bound) {
1336 		mutex_unlock(&lo->lo_mutex);
1337 		return -ENXIO;
1338 	}
1339 
1340 	memset(info, 0, sizeof(*info));
1341 	info->lo_number = lo->lo_number;
1342 	info->lo_offset = lo->lo_offset;
1343 	info->lo_sizelimit = lo->lo_sizelimit;
1344 	info->lo_flags = lo->lo_flags;
1345 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1346 
1347 	/* Drop lo_mutex while we call into the filesystem. */
1348 	path = lo->lo_backing_file->f_path;
1349 	path_get(&path);
1350 	mutex_unlock(&lo->lo_mutex);
1351 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1352 	if (!ret) {
1353 		info->lo_device = huge_encode_dev(stat.dev);
1354 		info->lo_inode = stat.ino;
1355 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1356 	}
1357 	path_put(&path);
1358 	return ret;
1359 }
1360 
1361 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1362 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1363 {
1364 	memset(info64, 0, sizeof(*info64));
1365 	info64->lo_number = info->lo_number;
1366 	info64->lo_device = info->lo_device;
1367 	info64->lo_inode = info->lo_inode;
1368 	info64->lo_rdevice = info->lo_rdevice;
1369 	info64->lo_offset = info->lo_offset;
1370 	info64->lo_sizelimit = 0;
1371 	info64->lo_flags = info->lo_flags;
1372 	memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1373 }
1374 
1375 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1376 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1377 {
1378 	memset(info, 0, sizeof(*info));
1379 	info->lo_number = info64->lo_number;
1380 	info->lo_device = info64->lo_device;
1381 	info->lo_inode = info64->lo_inode;
1382 	info->lo_rdevice = info64->lo_rdevice;
1383 	info->lo_offset = info64->lo_offset;
1384 	info->lo_flags = info64->lo_flags;
1385 	memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1386 
1387 	/* error in case values were truncated */
1388 	if (info->lo_device != info64->lo_device ||
1389 	    info->lo_rdevice != info64->lo_rdevice ||
1390 	    info->lo_inode != info64->lo_inode ||
1391 	    info->lo_offset != info64->lo_offset)
1392 		return -EOVERFLOW;
1393 
1394 	return 0;
1395 }
1396 
1397 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1398 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1399 {
1400 	struct loop_info info;
1401 	struct loop_info64 info64;
1402 
1403 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1404 		return -EFAULT;
1405 	loop_info64_from_old(&info, &info64);
1406 	return loop_set_status(lo, &info64);
1407 }
1408 
1409 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1410 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1411 {
1412 	struct loop_info64 info64;
1413 
1414 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1415 		return -EFAULT;
1416 	return loop_set_status(lo, &info64);
1417 }
1418 
1419 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1420 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1421 	struct loop_info info;
1422 	struct loop_info64 info64;
1423 	int err;
1424 
1425 	if (!arg)
1426 		return -EINVAL;
1427 	err = loop_get_status(lo, &info64);
1428 	if (!err)
1429 		err = loop_info64_to_old(&info64, &info);
1430 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1431 		err = -EFAULT;
1432 
1433 	return err;
1434 }
1435 
1436 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1437 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1438 	struct loop_info64 info64;
1439 	int err;
1440 
1441 	if (!arg)
1442 		return -EINVAL;
1443 	err = loop_get_status(lo, &info64);
1444 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1445 		err = -EFAULT;
1446 
1447 	return err;
1448 }
1449 
loop_set_capacity(struct loop_device * lo)1450 static int loop_set_capacity(struct loop_device *lo)
1451 {
1452 	loff_t size;
1453 
1454 	if (unlikely(lo->lo_state != Lo_bound))
1455 		return -ENXIO;
1456 
1457 	size = get_loop_size(lo, lo->lo_backing_file);
1458 	loop_set_size(lo, size);
1459 
1460 	return 0;
1461 }
1462 
loop_set_dio(struct loop_device * lo,unsigned long arg)1463 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1464 {
1465 	int error = -ENXIO;
1466 	if (lo->lo_state != Lo_bound)
1467 		goto out;
1468 
1469 	__loop_update_dio(lo, !!arg);
1470 	if (lo->use_dio == !!arg)
1471 		return 0;
1472 	error = -EINVAL;
1473  out:
1474 	return error;
1475 }
1476 
loop_set_block_size(struct loop_device * lo,unsigned long arg)1477 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1478 {
1479 	int err = 0;
1480 
1481 	if (lo->lo_state != Lo_bound)
1482 		return -ENXIO;
1483 
1484 	err = blk_validate_block_size(arg);
1485 	if (err)
1486 		return err;
1487 
1488 	if (lo->lo_queue->limits.logical_block_size == arg)
1489 		return 0;
1490 
1491 	sync_blockdev(lo->lo_device);
1492 	invalidate_bdev(lo->lo_device);
1493 
1494 	blk_mq_freeze_queue(lo->lo_queue);
1495 	blk_queue_logical_block_size(lo->lo_queue, arg);
1496 	blk_queue_physical_block_size(lo->lo_queue, arg);
1497 	blk_queue_io_min(lo->lo_queue, arg);
1498 	loop_update_dio(lo);
1499 	blk_mq_unfreeze_queue(lo->lo_queue);
1500 
1501 	return err;
1502 }
1503 
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1504 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1505 			   unsigned long arg)
1506 {
1507 	int err;
1508 
1509 	err = mutex_lock_killable(&lo->lo_mutex);
1510 	if (err)
1511 		return err;
1512 	switch (cmd) {
1513 	case LOOP_SET_CAPACITY:
1514 		err = loop_set_capacity(lo);
1515 		break;
1516 	case LOOP_SET_DIRECT_IO:
1517 		err = loop_set_dio(lo, arg);
1518 		break;
1519 	case LOOP_SET_BLOCK_SIZE:
1520 		err = loop_set_block_size(lo, arg);
1521 		break;
1522 	default:
1523 		err = -EINVAL;
1524 	}
1525 	mutex_unlock(&lo->lo_mutex);
1526 	return err;
1527 }
1528 
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1529 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1530 	unsigned int cmd, unsigned long arg)
1531 {
1532 	struct loop_device *lo = bdev->bd_disk->private_data;
1533 	void __user *argp = (void __user *) arg;
1534 	int err;
1535 
1536 	switch (cmd) {
1537 	case LOOP_SET_FD: {
1538 		/*
1539 		 * Legacy case - pass in a zeroed out struct loop_config with
1540 		 * only the file descriptor set , which corresponds with the
1541 		 * default parameters we'd have used otherwise.
1542 		 */
1543 		struct loop_config config;
1544 
1545 		memset(&config, 0, sizeof(config));
1546 		config.fd = arg;
1547 
1548 		return loop_configure(lo, mode, bdev, &config);
1549 	}
1550 	case LOOP_CONFIGURE: {
1551 		struct loop_config config;
1552 
1553 		if (copy_from_user(&config, argp, sizeof(config)))
1554 			return -EFAULT;
1555 
1556 		return loop_configure(lo, mode, bdev, &config);
1557 	}
1558 	case LOOP_CHANGE_FD:
1559 		return loop_change_fd(lo, bdev, arg);
1560 	case LOOP_CLR_FD:
1561 		return loop_clr_fd(lo);
1562 	case LOOP_SET_STATUS:
1563 		err = -EPERM;
1564 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1565 			err = loop_set_status_old(lo, argp);
1566 		break;
1567 	case LOOP_GET_STATUS:
1568 		return loop_get_status_old(lo, argp);
1569 	case LOOP_SET_STATUS64:
1570 		err = -EPERM;
1571 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1572 			err = loop_set_status64(lo, argp);
1573 		break;
1574 	case LOOP_GET_STATUS64:
1575 		return loop_get_status64(lo, argp);
1576 	case LOOP_SET_CAPACITY:
1577 	case LOOP_SET_DIRECT_IO:
1578 	case LOOP_SET_BLOCK_SIZE:
1579 		if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1580 			return -EPERM;
1581 		fallthrough;
1582 	default:
1583 		err = lo_simple_ioctl(lo, cmd, arg);
1584 		break;
1585 	}
1586 
1587 	return err;
1588 }
1589 
1590 #ifdef CONFIG_COMPAT
1591 struct compat_loop_info {
1592 	compat_int_t	lo_number;      /* ioctl r/o */
1593 	compat_dev_t	lo_device;      /* ioctl r/o */
1594 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1595 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1596 	compat_int_t	lo_offset;
1597 	compat_int_t	lo_encrypt_type;        /* obsolete, ignored */
1598 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1599 	compat_int_t	lo_flags;       /* ioctl r/o */
1600 	char		lo_name[LO_NAME_SIZE];
1601 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1602 	compat_ulong_t	lo_init[2];
1603 	char		reserved[4];
1604 };
1605 
1606 /*
1607  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1608  * - noinlined to reduce stack space usage in main part of driver
1609  */
1610 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1611 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1612 			struct loop_info64 *info64)
1613 {
1614 	struct compat_loop_info info;
1615 
1616 	if (copy_from_user(&info, arg, sizeof(info)))
1617 		return -EFAULT;
1618 
1619 	memset(info64, 0, sizeof(*info64));
1620 	info64->lo_number = info.lo_number;
1621 	info64->lo_device = info.lo_device;
1622 	info64->lo_inode = info.lo_inode;
1623 	info64->lo_rdevice = info.lo_rdevice;
1624 	info64->lo_offset = info.lo_offset;
1625 	info64->lo_sizelimit = 0;
1626 	info64->lo_flags = info.lo_flags;
1627 	memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1628 	return 0;
1629 }
1630 
1631 /*
1632  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1633  * - noinlined to reduce stack space usage in main part of driver
1634  */
1635 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1636 loop_info64_to_compat(const struct loop_info64 *info64,
1637 		      struct compat_loop_info __user *arg)
1638 {
1639 	struct compat_loop_info info;
1640 
1641 	memset(&info, 0, sizeof(info));
1642 	info.lo_number = info64->lo_number;
1643 	info.lo_device = info64->lo_device;
1644 	info.lo_inode = info64->lo_inode;
1645 	info.lo_rdevice = info64->lo_rdevice;
1646 	info.lo_offset = info64->lo_offset;
1647 	info.lo_flags = info64->lo_flags;
1648 	memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1649 
1650 	/* error in case values were truncated */
1651 	if (info.lo_device != info64->lo_device ||
1652 	    info.lo_rdevice != info64->lo_rdevice ||
1653 	    info.lo_inode != info64->lo_inode ||
1654 	    info.lo_offset != info64->lo_offset)
1655 		return -EOVERFLOW;
1656 
1657 	if (copy_to_user(arg, &info, sizeof(info)))
1658 		return -EFAULT;
1659 	return 0;
1660 }
1661 
1662 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1663 loop_set_status_compat(struct loop_device *lo,
1664 		       const struct compat_loop_info __user *arg)
1665 {
1666 	struct loop_info64 info64;
1667 	int ret;
1668 
1669 	ret = loop_info64_from_compat(arg, &info64);
1670 	if (ret < 0)
1671 		return ret;
1672 	return loop_set_status(lo, &info64);
1673 }
1674 
1675 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1676 loop_get_status_compat(struct loop_device *lo,
1677 		       struct compat_loop_info __user *arg)
1678 {
1679 	struct loop_info64 info64;
1680 	int err;
1681 
1682 	if (!arg)
1683 		return -EINVAL;
1684 	err = loop_get_status(lo, &info64);
1685 	if (!err)
1686 		err = loop_info64_to_compat(&info64, arg);
1687 	return err;
1688 }
1689 
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1690 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1691 			   unsigned int cmd, unsigned long arg)
1692 {
1693 	struct loop_device *lo = bdev->bd_disk->private_data;
1694 	int err;
1695 
1696 	switch(cmd) {
1697 	case LOOP_SET_STATUS:
1698 		err = loop_set_status_compat(lo,
1699 			     (const struct compat_loop_info __user *)arg);
1700 		break;
1701 	case LOOP_GET_STATUS:
1702 		err = loop_get_status_compat(lo,
1703 				     (struct compat_loop_info __user *)arg);
1704 		break;
1705 	case LOOP_SET_CAPACITY:
1706 	case LOOP_CLR_FD:
1707 	case LOOP_GET_STATUS64:
1708 	case LOOP_SET_STATUS64:
1709 	case LOOP_CONFIGURE:
1710 		arg = (unsigned long) compat_ptr(arg);
1711 		fallthrough;
1712 	case LOOP_SET_FD:
1713 	case LOOP_CHANGE_FD:
1714 	case LOOP_SET_BLOCK_SIZE:
1715 	case LOOP_SET_DIRECT_IO:
1716 		err = lo_ioctl(bdev, mode, cmd, arg);
1717 		break;
1718 	default:
1719 		err = -ENOIOCTLCMD;
1720 		break;
1721 	}
1722 	return err;
1723 }
1724 #endif
1725 
lo_release(struct gendisk * disk)1726 static void lo_release(struct gendisk *disk)
1727 {
1728 	struct loop_device *lo = disk->private_data;
1729 
1730 	if (disk_openers(disk) > 0)
1731 		return;
1732 
1733 	mutex_lock(&lo->lo_mutex);
1734 	if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) {
1735 		lo->lo_state = Lo_rundown;
1736 		mutex_unlock(&lo->lo_mutex);
1737 		/*
1738 		 * In autoclear mode, stop the loop thread
1739 		 * and remove configuration after last close.
1740 		 */
1741 		__loop_clr_fd(lo, true);
1742 		return;
1743 	}
1744 	mutex_unlock(&lo->lo_mutex);
1745 }
1746 
lo_free_disk(struct gendisk * disk)1747 static void lo_free_disk(struct gendisk *disk)
1748 {
1749 	struct loop_device *lo = disk->private_data;
1750 
1751 	if (lo->workqueue)
1752 		destroy_workqueue(lo->workqueue);
1753 	loop_free_idle_workers(lo, true);
1754 	timer_shutdown_sync(&lo->timer);
1755 	mutex_destroy(&lo->lo_mutex);
1756 	kfree(lo);
1757 }
1758 
1759 static const struct block_device_operations lo_fops = {
1760 	.owner =	THIS_MODULE,
1761 	.release =	lo_release,
1762 	.ioctl =	lo_ioctl,
1763 #ifdef CONFIG_COMPAT
1764 	.compat_ioctl =	lo_compat_ioctl,
1765 #endif
1766 	.free_disk =	lo_free_disk,
1767 };
1768 
1769 /*
1770  * And now the modules code and kernel interface.
1771  */
1772 
1773 /*
1774  * If max_loop is specified, create that many devices upfront.
1775  * This also becomes a hard limit. If max_loop is not specified,
1776  * the default isn't a hard limit (as before commit 85c50197716c
1777  * changed the default value from 0 for max_loop=0 reasons), just
1778  * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1779  * init time. Loop devices can be requested on-demand with the
1780  * /dev/loop-control interface, or be instantiated by accessing
1781  * a 'dead' device node.
1782  */
1783 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1784 
1785 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1786 static bool max_loop_specified;
1787 
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1788 static int max_loop_param_set_int(const char *val,
1789 				  const struct kernel_param *kp)
1790 {
1791 	int ret;
1792 
1793 	ret = param_set_int(val, kp);
1794 	if (ret < 0)
1795 		return ret;
1796 
1797 	max_loop_specified = true;
1798 	return 0;
1799 }
1800 
1801 static const struct kernel_param_ops max_loop_param_ops = {
1802 	.set = max_loop_param_set_int,
1803 	.get = param_get_int,
1804 };
1805 
1806 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1807 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1808 #else
1809 module_param(max_loop, int, 0444);
1810 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1811 #endif
1812 
1813 module_param(max_part, int, 0444);
1814 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1815 
1816 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1817 
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1818 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1819 {
1820 	int qd, ret;
1821 
1822 	ret = kstrtoint(s, 0, &qd);
1823 	if (ret < 0)
1824 		return ret;
1825 	if (qd < 1)
1826 		return -EINVAL;
1827 	hw_queue_depth = qd;
1828 	return 0;
1829 }
1830 
1831 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1832 	.set	= loop_set_hw_queue_depth,
1833 	.get	= param_get_int,
1834 };
1835 
1836 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1837 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1838 
1839 MODULE_LICENSE("GPL");
1840 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1841 
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1842 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1843 		const struct blk_mq_queue_data *bd)
1844 {
1845 	struct request *rq = bd->rq;
1846 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1847 	struct loop_device *lo = rq->q->queuedata;
1848 
1849 	blk_mq_start_request(rq);
1850 
1851 	if (lo->lo_state != Lo_bound)
1852 		return BLK_STS_IOERR;
1853 
1854 	switch (req_op(rq)) {
1855 	case REQ_OP_FLUSH:
1856 	case REQ_OP_DISCARD:
1857 	case REQ_OP_WRITE_ZEROES:
1858 		cmd->use_aio = false;
1859 		break;
1860 	default:
1861 		cmd->use_aio = lo->use_dio;
1862 		break;
1863 	}
1864 
1865 	/* always use the first bio's css */
1866 	cmd->blkcg_css = NULL;
1867 	cmd->memcg_css = NULL;
1868 #ifdef CONFIG_BLK_CGROUP
1869 	if (rq->bio) {
1870 		cmd->blkcg_css = bio_blkcg_css(rq->bio);
1871 #ifdef CONFIG_MEMCG
1872 		if (cmd->blkcg_css) {
1873 			cmd->memcg_css =
1874 				cgroup_get_e_css(cmd->blkcg_css->cgroup,
1875 						&memory_cgrp_subsys);
1876 		}
1877 #endif
1878 	}
1879 #endif
1880 	loop_queue_work(lo, cmd);
1881 
1882 	return BLK_STS_OK;
1883 }
1884 
loop_handle_cmd(struct loop_cmd * cmd)1885 static void loop_handle_cmd(struct loop_cmd *cmd)
1886 {
1887 	struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1888 	struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1889 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1890 	const bool write = op_is_write(req_op(rq));
1891 	struct loop_device *lo = rq->q->queuedata;
1892 	int ret = 0;
1893 	struct mem_cgroup *old_memcg = NULL;
1894 	const bool use_aio = cmd->use_aio;
1895 
1896 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1897 		ret = -EIO;
1898 		goto failed;
1899 	}
1900 
1901 	if (cmd_blkcg_css)
1902 		kthread_associate_blkcg(cmd_blkcg_css);
1903 	if (cmd_memcg_css)
1904 		old_memcg = set_active_memcg(
1905 			mem_cgroup_from_css(cmd_memcg_css));
1906 
1907 	/*
1908 	 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1909 	 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1910 	 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1911 	 * not yet been completed.
1912 	 */
1913 	ret = do_req_filebacked(lo, rq);
1914 
1915 	if (cmd_blkcg_css)
1916 		kthread_associate_blkcg(NULL);
1917 
1918 	if (cmd_memcg_css) {
1919 		set_active_memcg(old_memcg);
1920 		css_put(cmd_memcg_css);
1921 	}
1922  failed:
1923 	/* complete non-aio request */
1924 	if (!use_aio || ret) {
1925 		if (ret == -EOPNOTSUPP)
1926 			cmd->ret = ret;
1927 		else
1928 			cmd->ret = ret ? -EIO : 0;
1929 		if (likely(!blk_should_fake_timeout(rq->q)))
1930 			blk_mq_complete_request(rq);
1931 	}
1932 }
1933 
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1934 static void loop_process_work(struct loop_worker *worker,
1935 			struct list_head *cmd_list, struct loop_device *lo)
1936 {
1937 	int orig_flags = current->flags;
1938 	struct loop_cmd *cmd;
1939 
1940 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1941 	spin_lock_irq(&lo->lo_work_lock);
1942 	while (!list_empty(cmd_list)) {
1943 		cmd = container_of(
1944 			cmd_list->next, struct loop_cmd, list_entry);
1945 		list_del(cmd_list->next);
1946 		spin_unlock_irq(&lo->lo_work_lock);
1947 
1948 		loop_handle_cmd(cmd);
1949 		cond_resched();
1950 
1951 		spin_lock_irq(&lo->lo_work_lock);
1952 	}
1953 
1954 	/*
1955 	 * We only add to the idle list if there are no pending cmds
1956 	 * *and* the worker will not run again which ensures that it
1957 	 * is safe to free any worker on the idle list
1958 	 */
1959 	if (worker && !work_pending(&worker->work)) {
1960 		worker->last_ran_at = jiffies;
1961 		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1962 		loop_set_timer(lo);
1963 	}
1964 	spin_unlock_irq(&lo->lo_work_lock);
1965 	current->flags = orig_flags;
1966 }
1967 
loop_workfn(struct work_struct * work)1968 static void loop_workfn(struct work_struct *work)
1969 {
1970 	struct loop_worker *worker =
1971 		container_of(work, struct loop_worker, work);
1972 	loop_process_work(worker, &worker->cmd_list, worker->lo);
1973 }
1974 
loop_rootcg_workfn(struct work_struct * work)1975 static void loop_rootcg_workfn(struct work_struct *work)
1976 {
1977 	struct loop_device *lo =
1978 		container_of(work, struct loop_device, rootcg_work);
1979 	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1980 }
1981 
1982 static const struct blk_mq_ops loop_mq_ops = {
1983 	.queue_rq       = loop_queue_rq,
1984 	.complete	= lo_complete_rq,
1985 };
1986 
loop_add(int i)1987 static int loop_add(int i)
1988 {
1989 	struct loop_device *lo;
1990 	struct gendisk *disk;
1991 	int err;
1992 
1993 	err = -ENOMEM;
1994 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1995 	if (!lo)
1996 		goto out;
1997 	lo->worker_tree = RB_ROOT;
1998 	INIT_LIST_HEAD(&lo->idle_worker_list);
1999 	timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2000 	lo->lo_state = Lo_unbound;
2001 
2002 	err = mutex_lock_killable(&loop_ctl_mutex);
2003 	if (err)
2004 		goto out_free_dev;
2005 
2006 	/* allocate id, if @id >= 0, we're requesting that specific id */
2007 	if (i >= 0) {
2008 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2009 		if (err == -ENOSPC)
2010 			err = -EEXIST;
2011 	} else {
2012 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2013 	}
2014 	mutex_unlock(&loop_ctl_mutex);
2015 	if (err < 0)
2016 		goto out_free_dev;
2017 	i = err;
2018 
2019 	lo->tag_set.ops = &loop_mq_ops;
2020 	lo->tag_set.nr_hw_queues = 1;
2021 	lo->tag_set.queue_depth = hw_queue_depth;
2022 	lo->tag_set.numa_node = NUMA_NO_NODE;
2023 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2024 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2025 		BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2026 	lo->tag_set.driver_data = lo;
2027 
2028 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2029 	if (err)
2030 		goto out_free_idr;
2031 
2032 	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2033 	if (IS_ERR(disk)) {
2034 		err = PTR_ERR(disk);
2035 		goto out_cleanup_tags;
2036 	}
2037 	lo->lo_queue = lo->lo_disk->queue;
2038 
2039 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2040 
2041 	/*
2042 	 * By default, we do buffer IO, so it doesn't make sense to enable
2043 	 * merge because the I/O submitted to backing file is handled page by
2044 	 * page. For directio mode, merge does help to dispatch bigger request
2045 	 * to underlayer disk. We will enable merge once directio is enabled.
2046 	 */
2047 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2048 
2049 	/*
2050 	 * Disable partition scanning by default. The in-kernel partition
2051 	 * scanning can be requested individually per-device during its
2052 	 * setup. Userspace can always add and remove partitions from all
2053 	 * devices. The needed partition minors are allocated from the
2054 	 * extended minor space, the main loop device numbers will continue
2055 	 * to match the loop minors, regardless of the number of partitions
2056 	 * used.
2057 	 *
2058 	 * If max_part is given, partition scanning is globally enabled for
2059 	 * all loop devices. The minors for the main loop devices will be
2060 	 * multiples of max_part.
2061 	 *
2062 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2063 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2064 	 * complicated, are too static, inflexible and may surprise
2065 	 * userspace tools. Parameters like this in general should be avoided.
2066 	 */
2067 	if (!part_shift)
2068 		set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2069 	mutex_init(&lo->lo_mutex);
2070 	lo->lo_number		= i;
2071 	spin_lock_init(&lo->lo_lock);
2072 	spin_lock_init(&lo->lo_work_lock);
2073 	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2074 	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2075 	disk->major		= LOOP_MAJOR;
2076 	disk->first_minor	= i << part_shift;
2077 	disk->minors		= 1 << part_shift;
2078 	disk->fops		= &lo_fops;
2079 	disk->private_data	= lo;
2080 	disk->queue		= lo->lo_queue;
2081 	disk->events		= DISK_EVENT_MEDIA_CHANGE;
2082 	disk->event_flags	= DISK_EVENT_FLAG_UEVENT;
2083 	sprintf(disk->disk_name, "loop%d", i);
2084 	/* Make this loop device reachable from pathname. */
2085 	err = add_disk(disk);
2086 	if (err)
2087 		goto out_cleanup_disk;
2088 
2089 	/* Show this loop device. */
2090 	mutex_lock(&loop_ctl_mutex);
2091 	lo->idr_visible = true;
2092 	mutex_unlock(&loop_ctl_mutex);
2093 
2094 	return i;
2095 
2096 out_cleanup_disk:
2097 	put_disk(disk);
2098 out_cleanup_tags:
2099 	blk_mq_free_tag_set(&lo->tag_set);
2100 out_free_idr:
2101 	mutex_lock(&loop_ctl_mutex);
2102 	idr_remove(&loop_index_idr, i);
2103 	mutex_unlock(&loop_ctl_mutex);
2104 out_free_dev:
2105 	kfree(lo);
2106 out:
2107 	return err;
2108 }
2109 
loop_remove(struct loop_device * lo)2110 static void loop_remove(struct loop_device *lo)
2111 {
2112 	/* Make this loop device unreachable from pathname. */
2113 	del_gendisk(lo->lo_disk);
2114 	blk_mq_free_tag_set(&lo->tag_set);
2115 
2116 	mutex_lock(&loop_ctl_mutex);
2117 	idr_remove(&loop_index_idr, lo->lo_number);
2118 	mutex_unlock(&loop_ctl_mutex);
2119 
2120 	put_disk(lo->lo_disk);
2121 }
2122 
2123 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2124 static void loop_probe(dev_t dev)
2125 {
2126 	int idx = MINOR(dev) >> part_shift;
2127 
2128 	if (max_loop_specified && max_loop && idx >= max_loop)
2129 		return;
2130 	loop_add(idx);
2131 }
2132 #else
2133 #define loop_probe NULL
2134 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2135 
loop_control_remove(int idx)2136 static int loop_control_remove(int idx)
2137 {
2138 	struct loop_device *lo;
2139 	int ret;
2140 
2141 	if (idx < 0) {
2142 		pr_warn_once("deleting an unspecified loop device is not supported.\n");
2143 		return -EINVAL;
2144 	}
2145 
2146 	/* Hide this loop device for serialization. */
2147 	ret = mutex_lock_killable(&loop_ctl_mutex);
2148 	if (ret)
2149 		return ret;
2150 	lo = idr_find(&loop_index_idr, idx);
2151 	if (!lo || !lo->idr_visible)
2152 		ret = -ENODEV;
2153 	else
2154 		lo->idr_visible = false;
2155 	mutex_unlock(&loop_ctl_mutex);
2156 	if (ret)
2157 		return ret;
2158 
2159 	/* Check whether this loop device can be removed. */
2160 	ret = mutex_lock_killable(&lo->lo_mutex);
2161 	if (ret)
2162 		goto mark_visible;
2163 	if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2164 		mutex_unlock(&lo->lo_mutex);
2165 		ret = -EBUSY;
2166 		goto mark_visible;
2167 	}
2168 	/* Mark this loop device as no more bound, but not quite unbound yet */
2169 	lo->lo_state = Lo_deleting;
2170 	mutex_unlock(&lo->lo_mutex);
2171 
2172 	loop_remove(lo);
2173 	return 0;
2174 
2175 mark_visible:
2176 	/* Show this loop device again. */
2177 	mutex_lock(&loop_ctl_mutex);
2178 	lo->idr_visible = true;
2179 	mutex_unlock(&loop_ctl_mutex);
2180 	return ret;
2181 }
2182 
loop_control_get_free(int idx)2183 static int loop_control_get_free(int idx)
2184 {
2185 	struct loop_device *lo;
2186 	int id, ret;
2187 
2188 	ret = mutex_lock_killable(&loop_ctl_mutex);
2189 	if (ret)
2190 		return ret;
2191 	idr_for_each_entry(&loop_index_idr, lo, id) {
2192 		/* Hitting a race results in creating a new loop device which is harmless. */
2193 		if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2194 			goto found;
2195 	}
2196 	mutex_unlock(&loop_ctl_mutex);
2197 	return loop_add(-1);
2198 found:
2199 	mutex_unlock(&loop_ctl_mutex);
2200 	return id;
2201 }
2202 
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2203 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2204 			       unsigned long parm)
2205 {
2206 	switch (cmd) {
2207 	case LOOP_CTL_ADD:
2208 		return loop_add(parm);
2209 	case LOOP_CTL_REMOVE:
2210 		return loop_control_remove(parm);
2211 	case LOOP_CTL_GET_FREE:
2212 		return loop_control_get_free(parm);
2213 	default:
2214 		return -ENOSYS;
2215 	}
2216 }
2217 
2218 static const struct file_operations loop_ctl_fops = {
2219 	.open		= nonseekable_open,
2220 	.unlocked_ioctl	= loop_control_ioctl,
2221 	.compat_ioctl	= loop_control_ioctl,
2222 	.owner		= THIS_MODULE,
2223 	.llseek		= noop_llseek,
2224 };
2225 
2226 static struct miscdevice loop_misc = {
2227 	.minor		= LOOP_CTRL_MINOR,
2228 	.name		= "loop-control",
2229 	.fops		= &loop_ctl_fops,
2230 };
2231 
2232 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2233 MODULE_ALIAS("devname:loop-control");
2234 
loop_init(void)2235 static int __init loop_init(void)
2236 {
2237 	int i;
2238 	int err;
2239 
2240 	part_shift = 0;
2241 	if (max_part > 0) {
2242 		part_shift = fls(max_part);
2243 
2244 		/*
2245 		 * Adjust max_part according to part_shift as it is exported
2246 		 * to user space so that user can decide correct minor number
2247 		 * if [s]he want to create more devices.
2248 		 *
2249 		 * Note that -1 is required because partition 0 is reserved
2250 		 * for the whole disk.
2251 		 */
2252 		max_part = (1UL << part_shift) - 1;
2253 	}
2254 
2255 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2256 		err = -EINVAL;
2257 		goto err_out;
2258 	}
2259 
2260 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2261 		err = -EINVAL;
2262 		goto err_out;
2263 	}
2264 
2265 	err = misc_register(&loop_misc);
2266 	if (err < 0)
2267 		goto err_out;
2268 
2269 
2270 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2271 		err = -EIO;
2272 		goto misc_out;
2273 	}
2274 
2275 	/* pre-create number of devices given by config or max_loop */
2276 	for (i = 0; i < max_loop; i++)
2277 		loop_add(i);
2278 
2279 	printk(KERN_INFO "loop: module loaded\n");
2280 	return 0;
2281 
2282 misc_out:
2283 	misc_deregister(&loop_misc);
2284 err_out:
2285 	return err;
2286 }
2287 
loop_exit(void)2288 static void __exit loop_exit(void)
2289 {
2290 	struct loop_device *lo;
2291 	int id;
2292 
2293 	unregister_blkdev(LOOP_MAJOR, "loop");
2294 	misc_deregister(&loop_misc);
2295 
2296 	/*
2297 	 * There is no need to use loop_ctl_mutex here, for nobody else can
2298 	 * access loop_index_idr when this module is unloading (unless forced
2299 	 * module unloading is requested). If this is not a clean unloading,
2300 	 * we have no means to avoid kernel crash.
2301 	 */
2302 	idr_for_each_entry(&loop_index_idr, lo, id)
2303 		loop_remove(lo);
2304 
2305 	idr_destroy(&loop_index_idr);
2306 }
2307 
2308 module_init(loop_init);
2309 module_exit(loop_exit);
2310 
2311 #ifndef MODULE
max_loop_setup(char * str)2312 static int __init max_loop_setup(char *str)
2313 {
2314 	max_loop = simple_strtol(str, NULL, 0);
2315 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2316 	max_loop_specified = true;
2317 #endif
2318 	return 1;
2319 }
2320 
2321 __setup("max_loop=", max_loop_setup);
2322 #endif
2323