1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/devres.c - device resource management
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13
14 #include <asm/sections.h>
15
16 #include "base.h"
17 #include "trace.h"
18
19 struct devres_node {
20 struct list_head entry;
21 dr_release_t release;
22 const char *name;
23 size_t size;
24 };
25
26 struct devres {
27 struct devres_node node;
28 /*
29 * Some archs want to perform DMA into kmalloc caches
30 * and need a guaranteed alignment larger than
31 * the alignment of a 64-bit integer.
32 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same
33 * alignment for struct devres when allocated by kmalloc().
34 */
35 u8 __aligned(ARCH_DMA_MINALIGN) data[];
36 };
37
38 struct devres_group {
39 struct devres_node node[2];
40 void *id;
41 int color;
42 /* -- 8 pointers */
43 };
44
set_node_dbginfo(struct devres_node * node,const char * name,size_t size)45 static void set_node_dbginfo(struct devres_node *node, const char *name,
46 size_t size)
47 {
48 node->name = name;
49 node->size = size;
50 }
51
52 #ifdef CONFIG_DEBUG_DEVRES
53 static int log_devres = 0;
54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55
devres_dbg(struct device * dev,struct devres_node * node,const char * op)56 static void devres_dbg(struct device *dev, struct devres_node *node,
57 const char *op)
58 {
59 if (unlikely(log_devres))
60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 op, node, node->name, node->size);
62 }
63 #else /* CONFIG_DEBUG_DEVRES */
64 #define devres_dbg(dev, node, op) do {} while (0)
65 #endif /* CONFIG_DEBUG_DEVRES */
66
devres_log(struct device * dev,struct devres_node * node,const char * op)67 static void devres_log(struct device *dev, struct devres_node *node,
68 const char *op)
69 {
70 trace_devres_log(dev, op, node, node->name, node->size);
71 devres_dbg(dev, node, op);
72 }
73
74 /*
75 * Release functions for devres group. These callbacks are used only
76 * for identification.
77 */
group_open_release(struct device * dev,void * res)78 static void group_open_release(struct device *dev, void *res)
79 {
80 /* noop */
81 }
82
group_close_release(struct device * dev,void * res)83 static void group_close_release(struct device *dev, void *res)
84 {
85 /* noop */
86 }
87
node_to_group(struct devres_node * node)88 static struct devres_group * node_to_group(struct devres_node *node)
89 {
90 if (node->release == &group_open_release)
91 return container_of(node, struct devres_group, node[0]);
92 if (node->release == &group_close_release)
93 return container_of(node, struct devres_group, node[1]);
94 return NULL;
95 }
96
check_dr_size(size_t size,size_t * tot_size)97 static bool check_dr_size(size_t size, size_t *tot_size)
98 {
99 /* We must catch any near-SIZE_MAX cases that could overflow. */
100 if (unlikely(check_add_overflow(sizeof(struct devres),
101 size, tot_size)))
102 return false;
103
104 /* Actually allocate the full kmalloc bucket size. */
105 *tot_size = kmalloc_size_roundup(*tot_size);
106
107 return true;
108 }
109
alloc_dr(dr_release_t release,size_t size,gfp_t gfp,int nid)110 static __always_inline struct devres * alloc_dr(dr_release_t release,
111 size_t size, gfp_t gfp, int nid)
112 {
113 size_t tot_size;
114 struct devres *dr;
115
116 if (!check_dr_size(size, &tot_size))
117 return NULL;
118
119 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
120 if (unlikely(!dr))
121 return NULL;
122
123 /* No need to clear memory twice */
124 if (!(gfp & __GFP_ZERO))
125 memset(dr, 0, offsetof(struct devres, data));
126
127 INIT_LIST_HEAD(&dr->node.entry);
128 dr->node.release = release;
129 return dr;
130 }
131
add_dr(struct device * dev,struct devres_node * node)132 static void add_dr(struct device *dev, struct devres_node *node)
133 {
134 devres_log(dev, node, "ADD");
135 BUG_ON(!list_empty(&node->entry));
136 list_add_tail(&node->entry, &dev->devres_head);
137 }
138
replace_dr(struct device * dev,struct devres_node * old,struct devres_node * new)139 static void replace_dr(struct device *dev,
140 struct devres_node *old, struct devres_node *new)
141 {
142 devres_log(dev, old, "REPLACE");
143 BUG_ON(!list_empty(&new->entry));
144 list_replace(&old->entry, &new->entry);
145 }
146
147 /**
148 * __devres_alloc_node - Allocate device resource data
149 * @release: Release function devres will be associated with
150 * @size: Allocation size
151 * @gfp: Allocation flags
152 * @nid: NUMA node
153 * @name: Name of the resource
154 *
155 * Allocate devres of @size bytes. The allocated area is zeroed, then
156 * associated with @release. The returned pointer can be passed to
157 * other devres_*() functions.
158 *
159 * RETURNS:
160 * Pointer to allocated devres on success, NULL on failure.
161 */
__devres_alloc_node(dr_release_t release,size_t size,gfp_t gfp,int nid,const char * name)162 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
163 const char *name)
164 {
165 struct devres *dr;
166
167 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
168 if (unlikely(!dr))
169 return NULL;
170 set_node_dbginfo(&dr->node, name, size);
171 return dr->data;
172 }
173 EXPORT_SYMBOL_GPL(__devres_alloc_node);
174
175 /**
176 * devres_for_each_res - Resource iterator
177 * @dev: Device to iterate resource from
178 * @release: Look for resources associated with this release function
179 * @match: Match function (optional)
180 * @match_data: Data for the match function
181 * @fn: Function to be called for each matched resource.
182 * @data: Data for @fn, the 3rd parameter of @fn
183 *
184 * Call @fn for each devres of @dev which is associated with @release
185 * and for which @match returns 1.
186 *
187 * RETURNS:
188 * void
189 */
devres_for_each_res(struct device * dev,dr_release_t release,dr_match_t match,void * match_data,void (* fn)(struct device *,void *,void *),void * data)190 void devres_for_each_res(struct device *dev, dr_release_t release,
191 dr_match_t match, void *match_data,
192 void (*fn)(struct device *, void *, void *),
193 void *data)
194 {
195 struct devres_node *node;
196 struct devres_node *tmp;
197 unsigned long flags;
198
199 if (!fn)
200 return;
201
202 spin_lock_irqsave(&dev->devres_lock, flags);
203 list_for_each_entry_safe_reverse(node, tmp,
204 &dev->devres_head, entry) {
205 struct devres *dr = container_of(node, struct devres, node);
206
207 if (node->release != release)
208 continue;
209 if (match && !match(dev, dr->data, match_data))
210 continue;
211 fn(dev, dr->data, data);
212 }
213 spin_unlock_irqrestore(&dev->devres_lock, flags);
214 }
215 EXPORT_SYMBOL_GPL(devres_for_each_res);
216
217 /**
218 * devres_free - Free device resource data
219 * @res: Pointer to devres data to free
220 *
221 * Free devres created with devres_alloc().
222 */
devres_free(void * res)223 void devres_free(void *res)
224 {
225 if (res) {
226 struct devres *dr = container_of(res, struct devres, data);
227
228 BUG_ON(!list_empty(&dr->node.entry));
229 kfree(dr);
230 }
231 }
232 EXPORT_SYMBOL_GPL(devres_free);
233
234 /**
235 * devres_add - Register device resource
236 * @dev: Device to add resource to
237 * @res: Resource to register
238 *
239 * Register devres @res to @dev. @res should have been allocated
240 * using devres_alloc(). On driver detach, the associated release
241 * function will be invoked and devres will be freed automatically.
242 */
devres_add(struct device * dev,void * res)243 void devres_add(struct device *dev, void *res)
244 {
245 struct devres *dr = container_of(res, struct devres, data);
246 unsigned long flags;
247
248 spin_lock_irqsave(&dev->devres_lock, flags);
249 add_dr(dev, &dr->node);
250 spin_unlock_irqrestore(&dev->devres_lock, flags);
251 }
252 EXPORT_SYMBOL_GPL(devres_add);
253
find_dr(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)254 static struct devres *find_dr(struct device *dev, dr_release_t release,
255 dr_match_t match, void *match_data)
256 {
257 struct devres_node *node;
258
259 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
260 struct devres *dr = container_of(node, struct devres, node);
261
262 if (node->release != release)
263 continue;
264 if (match && !match(dev, dr->data, match_data))
265 continue;
266 return dr;
267 }
268
269 return NULL;
270 }
271
272 /**
273 * devres_find - Find device resource
274 * @dev: Device to lookup resource from
275 * @release: Look for resources associated with this release function
276 * @match: Match function (optional)
277 * @match_data: Data for the match function
278 *
279 * Find the latest devres of @dev which is associated with @release
280 * and for which @match returns 1. If @match is NULL, it's considered
281 * to match all.
282 *
283 * RETURNS:
284 * Pointer to found devres, NULL if not found.
285 */
devres_find(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)286 void * devres_find(struct device *dev, dr_release_t release,
287 dr_match_t match, void *match_data)
288 {
289 struct devres *dr;
290 unsigned long flags;
291
292 spin_lock_irqsave(&dev->devres_lock, flags);
293 dr = find_dr(dev, release, match, match_data);
294 spin_unlock_irqrestore(&dev->devres_lock, flags);
295
296 if (dr)
297 return dr->data;
298 return NULL;
299 }
300 EXPORT_SYMBOL_GPL(devres_find);
301
302 /**
303 * devres_get - Find devres, if non-existent, add one atomically
304 * @dev: Device to lookup or add devres for
305 * @new_res: Pointer to new initialized devres to add if not found
306 * @match: Match function (optional)
307 * @match_data: Data for the match function
308 *
309 * Find the latest devres of @dev which has the same release function
310 * as @new_res and for which @match return 1. If found, @new_res is
311 * freed; otherwise, @new_res is added atomically.
312 *
313 * RETURNS:
314 * Pointer to found or added devres.
315 */
devres_get(struct device * dev,void * new_res,dr_match_t match,void * match_data)316 void * devres_get(struct device *dev, void *new_res,
317 dr_match_t match, void *match_data)
318 {
319 struct devres *new_dr = container_of(new_res, struct devres, data);
320 struct devres *dr;
321 unsigned long flags;
322
323 spin_lock_irqsave(&dev->devres_lock, flags);
324 dr = find_dr(dev, new_dr->node.release, match, match_data);
325 if (!dr) {
326 add_dr(dev, &new_dr->node);
327 dr = new_dr;
328 new_res = NULL;
329 }
330 spin_unlock_irqrestore(&dev->devres_lock, flags);
331 devres_free(new_res);
332
333 return dr->data;
334 }
335 EXPORT_SYMBOL_GPL(devres_get);
336
337 /**
338 * devres_remove - Find a device resource and remove it
339 * @dev: Device to find resource from
340 * @release: Look for resources associated with this release function
341 * @match: Match function (optional)
342 * @match_data: Data for the match function
343 *
344 * Find the latest devres of @dev associated with @release and for
345 * which @match returns 1. If @match is NULL, it's considered to
346 * match all. If found, the resource is removed atomically and
347 * returned.
348 *
349 * RETURNS:
350 * Pointer to removed devres on success, NULL if not found.
351 */
devres_remove(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)352 void * devres_remove(struct device *dev, dr_release_t release,
353 dr_match_t match, void *match_data)
354 {
355 struct devres *dr;
356 unsigned long flags;
357
358 spin_lock_irqsave(&dev->devres_lock, flags);
359 dr = find_dr(dev, release, match, match_data);
360 if (dr) {
361 list_del_init(&dr->node.entry);
362 devres_log(dev, &dr->node, "REM");
363 }
364 spin_unlock_irqrestore(&dev->devres_lock, flags);
365
366 if (dr)
367 return dr->data;
368 return NULL;
369 }
370 EXPORT_SYMBOL_GPL(devres_remove);
371
372 /**
373 * devres_destroy - Find a device resource and destroy it
374 * @dev: Device to find resource from
375 * @release: Look for resources associated with this release function
376 * @match: Match function (optional)
377 * @match_data: Data for the match function
378 *
379 * Find the latest devres of @dev associated with @release and for
380 * which @match returns 1. If @match is NULL, it's considered to
381 * match all. If found, the resource is removed atomically and freed.
382 *
383 * Note that the release function for the resource will not be called,
384 * only the devres-allocated data will be freed. The caller becomes
385 * responsible for freeing any other data.
386 *
387 * RETURNS:
388 * 0 if devres is found and freed, -ENOENT if not found.
389 */
devres_destroy(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)390 int devres_destroy(struct device *dev, dr_release_t release,
391 dr_match_t match, void *match_data)
392 {
393 void *res;
394
395 res = devres_remove(dev, release, match, match_data);
396 if (unlikely(!res))
397 return -ENOENT;
398
399 devres_free(res);
400 return 0;
401 }
402 EXPORT_SYMBOL_GPL(devres_destroy);
403
404
405 /**
406 * devres_release - Find a device resource and destroy it, calling release
407 * @dev: Device to find resource from
408 * @release: Look for resources associated with this release function
409 * @match: Match function (optional)
410 * @match_data: Data for the match function
411 *
412 * Find the latest devres of @dev associated with @release and for
413 * which @match returns 1. If @match is NULL, it's considered to
414 * match all. If found, the resource is removed atomically, the
415 * release function called and the resource freed.
416 *
417 * RETURNS:
418 * 0 if devres is found and freed, -ENOENT if not found.
419 */
devres_release(struct device * dev,dr_release_t release,dr_match_t match,void * match_data)420 int devres_release(struct device *dev, dr_release_t release,
421 dr_match_t match, void *match_data)
422 {
423 void *res;
424
425 res = devres_remove(dev, release, match, match_data);
426 if (unlikely(!res))
427 return -ENOENT;
428
429 (*release)(dev, res);
430 devres_free(res);
431 return 0;
432 }
433 EXPORT_SYMBOL_GPL(devres_release);
434
remove_nodes(struct device * dev,struct list_head * first,struct list_head * end,struct list_head * todo)435 static int remove_nodes(struct device *dev,
436 struct list_head *first, struct list_head *end,
437 struct list_head *todo)
438 {
439 struct devres_node *node, *n;
440 int cnt = 0, nr_groups = 0;
441
442 /* First pass - move normal devres entries to @todo and clear
443 * devres_group colors.
444 */
445 node = list_entry(first, struct devres_node, entry);
446 list_for_each_entry_safe_from(node, n, end, entry) {
447 struct devres_group *grp;
448
449 grp = node_to_group(node);
450 if (grp) {
451 /* clear color of group markers in the first pass */
452 grp->color = 0;
453 nr_groups++;
454 } else {
455 /* regular devres entry */
456 if (&node->entry == first)
457 first = first->next;
458 list_move_tail(&node->entry, todo);
459 cnt++;
460 }
461 }
462
463 if (!nr_groups)
464 return cnt;
465
466 /* Second pass - Scan groups and color them. A group gets
467 * color value of two iff the group is wholly contained in
468 * [current node, end). That is, for a closed group, both opening
469 * and closing markers should be in the range, while just the
470 * opening marker is enough for an open group.
471 */
472 node = list_entry(first, struct devres_node, entry);
473 list_for_each_entry_safe_from(node, n, end, entry) {
474 struct devres_group *grp;
475
476 grp = node_to_group(node);
477 BUG_ON(!grp || list_empty(&grp->node[0].entry));
478
479 grp->color++;
480 if (list_empty(&grp->node[1].entry))
481 grp->color++;
482
483 BUG_ON(grp->color <= 0 || grp->color > 2);
484 if (grp->color == 2) {
485 /* No need to update current node or end. The removed
486 * nodes are always before both.
487 */
488 list_move_tail(&grp->node[0].entry, todo);
489 list_del_init(&grp->node[1].entry);
490 }
491 }
492
493 return cnt;
494 }
495
release_nodes(struct device * dev,struct list_head * todo)496 static void release_nodes(struct device *dev, struct list_head *todo)
497 {
498 struct devres *dr, *tmp;
499
500 /* Release. Note that both devres and devres_group are
501 * handled as devres in the following loop. This is safe.
502 */
503 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
504 devres_log(dev, &dr->node, "REL");
505 dr->node.release(dev, dr->data);
506 kfree(dr);
507 }
508 }
509
510 /**
511 * devres_release_all - Release all managed resources
512 * @dev: Device to release resources for
513 *
514 * Release all resources associated with @dev. This function is
515 * called on driver detach.
516 */
devres_release_all(struct device * dev)517 int devres_release_all(struct device *dev)
518 {
519 unsigned long flags;
520 LIST_HEAD(todo);
521 int cnt;
522
523 /* Looks like an uninitialized device structure */
524 if (WARN_ON(dev->devres_head.next == NULL))
525 return -ENODEV;
526
527 /* Nothing to release if list is empty */
528 if (list_empty(&dev->devres_head))
529 return 0;
530
531 spin_lock_irqsave(&dev->devres_lock, flags);
532 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
533 spin_unlock_irqrestore(&dev->devres_lock, flags);
534
535 release_nodes(dev, &todo);
536 return cnt;
537 }
538
539 /**
540 * devres_open_group - Open a new devres group
541 * @dev: Device to open devres group for
542 * @id: Separator ID
543 * @gfp: Allocation flags
544 *
545 * Open a new devres group for @dev with @id. For @id, using a
546 * pointer to an object which won't be used for another group is
547 * recommended. If @id is NULL, address-wise unique ID is created.
548 *
549 * RETURNS:
550 * ID of the new group, NULL on failure.
551 */
devres_open_group(struct device * dev,void * id,gfp_t gfp)552 void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
553 {
554 struct devres_group *grp;
555 unsigned long flags;
556
557 grp = kmalloc(sizeof(*grp), gfp);
558 if (unlikely(!grp))
559 return NULL;
560
561 grp->node[0].release = &group_open_release;
562 grp->node[1].release = &group_close_release;
563 INIT_LIST_HEAD(&grp->node[0].entry);
564 INIT_LIST_HEAD(&grp->node[1].entry);
565 set_node_dbginfo(&grp->node[0], "grp<", 0);
566 set_node_dbginfo(&grp->node[1], "grp>", 0);
567 grp->id = grp;
568 if (id)
569 grp->id = id;
570
571 spin_lock_irqsave(&dev->devres_lock, flags);
572 add_dr(dev, &grp->node[0]);
573 spin_unlock_irqrestore(&dev->devres_lock, flags);
574 return grp->id;
575 }
576 EXPORT_SYMBOL_GPL(devres_open_group);
577
578 /* Find devres group with ID @id. If @id is NULL, look for the latest. */
find_group(struct device * dev,void * id)579 static struct devres_group * find_group(struct device *dev, void *id)
580 {
581 struct devres_node *node;
582
583 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
584 struct devres_group *grp;
585
586 if (node->release != &group_open_release)
587 continue;
588
589 grp = container_of(node, struct devres_group, node[0]);
590
591 if (id) {
592 if (grp->id == id)
593 return grp;
594 } else if (list_empty(&grp->node[1].entry))
595 return grp;
596 }
597
598 return NULL;
599 }
600
601 /**
602 * devres_close_group - Close a devres group
603 * @dev: Device to close devres group for
604 * @id: ID of target group, can be NULL
605 *
606 * Close the group identified by @id. If @id is NULL, the latest open
607 * group is selected.
608 */
devres_close_group(struct device * dev,void * id)609 void devres_close_group(struct device *dev, void *id)
610 {
611 struct devres_group *grp;
612 unsigned long flags;
613
614 spin_lock_irqsave(&dev->devres_lock, flags);
615
616 grp = find_group(dev, id);
617 if (grp)
618 add_dr(dev, &grp->node[1]);
619 else
620 WARN_ON(1);
621
622 spin_unlock_irqrestore(&dev->devres_lock, flags);
623 }
624 EXPORT_SYMBOL_GPL(devres_close_group);
625
626 /**
627 * devres_remove_group - Remove a devres group
628 * @dev: Device to remove group for
629 * @id: ID of target group, can be NULL
630 *
631 * Remove the group identified by @id. If @id is NULL, the latest
632 * open group is selected. Note that removing a group doesn't affect
633 * any other resources.
634 */
devres_remove_group(struct device * dev,void * id)635 void devres_remove_group(struct device *dev, void *id)
636 {
637 struct devres_group *grp;
638 unsigned long flags;
639
640 spin_lock_irqsave(&dev->devres_lock, flags);
641
642 grp = find_group(dev, id);
643 if (grp) {
644 list_del_init(&grp->node[0].entry);
645 list_del_init(&grp->node[1].entry);
646 devres_log(dev, &grp->node[0], "REM");
647 } else
648 WARN_ON(1);
649
650 spin_unlock_irqrestore(&dev->devres_lock, flags);
651
652 kfree(grp);
653 }
654 EXPORT_SYMBOL_GPL(devres_remove_group);
655
656 /**
657 * devres_release_group - Release resources in a devres group
658 * @dev: Device to release group for
659 * @id: ID of target group, can be NULL
660 *
661 * Release all resources in the group identified by @id. If @id is
662 * NULL, the latest open group is selected. The selected group and
663 * groups properly nested inside the selected group are removed.
664 *
665 * RETURNS:
666 * The number of released non-group resources.
667 */
devres_release_group(struct device * dev,void * id)668 int devres_release_group(struct device *dev, void *id)
669 {
670 struct devres_group *grp;
671 unsigned long flags;
672 LIST_HEAD(todo);
673 int cnt = 0;
674
675 spin_lock_irqsave(&dev->devres_lock, flags);
676
677 grp = find_group(dev, id);
678 if (grp) {
679 struct list_head *first = &grp->node[0].entry;
680 struct list_head *end = &dev->devres_head;
681
682 if (!list_empty(&grp->node[1].entry))
683 end = grp->node[1].entry.next;
684
685 cnt = remove_nodes(dev, first, end, &todo);
686 spin_unlock_irqrestore(&dev->devres_lock, flags);
687
688 release_nodes(dev, &todo);
689 } else {
690 WARN_ON(1);
691 spin_unlock_irqrestore(&dev->devres_lock, flags);
692 }
693
694 return cnt;
695 }
696 EXPORT_SYMBOL_GPL(devres_release_group);
697
698 /*
699 * Custom devres actions allow inserting a simple function call
700 * into the teardown sequence.
701 */
702
703 struct action_devres {
704 void *data;
705 void (*action)(void *);
706 };
707
devm_action_match(struct device * dev,void * res,void * p)708 static int devm_action_match(struct device *dev, void *res, void *p)
709 {
710 struct action_devres *devres = res;
711 struct action_devres *target = p;
712
713 return devres->action == target->action &&
714 devres->data == target->data;
715 }
716
devm_action_release(struct device * dev,void * res)717 static void devm_action_release(struct device *dev, void *res)
718 {
719 struct action_devres *devres = res;
720
721 devres->action(devres->data);
722 }
723
724 /**
725 * __devm_add_action() - add a custom action to list of managed resources
726 * @dev: Device that owns the action
727 * @action: Function that should be called
728 * @data: Pointer to data passed to @action implementation
729 * @name: Name of the resource (for debugging purposes)
730 *
731 * This adds a custom action to the list of managed resources so that
732 * it gets executed as part of standard resource unwinding.
733 */
__devm_add_action(struct device * dev,void (* action)(void *),void * data,const char * name)734 int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name)
735 {
736 struct action_devres *devres;
737
738 devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres),
739 GFP_KERNEL, NUMA_NO_NODE, name);
740 if (!devres)
741 return -ENOMEM;
742
743 devres->data = data;
744 devres->action = action;
745
746 devres_add(dev, devres);
747 return 0;
748 }
749 EXPORT_SYMBOL_GPL(__devm_add_action);
750
751 /**
752 * devm_remove_action() - removes previously added custom action
753 * @dev: Device that owns the action
754 * @action: Function implementing the action
755 * @data: Pointer to data passed to @action implementation
756 *
757 * Removes instance of @action previously added by devm_add_action().
758 * Both action and data should match one of the existing entries.
759 */
devm_remove_action(struct device * dev,void (* action)(void *),void * data)760 void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
761 {
762 struct action_devres devres = {
763 .data = data,
764 .action = action,
765 };
766
767 WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
768 &devres));
769 }
770 EXPORT_SYMBOL_GPL(devm_remove_action);
771
772 /**
773 * devm_release_action() - release previously added custom action
774 * @dev: Device that owns the action
775 * @action: Function implementing the action
776 * @data: Pointer to data passed to @action implementation
777 *
778 * Releases and removes instance of @action previously added by
779 * devm_add_action(). Both action and data should match one of the
780 * existing entries.
781 */
devm_release_action(struct device * dev,void (* action)(void *),void * data)782 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
783 {
784 struct action_devres devres = {
785 .data = data,
786 .action = action,
787 };
788
789 WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
790 &devres));
791
792 }
793 EXPORT_SYMBOL_GPL(devm_release_action);
794
795 /*
796 * Managed kmalloc/kfree
797 */
devm_kmalloc_release(struct device * dev,void * res)798 static void devm_kmalloc_release(struct device *dev, void *res)
799 {
800 /* noop */
801 }
802
devm_kmalloc_match(struct device * dev,void * res,void * data)803 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
804 {
805 return res == data;
806 }
807
808 /**
809 * devm_kmalloc - Resource-managed kmalloc
810 * @dev: Device to allocate memory for
811 * @size: Allocation size
812 * @gfp: Allocation gfp flags
813 *
814 * Managed kmalloc. Memory allocated with this function is
815 * automatically freed on driver detach. Like all other devres
816 * resources, guaranteed alignment is unsigned long long.
817 *
818 * RETURNS:
819 * Pointer to allocated memory on success, NULL on failure.
820 */
devm_kmalloc(struct device * dev,size_t size,gfp_t gfp)821 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
822 {
823 struct devres *dr;
824
825 if (unlikely(!size))
826 return ZERO_SIZE_PTR;
827
828 /* use raw alloc_dr for kmalloc caller tracing */
829 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
830 if (unlikely(!dr))
831 return NULL;
832
833 /*
834 * This is named devm_kzalloc_release for historical reasons
835 * The initial implementation did not support kmalloc, only kzalloc
836 */
837 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
838 devres_add(dev, dr->data);
839 return dr->data;
840 }
841 EXPORT_SYMBOL_GPL(devm_kmalloc);
842
843 /**
844 * devm_krealloc - Resource-managed krealloc()
845 * @dev: Device to re-allocate memory for
846 * @ptr: Pointer to the memory chunk to re-allocate
847 * @new_size: New allocation size
848 * @gfp: Allocation gfp flags
849 *
850 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
851 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
852 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
853 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
854 * change the order in which the release callback for the re-alloc'ed devres
855 * will be called (except when falling back to devm_kmalloc() or when freeing
856 * resources when new_size is zero). The contents of the memory are preserved
857 * up to the lesser of new and old sizes.
858 */
devm_krealloc(struct device * dev,void * ptr,size_t new_size,gfp_t gfp)859 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
860 {
861 size_t total_new_size, total_old_size;
862 struct devres *old_dr, *new_dr;
863 unsigned long flags;
864
865 if (unlikely(!new_size)) {
866 devm_kfree(dev, ptr);
867 return ZERO_SIZE_PTR;
868 }
869
870 if (unlikely(ZERO_OR_NULL_PTR(ptr)))
871 return devm_kmalloc(dev, new_size, gfp);
872
873 if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
874 /*
875 * We cannot reliably realloc a const string returned by
876 * devm_kstrdup_const().
877 */
878 return NULL;
879
880 if (!check_dr_size(new_size, &total_new_size))
881 return NULL;
882
883 total_old_size = ksize(container_of(ptr, struct devres, data));
884 if (total_old_size == 0) {
885 WARN(1, "Pointer doesn't point to dynamically allocated memory.");
886 return NULL;
887 }
888
889 /*
890 * If new size is smaller or equal to the actual number of bytes
891 * allocated previously - just return the same pointer.
892 */
893 if (total_new_size <= total_old_size)
894 return ptr;
895
896 /*
897 * Otherwise: allocate new, larger chunk. We need to allocate before
898 * taking the lock as most probably the caller uses GFP_KERNEL.
899 */
900 new_dr = alloc_dr(devm_kmalloc_release,
901 total_new_size, gfp, dev_to_node(dev));
902 if (!new_dr)
903 return NULL;
904
905 /*
906 * The spinlock protects the linked list against concurrent
907 * modifications but not the resource itself.
908 */
909 spin_lock_irqsave(&dev->devres_lock, flags);
910
911 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
912 if (!old_dr) {
913 spin_unlock_irqrestore(&dev->devres_lock, flags);
914 kfree(new_dr);
915 WARN(1, "Memory chunk not managed or managed by a different device.");
916 return NULL;
917 }
918
919 replace_dr(dev, &old_dr->node, &new_dr->node);
920
921 spin_unlock_irqrestore(&dev->devres_lock, flags);
922
923 /*
924 * We can copy the memory contents after releasing the lock as we're
925 * no longer modifying the list links.
926 */
927 memcpy(new_dr->data, old_dr->data,
928 total_old_size - offsetof(struct devres, data));
929 /*
930 * Same for releasing the old devres - it's now been removed from the
931 * list. This is also the reason why we must not use devm_kfree() - the
932 * links are no longer valid.
933 */
934 kfree(old_dr);
935
936 return new_dr->data;
937 }
938 EXPORT_SYMBOL_GPL(devm_krealloc);
939
940 /**
941 * devm_kstrdup - Allocate resource managed space and
942 * copy an existing string into that.
943 * @dev: Device to allocate memory for
944 * @s: the string to duplicate
945 * @gfp: the GFP mask used in the devm_kmalloc() call when
946 * allocating memory
947 * RETURNS:
948 * Pointer to allocated string on success, NULL on failure.
949 */
devm_kstrdup(struct device * dev,const char * s,gfp_t gfp)950 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
951 {
952 size_t size;
953 char *buf;
954
955 if (!s)
956 return NULL;
957
958 size = strlen(s) + 1;
959 buf = devm_kmalloc(dev, size, gfp);
960 if (buf)
961 memcpy(buf, s, size);
962 return buf;
963 }
964 EXPORT_SYMBOL_GPL(devm_kstrdup);
965
966 /**
967 * devm_kstrdup_const - resource managed conditional string duplication
968 * @dev: device for which to duplicate the string
969 * @s: the string to duplicate
970 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
971 *
972 * Strings allocated by devm_kstrdup_const will be automatically freed when
973 * the associated device is detached.
974 *
975 * RETURNS:
976 * Source string if it is in .rodata section otherwise it falls back to
977 * devm_kstrdup.
978 */
devm_kstrdup_const(struct device * dev,const char * s,gfp_t gfp)979 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
980 {
981 if (is_kernel_rodata((unsigned long)s))
982 return s;
983
984 return devm_kstrdup(dev, s, gfp);
985 }
986 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
987
988 /**
989 * devm_kvasprintf - Allocate resource managed space and format a string
990 * into that.
991 * @dev: Device to allocate memory for
992 * @gfp: the GFP mask used in the devm_kmalloc() call when
993 * allocating memory
994 * @fmt: The printf()-style format string
995 * @ap: Arguments for the format string
996 * RETURNS:
997 * Pointer to allocated string on success, NULL on failure.
998 */
devm_kvasprintf(struct device * dev,gfp_t gfp,const char * fmt,va_list ap)999 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1000 va_list ap)
1001 {
1002 unsigned int len;
1003 char *p;
1004 va_list aq;
1005
1006 va_copy(aq, ap);
1007 len = vsnprintf(NULL, 0, fmt, aq);
1008 va_end(aq);
1009
1010 p = devm_kmalloc(dev, len+1, gfp);
1011 if (!p)
1012 return NULL;
1013
1014 vsnprintf(p, len+1, fmt, ap);
1015
1016 return p;
1017 }
1018 EXPORT_SYMBOL(devm_kvasprintf);
1019
1020 /**
1021 * devm_kasprintf - Allocate resource managed space and format a string
1022 * into that.
1023 * @dev: Device to allocate memory for
1024 * @gfp: the GFP mask used in the devm_kmalloc() call when
1025 * allocating memory
1026 * @fmt: The printf()-style format string
1027 * @...: Arguments for the format string
1028 * RETURNS:
1029 * Pointer to allocated string on success, NULL on failure.
1030 */
devm_kasprintf(struct device * dev,gfp_t gfp,const char * fmt,...)1031 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1032 {
1033 va_list ap;
1034 char *p;
1035
1036 va_start(ap, fmt);
1037 p = devm_kvasprintf(dev, gfp, fmt, ap);
1038 va_end(ap);
1039
1040 return p;
1041 }
1042 EXPORT_SYMBOL_GPL(devm_kasprintf);
1043
1044 /**
1045 * devm_kfree - Resource-managed kfree
1046 * @dev: Device this memory belongs to
1047 * @p: Memory to free
1048 *
1049 * Free memory allocated with devm_kmalloc().
1050 */
devm_kfree(struct device * dev,const void * p)1051 void devm_kfree(struct device *dev, const void *p)
1052 {
1053 int rc;
1054
1055 /*
1056 * Special cases: pointer to a string in .rodata returned by
1057 * devm_kstrdup_const() or NULL/ZERO ptr.
1058 */
1059 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1060 return;
1061
1062 rc = devres_destroy(dev, devm_kmalloc_release,
1063 devm_kmalloc_match, (void *)p);
1064 WARN_ON(rc);
1065 }
1066 EXPORT_SYMBOL_GPL(devm_kfree);
1067
1068 /**
1069 * devm_kmemdup - Resource-managed kmemdup
1070 * @dev: Device this memory belongs to
1071 * @src: Memory region to duplicate
1072 * @len: Memory region length
1073 * @gfp: GFP mask to use
1074 *
1075 * Duplicate region of a memory using resource managed kmalloc
1076 */
devm_kmemdup(struct device * dev,const void * src,size_t len,gfp_t gfp)1077 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1078 {
1079 void *p;
1080
1081 p = devm_kmalloc(dev, len, gfp);
1082 if (p)
1083 memcpy(p, src, len);
1084
1085 return p;
1086 }
1087 EXPORT_SYMBOL_GPL(devm_kmemdup);
1088
1089 struct pages_devres {
1090 unsigned long addr;
1091 unsigned int order;
1092 };
1093
devm_pages_match(struct device * dev,void * res,void * p)1094 static int devm_pages_match(struct device *dev, void *res, void *p)
1095 {
1096 struct pages_devres *devres = res;
1097 struct pages_devres *target = p;
1098
1099 return devres->addr == target->addr;
1100 }
1101
devm_pages_release(struct device * dev,void * res)1102 static void devm_pages_release(struct device *dev, void *res)
1103 {
1104 struct pages_devres *devres = res;
1105
1106 free_pages(devres->addr, devres->order);
1107 }
1108
1109 /**
1110 * devm_get_free_pages - Resource-managed __get_free_pages
1111 * @dev: Device to allocate memory for
1112 * @gfp_mask: Allocation gfp flags
1113 * @order: Allocation size is (1 << order) pages
1114 *
1115 * Managed get_free_pages. Memory allocated with this function is
1116 * automatically freed on driver detach.
1117 *
1118 * RETURNS:
1119 * Address of allocated memory on success, 0 on failure.
1120 */
1121
devm_get_free_pages(struct device * dev,gfp_t gfp_mask,unsigned int order)1122 unsigned long devm_get_free_pages(struct device *dev,
1123 gfp_t gfp_mask, unsigned int order)
1124 {
1125 struct pages_devres *devres;
1126 unsigned long addr;
1127
1128 addr = __get_free_pages(gfp_mask, order);
1129
1130 if (unlikely(!addr))
1131 return 0;
1132
1133 devres = devres_alloc(devm_pages_release,
1134 sizeof(struct pages_devres), GFP_KERNEL);
1135 if (unlikely(!devres)) {
1136 free_pages(addr, order);
1137 return 0;
1138 }
1139
1140 devres->addr = addr;
1141 devres->order = order;
1142
1143 devres_add(dev, devres);
1144 return addr;
1145 }
1146 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1147
1148 /**
1149 * devm_free_pages - Resource-managed free_pages
1150 * @dev: Device this memory belongs to
1151 * @addr: Memory to free
1152 *
1153 * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1154 * there is no need to supply the @order.
1155 */
devm_free_pages(struct device * dev,unsigned long addr)1156 void devm_free_pages(struct device *dev, unsigned long addr)
1157 {
1158 struct pages_devres devres = { .addr = addr };
1159
1160 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1161 &devres));
1162 }
1163 EXPORT_SYMBOL_GPL(devm_free_pages);
1164
devm_percpu_release(struct device * dev,void * pdata)1165 static void devm_percpu_release(struct device *dev, void *pdata)
1166 {
1167 void __percpu *p;
1168
1169 p = *(void __percpu **)pdata;
1170 free_percpu(p);
1171 }
1172
devm_percpu_match(struct device * dev,void * data,void * p)1173 static int devm_percpu_match(struct device *dev, void *data, void *p)
1174 {
1175 struct devres *devr = container_of(data, struct devres, data);
1176
1177 return *(void **)devr->data == p;
1178 }
1179
1180 /**
1181 * __devm_alloc_percpu - Resource-managed alloc_percpu
1182 * @dev: Device to allocate per-cpu memory for
1183 * @size: Size of per-cpu memory to allocate
1184 * @align: Alignment of per-cpu memory to allocate
1185 *
1186 * Managed alloc_percpu. Per-cpu memory allocated with this function is
1187 * automatically freed on driver detach.
1188 *
1189 * RETURNS:
1190 * Pointer to allocated memory on success, NULL on failure.
1191 */
__devm_alloc_percpu(struct device * dev,size_t size,size_t align)1192 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1193 size_t align)
1194 {
1195 void *p;
1196 void __percpu *pcpu;
1197
1198 pcpu = __alloc_percpu(size, align);
1199 if (!pcpu)
1200 return NULL;
1201
1202 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1203 if (!p) {
1204 free_percpu(pcpu);
1205 return NULL;
1206 }
1207
1208 *(void __percpu **)p = pcpu;
1209
1210 devres_add(dev, p);
1211
1212 return pcpu;
1213 }
1214 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1215
1216 /**
1217 * devm_free_percpu - Resource-managed free_percpu
1218 * @dev: Device this memory belongs to
1219 * @pdata: Per-cpu memory to free
1220 *
1221 * Free memory allocated with devm_alloc_percpu().
1222 */
devm_free_percpu(struct device * dev,void __percpu * pdata)1223 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1224 {
1225 WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1226 (__force void *)pdata));
1227 }
1228 EXPORT_SYMBOL_GPL(devm_free_percpu);
1229