1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47
48 /**
49 * __fwnode_link_add - Create a link between two fwnode_handles.
50 * @con: Consumer end of the link.
51 * @sup: Supplier end of the link.
52 *
53 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
54 * represents the detail that the firmware lists @sup fwnode as supplying a
55 * resource to @con.
56 *
57 * The driver core will use the fwnode link to create a device link between the
58 * two device objects corresponding to @con and @sup when they are created. The
59 * driver core will automatically delete the fwnode link between @con and @sup
60 * after doing that.
61 *
62 * Attempts to create duplicate links between the same pair of fwnode handles
63 * are ignored and there is no reference counting.
64 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)65 static int __fwnode_link_add(struct fwnode_handle *con,
66 struct fwnode_handle *sup, u8 flags)
67 {
68 struct fwnode_link *link;
69
70 list_for_each_entry(link, &sup->consumers, s_hook)
71 if (link->consumer == con) {
72 link->flags |= flags;
73 return 0;
74 }
75
76 link = kzalloc(sizeof(*link), GFP_KERNEL);
77 if (!link)
78 return -ENOMEM;
79
80 link->supplier = sup;
81 INIT_LIST_HEAD(&link->s_hook);
82 link->consumer = con;
83 INIT_LIST_HEAD(&link->c_hook);
84 link->flags = flags;
85
86 list_add(&link->s_hook, &sup->consumers);
87 list_add(&link->c_hook, &con->suppliers);
88 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
89 con, sup);
90
91 return 0;
92 }
93
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup)94 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
95 {
96 int ret;
97
98 mutex_lock(&fwnode_link_lock);
99 ret = __fwnode_link_add(con, sup, 0);
100 mutex_unlock(&fwnode_link_lock);
101 return ret;
102 }
103
104 /**
105 * __fwnode_link_del - Delete a link between two fwnode_handles.
106 * @link: the fwnode_link to be deleted
107 *
108 * The fwnode_link_lock needs to be held when this function is called.
109 */
__fwnode_link_del(struct fwnode_link * link)110 static void __fwnode_link_del(struct fwnode_link *link)
111 {
112 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
113 link->consumer, link->supplier);
114 list_del(&link->s_hook);
115 list_del(&link->c_hook);
116 kfree(link);
117 }
118
119 /**
120 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
121 * @link: the fwnode_link to be marked
122 *
123 * The fwnode_link_lock needs to be held when this function is called.
124 */
__fwnode_link_cycle(struct fwnode_link * link)125 static void __fwnode_link_cycle(struct fwnode_link *link)
126 {
127 pr_debug("%pfwf: Relaxing link with %pfwf\n",
128 link->consumer, link->supplier);
129 link->flags |= FWLINK_FLAG_CYCLE;
130 }
131
132 /**
133 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
134 * @fwnode: fwnode whose supplier links need to be deleted
135 *
136 * Deletes all supplier links connecting directly to @fwnode.
137 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)138 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
139 {
140 struct fwnode_link *link, *tmp;
141
142 mutex_lock(&fwnode_link_lock);
143 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
144 __fwnode_link_del(link);
145 mutex_unlock(&fwnode_link_lock);
146 }
147
148 /**
149 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
150 * @fwnode: fwnode whose consumer links need to be deleted
151 *
152 * Deletes all consumer links connecting directly to @fwnode.
153 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)154 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
155 {
156 struct fwnode_link *link, *tmp;
157
158 mutex_lock(&fwnode_link_lock);
159 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
160 __fwnode_link_del(link);
161 mutex_unlock(&fwnode_link_lock);
162 }
163
164 /**
165 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
166 * @fwnode: fwnode whose links needs to be deleted
167 *
168 * Deletes all links connecting directly to a fwnode.
169 */
fwnode_links_purge(struct fwnode_handle * fwnode)170 void fwnode_links_purge(struct fwnode_handle *fwnode)
171 {
172 fwnode_links_purge_suppliers(fwnode);
173 fwnode_links_purge_consumers(fwnode);
174 }
175
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)176 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
177 {
178 struct fwnode_handle *child;
179
180 /* Don't purge consumer links of an added child */
181 if (fwnode->dev)
182 return;
183
184 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
185 fwnode_links_purge_consumers(fwnode);
186
187 fwnode_for_each_available_child_node(fwnode, child)
188 fw_devlink_purge_absent_suppliers(child);
189 }
190 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
191
192 /**
193 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
194 * @from: move consumers away from this fwnode
195 * @to: move consumers to this fwnode
196 *
197 * Move all consumer links from @from fwnode to @to fwnode.
198 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)199 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
200 struct fwnode_handle *to)
201 {
202 struct fwnode_link *link, *tmp;
203
204 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
205 __fwnode_link_add(link->consumer, to, link->flags);
206 __fwnode_link_del(link);
207 }
208 }
209
210 /**
211 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
212 * @fwnode: fwnode from which to pick up dangling consumers
213 * @new_sup: fwnode of new supplier
214 *
215 * If the @fwnode has a corresponding struct device and the device supports
216 * probing (that is, added to a bus), then we want to let fw_devlink create
217 * MANAGED device links to this device, so leave @fwnode and its descendant's
218 * fwnode links alone.
219 *
220 * Otherwise, move its consumers to the new supplier @new_sup.
221 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)222 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
223 struct fwnode_handle *new_sup)
224 {
225 struct fwnode_handle *child;
226
227 if (fwnode->dev && fwnode->dev->bus)
228 return;
229
230 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
231 __fwnode_links_move_consumers(fwnode, new_sup);
232
233 fwnode_for_each_available_child_node(fwnode, child)
234 __fw_devlink_pickup_dangling_consumers(child, new_sup);
235 }
236
237 static DEFINE_MUTEX(device_links_lock);
238 DEFINE_STATIC_SRCU(device_links_srcu);
239
device_links_write_lock(void)240 static inline void device_links_write_lock(void)
241 {
242 mutex_lock(&device_links_lock);
243 }
244
device_links_write_unlock(void)245 static inline void device_links_write_unlock(void)
246 {
247 mutex_unlock(&device_links_lock);
248 }
249
device_links_read_lock(void)250 int device_links_read_lock(void) __acquires(&device_links_srcu)
251 {
252 return srcu_read_lock(&device_links_srcu);
253 }
254
device_links_read_unlock(int idx)255 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
256 {
257 srcu_read_unlock(&device_links_srcu, idx);
258 }
259
device_links_read_lock_held(void)260 int device_links_read_lock_held(void)
261 {
262 return srcu_read_lock_held(&device_links_srcu);
263 }
264
device_link_synchronize_removal(void)265 static void device_link_synchronize_removal(void)
266 {
267 synchronize_srcu(&device_links_srcu);
268 }
269
device_link_remove_from_lists(struct device_link * link)270 static void device_link_remove_from_lists(struct device_link *link)
271 {
272 list_del_rcu(&link->s_node);
273 list_del_rcu(&link->c_node);
274 }
275
device_is_ancestor(struct device * dev,struct device * target)276 static bool device_is_ancestor(struct device *dev, struct device *target)
277 {
278 while (target->parent) {
279 target = target->parent;
280 if (dev == target)
281 return true;
282 }
283 return false;
284 }
285
286 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
287 DL_FLAG_CYCLE | \
288 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)289 static inline bool device_link_flag_is_sync_state_only(u32 flags)
290 {
291 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
292 }
293
294 /**
295 * device_is_dependent - Check if one device depends on another one
296 * @dev: Device to check dependencies for.
297 * @target: Device to check against.
298 *
299 * Check if @target depends on @dev or any device dependent on it (its child or
300 * its consumer etc). Return 1 if that is the case or 0 otherwise.
301 */
device_is_dependent(struct device * dev,void * target)302 int device_is_dependent(struct device *dev, void *target)
303 {
304 struct device_link *link;
305 int ret;
306
307 /*
308 * The "ancestors" check is needed to catch the case when the target
309 * device has not been completely initialized yet and it is still
310 * missing from the list of children of its parent device.
311 */
312 if (dev == target || device_is_ancestor(dev, target))
313 return 1;
314
315 ret = device_for_each_child(dev, target, device_is_dependent);
316 if (ret)
317 return ret;
318
319 list_for_each_entry(link, &dev->links.consumers, s_node) {
320 if (device_link_flag_is_sync_state_only(link->flags))
321 continue;
322
323 if (link->consumer == target)
324 return 1;
325
326 ret = device_is_dependent(link->consumer, target);
327 if (ret)
328 break;
329 }
330 return ret;
331 }
332
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)333 static void device_link_init_status(struct device_link *link,
334 struct device *consumer,
335 struct device *supplier)
336 {
337 switch (supplier->links.status) {
338 case DL_DEV_PROBING:
339 switch (consumer->links.status) {
340 case DL_DEV_PROBING:
341 /*
342 * A consumer driver can create a link to a supplier
343 * that has not completed its probing yet as long as it
344 * knows that the supplier is already functional (for
345 * example, it has just acquired some resources from the
346 * supplier).
347 */
348 link->status = DL_STATE_CONSUMER_PROBE;
349 break;
350 default:
351 link->status = DL_STATE_DORMANT;
352 break;
353 }
354 break;
355 case DL_DEV_DRIVER_BOUND:
356 switch (consumer->links.status) {
357 case DL_DEV_PROBING:
358 link->status = DL_STATE_CONSUMER_PROBE;
359 break;
360 case DL_DEV_DRIVER_BOUND:
361 link->status = DL_STATE_ACTIVE;
362 break;
363 default:
364 link->status = DL_STATE_AVAILABLE;
365 break;
366 }
367 break;
368 case DL_DEV_UNBINDING:
369 link->status = DL_STATE_SUPPLIER_UNBIND;
370 break;
371 default:
372 link->status = DL_STATE_DORMANT;
373 break;
374 }
375 }
376
device_reorder_to_tail(struct device * dev,void * not_used)377 static int device_reorder_to_tail(struct device *dev, void *not_used)
378 {
379 struct device_link *link;
380
381 /*
382 * Devices that have not been registered yet will be put to the ends
383 * of the lists during the registration, so skip them here.
384 */
385 if (device_is_registered(dev))
386 devices_kset_move_last(dev);
387
388 if (device_pm_initialized(dev))
389 device_pm_move_last(dev);
390
391 device_for_each_child(dev, NULL, device_reorder_to_tail);
392 list_for_each_entry(link, &dev->links.consumers, s_node) {
393 if (device_link_flag_is_sync_state_only(link->flags))
394 continue;
395 device_reorder_to_tail(link->consumer, NULL);
396 }
397
398 return 0;
399 }
400
401 /**
402 * device_pm_move_to_tail - Move set of devices to the end of device lists
403 * @dev: Device to move
404 *
405 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
406 *
407 * It moves the @dev along with all of its children and all of its consumers
408 * to the ends of the device_kset and dpm_list, recursively.
409 */
device_pm_move_to_tail(struct device * dev)410 void device_pm_move_to_tail(struct device *dev)
411 {
412 int idx;
413
414 idx = device_links_read_lock();
415 device_pm_lock();
416 device_reorder_to_tail(dev, NULL);
417 device_pm_unlock();
418 device_links_read_unlock(idx);
419 }
420
421 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
422
status_show(struct device * dev,struct device_attribute * attr,char * buf)423 static ssize_t status_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
425 {
426 const char *output;
427
428 switch (to_devlink(dev)->status) {
429 case DL_STATE_NONE:
430 output = "not tracked";
431 break;
432 case DL_STATE_DORMANT:
433 output = "dormant";
434 break;
435 case DL_STATE_AVAILABLE:
436 output = "available";
437 break;
438 case DL_STATE_CONSUMER_PROBE:
439 output = "consumer probing";
440 break;
441 case DL_STATE_ACTIVE:
442 output = "active";
443 break;
444 case DL_STATE_SUPPLIER_UNBIND:
445 output = "supplier unbinding";
446 break;
447 default:
448 output = "unknown";
449 break;
450 }
451
452 return sysfs_emit(buf, "%s\n", output);
453 }
454 static DEVICE_ATTR_RO(status);
455
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)456 static ssize_t auto_remove_on_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
458 {
459 struct device_link *link = to_devlink(dev);
460 const char *output;
461
462 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
463 output = "supplier unbind";
464 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
465 output = "consumer unbind";
466 else
467 output = "never";
468
469 return sysfs_emit(buf, "%s\n", output);
470 }
471 static DEVICE_ATTR_RO(auto_remove_on);
472
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)473 static ssize_t runtime_pm_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
475 {
476 struct device_link *link = to_devlink(dev);
477
478 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
479 }
480 static DEVICE_ATTR_RO(runtime_pm);
481
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)482 static ssize_t sync_state_only_show(struct device *dev,
483 struct device_attribute *attr, char *buf)
484 {
485 struct device_link *link = to_devlink(dev);
486
487 return sysfs_emit(buf, "%d\n",
488 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
489 }
490 static DEVICE_ATTR_RO(sync_state_only);
491
492 static struct attribute *devlink_attrs[] = {
493 &dev_attr_status.attr,
494 &dev_attr_auto_remove_on.attr,
495 &dev_attr_runtime_pm.attr,
496 &dev_attr_sync_state_only.attr,
497 NULL,
498 };
499 ATTRIBUTE_GROUPS(devlink);
500
device_link_release_fn(struct work_struct * work)501 static void device_link_release_fn(struct work_struct *work)
502 {
503 struct device_link *link = container_of(work, struct device_link, rm_work);
504
505 /* Ensure that all references to the link object have been dropped. */
506 device_link_synchronize_removal();
507
508 pm_runtime_release_supplier(link);
509 /*
510 * If supplier_preactivated is set, the link has been dropped between
511 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
512 * in __driver_probe_device(). In that case, drop the supplier's
513 * PM-runtime usage counter to remove the reference taken by
514 * pm_runtime_get_suppliers().
515 */
516 if (link->supplier_preactivated)
517 pm_runtime_put_noidle(link->supplier);
518
519 pm_request_idle(link->supplier);
520
521 put_device(link->consumer);
522 put_device(link->supplier);
523 kfree(link);
524 }
525
devlink_dev_release(struct device * dev)526 static void devlink_dev_release(struct device *dev)
527 {
528 struct device_link *link = to_devlink(dev);
529
530 INIT_WORK(&link->rm_work, device_link_release_fn);
531 /*
532 * It may take a while to complete this work because of the SRCU
533 * synchronization in device_link_release_fn() and if the consumer or
534 * supplier devices get deleted when it runs, so put it into the "long"
535 * workqueue.
536 */
537 queue_work(system_long_wq, &link->rm_work);
538 }
539
540 static struct class devlink_class = {
541 .name = "devlink",
542 .dev_groups = devlink_groups,
543 .dev_release = devlink_dev_release,
544 };
545
devlink_add_symlinks(struct device * dev)546 static int devlink_add_symlinks(struct device *dev)
547 {
548 int ret;
549 size_t len;
550 struct device_link *link = to_devlink(dev);
551 struct device *sup = link->supplier;
552 struct device *con = link->consumer;
553 char *buf;
554
555 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
556 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
557 len += strlen(":");
558 len += strlen("supplier:") + 1;
559 buf = kzalloc(len, GFP_KERNEL);
560 if (!buf)
561 return -ENOMEM;
562
563 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
564 if (ret)
565 goto out;
566
567 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
568 if (ret)
569 goto err_con;
570
571 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
572 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
573 if (ret)
574 goto err_con_dev;
575
576 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
577 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
578 if (ret)
579 goto err_sup_dev;
580
581 goto out;
582
583 err_sup_dev:
584 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
585 sysfs_remove_link(&sup->kobj, buf);
586 err_con_dev:
587 sysfs_remove_link(&link->link_dev.kobj, "consumer");
588 err_con:
589 sysfs_remove_link(&link->link_dev.kobj, "supplier");
590 out:
591 kfree(buf);
592 return ret;
593 }
594
devlink_remove_symlinks(struct device * dev)595 static void devlink_remove_symlinks(struct device *dev)
596 {
597 struct device_link *link = to_devlink(dev);
598 size_t len;
599 struct device *sup = link->supplier;
600 struct device *con = link->consumer;
601 char *buf;
602
603 sysfs_remove_link(&link->link_dev.kobj, "consumer");
604 sysfs_remove_link(&link->link_dev.kobj, "supplier");
605
606 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
607 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
608 len += strlen(":");
609 len += strlen("supplier:") + 1;
610 buf = kzalloc(len, GFP_KERNEL);
611 if (!buf) {
612 WARN(1, "Unable to properly free device link symlinks!\n");
613 return;
614 }
615
616 if (device_is_registered(con)) {
617 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
618 sysfs_remove_link(&con->kobj, buf);
619 }
620 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
621 sysfs_remove_link(&sup->kobj, buf);
622 kfree(buf);
623 }
624
625 static struct class_interface devlink_class_intf = {
626 .class = &devlink_class,
627 .add_dev = devlink_add_symlinks,
628 .remove_dev = devlink_remove_symlinks,
629 };
630
devlink_class_init(void)631 static int __init devlink_class_init(void)
632 {
633 int ret;
634
635 ret = class_register(&devlink_class);
636 if (ret)
637 return ret;
638
639 ret = class_interface_register(&devlink_class_intf);
640 if (ret)
641 class_unregister(&devlink_class);
642
643 return ret;
644 }
645 postcore_initcall(devlink_class_init);
646
647 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
648 DL_FLAG_AUTOREMOVE_SUPPLIER | \
649 DL_FLAG_AUTOPROBE_CONSUMER | \
650 DL_FLAG_SYNC_STATE_ONLY | \
651 DL_FLAG_INFERRED | \
652 DL_FLAG_CYCLE)
653
654 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
655 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
656
657 /**
658 * device_link_add - Create a link between two devices.
659 * @consumer: Consumer end of the link.
660 * @supplier: Supplier end of the link.
661 * @flags: Link flags.
662 *
663 * The caller is responsible for the proper synchronization of the link creation
664 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
665 * runtime PM framework to take the link into account. Second, if the
666 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
667 * be forced into the active meta state and reference-counted upon the creation
668 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
669 * ignored.
670 *
671 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
672 * expected to release the link returned by it directly with the help of either
673 * device_link_del() or device_link_remove().
674 *
675 * If that flag is not set, however, the caller of this function is handing the
676 * management of the link over to the driver core entirely and its return value
677 * can only be used to check whether or not the link is present. In that case,
678 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
679 * flags can be used to indicate to the driver core when the link can be safely
680 * deleted. Namely, setting one of them in @flags indicates to the driver core
681 * that the link is not going to be used (by the given caller of this function)
682 * after unbinding the consumer or supplier driver, respectively, from its
683 * device, so the link can be deleted at that point. If none of them is set,
684 * the link will be maintained until one of the devices pointed to by it (either
685 * the consumer or the supplier) is unregistered.
686 *
687 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
688 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
689 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
690 * be used to request the driver core to automatically probe for a consumer
691 * driver after successfully binding a driver to the supplier device.
692 *
693 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
694 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
695 * the same time is invalid and will cause NULL to be returned upfront.
696 * However, if a device link between the given @consumer and @supplier pair
697 * exists already when this function is called for them, the existing link will
698 * be returned regardless of its current type and status (the link's flags may
699 * be modified then). The caller of this function is then expected to treat
700 * the link as though it has just been created, so (in particular) if
701 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
702 * explicitly when not needed any more (as stated above).
703 *
704 * A side effect of the link creation is re-ordering of dpm_list and the
705 * devices_kset list by moving the consumer device and all devices depending
706 * on it to the ends of these lists (that does not happen to devices that have
707 * not been registered when this function is called).
708 *
709 * The supplier device is required to be registered when this function is called
710 * and NULL will be returned if that is not the case. The consumer device need
711 * not be registered, however.
712 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)713 struct device_link *device_link_add(struct device *consumer,
714 struct device *supplier, u32 flags)
715 {
716 struct device_link *link;
717
718 if (!consumer || !supplier || consumer == supplier ||
719 flags & ~DL_ADD_VALID_FLAGS ||
720 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
721 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
722 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
723 DL_FLAG_AUTOREMOVE_SUPPLIER)))
724 return NULL;
725
726 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
727 if (pm_runtime_get_sync(supplier) < 0) {
728 pm_runtime_put_noidle(supplier);
729 return NULL;
730 }
731 }
732
733 if (!(flags & DL_FLAG_STATELESS))
734 flags |= DL_FLAG_MANAGED;
735
736 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
737 !device_link_flag_is_sync_state_only(flags))
738 return NULL;
739
740 device_links_write_lock();
741 device_pm_lock();
742
743 /*
744 * If the supplier has not been fully registered yet or there is a
745 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
746 * the supplier already in the graph, return NULL. If the link is a
747 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
748 * because it only affects sync_state() callbacks.
749 */
750 if (!device_pm_initialized(supplier)
751 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
752 device_is_dependent(consumer, supplier))) {
753 link = NULL;
754 goto out;
755 }
756
757 /*
758 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
759 * So, only create it if the consumer hasn't probed yet.
760 */
761 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
762 consumer->links.status != DL_DEV_NO_DRIVER &&
763 consumer->links.status != DL_DEV_PROBING) {
764 link = NULL;
765 goto out;
766 }
767
768 /*
769 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
770 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
771 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
772 */
773 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
774 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
775
776 list_for_each_entry(link, &supplier->links.consumers, s_node) {
777 if (link->consumer != consumer)
778 continue;
779
780 if (link->flags & DL_FLAG_INFERRED &&
781 !(flags & DL_FLAG_INFERRED))
782 link->flags &= ~DL_FLAG_INFERRED;
783
784 if (flags & DL_FLAG_PM_RUNTIME) {
785 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
786 pm_runtime_new_link(consumer);
787 link->flags |= DL_FLAG_PM_RUNTIME;
788 }
789 if (flags & DL_FLAG_RPM_ACTIVE)
790 refcount_inc(&link->rpm_active);
791 }
792
793 if (flags & DL_FLAG_STATELESS) {
794 kref_get(&link->kref);
795 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
796 !(link->flags & DL_FLAG_STATELESS)) {
797 link->flags |= DL_FLAG_STATELESS;
798 goto reorder;
799 } else {
800 link->flags |= DL_FLAG_STATELESS;
801 goto out;
802 }
803 }
804
805 /*
806 * If the life time of the link following from the new flags is
807 * longer than indicated by the flags of the existing link,
808 * update the existing link to stay around longer.
809 */
810 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
811 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
812 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
813 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
814 }
815 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
816 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
817 DL_FLAG_AUTOREMOVE_SUPPLIER);
818 }
819 if (!(link->flags & DL_FLAG_MANAGED)) {
820 kref_get(&link->kref);
821 link->flags |= DL_FLAG_MANAGED;
822 device_link_init_status(link, consumer, supplier);
823 }
824 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
825 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
826 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
827 goto reorder;
828 }
829
830 goto out;
831 }
832
833 link = kzalloc(sizeof(*link), GFP_KERNEL);
834 if (!link)
835 goto out;
836
837 refcount_set(&link->rpm_active, 1);
838
839 get_device(supplier);
840 link->supplier = supplier;
841 INIT_LIST_HEAD(&link->s_node);
842 get_device(consumer);
843 link->consumer = consumer;
844 INIT_LIST_HEAD(&link->c_node);
845 link->flags = flags;
846 kref_init(&link->kref);
847
848 link->link_dev.class = &devlink_class;
849 device_set_pm_not_required(&link->link_dev);
850 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
851 dev_bus_name(supplier), dev_name(supplier),
852 dev_bus_name(consumer), dev_name(consumer));
853 if (device_register(&link->link_dev)) {
854 put_device(&link->link_dev);
855 link = NULL;
856 goto out;
857 }
858
859 if (flags & DL_FLAG_PM_RUNTIME) {
860 if (flags & DL_FLAG_RPM_ACTIVE)
861 refcount_inc(&link->rpm_active);
862
863 pm_runtime_new_link(consumer);
864 }
865
866 /* Determine the initial link state. */
867 if (flags & DL_FLAG_STATELESS)
868 link->status = DL_STATE_NONE;
869 else
870 device_link_init_status(link, consumer, supplier);
871
872 /*
873 * Some callers expect the link creation during consumer driver probe to
874 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
875 */
876 if (link->status == DL_STATE_CONSUMER_PROBE &&
877 flags & DL_FLAG_PM_RUNTIME)
878 pm_runtime_resume(supplier);
879
880 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
881 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
882
883 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
884 dev_dbg(consumer,
885 "Linked as a sync state only consumer to %s\n",
886 dev_name(supplier));
887 goto out;
888 }
889
890 reorder:
891 /*
892 * Move the consumer and all of the devices depending on it to the end
893 * of dpm_list and the devices_kset list.
894 *
895 * It is necessary to hold dpm_list locked throughout all that or else
896 * we may end up suspending with a wrong ordering of it.
897 */
898 device_reorder_to_tail(consumer, NULL);
899
900 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
901
902 out:
903 device_pm_unlock();
904 device_links_write_unlock();
905
906 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
907 pm_runtime_put(supplier);
908
909 return link;
910 }
911 EXPORT_SYMBOL_GPL(device_link_add);
912
__device_link_del(struct kref * kref)913 static void __device_link_del(struct kref *kref)
914 {
915 struct device_link *link = container_of(kref, struct device_link, kref);
916
917 dev_dbg(link->consumer, "Dropping the link to %s\n",
918 dev_name(link->supplier));
919
920 pm_runtime_drop_link(link);
921
922 device_link_remove_from_lists(link);
923 device_unregister(&link->link_dev);
924 }
925
device_link_put_kref(struct device_link * link)926 static void device_link_put_kref(struct device_link *link)
927 {
928 if (link->flags & DL_FLAG_STATELESS)
929 kref_put(&link->kref, __device_link_del);
930 else if (!device_is_registered(link->consumer))
931 __device_link_del(&link->kref);
932 else
933 WARN(1, "Unable to drop a managed device link reference\n");
934 }
935
936 /**
937 * device_link_del - Delete a stateless link between two devices.
938 * @link: Device link to delete.
939 *
940 * The caller must ensure proper synchronization of this function with runtime
941 * PM. If the link was added multiple times, it needs to be deleted as often.
942 * Care is required for hotplugged devices: Their links are purged on removal
943 * and calling device_link_del() is then no longer allowed.
944 */
device_link_del(struct device_link * link)945 void device_link_del(struct device_link *link)
946 {
947 device_links_write_lock();
948 device_link_put_kref(link);
949 device_links_write_unlock();
950 }
951 EXPORT_SYMBOL_GPL(device_link_del);
952
953 /**
954 * device_link_remove - Delete a stateless link between two devices.
955 * @consumer: Consumer end of the link.
956 * @supplier: Supplier end of the link.
957 *
958 * The caller must ensure proper synchronization of this function with runtime
959 * PM.
960 */
device_link_remove(void * consumer,struct device * supplier)961 void device_link_remove(void *consumer, struct device *supplier)
962 {
963 struct device_link *link;
964
965 if (WARN_ON(consumer == supplier))
966 return;
967
968 device_links_write_lock();
969
970 list_for_each_entry(link, &supplier->links.consumers, s_node) {
971 if (link->consumer == consumer) {
972 device_link_put_kref(link);
973 break;
974 }
975 }
976
977 device_links_write_unlock();
978 }
979 EXPORT_SYMBOL_GPL(device_link_remove);
980
device_links_missing_supplier(struct device * dev)981 static void device_links_missing_supplier(struct device *dev)
982 {
983 struct device_link *link;
984
985 list_for_each_entry(link, &dev->links.suppliers, c_node) {
986 if (link->status != DL_STATE_CONSUMER_PROBE)
987 continue;
988
989 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
990 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
991 } else {
992 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
993 WRITE_ONCE(link->status, DL_STATE_DORMANT);
994 }
995 }
996 }
997
dev_is_best_effort(struct device * dev)998 static bool dev_is_best_effort(struct device *dev)
999 {
1000 return (fw_devlink_best_effort && dev->can_match) ||
1001 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1002 }
1003
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1004 static struct fwnode_handle *fwnode_links_check_suppliers(
1005 struct fwnode_handle *fwnode)
1006 {
1007 struct fwnode_link *link;
1008
1009 if (!fwnode || fw_devlink_is_permissive())
1010 return NULL;
1011
1012 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1013 if (!(link->flags & FWLINK_FLAG_CYCLE))
1014 return link->supplier;
1015
1016 return NULL;
1017 }
1018
1019 /**
1020 * device_links_check_suppliers - Check presence of supplier drivers.
1021 * @dev: Consumer device.
1022 *
1023 * Check links from this device to any suppliers. Walk the list of the device's
1024 * links to suppliers and see if all of them are available. If not, simply
1025 * return -EPROBE_DEFER.
1026 *
1027 * We need to guarantee that the supplier will not go away after the check has
1028 * been positive here. It only can go away in __device_release_driver() and
1029 * that function checks the device's links to consumers. This means we need to
1030 * mark the link as "consumer probe in progress" to make the supplier removal
1031 * wait for us to complete (or bad things may happen).
1032 *
1033 * Links without the DL_FLAG_MANAGED flag set are ignored.
1034 */
device_links_check_suppliers(struct device * dev)1035 int device_links_check_suppliers(struct device *dev)
1036 {
1037 struct device_link *link;
1038 int ret = 0, fwnode_ret = 0;
1039 struct fwnode_handle *sup_fw;
1040
1041 /*
1042 * Device waiting for supplier to become available is not allowed to
1043 * probe.
1044 */
1045 mutex_lock(&fwnode_link_lock);
1046 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1047 if (sup_fw) {
1048 if (!dev_is_best_effort(dev)) {
1049 fwnode_ret = -EPROBE_DEFER;
1050 dev_err_probe(dev, -EPROBE_DEFER,
1051 "wait for supplier %pfwf\n", sup_fw);
1052 } else {
1053 fwnode_ret = -EAGAIN;
1054 }
1055 }
1056 mutex_unlock(&fwnode_link_lock);
1057 if (fwnode_ret == -EPROBE_DEFER)
1058 return fwnode_ret;
1059
1060 device_links_write_lock();
1061
1062 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1063 if (!(link->flags & DL_FLAG_MANAGED))
1064 continue;
1065
1066 if (link->status != DL_STATE_AVAILABLE &&
1067 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1068
1069 if (dev_is_best_effort(dev) &&
1070 link->flags & DL_FLAG_INFERRED &&
1071 !link->supplier->can_match) {
1072 ret = -EAGAIN;
1073 continue;
1074 }
1075
1076 device_links_missing_supplier(dev);
1077 dev_err_probe(dev, -EPROBE_DEFER,
1078 "supplier %s not ready\n",
1079 dev_name(link->supplier));
1080 ret = -EPROBE_DEFER;
1081 break;
1082 }
1083 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1084 }
1085 dev->links.status = DL_DEV_PROBING;
1086
1087 device_links_write_unlock();
1088
1089 return ret ? ret : fwnode_ret;
1090 }
1091
1092 /**
1093 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1094 * @dev: Device to call sync_state() on
1095 * @list: List head to queue the @dev on
1096 *
1097 * Queues a device for a sync_state() callback when the device links write lock
1098 * isn't held. This allows the sync_state() execution flow to use device links
1099 * APIs. The caller must ensure this function is called with
1100 * device_links_write_lock() held.
1101 *
1102 * This function does a get_device() to make sure the device is not freed while
1103 * on this list.
1104 *
1105 * So the caller must also ensure that device_links_flush_sync_list() is called
1106 * as soon as the caller releases device_links_write_lock(). This is necessary
1107 * to make sure the sync_state() is called in a timely fashion and the
1108 * put_device() is called on this device.
1109 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1110 static void __device_links_queue_sync_state(struct device *dev,
1111 struct list_head *list)
1112 {
1113 struct device_link *link;
1114
1115 if (!dev_has_sync_state(dev))
1116 return;
1117 if (dev->state_synced)
1118 return;
1119
1120 list_for_each_entry(link, &dev->links.consumers, s_node) {
1121 if (!(link->flags & DL_FLAG_MANAGED))
1122 continue;
1123 if (link->status != DL_STATE_ACTIVE)
1124 return;
1125 }
1126
1127 /*
1128 * Set the flag here to avoid adding the same device to a list more
1129 * than once. This can happen if new consumers get added to the device
1130 * and probed before the list is flushed.
1131 */
1132 dev->state_synced = true;
1133
1134 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1135 return;
1136
1137 get_device(dev);
1138 list_add_tail(&dev->links.defer_sync, list);
1139 }
1140
1141 /**
1142 * device_links_flush_sync_list - Call sync_state() on a list of devices
1143 * @list: List of devices to call sync_state() on
1144 * @dont_lock_dev: Device for which lock is already held by the caller
1145 *
1146 * Calls sync_state() on all the devices that have been queued for it. This
1147 * function is used in conjunction with __device_links_queue_sync_state(). The
1148 * @dont_lock_dev parameter is useful when this function is called from a
1149 * context where a device lock is already held.
1150 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1151 static void device_links_flush_sync_list(struct list_head *list,
1152 struct device *dont_lock_dev)
1153 {
1154 struct device *dev, *tmp;
1155
1156 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1157 list_del_init(&dev->links.defer_sync);
1158
1159 if (dev != dont_lock_dev)
1160 device_lock(dev);
1161
1162 dev_sync_state(dev);
1163
1164 if (dev != dont_lock_dev)
1165 device_unlock(dev);
1166
1167 put_device(dev);
1168 }
1169 }
1170
device_links_supplier_sync_state_pause(void)1171 void device_links_supplier_sync_state_pause(void)
1172 {
1173 device_links_write_lock();
1174 defer_sync_state_count++;
1175 device_links_write_unlock();
1176 }
1177
device_links_supplier_sync_state_resume(void)1178 void device_links_supplier_sync_state_resume(void)
1179 {
1180 struct device *dev, *tmp;
1181 LIST_HEAD(sync_list);
1182
1183 device_links_write_lock();
1184 if (!defer_sync_state_count) {
1185 WARN(true, "Unmatched sync_state pause/resume!");
1186 goto out;
1187 }
1188 defer_sync_state_count--;
1189 if (defer_sync_state_count)
1190 goto out;
1191
1192 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1193 /*
1194 * Delete from deferred_sync list before queuing it to
1195 * sync_list because defer_sync is used for both lists.
1196 */
1197 list_del_init(&dev->links.defer_sync);
1198 __device_links_queue_sync_state(dev, &sync_list);
1199 }
1200 out:
1201 device_links_write_unlock();
1202
1203 device_links_flush_sync_list(&sync_list, NULL);
1204 }
1205
sync_state_resume_initcall(void)1206 static int sync_state_resume_initcall(void)
1207 {
1208 device_links_supplier_sync_state_resume();
1209 return 0;
1210 }
1211 late_initcall(sync_state_resume_initcall);
1212
__device_links_supplier_defer_sync(struct device * sup)1213 static void __device_links_supplier_defer_sync(struct device *sup)
1214 {
1215 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1216 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1217 }
1218
device_link_drop_managed(struct device_link * link)1219 static void device_link_drop_managed(struct device_link *link)
1220 {
1221 link->flags &= ~DL_FLAG_MANAGED;
1222 WRITE_ONCE(link->status, DL_STATE_NONE);
1223 kref_put(&link->kref, __device_link_del);
1224 }
1225
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1226 static ssize_t waiting_for_supplier_show(struct device *dev,
1227 struct device_attribute *attr,
1228 char *buf)
1229 {
1230 bool val;
1231
1232 device_lock(dev);
1233 mutex_lock(&fwnode_link_lock);
1234 val = !!fwnode_links_check_suppliers(dev->fwnode);
1235 mutex_unlock(&fwnode_link_lock);
1236 device_unlock(dev);
1237 return sysfs_emit(buf, "%u\n", val);
1238 }
1239 static DEVICE_ATTR_RO(waiting_for_supplier);
1240
1241 /**
1242 * device_links_force_bind - Prepares device to be force bound
1243 * @dev: Consumer device.
1244 *
1245 * device_bind_driver() force binds a device to a driver without calling any
1246 * driver probe functions. So the consumer really isn't going to wait for any
1247 * supplier before it's bound to the driver. We still want the device link
1248 * states to be sensible when this happens.
1249 *
1250 * In preparation for device_bind_driver(), this function goes through each
1251 * supplier device links and checks if the supplier is bound. If it is, then
1252 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1253 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1254 */
device_links_force_bind(struct device * dev)1255 void device_links_force_bind(struct device *dev)
1256 {
1257 struct device_link *link, *ln;
1258
1259 device_links_write_lock();
1260
1261 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1262 if (!(link->flags & DL_FLAG_MANAGED))
1263 continue;
1264
1265 if (link->status != DL_STATE_AVAILABLE) {
1266 device_link_drop_managed(link);
1267 continue;
1268 }
1269 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1270 }
1271 dev->links.status = DL_DEV_PROBING;
1272
1273 device_links_write_unlock();
1274 }
1275
1276 /**
1277 * device_links_driver_bound - Update device links after probing its driver.
1278 * @dev: Device to update the links for.
1279 *
1280 * The probe has been successful, so update links from this device to any
1281 * consumers by changing their status to "available".
1282 *
1283 * Also change the status of @dev's links to suppliers to "active".
1284 *
1285 * Links without the DL_FLAG_MANAGED flag set are ignored.
1286 */
device_links_driver_bound(struct device * dev)1287 void device_links_driver_bound(struct device *dev)
1288 {
1289 struct device_link *link, *ln;
1290 LIST_HEAD(sync_list);
1291
1292 /*
1293 * If a device binds successfully, it's expected to have created all
1294 * the device links it needs to or make new device links as it needs
1295 * them. So, fw_devlink no longer needs to create device links to any
1296 * of the device's suppliers.
1297 *
1298 * Also, if a child firmware node of this bound device is not added as a
1299 * device by now, assume it is never going to be added. Make this bound
1300 * device the fallback supplier to the dangling consumers of the child
1301 * firmware node because this bound device is probably implementing the
1302 * child firmware node functionality and we don't want the dangling
1303 * consumers to defer probe indefinitely waiting for a device for the
1304 * child firmware node.
1305 */
1306 if (dev->fwnode && dev->fwnode->dev == dev) {
1307 struct fwnode_handle *child;
1308 fwnode_links_purge_suppliers(dev->fwnode);
1309 mutex_lock(&fwnode_link_lock);
1310 fwnode_for_each_available_child_node(dev->fwnode, child)
1311 __fw_devlink_pickup_dangling_consumers(child,
1312 dev->fwnode);
1313 __fw_devlink_link_to_consumers(dev);
1314 mutex_unlock(&fwnode_link_lock);
1315 }
1316 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1317
1318 device_links_write_lock();
1319
1320 list_for_each_entry(link, &dev->links.consumers, s_node) {
1321 if (!(link->flags & DL_FLAG_MANAGED))
1322 continue;
1323
1324 /*
1325 * Links created during consumer probe may be in the "consumer
1326 * probe" state to start with if the supplier is still probing
1327 * when they are created and they may become "active" if the
1328 * consumer probe returns first. Skip them here.
1329 */
1330 if (link->status == DL_STATE_CONSUMER_PROBE ||
1331 link->status == DL_STATE_ACTIVE)
1332 continue;
1333
1334 WARN_ON(link->status != DL_STATE_DORMANT);
1335 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1336
1337 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1338 driver_deferred_probe_add(link->consumer);
1339 }
1340
1341 if (defer_sync_state_count)
1342 __device_links_supplier_defer_sync(dev);
1343 else
1344 __device_links_queue_sync_state(dev, &sync_list);
1345
1346 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1347 struct device *supplier;
1348
1349 if (!(link->flags & DL_FLAG_MANAGED))
1350 continue;
1351
1352 supplier = link->supplier;
1353 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1354 /*
1355 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1356 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1357 * save to drop the managed link completely.
1358 */
1359 device_link_drop_managed(link);
1360 } else if (dev_is_best_effort(dev) &&
1361 link->flags & DL_FLAG_INFERRED &&
1362 link->status != DL_STATE_CONSUMER_PROBE &&
1363 !link->supplier->can_match) {
1364 /*
1365 * When dev_is_best_effort() is true, we ignore device
1366 * links to suppliers that don't have a driver. If the
1367 * consumer device still managed to probe, there's no
1368 * point in maintaining a device link in a weird state
1369 * (consumer probed before supplier). So delete it.
1370 */
1371 device_link_drop_managed(link);
1372 } else {
1373 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1374 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1375 }
1376
1377 /*
1378 * This needs to be done even for the deleted
1379 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1380 * device link that was preventing the supplier from getting a
1381 * sync_state() call.
1382 */
1383 if (defer_sync_state_count)
1384 __device_links_supplier_defer_sync(supplier);
1385 else
1386 __device_links_queue_sync_state(supplier, &sync_list);
1387 }
1388
1389 dev->links.status = DL_DEV_DRIVER_BOUND;
1390
1391 device_links_write_unlock();
1392
1393 device_links_flush_sync_list(&sync_list, dev);
1394 }
1395
1396 /**
1397 * __device_links_no_driver - Update links of a device without a driver.
1398 * @dev: Device without a drvier.
1399 *
1400 * Delete all non-persistent links from this device to any suppliers.
1401 *
1402 * Persistent links stay around, but their status is changed to "available",
1403 * unless they already are in the "supplier unbind in progress" state in which
1404 * case they need not be updated.
1405 *
1406 * Links without the DL_FLAG_MANAGED flag set are ignored.
1407 */
__device_links_no_driver(struct device * dev)1408 static void __device_links_no_driver(struct device *dev)
1409 {
1410 struct device_link *link, *ln;
1411
1412 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1413 if (!(link->flags & DL_FLAG_MANAGED))
1414 continue;
1415
1416 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1417 device_link_drop_managed(link);
1418 continue;
1419 }
1420
1421 if (link->status != DL_STATE_CONSUMER_PROBE &&
1422 link->status != DL_STATE_ACTIVE)
1423 continue;
1424
1425 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1426 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1427 } else {
1428 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1429 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1430 }
1431 }
1432
1433 dev->links.status = DL_DEV_NO_DRIVER;
1434 }
1435
1436 /**
1437 * device_links_no_driver - Update links after failing driver probe.
1438 * @dev: Device whose driver has just failed to probe.
1439 *
1440 * Clean up leftover links to consumers for @dev and invoke
1441 * %__device_links_no_driver() to update links to suppliers for it as
1442 * appropriate.
1443 *
1444 * Links without the DL_FLAG_MANAGED flag set are ignored.
1445 */
device_links_no_driver(struct device * dev)1446 void device_links_no_driver(struct device *dev)
1447 {
1448 struct device_link *link;
1449
1450 device_links_write_lock();
1451
1452 list_for_each_entry(link, &dev->links.consumers, s_node) {
1453 if (!(link->flags & DL_FLAG_MANAGED))
1454 continue;
1455
1456 /*
1457 * The probe has failed, so if the status of the link is
1458 * "consumer probe" or "active", it must have been added by
1459 * a probing consumer while this device was still probing.
1460 * Change its state to "dormant", as it represents a valid
1461 * relationship, but it is not functionally meaningful.
1462 */
1463 if (link->status == DL_STATE_CONSUMER_PROBE ||
1464 link->status == DL_STATE_ACTIVE)
1465 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1466 }
1467
1468 __device_links_no_driver(dev);
1469
1470 device_links_write_unlock();
1471 }
1472
1473 /**
1474 * device_links_driver_cleanup - Update links after driver removal.
1475 * @dev: Device whose driver has just gone away.
1476 *
1477 * Update links to consumers for @dev by changing their status to "dormant" and
1478 * invoke %__device_links_no_driver() to update links to suppliers for it as
1479 * appropriate.
1480 *
1481 * Links without the DL_FLAG_MANAGED flag set are ignored.
1482 */
device_links_driver_cleanup(struct device * dev)1483 void device_links_driver_cleanup(struct device *dev)
1484 {
1485 struct device_link *link, *ln;
1486
1487 device_links_write_lock();
1488
1489 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1490 if (!(link->flags & DL_FLAG_MANAGED))
1491 continue;
1492
1493 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1494 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1495
1496 /*
1497 * autoremove the links between this @dev and its consumer
1498 * devices that are not active, i.e. where the link state
1499 * has moved to DL_STATE_SUPPLIER_UNBIND.
1500 */
1501 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1502 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1503 device_link_drop_managed(link);
1504
1505 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1506 }
1507
1508 list_del_init(&dev->links.defer_sync);
1509 __device_links_no_driver(dev);
1510
1511 device_links_write_unlock();
1512 }
1513
1514 /**
1515 * device_links_busy - Check if there are any busy links to consumers.
1516 * @dev: Device to check.
1517 *
1518 * Check each consumer of the device and return 'true' if its link's status
1519 * is one of "consumer probe" or "active" (meaning that the given consumer is
1520 * probing right now or its driver is present). Otherwise, change the link
1521 * state to "supplier unbind" to prevent the consumer from being probed
1522 * successfully going forward.
1523 *
1524 * Return 'false' if there are no probing or active consumers.
1525 *
1526 * Links without the DL_FLAG_MANAGED flag set are ignored.
1527 */
device_links_busy(struct device * dev)1528 bool device_links_busy(struct device *dev)
1529 {
1530 struct device_link *link;
1531 bool ret = false;
1532
1533 device_links_write_lock();
1534
1535 list_for_each_entry(link, &dev->links.consumers, s_node) {
1536 if (!(link->flags & DL_FLAG_MANAGED))
1537 continue;
1538
1539 if (link->status == DL_STATE_CONSUMER_PROBE
1540 || link->status == DL_STATE_ACTIVE) {
1541 ret = true;
1542 break;
1543 }
1544 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1545 }
1546
1547 dev->links.status = DL_DEV_UNBINDING;
1548
1549 device_links_write_unlock();
1550 return ret;
1551 }
1552
1553 /**
1554 * device_links_unbind_consumers - Force unbind consumers of the given device.
1555 * @dev: Device to unbind the consumers of.
1556 *
1557 * Walk the list of links to consumers for @dev and if any of them is in the
1558 * "consumer probe" state, wait for all device probes in progress to complete
1559 * and start over.
1560 *
1561 * If that's not the case, change the status of the link to "supplier unbind"
1562 * and check if the link was in the "active" state. If so, force the consumer
1563 * driver to unbind and start over (the consumer will not re-probe as we have
1564 * changed the state of the link already).
1565 *
1566 * Links without the DL_FLAG_MANAGED flag set are ignored.
1567 */
device_links_unbind_consumers(struct device * dev)1568 void device_links_unbind_consumers(struct device *dev)
1569 {
1570 struct device_link *link;
1571
1572 start:
1573 device_links_write_lock();
1574
1575 list_for_each_entry(link, &dev->links.consumers, s_node) {
1576 enum device_link_state status;
1577
1578 if (!(link->flags & DL_FLAG_MANAGED) ||
1579 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1580 continue;
1581
1582 status = link->status;
1583 if (status == DL_STATE_CONSUMER_PROBE) {
1584 device_links_write_unlock();
1585
1586 wait_for_device_probe();
1587 goto start;
1588 }
1589 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1590 if (status == DL_STATE_ACTIVE) {
1591 struct device *consumer = link->consumer;
1592
1593 get_device(consumer);
1594
1595 device_links_write_unlock();
1596
1597 device_release_driver_internal(consumer, NULL,
1598 consumer->parent);
1599 put_device(consumer);
1600 goto start;
1601 }
1602 }
1603
1604 device_links_write_unlock();
1605 }
1606
1607 /**
1608 * device_links_purge - Delete existing links to other devices.
1609 * @dev: Target device.
1610 */
device_links_purge(struct device * dev)1611 static void device_links_purge(struct device *dev)
1612 {
1613 struct device_link *link, *ln;
1614
1615 if (dev->class == &devlink_class)
1616 return;
1617
1618 /*
1619 * Delete all of the remaining links from this device to any other
1620 * devices (either consumers or suppliers).
1621 */
1622 device_links_write_lock();
1623
1624 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1625 WARN_ON(link->status == DL_STATE_ACTIVE);
1626 __device_link_del(&link->kref);
1627 }
1628
1629 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1630 WARN_ON(link->status != DL_STATE_DORMANT &&
1631 link->status != DL_STATE_NONE);
1632 __device_link_del(&link->kref);
1633 }
1634
1635 device_links_write_unlock();
1636 }
1637
1638 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1639 DL_FLAG_SYNC_STATE_ONLY)
1640 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1641 DL_FLAG_AUTOPROBE_CONSUMER)
1642 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1643 DL_FLAG_PM_RUNTIME)
1644
1645 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
fw_devlink_setup(char * arg)1646 static int __init fw_devlink_setup(char *arg)
1647 {
1648 if (!arg)
1649 return -EINVAL;
1650
1651 if (strcmp(arg, "off") == 0) {
1652 fw_devlink_flags = 0;
1653 } else if (strcmp(arg, "permissive") == 0) {
1654 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1655 } else if (strcmp(arg, "on") == 0) {
1656 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1657 } else if (strcmp(arg, "rpm") == 0) {
1658 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1659 }
1660 return 0;
1661 }
1662 early_param("fw_devlink", fw_devlink_setup);
1663
1664 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1665 static int __init fw_devlink_strict_setup(char *arg)
1666 {
1667 return kstrtobool(arg, &fw_devlink_strict);
1668 }
1669 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1670
1671 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1672 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1673
1674 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1675 static int fw_devlink_sync_state;
1676 #else
1677 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1678 #endif
1679
fw_devlink_sync_state_setup(char * arg)1680 static int __init fw_devlink_sync_state_setup(char *arg)
1681 {
1682 if (!arg)
1683 return -EINVAL;
1684
1685 if (strcmp(arg, "strict") == 0) {
1686 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1687 return 0;
1688 } else if (strcmp(arg, "timeout") == 0) {
1689 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1690 return 0;
1691 }
1692 return -EINVAL;
1693 }
1694 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1695
fw_devlink_get_flags(u8 fwlink_flags)1696 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1697 {
1698 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1699 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1700
1701 return fw_devlink_flags;
1702 }
1703
fw_devlink_is_permissive(void)1704 static bool fw_devlink_is_permissive(void)
1705 {
1706 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1707 }
1708
fw_devlink_is_strict(void)1709 bool fw_devlink_is_strict(void)
1710 {
1711 return fw_devlink_strict && !fw_devlink_is_permissive();
1712 }
1713
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1714 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1715 {
1716 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1717 return;
1718
1719 fwnode_call_int_op(fwnode, add_links);
1720 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1721 }
1722
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1723 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1724 {
1725 struct fwnode_handle *child = NULL;
1726
1727 fw_devlink_parse_fwnode(fwnode);
1728
1729 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1730 fw_devlink_parse_fwtree(child);
1731 }
1732
fw_devlink_relax_link(struct device_link * link)1733 static void fw_devlink_relax_link(struct device_link *link)
1734 {
1735 if (!(link->flags & DL_FLAG_INFERRED))
1736 return;
1737
1738 if (device_link_flag_is_sync_state_only(link->flags))
1739 return;
1740
1741 pm_runtime_drop_link(link);
1742 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1743 dev_dbg(link->consumer, "Relaxing link with %s\n",
1744 dev_name(link->supplier));
1745 }
1746
fw_devlink_no_driver(struct device * dev,void * data)1747 static int fw_devlink_no_driver(struct device *dev, void *data)
1748 {
1749 struct device_link *link = to_devlink(dev);
1750
1751 if (!link->supplier->can_match)
1752 fw_devlink_relax_link(link);
1753
1754 return 0;
1755 }
1756
fw_devlink_drivers_done(void)1757 void fw_devlink_drivers_done(void)
1758 {
1759 fw_devlink_drv_reg_done = true;
1760 device_links_write_lock();
1761 class_for_each_device(&devlink_class, NULL, NULL,
1762 fw_devlink_no_driver);
1763 device_links_write_unlock();
1764 }
1765
fw_devlink_dev_sync_state(struct device * dev,void * data)1766 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1767 {
1768 struct device_link *link = to_devlink(dev);
1769 struct device *sup = link->supplier;
1770
1771 if (!(link->flags & DL_FLAG_MANAGED) ||
1772 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1773 !dev_has_sync_state(sup))
1774 return 0;
1775
1776 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1777 dev_warn(sup, "sync_state() pending due to %s\n",
1778 dev_name(link->consumer));
1779 return 0;
1780 }
1781
1782 if (!list_empty(&sup->links.defer_sync))
1783 return 0;
1784
1785 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1786 sup->state_synced = true;
1787 get_device(sup);
1788 list_add_tail(&sup->links.defer_sync, data);
1789
1790 return 0;
1791 }
1792
fw_devlink_probing_done(void)1793 void fw_devlink_probing_done(void)
1794 {
1795 LIST_HEAD(sync_list);
1796
1797 device_links_write_lock();
1798 class_for_each_device(&devlink_class, NULL, &sync_list,
1799 fw_devlink_dev_sync_state);
1800 device_links_write_unlock();
1801 device_links_flush_sync_list(&sync_list, NULL);
1802 }
1803
1804 /**
1805 * wait_for_init_devices_probe - Try to probe any device needed for init
1806 *
1807 * Some devices might need to be probed and bound successfully before the kernel
1808 * boot sequence can finish and move on to init/userspace. For example, a
1809 * network interface might need to be bound to be able to mount a NFS rootfs.
1810 *
1811 * With fw_devlink=on by default, some of these devices might be blocked from
1812 * probing because they are waiting on a optional supplier that doesn't have a
1813 * driver. While fw_devlink will eventually identify such devices and unblock
1814 * the probing automatically, it might be too late by the time it unblocks the
1815 * probing of devices. For example, the IP4 autoconfig might timeout before
1816 * fw_devlink unblocks probing of the network interface.
1817 *
1818 * This function is available to temporarily try and probe all devices that have
1819 * a driver even if some of their suppliers haven't been added or don't have
1820 * drivers.
1821 *
1822 * The drivers can then decide which of the suppliers are optional vs mandatory
1823 * and probe the device if possible. By the time this function returns, all such
1824 * "best effort" probes are guaranteed to be completed. If a device successfully
1825 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1826 * device where the supplier hasn't yet probed successfully because they have to
1827 * be optional dependencies.
1828 *
1829 * Any devices that didn't successfully probe go back to being treated as if
1830 * this function was never called.
1831 *
1832 * This also means that some devices that aren't needed for init and could have
1833 * waited for their optional supplier to probe (when the supplier's module is
1834 * loaded later on) would end up probing prematurely with limited functionality.
1835 * So call this function only when boot would fail without it.
1836 */
wait_for_init_devices_probe(void)1837 void __init wait_for_init_devices_probe(void)
1838 {
1839 if (!fw_devlink_flags || fw_devlink_is_permissive())
1840 return;
1841
1842 /*
1843 * Wait for all ongoing probes to finish so that the "best effort" is
1844 * only applied to devices that can't probe otherwise.
1845 */
1846 wait_for_device_probe();
1847
1848 pr_info("Trying to probe devices needed for running init ...\n");
1849 fw_devlink_best_effort = true;
1850 driver_deferred_probe_trigger();
1851
1852 /*
1853 * Wait for all "best effort" probes to finish before going back to
1854 * normal enforcement.
1855 */
1856 wait_for_device_probe();
1857 fw_devlink_best_effort = false;
1858 }
1859
fw_devlink_unblock_consumers(struct device * dev)1860 static void fw_devlink_unblock_consumers(struct device *dev)
1861 {
1862 struct device_link *link;
1863
1864 if (!fw_devlink_flags || fw_devlink_is_permissive())
1865 return;
1866
1867 device_links_write_lock();
1868 list_for_each_entry(link, &dev->links.consumers, s_node)
1869 fw_devlink_relax_link(link);
1870 device_links_write_unlock();
1871 }
1872
1873
fwnode_init_without_drv(struct fwnode_handle * fwnode)1874 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1875 {
1876 struct device *dev;
1877 bool ret;
1878
1879 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1880 return false;
1881
1882 dev = get_dev_from_fwnode(fwnode);
1883 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1884 put_device(dev);
1885
1886 return ret;
1887 }
1888
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1889 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1890 {
1891 struct fwnode_handle *parent;
1892
1893 fwnode_for_each_parent_node(fwnode, parent) {
1894 if (fwnode_init_without_drv(parent)) {
1895 fwnode_handle_put(parent);
1896 return true;
1897 }
1898 }
1899
1900 return false;
1901 }
1902
1903 /**
1904 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1905 * @con: Potential consumer device.
1906 * @sup_handle: Potential supplier's fwnode.
1907 *
1908 * Needs to be called with fwnode_lock and device link lock held.
1909 *
1910 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1911 * depend on @con. This function can detect multiple cyles between @sup_handle
1912 * and @con. When such dependency cycles are found, convert all device links
1913 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1914 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1915 * converted into a device link in the future, they are created as
1916 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1917 * fw_devlink=permissive just between the devices in the cycle. We need to do
1918 * this because, at this point, fw_devlink can't tell which of these
1919 * dependencies is not a real dependency.
1920 *
1921 * Return true if one or more cycles were found. Otherwise, return false.
1922 */
__fw_devlink_relax_cycles(struct device * con,struct fwnode_handle * sup_handle)1923 static bool __fw_devlink_relax_cycles(struct device *con,
1924 struct fwnode_handle *sup_handle)
1925 {
1926 struct device *sup_dev = NULL, *par_dev = NULL;
1927 struct fwnode_link *link;
1928 struct device_link *dev_link;
1929 bool ret = false;
1930
1931 if (!sup_handle)
1932 return false;
1933
1934 /*
1935 * We aren't trying to find all cycles. Just a cycle between con and
1936 * sup_handle.
1937 */
1938 if (sup_handle->flags & FWNODE_FLAG_VISITED)
1939 return false;
1940
1941 sup_handle->flags |= FWNODE_FLAG_VISITED;
1942
1943 sup_dev = get_dev_from_fwnode(sup_handle);
1944
1945 /* Termination condition. */
1946 if (sup_dev == con) {
1947 ret = true;
1948 goto out;
1949 }
1950
1951 /*
1952 * If sup_dev is bound to a driver and @con hasn't started binding to a
1953 * driver, sup_dev can't be a consumer of @con. So, no need to check
1954 * further.
1955 */
1956 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
1957 con->links.status == DL_DEV_NO_DRIVER) {
1958 ret = false;
1959 goto out;
1960 }
1961
1962 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1963 if (__fw_devlink_relax_cycles(con, link->supplier)) {
1964 __fwnode_link_cycle(link);
1965 ret = true;
1966 }
1967 }
1968
1969 /*
1970 * Give priority to device parent over fwnode parent to account for any
1971 * quirks in how fwnodes are converted to devices.
1972 */
1973 if (sup_dev)
1974 par_dev = get_device(sup_dev->parent);
1975 else
1976 par_dev = fwnode_get_next_parent_dev(sup_handle);
1977
1978 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode))
1979 ret = true;
1980
1981 if (!sup_dev)
1982 goto out;
1983
1984 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1985 /*
1986 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1987 * such due to a cycle.
1988 */
1989 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1990 !(dev_link->flags & DL_FLAG_CYCLE))
1991 continue;
1992
1993 if (__fw_devlink_relax_cycles(con,
1994 dev_link->supplier->fwnode)) {
1995 fw_devlink_relax_link(dev_link);
1996 dev_link->flags |= DL_FLAG_CYCLE;
1997 ret = true;
1998 }
1999 }
2000
2001 out:
2002 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2003 put_device(sup_dev);
2004 put_device(par_dev);
2005 return ret;
2006 }
2007
2008 /**
2009 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2010 * @con: consumer device for the device link
2011 * @sup_handle: fwnode handle of supplier
2012 * @link: fwnode link that's being converted to a device link
2013 *
2014 * This function will try to create a device link between the consumer device
2015 * @con and the supplier device represented by @sup_handle.
2016 *
2017 * The supplier has to be provided as a fwnode because incorrect cycles in
2018 * fwnode links can sometimes cause the supplier device to never be created.
2019 * This function detects such cases and returns an error if it cannot create a
2020 * device link from the consumer to a missing supplier.
2021 *
2022 * Returns,
2023 * 0 on successfully creating a device link
2024 * -EINVAL if the device link cannot be created as expected
2025 * -EAGAIN if the device link cannot be created right now, but it may be
2026 * possible to do that in the future
2027 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2028 static int fw_devlink_create_devlink(struct device *con,
2029 struct fwnode_handle *sup_handle,
2030 struct fwnode_link *link)
2031 {
2032 struct device *sup_dev;
2033 int ret = 0;
2034 u32 flags;
2035
2036 if (con->fwnode == link->consumer)
2037 flags = fw_devlink_get_flags(link->flags);
2038 else
2039 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2040
2041 /*
2042 * In some cases, a device P might also be a supplier to its child node
2043 * C. However, this would defer the probe of C until the probe of P
2044 * completes successfully. This is perfectly fine in the device driver
2045 * model. device_add() doesn't guarantee probe completion of the device
2046 * by the time it returns.
2047 *
2048 * However, there are a few drivers that assume C will finish probing
2049 * as soon as it's added and before P finishes probing. So, we provide
2050 * a flag to let fw_devlink know not to delay the probe of C until the
2051 * probe of P completes successfully.
2052 *
2053 * When such a flag is set, we can't create device links where P is the
2054 * supplier of C as that would delay the probe of C.
2055 */
2056 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2057 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2058 return -EINVAL;
2059
2060 /*
2061 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2062 * So, one might expect that cycle detection isn't necessary for them.
2063 * However, if the device link was marked as SYNC_STATE_ONLY because
2064 * it's part of a cycle, then we still need to do cycle detection. This
2065 * is because the consumer and supplier might be part of multiple cycles
2066 * and we need to detect all those cycles.
2067 */
2068 if (!device_link_flag_is_sync_state_only(flags) ||
2069 flags & DL_FLAG_CYCLE) {
2070 device_links_write_lock();
2071 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2072 __fwnode_link_cycle(link);
2073 flags = fw_devlink_get_flags(link->flags);
2074 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2075 sup_handle);
2076 }
2077 device_links_write_unlock();
2078 }
2079
2080 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2081 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2082 else
2083 sup_dev = get_dev_from_fwnode(sup_handle);
2084
2085 if (sup_dev) {
2086 /*
2087 * If it's one of those drivers that don't actually bind to
2088 * their device using driver core, then don't wait on this
2089 * supplier device indefinitely.
2090 */
2091 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2092 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2093 dev_dbg(con,
2094 "Not linking %pfwf - dev might never probe\n",
2095 sup_handle);
2096 ret = -EINVAL;
2097 goto out;
2098 }
2099
2100 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2101 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2102 flags, dev_name(sup_dev));
2103 ret = -EINVAL;
2104 }
2105
2106 goto out;
2107 }
2108
2109 /*
2110 * Supplier or supplier's ancestor already initialized without a struct
2111 * device or being probed by a driver.
2112 */
2113 if (fwnode_init_without_drv(sup_handle) ||
2114 fwnode_ancestor_init_without_drv(sup_handle)) {
2115 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2116 sup_handle);
2117 return -EINVAL;
2118 }
2119
2120 ret = -EAGAIN;
2121 out:
2122 put_device(sup_dev);
2123 return ret;
2124 }
2125
2126 /**
2127 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2128 * @dev: Device that needs to be linked to its consumers
2129 *
2130 * This function looks at all the consumer fwnodes of @dev and creates device
2131 * links between the consumer device and @dev (supplier).
2132 *
2133 * If the consumer device has not been added yet, then this function creates a
2134 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2135 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2136 * sync_state() callback before the real consumer device gets to be added and
2137 * then probed.
2138 *
2139 * Once device links are created from the real consumer to @dev (supplier), the
2140 * fwnode links are deleted.
2141 */
__fw_devlink_link_to_consumers(struct device * dev)2142 static void __fw_devlink_link_to_consumers(struct device *dev)
2143 {
2144 struct fwnode_handle *fwnode = dev->fwnode;
2145 struct fwnode_link *link, *tmp;
2146
2147 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2148 struct device *con_dev;
2149 bool own_link = true;
2150 int ret;
2151
2152 con_dev = get_dev_from_fwnode(link->consumer);
2153 /*
2154 * If consumer device is not available yet, make a "proxy"
2155 * SYNC_STATE_ONLY link from the consumer's parent device to
2156 * the supplier device. This is necessary to make sure the
2157 * supplier doesn't get a sync_state() callback before the real
2158 * consumer can create a device link to the supplier.
2159 *
2160 * This proxy link step is needed to handle the case where the
2161 * consumer's parent device is added before the supplier.
2162 */
2163 if (!con_dev) {
2164 con_dev = fwnode_get_next_parent_dev(link->consumer);
2165 /*
2166 * However, if the consumer's parent device is also the
2167 * parent of the supplier, don't create a
2168 * consumer-supplier link from the parent to its child
2169 * device. Such a dependency is impossible.
2170 */
2171 if (con_dev &&
2172 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2173 put_device(con_dev);
2174 con_dev = NULL;
2175 } else {
2176 own_link = false;
2177 }
2178 }
2179
2180 if (!con_dev)
2181 continue;
2182
2183 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2184 put_device(con_dev);
2185 if (!own_link || ret == -EAGAIN)
2186 continue;
2187
2188 __fwnode_link_del(link);
2189 }
2190 }
2191
2192 /**
2193 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2194 * @dev: The consumer device that needs to be linked to its suppliers
2195 * @fwnode: Root of the fwnode tree that is used to create device links
2196 *
2197 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2198 * @fwnode and creates device links between @dev (consumer) and all the
2199 * supplier devices of the entire fwnode tree at @fwnode.
2200 *
2201 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2202 * and the real suppliers of @dev. Once these device links are created, the
2203 * fwnode links are deleted.
2204 *
2205 * In addition, it also looks at all the suppliers of the entire fwnode tree
2206 * because some of the child devices of @dev that have not been added yet
2207 * (because @dev hasn't probed) might already have their suppliers added to
2208 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2209 * @dev (consumer) and these suppliers to make sure they don't execute their
2210 * sync_state() callbacks before these child devices have a chance to create
2211 * their device links. The fwnode links that correspond to the child devices
2212 * aren't delete because they are needed later to create the device links
2213 * between the real consumer and supplier devices.
2214 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2215 static void __fw_devlink_link_to_suppliers(struct device *dev,
2216 struct fwnode_handle *fwnode)
2217 {
2218 bool own_link = (dev->fwnode == fwnode);
2219 struct fwnode_link *link, *tmp;
2220 struct fwnode_handle *child = NULL;
2221
2222 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2223 int ret;
2224 struct fwnode_handle *sup = link->supplier;
2225
2226 ret = fw_devlink_create_devlink(dev, sup, link);
2227 if (!own_link || ret == -EAGAIN)
2228 continue;
2229
2230 __fwnode_link_del(link);
2231 }
2232
2233 /*
2234 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2235 * all the descendants. This proxy link step is needed to handle the
2236 * case where the supplier is added before the consumer's parent device
2237 * (@dev).
2238 */
2239 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2240 __fw_devlink_link_to_suppliers(dev, child);
2241 }
2242
fw_devlink_link_device(struct device * dev)2243 static void fw_devlink_link_device(struct device *dev)
2244 {
2245 struct fwnode_handle *fwnode = dev->fwnode;
2246
2247 if (!fw_devlink_flags)
2248 return;
2249
2250 fw_devlink_parse_fwtree(fwnode);
2251
2252 mutex_lock(&fwnode_link_lock);
2253 __fw_devlink_link_to_consumers(dev);
2254 __fw_devlink_link_to_suppliers(dev, fwnode);
2255 mutex_unlock(&fwnode_link_lock);
2256 }
2257
2258 /* Device links support end. */
2259
2260 int (*platform_notify)(struct device *dev) = NULL;
2261 int (*platform_notify_remove)(struct device *dev) = NULL;
2262 static struct kobject *dev_kobj;
2263
2264 /* /sys/dev/char */
2265 static struct kobject *sysfs_dev_char_kobj;
2266
2267 /* /sys/dev/block */
2268 static struct kobject *sysfs_dev_block_kobj;
2269
2270 static DEFINE_MUTEX(device_hotplug_lock);
2271
lock_device_hotplug(void)2272 void lock_device_hotplug(void)
2273 {
2274 mutex_lock(&device_hotplug_lock);
2275 }
2276
unlock_device_hotplug(void)2277 void unlock_device_hotplug(void)
2278 {
2279 mutex_unlock(&device_hotplug_lock);
2280 }
2281
lock_device_hotplug_sysfs(void)2282 int lock_device_hotplug_sysfs(void)
2283 {
2284 if (mutex_trylock(&device_hotplug_lock))
2285 return 0;
2286
2287 /* Avoid busy looping (5 ms of sleep should do). */
2288 msleep(5);
2289 return restart_syscall();
2290 }
2291
2292 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2293 static inline int device_is_not_partition(struct device *dev)
2294 {
2295 return !(dev->type == &part_type);
2296 }
2297 #else
device_is_not_partition(struct device * dev)2298 static inline int device_is_not_partition(struct device *dev)
2299 {
2300 return 1;
2301 }
2302 #endif
2303
device_platform_notify(struct device * dev)2304 static void device_platform_notify(struct device *dev)
2305 {
2306 acpi_device_notify(dev);
2307
2308 software_node_notify(dev);
2309
2310 if (platform_notify)
2311 platform_notify(dev);
2312 }
2313
device_platform_notify_remove(struct device * dev)2314 static void device_platform_notify_remove(struct device *dev)
2315 {
2316 if (platform_notify_remove)
2317 platform_notify_remove(dev);
2318
2319 software_node_notify_remove(dev);
2320
2321 acpi_device_notify_remove(dev);
2322 }
2323
2324 /**
2325 * dev_driver_string - Return a device's driver name, if at all possible
2326 * @dev: struct device to get the name of
2327 *
2328 * Will return the device's driver's name if it is bound to a device. If
2329 * the device is not bound to a driver, it will return the name of the bus
2330 * it is attached to. If it is not attached to a bus either, an empty
2331 * string will be returned.
2332 */
dev_driver_string(const struct device * dev)2333 const char *dev_driver_string(const struct device *dev)
2334 {
2335 struct device_driver *drv;
2336
2337 /* dev->driver can change to NULL underneath us because of unbinding,
2338 * so be careful about accessing it. dev->bus and dev->class should
2339 * never change once they are set, so they don't need special care.
2340 */
2341 drv = READ_ONCE(dev->driver);
2342 return drv ? drv->name : dev_bus_name(dev);
2343 }
2344 EXPORT_SYMBOL(dev_driver_string);
2345
2346 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2347
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2348 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2349 char *buf)
2350 {
2351 struct device_attribute *dev_attr = to_dev_attr(attr);
2352 struct device *dev = kobj_to_dev(kobj);
2353 ssize_t ret = -EIO;
2354
2355 if (dev_attr->show)
2356 ret = dev_attr->show(dev, dev_attr, buf);
2357 if (ret >= (ssize_t)PAGE_SIZE) {
2358 printk("dev_attr_show: %pS returned bad count\n",
2359 dev_attr->show);
2360 }
2361 return ret;
2362 }
2363
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2364 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2365 const char *buf, size_t count)
2366 {
2367 struct device_attribute *dev_attr = to_dev_attr(attr);
2368 struct device *dev = kobj_to_dev(kobj);
2369 ssize_t ret = -EIO;
2370
2371 if (dev_attr->store)
2372 ret = dev_attr->store(dev, dev_attr, buf, count);
2373 return ret;
2374 }
2375
2376 static const struct sysfs_ops dev_sysfs_ops = {
2377 .show = dev_attr_show,
2378 .store = dev_attr_store,
2379 };
2380
2381 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2382
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2383 ssize_t device_store_ulong(struct device *dev,
2384 struct device_attribute *attr,
2385 const char *buf, size_t size)
2386 {
2387 struct dev_ext_attribute *ea = to_ext_attr(attr);
2388 int ret;
2389 unsigned long new;
2390
2391 ret = kstrtoul(buf, 0, &new);
2392 if (ret)
2393 return ret;
2394 *(unsigned long *)(ea->var) = new;
2395 /* Always return full write size even if we didn't consume all */
2396 return size;
2397 }
2398 EXPORT_SYMBOL_GPL(device_store_ulong);
2399
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2400 ssize_t device_show_ulong(struct device *dev,
2401 struct device_attribute *attr,
2402 char *buf)
2403 {
2404 struct dev_ext_attribute *ea = to_ext_attr(attr);
2405 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2406 }
2407 EXPORT_SYMBOL_GPL(device_show_ulong);
2408
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2409 ssize_t device_store_int(struct device *dev,
2410 struct device_attribute *attr,
2411 const char *buf, size_t size)
2412 {
2413 struct dev_ext_attribute *ea = to_ext_attr(attr);
2414 int ret;
2415 long new;
2416
2417 ret = kstrtol(buf, 0, &new);
2418 if (ret)
2419 return ret;
2420
2421 if (new > INT_MAX || new < INT_MIN)
2422 return -EINVAL;
2423 *(int *)(ea->var) = new;
2424 /* Always return full write size even if we didn't consume all */
2425 return size;
2426 }
2427 EXPORT_SYMBOL_GPL(device_store_int);
2428
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2429 ssize_t device_show_int(struct device *dev,
2430 struct device_attribute *attr,
2431 char *buf)
2432 {
2433 struct dev_ext_attribute *ea = to_ext_attr(attr);
2434
2435 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2436 }
2437 EXPORT_SYMBOL_GPL(device_show_int);
2438
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2439 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2440 const char *buf, size_t size)
2441 {
2442 struct dev_ext_attribute *ea = to_ext_attr(attr);
2443
2444 if (kstrtobool(buf, ea->var) < 0)
2445 return -EINVAL;
2446
2447 return size;
2448 }
2449 EXPORT_SYMBOL_GPL(device_store_bool);
2450
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2451 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2452 char *buf)
2453 {
2454 struct dev_ext_attribute *ea = to_ext_attr(attr);
2455
2456 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2457 }
2458 EXPORT_SYMBOL_GPL(device_show_bool);
2459
2460 /**
2461 * device_release - free device structure.
2462 * @kobj: device's kobject.
2463 *
2464 * This is called once the reference count for the object
2465 * reaches 0. We forward the call to the device's release
2466 * method, which should handle actually freeing the structure.
2467 */
device_release(struct kobject * kobj)2468 static void device_release(struct kobject *kobj)
2469 {
2470 struct device *dev = kobj_to_dev(kobj);
2471 struct device_private *p = dev->p;
2472
2473 /*
2474 * Some platform devices are driven without driver attached
2475 * and managed resources may have been acquired. Make sure
2476 * all resources are released.
2477 *
2478 * Drivers still can add resources into device after device
2479 * is deleted but alive, so release devres here to avoid
2480 * possible memory leak.
2481 */
2482 devres_release_all(dev);
2483
2484 kfree(dev->dma_range_map);
2485
2486 if (dev->release)
2487 dev->release(dev);
2488 else if (dev->type && dev->type->release)
2489 dev->type->release(dev);
2490 else if (dev->class && dev->class->dev_release)
2491 dev->class->dev_release(dev);
2492 else
2493 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2494 dev_name(dev));
2495 kfree(p);
2496 }
2497
device_namespace(const struct kobject * kobj)2498 static const void *device_namespace(const struct kobject *kobj)
2499 {
2500 const struct device *dev = kobj_to_dev(kobj);
2501 const void *ns = NULL;
2502
2503 if (dev->class && dev->class->ns_type)
2504 ns = dev->class->namespace(dev);
2505
2506 return ns;
2507 }
2508
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2509 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2510 {
2511 const struct device *dev = kobj_to_dev(kobj);
2512
2513 if (dev->class && dev->class->get_ownership)
2514 dev->class->get_ownership(dev, uid, gid);
2515 }
2516
2517 static const struct kobj_type device_ktype = {
2518 .release = device_release,
2519 .sysfs_ops = &dev_sysfs_ops,
2520 .namespace = device_namespace,
2521 .get_ownership = device_get_ownership,
2522 };
2523
2524
dev_uevent_filter(const struct kobject * kobj)2525 static int dev_uevent_filter(const struct kobject *kobj)
2526 {
2527 const struct kobj_type *ktype = get_ktype(kobj);
2528
2529 if (ktype == &device_ktype) {
2530 const struct device *dev = kobj_to_dev(kobj);
2531 if (dev->bus)
2532 return 1;
2533 if (dev->class)
2534 return 1;
2535 }
2536 return 0;
2537 }
2538
dev_uevent_name(const struct kobject * kobj)2539 static const char *dev_uevent_name(const struct kobject *kobj)
2540 {
2541 const struct device *dev = kobj_to_dev(kobj);
2542
2543 if (dev->bus)
2544 return dev->bus->name;
2545 if (dev->class)
2546 return dev->class->name;
2547 return NULL;
2548 }
2549
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2550 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2551 {
2552 const struct device *dev = kobj_to_dev(kobj);
2553 int retval = 0;
2554
2555 /* add device node properties if present */
2556 if (MAJOR(dev->devt)) {
2557 const char *tmp;
2558 const char *name;
2559 umode_t mode = 0;
2560 kuid_t uid = GLOBAL_ROOT_UID;
2561 kgid_t gid = GLOBAL_ROOT_GID;
2562
2563 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2564 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2565 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2566 if (name) {
2567 add_uevent_var(env, "DEVNAME=%s", name);
2568 if (mode)
2569 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2570 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2571 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2572 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2573 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2574 kfree(tmp);
2575 }
2576 }
2577
2578 if (dev->type && dev->type->name)
2579 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2580
2581 if (dev->driver)
2582 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2583
2584 /* Add common DT information about the device */
2585 of_device_uevent(dev, env);
2586
2587 /* have the bus specific function add its stuff */
2588 if (dev->bus && dev->bus->uevent) {
2589 retval = dev->bus->uevent(dev, env);
2590 if (retval)
2591 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2592 dev_name(dev), __func__, retval);
2593 }
2594
2595 /* have the class specific function add its stuff */
2596 if (dev->class && dev->class->dev_uevent) {
2597 retval = dev->class->dev_uevent(dev, env);
2598 if (retval)
2599 pr_debug("device: '%s': %s: class uevent() "
2600 "returned %d\n", dev_name(dev),
2601 __func__, retval);
2602 }
2603
2604 /* have the device type specific function add its stuff */
2605 if (dev->type && dev->type->uevent) {
2606 retval = dev->type->uevent(dev, env);
2607 if (retval)
2608 pr_debug("device: '%s': %s: dev_type uevent() "
2609 "returned %d\n", dev_name(dev),
2610 __func__, retval);
2611 }
2612
2613 return retval;
2614 }
2615
2616 static const struct kset_uevent_ops device_uevent_ops = {
2617 .filter = dev_uevent_filter,
2618 .name = dev_uevent_name,
2619 .uevent = dev_uevent,
2620 };
2621
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2622 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2623 char *buf)
2624 {
2625 struct kobject *top_kobj;
2626 struct kset *kset;
2627 struct kobj_uevent_env *env = NULL;
2628 int i;
2629 int len = 0;
2630 int retval;
2631
2632 /* search the kset, the device belongs to */
2633 top_kobj = &dev->kobj;
2634 while (!top_kobj->kset && top_kobj->parent)
2635 top_kobj = top_kobj->parent;
2636 if (!top_kobj->kset)
2637 goto out;
2638
2639 kset = top_kobj->kset;
2640 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2641 goto out;
2642
2643 /* respect filter */
2644 if (kset->uevent_ops && kset->uevent_ops->filter)
2645 if (!kset->uevent_ops->filter(&dev->kobj))
2646 goto out;
2647
2648 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2649 if (!env)
2650 return -ENOMEM;
2651
2652 /* let the kset specific function add its keys */
2653 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2654 if (retval)
2655 goto out;
2656
2657 /* copy keys to file */
2658 for (i = 0; i < env->envp_idx; i++)
2659 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2660 out:
2661 kfree(env);
2662 return len;
2663 }
2664
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2665 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2666 const char *buf, size_t count)
2667 {
2668 int rc;
2669
2670 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2671
2672 if (rc) {
2673 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2674 return rc;
2675 }
2676
2677 return count;
2678 }
2679 static DEVICE_ATTR_RW(uevent);
2680
online_show(struct device * dev,struct device_attribute * attr,char * buf)2681 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2682 char *buf)
2683 {
2684 bool val;
2685
2686 device_lock(dev);
2687 val = !dev->offline;
2688 device_unlock(dev);
2689 return sysfs_emit(buf, "%u\n", val);
2690 }
2691
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2692 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2693 const char *buf, size_t count)
2694 {
2695 bool val;
2696 int ret;
2697
2698 ret = kstrtobool(buf, &val);
2699 if (ret < 0)
2700 return ret;
2701
2702 ret = lock_device_hotplug_sysfs();
2703 if (ret)
2704 return ret;
2705
2706 ret = val ? device_online(dev) : device_offline(dev);
2707 unlock_device_hotplug();
2708 return ret < 0 ? ret : count;
2709 }
2710 static DEVICE_ATTR_RW(online);
2711
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2712 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2713 char *buf)
2714 {
2715 const char *loc;
2716
2717 switch (dev->removable) {
2718 case DEVICE_REMOVABLE:
2719 loc = "removable";
2720 break;
2721 case DEVICE_FIXED:
2722 loc = "fixed";
2723 break;
2724 default:
2725 loc = "unknown";
2726 }
2727 return sysfs_emit(buf, "%s\n", loc);
2728 }
2729 static DEVICE_ATTR_RO(removable);
2730
device_add_groups(struct device * dev,const struct attribute_group ** groups)2731 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2732 {
2733 return sysfs_create_groups(&dev->kobj, groups);
2734 }
2735 EXPORT_SYMBOL_GPL(device_add_groups);
2736
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2737 void device_remove_groups(struct device *dev,
2738 const struct attribute_group **groups)
2739 {
2740 sysfs_remove_groups(&dev->kobj, groups);
2741 }
2742 EXPORT_SYMBOL_GPL(device_remove_groups);
2743
2744 union device_attr_group_devres {
2745 const struct attribute_group *group;
2746 const struct attribute_group **groups;
2747 };
2748
devm_attr_group_remove(struct device * dev,void * res)2749 static void devm_attr_group_remove(struct device *dev, void *res)
2750 {
2751 union device_attr_group_devres *devres = res;
2752 const struct attribute_group *group = devres->group;
2753
2754 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2755 sysfs_remove_group(&dev->kobj, group);
2756 }
2757
devm_attr_groups_remove(struct device * dev,void * res)2758 static void devm_attr_groups_remove(struct device *dev, void *res)
2759 {
2760 union device_attr_group_devres *devres = res;
2761 const struct attribute_group **groups = devres->groups;
2762
2763 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2764 sysfs_remove_groups(&dev->kobj, groups);
2765 }
2766
2767 /**
2768 * devm_device_add_group - given a device, create a managed attribute group
2769 * @dev: The device to create the group for
2770 * @grp: The attribute group to create
2771 *
2772 * This function creates a group for the first time. It will explicitly
2773 * warn and error if any of the attribute files being created already exist.
2774 *
2775 * Returns 0 on success or error code on failure.
2776 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2777 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2778 {
2779 union device_attr_group_devres *devres;
2780 int error;
2781
2782 devres = devres_alloc(devm_attr_group_remove,
2783 sizeof(*devres), GFP_KERNEL);
2784 if (!devres)
2785 return -ENOMEM;
2786
2787 error = sysfs_create_group(&dev->kobj, grp);
2788 if (error) {
2789 devres_free(devres);
2790 return error;
2791 }
2792
2793 devres->group = grp;
2794 devres_add(dev, devres);
2795 return 0;
2796 }
2797 EXPORT_SYMBOL_GPL(devm_device_add_group);
2798
2799 /**
2800 * devm_device_add_groups - create a bunch of managed attribute groups
2801 * @dev: The device to create the group for
2802 * @groups: The attribute groups to create, NULL terminated
2803 *
2804 * This function creates a bunch of managed attribute groups. If an error
2805 * occurs when creating a group, all previously created groups will be
2806 * removed, unwinding everything back to the original state when this
2807 * function was called. It will explicitly warn and error if any of the
2808 * attribute files being created already exist.
2809 *
2810 * Returns 0 on success or error code from sysfs_create_group on failure.
2811 */
devm_device_add_groups(struct device * dev,const struct attribute_group ** groups)2812 int devm_device_add_groups(struct device *dev,
2813 const struct attribute_group **groups)
2814 {
2815 union device_attr_group_devres *devres;
2816 int error;
2817
2818 devres = devres_alloc(devm_attr_groups_remove,
2819 sizeof(*devres), GFP_KERNEL);
2820 if (!devres)
2821 return -ENOMEM;
2822
2823 error = sysfs_create_groups(&dev->kobj, groups);
2824 if (error) {
2825 devres_free(devres);
2826 return error;
2827 }
2828
2829 devres->groups = groups;
2830 devres_add(dev, devres);
2831 return 0;
2832 }
2833 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2834
device_add_attrs(struct device * dev)2835 static int device_add_attrs(struct device *dev)
2836 {
2837 const struct class *class = dev->class;
2838 const struct device_type *type = dev->type;
2839 int error;
2840
2841 if (class) {
2842 error = device_add_groups(dev, class->dev_groups);
2843 if (error)
2844 return error;
2845 }
2846
2847 if (type) {
2848 error = device_add_groups(dev, type->groups);
2849 if (error)
2850 goto err_remove_class_groups;
2851 }
2852
2853 error = device_add_groups(dev, dev->groups);
2854 if (error)
2855 goto err_remove_type_groups;
2856
2857 if (device_supports_offline(dev) && !dev->offline_disabled) {
2858 error = device_create_file(dev, &dev_attr_online);
2859 if (error)
2860 goto err_remove_dev_groups;
2861 }
2862
2863 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2864 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2865 if (error)
2866 goto err_remove_dev_online;
2867 }
2868
2869 if (dev_removable_is_valid(dev)) {
2870 error = device_create_file(dev, &dev_attr_removable);
2871 if (error)
2872 goto err_remove_dev_waiting_for_supplier;
2873 }
2874
2875 if (dev_add_physical_location(dev)) {
2876 error = device_add_group(dev,
2877 &dev_attr_physical_location_group);
2878 if (error)
2879 goto err_remove_dev_removable;
2880 }
2881
2882 return 0;
2883
2884 err_remove_dev_removable:
2885 device_remove_file(dev, &dev_attr_removable);
2886 err_remove_dev_waiting_for_supplier:
2887 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2888 err_remove_dev_online:
2889 device_remove_file(dev, &dev_attr_online);
2890 err_remove_dev_groups:
2891 device_remove_groups(dev, dev->groups);
2892 err_remove_type_groups:
2893 if (type)
2894 device_remove_groups(dev, type->groups);
2895 err_remove_class_groups:
2896 if (class)
2897 device_remove_groups(dev, class->dev_groups);
2898
2899 return error;
2900 }
2901
device_remove_attrs(struct device * dev)2902 static void device_remove_attrs(struct device *dev)
2903 {
2904 const struct class *class = dev->class;
2905 const struct device_type *type = dev->type;
2906
2907 if (dev->physical_location) {
2908 device_remove_group(dev, &dev_attr_physical_location_group);
2909 kfree(dev->physical_location);
2910 }
2911
2912 device_remove_file(dev, &dev_attr_removable);
2913 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2914 device_remove_file(dev, &dev_attr_online);
2915 device_remove_groups(dev, dev->groups);
2916
2917 if (type)
2918 device_remove_groups(dev, type->groups);
2919
2920 if (class)
2921 device_remove_groups(dev, class->dev_groups);
2922 }
2923
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2924 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2925 char *buf)
2926 {
2927 return print_dev_t(buf, dev->devt);
2928 }
2929 static DEVICE_ATTR_RO(dev);
2930
2931 /* /sys/devices/ */
2932 struct kset *devices_kset;
2933
2934 /**
2935 * devices_kset_move_before - Move device in the devices_kset's list.
2936 * @deva: Device to move.
2937 * @devb: Device @deva should come before.
2938 */
devices_kset_move_before(struct device * deva,struct device * devb)2939 static void devices_kset_move_before(struct device *deva, struct device *devb)
2940 {
2941 if (!devices_kset)
2942 return;
2943 pr_debug("devices_kset: Moving %s before %s\n",
2944 dev_name(deva), dev_name(devb));
2945 spin_lock(&devices_kset->list_lock);
2946 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2947 spin_unlock(&devices_kset->list_lock);
2948 }
2949
2950 /**
2951 * devices_kset_move_after - Move device in the devices_kset's list.
2952 * @deva: Device to move
2953 * @devb: Device @deva should come after.
2954 */
devices_kset_move_after(struct device * deva,struct device * devb)2955 static void devices_kset_move_after(struct device *deva, struct device *devb)
2956 {
2957 if (!devices_kset)
2958 return;
2959 pr_debug("devices_kset: Moving %s after %s\n",
2960 dev_name(deva), dev_name(devb));
2961 spin_lock(&devices_kset->list_lock);
2962 list_move(&deva->kobj.entry, &devb->kobj.entry);
2963 spin_unlock(&devices_kset->list_lock);
2964 }
2965
2966 /**
2967 * devices_kset_move_last - move the device to the end of devices_kset's list.
2968 * @dev: device to move
2969 */
devices_kset_move_last(struct device * dev)2970 void devices_kset_move_last(struct device *dev)
2971 {
2972 if (!devices_kset)
2973 return;
2974 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2975 spin_lock(&devices_kset->list_lock);
2976 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2977 spin_unlock(&devices_kset->list_lock);
2978 }
2979
2980 /**
2981 * device_create_file - create sysfs attribute file for device.
2982 * @dev: device.
2983 * @attr: device attribute descriptor.
2984 */
device_create_file(struct device * dev,const struct device_attribute * attr)2985 int device_create_file(struct device *dev,
2986 const struct device_attribute *attr)
2987 {
2988 int error = 0;
2989
2990 if (dev) {
2991 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2992 "Attribute %s: write permission without 'store'\n",
2993 attr->attr.name);
2994 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2995 "Attribute %s: read permission without 'show'\n",
2996 attr->attr.name);
2997 error = sysfs_create_file(&dev->kobj, &attr->attr);
2998 }
2999
3000 return error;
3001 }
3002 EXPORT_SYMBOL_GPL(device_create_file);
3003
3004 /**
3005 * device_remove_file - remove sysfs attribute file.
3006 * @dev: device.
3007 * @attr: device attribute descriptor.
3008 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3009 void device_remove_file(struct device *dev,
3010 const struct device_attribute *attr)
3011 {
3012 if (dev)
3013 sysfs_remove_file(&dev->kobj, &attr->attr);
3014 }
3015 EXPORT_SYMBOL_GPL(device_remove_file);
3016
3017 /**
3018 * device_remove_file_self - remove sysfs attribute file from its own method.
3019 * @dev: device.
3020 * @attr: device attribute descriptor.
3021 *
3022 * See kernfs_remove_self() for details.
3023 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3024 bool device_remove_file_self(struct device *dev,
3025 const struct device_attribute *attr)
3026 {
3027 if (dev)
3028 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3029 else
3030 return false;
3031 }
3032 EXPORT_SYMBOL_GPL(device_remove_file_self);
3033
3034 /**
3035 * device_create_bin_file - create sysfs binary attribute file for device.
3036 * @dev: device.
3037 * @attr: device binary attribute descriptor.
3038 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3039 int device_create_bin_file(struct device *dev,
3040 const struct bin_attribute *attr)
3041 {
3042 int error = -EINVAL;
3043 if (dev)
3044 error = sysfs_create_bin_file(&dev->kobj, attr);
3045 return error;
3046 }
3047 EXPORT_SYMBOL_GPL(device_create_bin_file);
3048
3049 /**
3050 * device_remove_bin_file - remove sysfs binary attribute file
3051 * @dev: device.
3052 * @attr: device binary attribute descriptor.
3053 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3054 void device_remove_bin_file(struct device *dev,
3055 const struct bin_attribute *attr)
3056 {
3057 if (dev)
3058 sysfs_remove_bin_file(&dev->kobj, attr);
3059 }
3060 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3061
klist_children_get(struct klist_node * n)3062 static void klist_children_get(struct klist_node *n)
3063 {
3064 struct device_private *p = to_device_private_parent(n);
3065 struct device *dev = p->device;
3066
3067 get_device(dev);
3068 }
3069
klist_children_put(struct klist_node * n)3070 static void klist_children_put(struct klist_node *n)
3071 {
3072 struct device_private *p = to_device_private_parent(n);
3073 struct device *dev = p->device;
3074
3075 put_device(dev);
3076 }
3077
3078 /**
3079 * device_initialize - init device structure.
3080 * @dev: device.
3081 *
3082 * This prepares the device for use by other layers by initializing
3083 * its fields.
3084 * It is the first half of device_register(), if called by
3085 * that function, though it can also be called separately, so one
3086 * may use @dev's fields. In particular, get_device()/put_device()
3087 * may be used for reference counting of @dev after calling this
3088 * function.
3089 *
3090 * All fields in @dev must be initialized by the caller to 0, except
3091 * for those explicitly set to some other value. The simplest
3092 * approach is to use kzalloc() to allocate the structure containing
3093 * @dev.
3094 *
3095 * NOTE: Use put_device() to give up your reference instead of freeing
3096 * @dev directly once you have called this function.
3097 */
device_initialize(struct device * dev)3098 void device_initialize(struct device *dev)
3099 {
3100 dev->kobj.kset = devices_kset;
3101 kobject_init(&dev->kobj, &device_ktype);
3102 INIT_LIST_HEAD(&dev->dma_pools);
3103 mutex_init(&dev->mutex);
3104 lockdep_set_novalidate_class(&dev->mutex);
3105 spin_lock_init(&dev->devres_lock);
3106 INIT_LIST_HEAD(&dev->devres_head);
3107 device_pm_init(dev);
3108 set_dev_node(dev, NUMA_NO_NODE);
3109 INIT_LIST_HEAD(&dev->links.consumers);
3110 INIT_LIST_HEAD(&dev->links.suppliers);
3111 INIT_LIST_HEAD(&dev->links.defer_sync);
3112 dev->links.status = DL_DEV_NO_DRIVER;
3113 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3114 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3115 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3116 dev->dma_coherent = dma_default_coherent;
3117 #endif
3118 swiotlb_dev_init(dev);
3119 }
3120 EXPORT_SYMBOL_GPL(device_initialize);
3121
virtual_device_parent(struct device * dev)3122 struct kobject *virtual_device_parent(struct device *dev)
3123 {
3124 static struct kobject *virtual_dir = NULL;
3125
3126 if (!virtual_dir)
3127 virtual_dir = kobject_create_and_add("virtual",
3128 &devices_kset->kobj);
3129
3130 return virtual_dir;
3131 }
3132
3133 struct class_dir {
3134 struct kobject kobj;
3135 const struct class *class;
3136 };
3137
3138 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3139
class_dir_release(struct kobject * kobj)3140 static void class_dir_release(struct kobject *kobj)
3141 {
3142 struct class_dir *dir = to_class_dir(kobj);
3143 kfree(dir);
3144 }
3145
3146 static const
class_dir_child_ns_type(const struct kobject * kobj)3147 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3148 {
3149 const struct class_dir *dir = to_class_dir(kobj);
3150 return dir->class->ns_type;
3151 }
3152
3153 static const struct kobj_type class_dir_ktype = {
3154 .release = class_dir_release,
3155 .sysfs_ops = &kobj_sysfs_ops,
3156 .child_ns_type = class_dir_child_ns_type
3157 };
3158
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3159 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3160 struct kobject *parent_kobj)
3161 {
3162 struct class_dir *dir;
3163 int retval;
3164
3165 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3166 if (!dir)
3167 return ERR_PTR(-ENOMEM);
3168
3169 dir->class = sp->class;
3170 kobject_init(&dir->kobj, &class_dir_ktype);
3171
3172 dir->kobj.kset = &sp->glue_dirs;
3173
3174 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3175 if (retval < 0) {
3176 kobject_put(&dir->kobj);
3177 return ERR_PTR(retval);
3178 }
3179 return &dir->kobj;
3180 }
3181
3182 static DEFINE_MUTEX(gdp_mutex);
3183
get_device_parent(struct device * dev,struct device * parent)3184 static struct kobject *get_device_parent(struct device *dev,
3185 struct device *parent)
3186 {
3187 struct subsys_private *sp = class_to_subsys(dev->class);
3188 struct kobject *kobj = NULL;
3189
3190 if (sp) {
3191 struct kobject *parent_kobj;
3192 struct kobject *k;
3193
3194 /*
3195 * If we have no parent, we live in "virtual".
3196 * Class-devices with a non class-device as parent, live
3197 * in a "glue" directory to prevent namespace collisions.
3198 */
3199 if (parent == NULL)
3200 parent_kobj = virtual_device_parent(dev);
3201 else if (parent->class && !dev->class->ns_type) {
3202 subsys_put(sp);
3203 return &parent->kobj;
3204 } else {
3205 parent_kobj = &parent->kobj;
3206 }
3207
3208 mutex_lock(&gdp_mutex);
3209
3210 /* find our class-directory at the parent and reference it */
3211 spin_lock(&sp->glue_dirs.list_lock);
3212 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3213 if (k->parent == parent_kobj) {
3214 kobj = kobject_get(k);
3215 break;
3216 }
3217 spin_unlock(&sp->glue_dirs.list_lock);
3218 if (kobj) {
3219 mutex_unlock(&gdp_mutex);
3220 subsys_put(sp);
3221 return kobj;
3222 }
3223
3224 /* or create a new class-directory at the parent device */
3225 k = class_dir_create_and_add(sp, parent_kobj);
3226 /* do not emit an uevent for this simple "glue" directory */
3227 mutex_unlock(&gdp_mutex);
3228 subsys_put(sp);
3229 return k;
3230 }
3231
3232 /* subsystems can specify a default root directory for their devices */
3233 if (!parent && dev->bus) {
3234 struct device *dev_root = bus_get_dev_root(dev->bus);
3235
3236 if (dev_root) {
3237 kobj = &dev_root->kobj;
3238 put_device(dev_root);
3239 return kobj;
3240 }
3241 }
3242
3243 if (parent)
3244 return &parent->kobj;
3245 return NULL;
3246 }
3247
live_in_glue_dir(struct kobject * kobj,struct device * dev)3248 static inline bool live_in_glue_dir(struct kobject *kobj,
3249 struct device *dev)
3250 {
3251 struct subsys_private *sp;
3252 bool retval;
3253
3254 if (!kobj || !dev->class)
3255 return false;
3256
3257 sp = class_to_subsys(dev->class);
3258 if (!sp)
3259 return false;
3260
3261 if (kobj->kset == &sp->glue_dirs)
3262 retval = true;
3263 else
3264 retval = false;
3265
3266 subsys_put(sp);
3267 return retval;
3268 }
3269
get_glue_dir(struct device * dev)3270 static inline struct kobject *get_glue_dir(struct device *dev)
3271 {
3272 return dev->kobj.parent;
3273 }
3274
3275 /**
3276 * kobject_has_children - Returns whether a kobject has children.
3277 * @kobj: the object to test
3278 *
3279 * This will return whether a kobject has other kobjects as children.
3280 *
3281 * It does NOT account for the presence of attribute files, only sub
3282 * directories. It also assumes there is no concurrent addition or
3283 * removal of such children, and thus relies on external locking.
3284 */
kobject_has_children(struct kobject * kobj)3285 static inline bool kobject_has_children(struct kobject *kobj)
3286 {
3287 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3288
3289 return kobj->sd && kobj->sd->dir.subdirs;
3290 }
3291
3292 /*
3293 * make sure cleaning up dir as the last step, we need to make
3294 * sure .release handler of kobject is run with holding the
3295 * global lock
3296 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3297 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3298 {
3299 unsigned int ref;
3300
3301 /* see if we live in a "glue" directory */
3302 if (!live_in_glue_dir(glue_dir, dev))
3303 return;
3304
3305 mutex_lock(&gdp_mutex);
3306 /**
3307 * There is a race condition between removing glue directory
3308 * and adding a new device under the glue directory.
3309 *
3310 * CPU1: CPU2:
3311 *
3312 * device_add()
3313 * get_device_parent()
3314 * class_dir_create_and_add()
3315 * kobject_add_internal()
3316 * create_dir() // create glue_dir
3317 *
3318 * device_add()
3319 * get_device_parent()
3320 * kobject_get() // get glue_dir
3321 *
3322 * device_del()
3323 * cleanup_glue_dir()
3324 * kobject_del(glue_dir)
3325 *
3326 * kobject_add()
3327 * kobject_add_internal()
3328 * create_dir() // in glue_dir
3329 * sysfs_create_dir_ns()
3330 * kernfs_create_dir_ns(sd)
3331 *
3332 * sysfs_remove_dir() // glue_dir->sd=NULL
3333 * sysfs_put() // free glue_dir->sd
3334 *
3335 * // sd is freed
3336 * kernfs_new_node(sd)
3337 * kernfs_get(glue_dir)
3338 * kernfs_add_one()
3339 * kernfs_put()
3340 *
3341 * Before CPU1 remove last child device under glue dir, if CPU2 add
3342 * a new device under glue dir, the glue_dir kobject reference count
3343 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3344 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3345 * and sysfs_put(). This result in glue_dir->sd is freed.
3346 *
3347 * Then the CPU2 will see a stale "empty" but still potentially used
3348 * glue dir around in kernfs_new_node().
3349 *
3350 * In order to avoid this happening, we also should make sure that
3351 * kernfs_node for glue_dir is released in CPU1 only when refcount
3352 * for glue_dir kobj is 1.
3353 */
3354 ref = kref_read(&glue_dir->kref);
3355 if (!kobject_has_children(glue_dir) && !--ref)
3356 kobject_del(glue_dir);
3357 kobject_put(glue_dir);
3358 mutex_unlock(&gdp_mutex);
3359 }
3360
device_add_class_symlinks(struct device * dev)3361 static int device_add_class_symlinks(struct device *dev)
3362 {
3363 struct device_node *of_node = dev_of_node(dev);
3364 struct subsys_private *sp;
3365 int error;
3366
3367 if (of_node) {
3368 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3369 if (error)
3370 dev_warn(dev, "Error %d creating of_node link\n",error);
3371 /* An error here doesn't warrant bringing down the device */
3372 }
3373
3374 sp = class_to_subsys(dev->class);
3375 if (!sp)
3376 return 0;
3377
3378 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3379 if (error)
3380 goto out_devnode;
3381
3382 if (dev->parent && device_is_not_partition(dev)) {
3383 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3384 "device");
3385 if (error)
3386 goto out_subsys;
3387 }
3388
3389 /* link in the class directory pointing to the device */
3390 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3391 if (error)
3392 goto out_device;
3393 goto exit;
3394
3395 out_device:
3396 sysfs_remove_link(&dev->kobj, "device");
3397 out_subsys:
3398 sysfs_remove_link(&dev->kobj, "subsystem");
3399 out_devnode:
3400 sysfs_remove_link(&dev->kobj, "of_node");
3401 exit:
3402 subsys_put(sp);
3403 return error;
3404 }
3405
device_remove_class_symlinks(struct device * dev)3406 static void device_remove_class_symlinks(struct device *dev)
3407 {
3408 struct subsys_private *sp = class_to_subsys(dev->class);
3409
3410 if (dev_of_node(dev))
3411 sysfs_remove_link(&dev->kobj, "of_node");
3412
3413 if (!sp)
3414 return;
3415
3416 if (dev->parent && device_is_not_partition(dev))
3417 sysfs_remove_link(&dev->kobj, "device");
3418 sysfs_remove_link(&dev->kobj, "subsystem");
3419 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3420 subsys_put(sp);
3421 }
3422
3423 /**
3424 * dev_set_name - set a device name
3425 * @dev: device
3426 * @fmt: format string for the device's name
3427 */
dev_set_name(struct device * dev,const char * fmt,...)3428 int dev_set_name(struct device *dev, const char *fmt, ...)
3429 {
3430 va_list vargs;
3431 int err;
3432
3433 va_start(vargs, fmt);
3434 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3435 va_end(vargs);
3436 return err;
3437 }
3438 EXPORT_SYMBOL_GPL(dev_set_name);
3439
3440 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3441 static struct kobject *device_to_dev_kobj(struct device *dev)
3442 {
3443 if (is_blockdev(dev))
3444 return sysfs_dev_block_kobj;
3445 else
3446 return sysfs_dev_char_kobj;
3447 }
3448
device_create_sys_dev_entry(struct device * dev)3449 static int device_create_sys_dev_entry(struct device *dev)
3450 {
3451 struct kobject *kobj = device_to_dev_kobj(dev);
3452 int error = 0;
3453 char devt_str[15];
3454
3455 if (kobj) {
3456 format_dev_t(devt_str, dev->devt);
3457 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3458 }
3459
3460 return error;
3461 }
3462
device_remove_sys_dev_entry(struct device * dev)3463 static void device_remove_sys_dev_entry(struct device *dev)
3464 {
3465 struct kobject *kobj = device_to_dev_kobj(dev);
3466 char devt_str[15];
3467
3468 if (kobj) {
3469 format_dev_t(devt_str, dev->devt);
3470 sysfs_remove_link(kobj, devt_str);
3471 }
3472 }
3473
device_private_init(struct device * dev)3474 static int device_private_init(struct device *dev)
3475 {
3476 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3477 if (!dev->p)
3478 return -ENOMEM;
3479 dev->p->device = dev;
3480 klist_init(&dev->p->klist_children, klist_children_get,
3481 klist_children_put);
3482 INIT_LIST_HEAD(&dev->p->deferred_probe);
3483 return 0;
3484 }
3485
3486 /**
3487 * device_add - add device to device hierarchy.
3488 * @dev: device.
3489 *
3490 * This is part 2 of device_register(), though may be called
3491 * separately _iff_ device_initialize() has been called separately.
3492 *
3493 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3494 * to the global and sibling lists for the device, then
3495 * adds it to the other relevant subsystems of the driver model.
3496 *
3497 * Do not call this routine or device_register() more than once for
3498 * any device structure. The driver model core is not designed to work
3499 * with devices that get unregistered and then spring back to life.
3500 * (Among other things, it's very hard to guarantee that all references
3501 * to the previous incarnation of @dev have been dropped.) Allocate
3502 * and register a fresh new struct device instead.
3503 *
3504 * NOTE: _Never_ directly free @dev after calling this function, even
3505 * if it returned an error! Always use put_device() to give up your
3506 * reference instead.
3507 *
3508 * Rule of thumb is: if device_add() succeeds, you should call
3509 * device_del() when you want to get rid of it. If device_add() has
3510 * *not* succeeded, use *only* put_device() to drop the reference
3511 * count.
3512 */
device_add(struct device * dev)3513 int device_add(struct device *dev)
3514 {
3515 struct subsys_private *sp;
3516 struct device *parent;
3517 struct kobject *kobj;
3518 struct class_interface *class_intf;
3519 int error = -EINVAL;
3520 struct kobject *glue_dir = NULL;
3521
3522 dev = get_device(dev);
3523 if (!dev)
3524 goto done;
3525
3526 if (!dev->p) {
3527 error = device_private_init(dev);
3528 if (error)
3529 goto done;
3530 }
3531
3532 /*
3533 * for statically allocated devices, which should all be converted
3534 * some day, we need to initialize the name. We prevent reading back
3535 * the name, and force the use of dev_name()
3536 */
3537 if (dev->init_name) {
3538 error = dev_set_name(dev, "%s", dev->init_name);
3539 dev->init_name = NULL;
3540 }
3541
3542 if (dev_name(dev))
3543 error = 0;
3544 /* subsystems can specify simple device enumeration */
3545 else if (dev->bus && dev->bus->dev_name)
3546 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3547 else
3548 error = -EINVAL;
3549 if (error)
3550 goto name_error;
3551
3552 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3553
3554 parent = get_device(dev->parent);
3555 kobj = get_device_parent(dev, parent);
3556 if (IS_ERR(kobj)) {
3557 error = PTR_ERR(kobj);
3558 goto parent_error;
3559 }
3560 if (kobj)
3561 dev->kobj.parent = kobj;
3562
3563 /* use parent numa_node */
3564 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3565 set_dev_node(dev, dev_to_node(parent));
3566
3567 /* first, register with generic layer. */
3568 /* we require the name to be set before, and pass NULL */
3569 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3570 if (error) {
3571 glue_dir = kobj;
3572 goto Error;
3573 }
3574
3575 /* notify platform of device entry */
3576 device_platform_notify(dev);
3577
3578 error = device_create_file(dev, &dev_attr_uevent);
3579 if (error)
3580 goto attrError;
3581
3582 error = device_add_class_symlinks(dev);
3583 if (error)
3584 goto SymlinkError;
3585 error = device_add_attrs(dev);
3586 if (error)
3587 goto AttrsError;
3588 error = bus_add_device(dev);
3589 if (error)
3590 goto BusError;
3591 error = dpm_sysfs_add(dev);
3592 if (error)
3593 goto DPMError;
3594 device_pm_add(dev);
3595
3596 if (MAJOR(dev->devt)) {
3597 error = device_create_file(dev, &dev_attr_dev);
3598 if (error)
3599 goto DevAttrError;
3600
3601 error = device_create_sys_dev_entry(dev);
3602 if (error)
3603 goto SysEntryError;
3604
3605 devtmpfs_create_node(dev);
3606 }
3607
3608 /* Notify clients of device addition. This call must come
3609 * after dpm_sysfs_add() and before kobject_uevent().
3610 */
3611 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3612 kobject_uevent(&dev->kobj, KOBJ_ADD);
3613
3614 /*
3615 * Check if any of the other devices (consumers) have been waiting for
3616 * this device (supplier) to be added so that they can create a device
3617 * link to it.
3618 *
3619 * This needs to happen after device_pm_add() because device_link_add()
3620 * requires the supplier be registered before it's called.
3621 *
3622 * But this also needs to happen before bus_probe_device() to make sure
3623 * waiting consumers can link to it before the driver is bound to the
3624 * device and the driver sync_state callback is called for this device.
3625 */
3626 if (dev->fwnode && !dev->fwnode->dev) {
3627 dev->fwnode->dev = dev;
3628 fw_devlink_link_device(dev);
3629 }
3630
3631 bus_probe_device(dev);
3632
3633 /*
3634 * If all driver registration is done and a newly added device doesn't
3635 * match with any driver, don't block its consumers from probing in
3636 * case the consumer device is able to operate without this supplier.
3637 */
3638 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3639 fw_devlink_unblock_consumers(dev);
3640
3641 if (parent)
3642 klist_add_tail(&dev->p->knode_parent,
3643 &parent->p->klist_children);
3644
3645 sp = class_to_subsys(dev->class);
3646 if (sp) {
3647 mutex_lock(&sp->mutex);
3648 /* tie the class to the device */
3649 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3650
3651 /* notify any interfaces that the device is here */
3652 list_for_each_entry(class_intf, &sp->interfaces, node)
3653 if (class_intf->add_dev)
3654 class_intf->add_dev(dev);
3655 mutex_unlock(&sp->mutex);
3656 subsys_put(sp);
3657 }
3658 done:
3659 put_device(dev);
3660 return error;
3661 SysEntryError:
3662 if (MAJOR(dev->devt))
3663 device_remove_file(dev, &dev_attr_dev);
3664 DevAttrError:
3665 device_pm_remove(dev);
3666 dpm_sysfs_remove(dev);
3667 DPMError:
3668 dev->driver = NULL;
3669 bus_remove_device(dev);
3670 BusError:
3671 device_remove_attrs(dev);
3672 AttrsError:
3673 device_remove_class_symlinks(dev);
3674 SymlinkError:
3675 device_remove_file(dev, &dev_attr_uevent);
3676 attrError:
3677 device_platform_notify_remove(dev);
3678 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3679 glue_dir = get_glue_dir(dev);
3680 kobject_del(&dev->kobj);
3681 Error:
3682 cleanup_glue_dir(dev, glue_dir);
3683 parent_error:
3684 put_device(parent);
3685 name_error:
3686 kfree(dev->p);
3687 dev->p = NULL;
3688 goto done;
3689 }
3690 EXPORT_SYMBOL_GPL(device_add);
3691
3692 /**
3693 * device_register - register a device with the system.
3694 * @dev: pointer to the device structure
3695 *
3696 * This happens in two clean steps - initialize the device
3697 * and add it to the system. The two steps can be called
3698 * separately, but this is the easiest and most common.
3699 * I.e. you should only call the two helpers separately if
3700 * have a clearly defined need to use and refcount the device
3701 * before it is added to the hierarchy.
3702 *
3703 * For more information, see the kerneldoc for device_initialize()
3704 * and device_add().
3705 *
3706 * NOTE: _Never_ directly free @dev after calling this function, even
3707 * if it returned an error! Always use put_device() to give up the
3708 * reference initialized in this function instead.
3709 */
device_register(struct device * dev)3710 int device_register(struct device *dev)
3711 {
3712 device_initialize(dev);
3713 return device_add(dev);
3714 }
3715 EXPORT_SYMBOL_GPL(device_register);
3716
3717 /**
3718 * get_device - increment reference count for device.
3719 * @dev: device.
3720 *
3721 * This simply forwards the call to kobject_get(), though
3722 * we do take care to provide for the case that we get a NULL
3723 * pointer passed in.
3724 */
get_device(struct device * dev)3725 struct device *get_device(struct device *dev)
3726 {
3727 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3728 }
3729 EXPORT_SYMBOL_GPL(get_device);
3730
3731 /**
3732 * put_device - decrement reference count.
3733 * @dev: device in question.
3734 */
put_device(struct device * dev)3735 void put_device(struct device *dev)
3736 {
3737 /* might_sleep(); */
3738 if (dev)
3739 kobject_put(&dev->kobj);
3740 }
3741 EXPORT_SYMBOL_GPL(put_device);
3742
kill_device(struct device * dev)3743 bool kill_device(struct device *dev)
3744 {
3745 /*
3746 * Require the device lock and set the "dead" flag to guarantee that
3747 * the update behavior is consistent with the other bitfields near
3748 * it and that we cannot have an asynchronous probe routine trying
3749 * to run while we are tearing out the bus/class/sysfs from
3750 * underneath the device.
3751 */
3752 device_lock_assert(dev);
3753
3754 if (dev->p->dead)
3755 return false;
3756 dev->p->dead = true;
3757 return true;
3758 }
3759 EXPORT_SYMBOL_GPL(kill_device);
3760
3761 /**
3762 * device_del - delete device from system.
3763 * @dev: device.
3764 *
3765 * This is the first part of the device unregistration
3766 * sequence. This removes the device from the lists we control
3767 * from here, has it removed from the other driver model
3768 * subsystems it was added to in device_add(), and removes it
3769 * from the kobject hierarchy.
3770 *
3771 * NOTE: this should be called manually _iff_ device_add() was
3772 * also called manually.
3773 */
device_del(struct device * dev)3774 void device_del(struct device *dev)
3775 {
3776 struct subsys_private *sp;
3777 struct device *parent = dev->parent;
3778 struct kobject *glue_dir = NULL;
3779 struct class_interface *class_intf;
3780 unsigned int noio_flag;
3781
3782 device_lock(dev);
3783 kill_device(dev);
3784 device_unlock(dev);
3785
3786 if (dev->fwnode && dev->fwnode->dev == dev)
3787 dev->fwnode->dev = NULL;
3788
3789 /* Notify clients of device removal. This call must come
3790 * before dpm_sysfs_remove().
3791 */
3792 noio_flag = memalloc_noio_save();
3793 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3794
3795 dpm_sysfs_remove(dev);
3796 if (parent)
3797 klist_del(&dev->p->knode_parent);
3798 if (MAJOR(dev->devt)) {
3799 devtmpfs_delete_node(dev);
3800 device_remove_sys_dev_entry(dev);
3801 device_remove_file(dev, &dev_attr_dev);
3802 }
3803
3804 sp = class_to_subsys(dev->class);
3805 if (sp) {
3806 device_remove_class_symlinks(dev);
3807
3808 mutex_lock(&sp->mutex);
3809 /* notify any interfaces that the device is now gone */
3810 list_for_each_entry(class_intf, &sp->interfaces, node)
3811 if (class_intf->remove_dev)
3812 class_intf->remove_dev(dev);
3813 /* remove the device from the class list */
3814 klist_del(&dev->p->knode_class);
3815 mutex_unlock(&sp->mutex);
3816 subsys_put(sp);
3817 }
3818 device_remove_file(dev, &dev_attr_uevent);
3819 device_remove_attrs(dev);
3820 bus_remove_device(dev);
3821 device_pm_remove(dev);
3822 driver_deferred_probe_del(dev);
3823 device_platform_notify_remove(dev);
3824 device_links_purge(dev);
3825
3826 /*
3827 * If a device does not have a driver attached, we need to clean
3828 * up any managed resources. We do this in device_release(), but
3829 * it's never called (and we leak the device) if a managed
3830 * resource holds a reference to the device. So release all
3831 * managed resources here, like we do in driver_detach(). We
3832 * still need to do so again in device_release() in case someone
3833 * adds a new resource after this point, though.
3834 */
3835 devres_release_all(dev);
3836
3837 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3838 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3839 glue_dir = get_glue_dir(dev);
3840 kobject_del(&dev->kobj);
3841 cleanup_glue_dir(dev, glue_dir);
3842 memalloc_noio_restore(noio_flag);
3843 put_device(parent);
3844 }
3845 EXPORT_SYMBOL_GPL(device_del);
3846
3847 /**
3848 * device_unregister - unregister device from system.
3849 * @dev: device going away.
3850 *
3851 * We do this in two parts, like we do device_register(). First,
3852 * we remove it from all the subsystems with device_del(), then
3853 * we decrement the reference count via put_device(). If that
3854 * is the final reference count, the device will be cleaned up
3855 * via device_release() above. Otherwise, the structure will
3856 * stick around until the final reference to the device is dropped.
3857 */
device_unregister(struct device * dev)3858 void device_unregister(struct device *dev)
3859 {
3860 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3861 device_del(dev);
3862 put_device(dev);
3863 }
3864 EXPORT_SYMBOL_GPL(device_unregister);
3865
prev_device(struct klist_iter * i)3866 static struct device *prev_device(struct klist_iter *i)
3867 {
3868 struct klist_node *n = klist_prev(i);
3869 struct device *dev = NULL;
3870 struct device_private *p;
3871
3872 if (n) {
3873 p = to_device_private_parent(n);
3874 dev = p->device;
3875 }
3876 return dev;
3877 }
3878
next_device(struct klist_iter * i)3879 static struct device *next_device(struct klist_iter *i)
3880 {
3881 struct klist_node *n = klist_next(i);
3882 struct device *dev = NULL;
3883 struct device_private *p;
3884
3885 if (n) {
3886 p = to_device_private_parent(n);
3887 dev = p->device;
3888 }
3889 return dev;
3890 }
3891
3892 /**
3893 * device_get_devnode - path of device node file
3894 * @dev: device
3895 * @mode: returned file access mode
3896 * @uid: returned file owner
3897 * @gid: returned file group
3898 * @tmp: possibly allocated string
3899 *
3900 * Return the relative path of a possible device node.
3901 * Non-default names may need to allocate a memory to compose
3902 * a name. This memory is returned in tmp and needs to be
3903 * freed by the caller.
3904 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3905 const char *device_get_devnode(const struct device *dev,
3906 umode_t *mode, kuid_t *uid, kgid_t *gid,
3907 const char **tmp)
3908 {
3909 char *s;
3910
3911 *tmp = NULL;
3912
3913 /* the device type may provide a specific name */
3914 if (dev->type && dev->type->devnode)
3915 *tmp = dev->type->devnode(dev, mode, uid, gid);
3916 if (*tmp)
3917 return *tmp;
3918
3919 /* the class may provide a specific name */
3920 if (dev->class && dev->class->devnode)
3921 *tmp = dev->class->devnode(dev, mode);
3922 if (*tmp)
3923 return *tmp;
3924
3925 /* return name without allocation, tmp == NULL */
3926 if (strchr(dev_name(dev), '!') == NULL)
3927 return dev_name(dev);
3928
3929 /* replace '!' in the name with '/' */
3930 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3931 if (!s)
3932 return NULL;
3933 return *tmp = s;
3934 }
3935
3936 /**
3937 * device_for_each_child - device child iterator.
3938 * @parent: parent struct device.
3939 * @fn: function to be called for each device.
3940 * @data: data for the callback.
3941 *
3942 * Iterate over @parent's child devices, and call @fn for each,
3943 * passing it @data.
3944 *
3945 * We check the return of @fn each time. If it returns anything
3946 * other than 0, we break out and return that value.
3947 */
device_for_each_child(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3948 int device_for_each_child(struct device *parent, void *data,
3949 int (*fn)(struct device *dev, void *data))
3950 {
3951 struct klist_iter i;
3952 struct device *child;
3953 int error = 0;
3954
3955 if (!parent->p)
3956 return 0;
3957
3958 klist_iter_init(&parent->p->klist_children, &i);
3959 while (!error && (child = next_device(&i)))
3960 error = fn(child, data);
3961 klist_iter_exit(&i);
3962 return error;
3963 }
3964 EXPORT_SYMBOL_GPL(device_for_each_child);
3965
3966 /**
3967 * device_for_each_child_reverse - device child iterator in reversed order.
3968 * @parent: parent struct device.
3969 * @fn: function to be called for each device.
3970 * @data: data for the callback.
3971 *
3972 * Iterate over @parent's child devices, and call @fn for each,
3973 * passing it @data.
3974 *
3975 * We check the return of @fn each time. If it returns anything
3976 * other than 0, we break out and return that value.
3977 */
device_for_each_child_reverse(struct device * parent,void * data,int (* fn)(struct device * dev,void * data))3978 int device_for_each_child_reverse(struct device *parent, void *data,
3979 int (*fn)(struct device *dev, void *data))
3980 {
3981 struct klist_iter i;
3982 struct device *child;
3983 int error = 0;
3984
3985 if (!parent->p)
3986 return 0;
3987
3988 klist_iter_init(&parent->p->klist_children, &i);
3989 while ((child = prev_device(&i)) && !error)
3990 error = fn(child, data);
3991 klist_iter_exit(&i);
3992 return error;
3993 }
3994 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3995
3996 /**
3997 * device_find_child - device iterator for locating a particular device.
3998 * @parent: parent struct device
3999 * @match: Callback function to check device
4000 * @data: Data to pass to match function
4001 *
4002 * This is similar to the device_for_each_child() function above, but it
4003 * returns a reference to a device that is 'found' for later use, as
4004 * determined by the @match callback.
4005 *
4006 * The callback should return 0 if the device doesn't match and non-zero
4007 * if it does. If the callback returns non-zero and a reference to the
4008 * current device can be obtained, this function will return to the caller
4009 * and not iterate over any more devices.
4010 *
4011 * NOTE: you will need to drop the reference with put_device() after use.
4012 */
device_find_child(struct device * parent,void * data,int (* match)(struct device * dev,void * data))4013 struct device *device_find_child(struct device *parent, void *data,
4014 int (*match)(struct device *dev, void *data))
4015 {
4016 struct klist_iter i;
4017 struct device *child;
4018
4019 if (!parent)
4020 return NULL;
4021
4022 klist_iter_init(&parent->p->klist_children, &i);
4023 while ((child = next_device(&i)))
4024 if (match(child, data) && get_device(child))
4025 break;
4026 klist_iter_exit(&i);
4027 return child;
4028 }
4029 EXPORT_SYMBOL_GPL(device_find_child);
4030
4031 /**
4032 * device_find_child_by_name - device iterator for locating a child device.
4033 * @parent: parent struct device
4034 * @name: name of the child device
4035 *
4036 * This is similar to the device_find_child() function above, but it
4037 * returns a reference to a device that has the name @name.
4038 *
4039 * NOTE: you will need to drop the reference with put_device() after use.
4040 */
device_find_child_by_name(struct device * parent,const char * name)4041 struct device *device_find_child_by_name(struct device *parent,
4042 const char *name)
4043 {
4044 struct klist_iter i;
4045 struct device *child;
4046
4047 if (!parent)
4048 return NULL;
4049
4050 klist_iter_init(&parent->p->klist_children, &i);
4051 while ((child = next_device(&i)))
4052 if (sysfs_streq(dev_name(child), name) && get_device(child))
4053 break;
4054 klist_iter_exit(&i);
4055 return child;
4056 }
4057 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4058
match_any(struct device * dev,void * unused)4059 static int match_any(struct device *dev, void *unused)
4060 {
4061 return 1;
4062 }
4063
4064 /**
4065 * device_find_any_child - device iterator for locating a child device, if any.
4066 * @parent: parent struct device
4067 *
4068 * This is similar to the device_find_child() function above, but it
4069 * returns a reference to a child device, if any.
4070 *
4071 * NOTE: you will need to drop the reference with put_device() after use.
4072 */
device_find_any_child(struct device * parent)4073 struct device *device_find_any_child(struct device *parent)
4074 {
4075 return device_find_child(parent, NULL, match_any);
4076 }
4077 EXPORT_SYMBOL_GPL(device_find_any_child);
4078
devices_init(void)4079 int __init devices_init(void)
4080 {
4081 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4082 if (!devices_kset)
4083 return -ENOMEM;
4084 dev_kobj = kobject_create_and_add("dev", NULL);
4085 if (!dev_kobj)
4086 goto dev_kobj_err;
4087 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4088 if (!sysfs_dev_block_kobj)
4089 goto block_kobj_err;
4090 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4091 if (!sysfs_dev_char_kobj)
4092 goto char_kobj_err;
4093
4094 return 0;
4095
4096 char_kobj_err:
4097 kobject_put(sysfs_dev_block_kobj);
4098 block_kobj_err:
4099 kobject_put(dev_kobj);
4100 dev_kobj_err:
4101 kset_unregister(devices_kset);
4102 return -ENOMEM;
4103 }
4104
device_check_offline(struct device * dev,void * not_used)4105 static int device_check_offline(struct device *dev, void *not_used)
4106 {
4107 int ret;
4108
4109 ret = device_for_each_child(dev, NULL, device_check_offline);
4110 if (ret)
4111 return ret;
4112
4113 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4114 }
4115
4116 /**
4117 * device_offline - Prepare the device for hot-removal.
4118 * @dev: Device to be put offline.
4119 *
4120 * Execute the device bus type's .offline() callback, if present, to prepare
4121 * the device for a subsequent hot-removal. If that succeeds, the device must
4122 * not be used until either it is removed or its bus type's .online() callback
4123 * is executed.
4124 *
4125 * Call under device_hotplug_lock.
4126 */
device_offline(struct device * dev)4127 int device_offline(struct device *dev)
4128 {
4129 int ret;
4130
4131 if (dev->offline_disabled)
4132 return -EPERM;
4133
4134 ret = device_for_each_child(dev, NULL, device_check_offline);
4135 if (ret)
4136 return ret;
4137
4138 device_lock(dev);
4139 if (device_supports_offline(dev)) {
4140 if (dev->offline) {
4141 ret = 1;
4142 } else {
4143 ret = dev->bus->offline(dev);
4144 if (!ret) {
4145 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4146 dev->offline = true;
4147 }
4148 }
4149 }
4150 device_unlock(dev);
4151
4152 return ret;
4153 }
4154
4155 /**
4156 * device_online - Put the device back online after successful device_offline().
4157 * @dev: Device to be put back online.
4158 *
4159 * If device_offline() has been successfully executed for @dev, but the device
4160 * has not been removed subsequently, execute its bus type's .online() callback
4161 * to indicate that the device can be used again.
4162 *
4163 * Call under device_hotplug_lock.
4164 */
device_online(struct device * dev)4165 int device_online(struct device *dev)
4166 {
4167 int ret = 0;
4168
4169 device_lock(dev);
4170 if (device_supports_offline(dev)) {
4171 if (dev->offline) {
4172 ret = dev->bus->online(dev);
4173 if (!ret) {
4174 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4175 dev->offline = false;
4176 }
4177 } else {
4178 ret = 1;
4179 }
4180 }
4181 device_unlock(dev);
4182
4183 return ret;
4184 }
4185
4186 struct root_device {
4187 struct device dev;
4188 struct module *owner;
4189 };
4190
to_root_device(struct device * d)4191 static inline struct root_device *to_root_device(struct device *d)
4192 {
4193 return container_of(d, struct root_device, dev);
4194 }
4195
root_device_release(struct device * dev)4196 static void root_device_release(struct device *dev)
4197 {
4198 kfree(to_root_device(dev));
4199 }
4200
4201 /**
4202 * __root_device_register - allocate and register a root device
4203 * @name: root device name
4204 * @owner: owner module of the root device, usually THIS_MODULE
4205 *
4206 * This function allocates a root device and registers it
4207 * using device_register(). In order to free the returned
4208 * device, use root_device_unregister().
4209 *
4210 * Root devices are dummy devices which allow other devices
4211 * to be grouped under /sys/devices. Use this function to
4212 * allocate a root device and then use it as the parent of
4213 * any device which should appear under /sys/devices/{name}
4214 *
4215 * The /sys/devices/{name} directory will also contain a
4216 * 'module' symlink which points to the @owner directory
4217 * in sysfs.
4218 *
4219 * Returns &struct device pointer on success, or ERR_PTR() on error.
4220 *
4221 * Note: You probably want to use root_device_register().
4222 */
__root_device_register(const char * name,struct module * owner)4223 struct device *__root_device_register(const char *name, struct module *owner)
4224 {
4225 struct root_device *root;
4226 int err = -ENOMEM;
4227
4228 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4229 if (!root)
4230 return ERR_PTR(err);
4231
4232 err = dev_set_name(&root->dev, "%s", name);
4233 if (err) {
4234 kfree(root);
4235 return ERR_PTR(err);
4236 }
4237
4238 root->dev.release = root_device_release;
4239
4240 err = device_register(&root->dev);
4241 if (err) {
4242 put_device(&root->dev);
4243 return ERR_PTR(err);
4244 }
4245
4246 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4247 if (owner) {
4248 struct module_kobject *mk = &owner->mkobj;
4249
4250 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4251 if (err) {
4252 device_unregister(&root->dev);
4253 return ERR_PTR(err);
4254 }
4255 root->owner = owner;
4256 }
4257 #endif
4258
4259 return &root->dev;
4260 }
4261 EXPORT_SYMBOL_GPL(__root_device_register);
4262
4263 /**
4264 * root_device_unregister - unregister and free a root device
4265 * @dev: device going away
4266 *
4267 * This function unregisters and cleans up a device that was created by
4268 * root_device_register().
4269 */
root_device_unregister(struct device * dev)4270 void root_device_unregister(struct device *dev)
4271 {
4272 struct root_device *root = to_root_device(dev);
4273
4274 if (root->owner)
4275 sysfs_remove_link(&root->dev.kobj, "module");
4276
4277 device_unregister(dev);
4278 }
4279 EXPORT_SYMBOL_GPL(root_device_unregister);
4280
4281
device_create_release(struct device * dev)4282 static void device_create_release(struct device *dev)
4283 {
4284 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4285 kfree(dev);
4286 }
4287
4288 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4289 device_create_groups_vargs(const struct class *class, struct device *parent,
4290 dev_t devt, void *drvdata,
4291 const struct attribute_group **groups,
4292 const char *fmt, va_list args)
4293 {
4294 struct device *dev = NULL;
4295 int retval = -ENODEV;
4296
4297 if (IS_ERR_OR_NULL(class))
4298 goto error;
4299
4300 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4301 if (!dev) {
4302 retval = -ENOMEM;
4303 goto error;
4304 }
4305
4306 device_initialize(dev);
4307 dev->devt = devt;
4308 dev->class = class;
4309 dev->parent = parent;
4310 dev->groups = groups;
4311 dev->release = device_create_release;
4312 dev_set_drvdata(dev, drvdata);
4313
4314 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4315 if (retval)
4316 goto error;
4317
4318 retval = device_add(dev);
4319 if (retval)
4320 goto error;
4321
4322 return dev;
4323
4324 error:
4325 put_device(dev);
4326 return ERR_PTR(retval);
4327 }
4328
4329 /**
4330 * device_create - creates a device and registers it with sysfs
4331 * @class: pointer to the struct class that this device should be registered to
4332 * @parent: pointer to the parent struct device of this new device, if any
4333 * @devt: the dev_t for the char device to be added
4334 * @drvdata: the data to be added to the device for callbacks
4335 * @fmt: string for the device's name
4336 *
4337 * This function can be used by char device classes. A struct device
4338 * will be created in sysfs, registered to the specified class.
4339 *
4340 * A "dev" file will be created, showing the dev_t for the device, if
4341 * the dev_t is not 0,0.
4342 * If a pointer to a parent struct device is passed in, the newly created
4343 * struct device will be a child of that device in sysfs.
4344 * The pointer to the struct device will be returned from the call.
4345 * Any further sysfs files that might be required can be created using this
4346 * pointer.
4347 *
4348 * Returns &struct device pointer on success, or ERR_PTR() on error.
4349 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4350 struct device *device_create(const struct class *class, struct device *parent,
4351 dev_t devt, void *drvdata, const char *fmt, ...)
4352 {
4353 va_list vargs;
4354 struct device *dev;
4355
4356 va_start(vargs, fmt);
4357 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4358 fmt, vargs);
4359 va_end(vargs);
4360 return dev;
4361 }
4362 EXPORT_SYMBOL_GPL(device_create);
4363
4364 /**
4365 * device_create_with_groups - creates a device and registers it with sysfs
4366 * @class: pointer to the struct class that this device should be registered to
4367 * @parent: pointer to the parent struct device of this new device, if any
4368 * @devt: the dev_t for the char device to be added
4369 * @drvdata: the data to be added to the device for callbacks
4370 * @groups: NULL-terminated list of attribute groups to be created
4371 * @fmt: string for the device's name
4372 *
4373 * This function can be used by char device classes. A struct device
4374 * will be created in sysfs, registered to the specified class.
4375 * Additional attributes specified in the groups parameter will also
4376 * be created automatically.
4377 *
4378 * A "dev" file will be created, showing the dev_t for the device, if
4379 * the dev_t is not 0,0.
4380 * If a pointer to a parent struct device is passed in, the newly created
4381 * struct device will be a child of that device in sysfs.
4382 * The pointer to the struct device will be returned from the call.
4383 * Any further sysfs files that might be required can be created using this
4384 * pointer.
4385 *
4386 * Returns &struct device pointer on success, or ERR_PTR() on error.
4387 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4388 struct device *device_create_with_groups(const struct class *class,
4389 struct device *parent, dev_t devt,
4390 void *drvdata,
4391 const struct attribute_group **groups,
4392 const char *fmt, ...)
4393 {
4394 va_list vargs;
4395 struct device *dev;
4396
4397 va_start(vargs, fmt);
4398 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4399 fmt, vargs);
4400 va_end(vargs);
4401 return dev;
4402 }
4403 EXPORT_SYMBOL_GPL(device_create_with_groups);
4404
4405 /**
4406 * device_destroy - removes a device that was created with device_create()
4407 * @class: pointer to the struct class that this device was registered with
4408 * @devt: the dev_t of the device that was previously registered
4409 *
4410 * This call unregisters and cleans up a device that was created with a
4411 * call to device_create().
4412 */
device_destroy(const struct class * class,dev_t devt)4413 void device_destroy(const struct class *class, dev_t devt)
4414 {
4415 struct device *dev;
4416
4417 dev = class_find_device_by_devt(class, devt);
4418 if (dev) {
4419 put_device(dev);
4420 device_unregister(dev);
4421 }
4422 }
4423 EXPORT_SYMBOL_GPL(device_destroy);
4424
4425 /**
4426 * device_rename - renames a device
4427 * @dev: the pointer to the struct device to be renamed
4428 * @new_name: the new name of the device
4429 *
4430 * It is the responsibility of the caller to provide mutual
4431 * exclusion between two different calls of device_rename
4432 * on the same device to ensure that new_name is valid and
4433 * won't conflict with other devices.
4434 *
4435 * Note: given that some subsystems (networking and infiniband) use this
4436 * function, with no immediate plans for this to change, we cannot assume or
4437 * require that this function not be called at all.
4438 *
4439 * However, if you're writing new code, do not call this function. The following
4440 * text from Kay Sievers offers some insight:
4441 *
4442 * Renaming devices is racy at many levels, symlinks and other stuff are not
4443 * replaced atomically, and you get a "move" uevent, but it's not easy to
4444 * connect the event to the old and new device. Device nodes are not renamed at
4445 * all, there isn't even support for that in the kernel now.
4446 *
4447 * In the meantime, during renaming, your target name might be taken by another
4448 * driver, creating conflicts. Or the old name is taken directly after you
4449 * renamed it -- then you get events for the same DEVPATH, before you even see
4450 * the "move" event. It's just a mess, and nothing new should ever rely on
4451 * kernel device renaming. Besides that, it's not even implemented now for
4452 * other things than (driver-core wise very simple) network devices.
4453 *
4454 * Make up a "real" name in the driver before you register anything, or add
4455 * some other attributes for userspace to find the device, or use udev to add
4456 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4457 * don't even want to get into that and try to implement the missing pieces in
4458 * the core. We really have other pieces to fix in the driver core mess. :)
4459 */
device_rename(struct device * dev,const char * new_name)4460 int device_rename(struct device *dev, const char *new_name)
4461 {
4462 struct kobject *kobj = &dev->kobj;
4463 char *old_device_name = NULL;
4464 int error;
4465
4466 dev = get_device(dev);
4467 if (!dev)
4468 return -EINVAL;
4469
4470 dev_dbg(dev, "renaming to %s\n", new_name);
4471
4472 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4473 if (!old_device_name) {
4474 error = -ENOMEM;
4475 goto out;
4476 }
4477
4478 if (dev->class) {
4479 struct subsys_private *sp = class_to_subsys(dev->class);
4480
4481 if (!sp) {
4482 error = -EINVAL;
4483 goto out;
4484 }
4485
4486 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4487 new_name, kobject_namespace(kobj));
4488 subsys_put(sp);
4489 if (error)
4490 goto out;
4491 }
4492
4493 error = kobject_rename(kobj, new_name);
4494 if (error)
4495 goto out;
4496
4497 out:
4498 put_device(dev);
4499
4500 kfree(old_device_name);
4501
4502 return error;
4503 }
4504 EXPORT_SYMBOL_GPL(device_rename);
4505
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4506 static int device_move_class_links(struct device *dev,
4507 struct device *old_parent,
4508 struct device *new_parent)
4509 {
4510 int error = 0;
4511
4512 if (old_parent)
4513 sysfs_remove_link(&dev->kobj, "device");
4514 if (new_parent)
4515 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4516 "device");
4517 return error;
4518 }
4519
4520 /**
4521 * device_move - moves a device to a new parent
4522 * @dev: the pointer to the struct device to be moved
4523 * @new_parent: the new parent of the device (can be NULL)
4524 * @dpm_order: how to reorder the dpm_list
4525 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4526 int device_move(struct device *dev, struct device *new_parent,
4527 enum dpm_order dpm_order)
4528 {
4529 int error;
4530 struct device *old_parent;
4531 struct kobject *new_parent_kobj;
4532
4533 dev = get_device(dev);
4534 if (!dev)
4535 return -EINVAL;
4536
4537 device_pm_lock();
4538 new_parent = get_device(new_parent);
4539 new_parent_kobj = get_device_parent(dev, new_parent);
4540 if (IS_ERR(new_parent_kobj)) {
4541 error = PTR_ERR(new_parent_kobj);
4542 put_device(new_parent);
4543 goto out;
4544 }
4545
4546 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4547 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4548 error = kobject_move(&dev->kobj, new_parent_kobj);
4549 if (error) {
4550 cleanup_glue_dir(dev, new_parent_kobj);
4551 put_device(new_parent);
4552 goto out;
4553 }
4554 old_parent = dev->parent;
4555 dev->parent = new_parent;
4556 if (old_parent)
4557 klist_remove(&dev->p->knode_parent);
4558 if (new_parent) {
4559 klist_add_tail(&dev->p->knode_parent,
4560 &new_parent->p->klist_children);
4561 set_dev_node(dev, dev_to_node(new_parent));
4562 }
4563
4564 if (dev->class) {
4565 error = device_move_class_links(dev, old_parent, new_parent);
4566 if (error) {
4567 /* We ignore errors on cleanup since we're hosed anyway... */
4568 device_move_class_links(dev, new_parent, old_parent);
4569 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4570 if (new_parent)
4571 klist_remove(&dev->p->knode_parent);
4572 dev->parent = old_parent;
4573 if (old_parent) {
4574 klist_add_tail(&dev->p->knode_parent,
4575 &old_parent->p->klist_children);
4576 set_dev_node(dev, dev_to_node(old_parent));
4577 }
4578 }
4579 cleanup_glue_dir(dev, new_parent_kobj);
4580 put_device(new_parent);
4581 goto out;
4582 }
4583 }
4584 switch (dpm_order) {
4585 case DPM_ORDER_NONE:
4586 break;
4587 case DPM_ORDER_DEV_AFTER_PARENT:
4588 device_pm_move_after(dev, new_parent);
4589 devices_kset_move_after(dev, new_parent);
4590 break;
4591 case DPM_ORDER_PARENT_BEFORE_DEV:
4592 device_pm_move_before(new_parent, dev);
4593 devices_kset_move_before(new_parent, dev);
4594 break;
4595 case DPM_ORDER_DEV_LAST:
4596 device_pm_move_last(dev);
4597 devices_kset_move_last(dev);
4598 break;
4599 }
4600
4601 put_device(old_parent);
4602 out:
4603 device_pm_unlock();
4604 put_device(dev);
4605 return error;
4606 }
4607 EXPORT_SYMBOL_GPL(device_move);
4608
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4609 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4610 kgid_t kgid)
4611 {
4612 struct kobject *kobj = &dev->kobj;
4613 const struct class *class = dev->class;
4614 const struct device_type *type = dev->type;
4615 int error;
4616
4617 if (class) {
4618 /*
4619 * Change the device groups of the device class for @dev to
4620 * @kuid/@kgid.
4621 */
4622 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4623 kgid);
4624 if (error)
4625 return error;
4626 }
4627
4628 if (type) {
4629 /*
4630 * Change the device groups of the device type for @dev to
4631 * @kuid/@kgid.
4632 */
4633 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4634 kgid);
4635 if (error)
4636 return error;
4637 }
4638
4639 /* Change the device groups of @dev to @kuid/@kgid. */
4640 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4641 if (error)
4642 return error;
4643
4644 if (device_supports_offline(dev) && !dev->offline_disabled) {
4645 /* Change online device attributes of @dev to @kuid/@kgid. */
4646 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4647 kuid, kgid);
4648 if (error)
4649 return error;
4650 }
4651
4652 return 0;
4653 }
4654
4655 /**
4656 * device_change_owner - change the owner of an existing device.
4657 * @dev: device.
4658 * @kuid: new owner's kuid
4659 * @kgid: new owner's kgid
4660 *
4661 * This changes the owner of @dev and its corresponding sysfs entries to
4662 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4663 * core.
4664 *
4665 * Returns 0 on success or error code on failure.
4666 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4667 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4668 {
4669 int error;
4670 struct kobject *kobj = &dev->kobj;
4671 struct subsys_private *sp;
4672
4673 dev = get_device(dev);
4674 if (!dev)
4675 return -EINVAL;
4676
4677 /*
4678 * Change the kobject and the default attributes and groups of the
4679 * ktype associated with it to @kuid/@kgid.
4680 */
4681 error = sysfs_change_owner(kobj, kuid, kgid);
4682 if (error)
4683 goto out;
4684
4685 /*
4686 * Change the uevent file for @dev to the new owner. The uevent file
4687 * was created in a separate step when @dev got added and we mirror
4688 * that step here.
4689 */
4690 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4691 kgid);
4692 if (error)
4693 goto out;
4694
4695 /*
4696 * Change the device groups, the device groups associated with the
4697 * device class, and the groups associated with the device type of @dev
4698 * to @kuid/@kgid.
4699 */
4700 error = device_attrs_change_owner(dev, kuid, kgid);
4701 if (error)
4702 goto out;
4703
4704 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4705 if (error)
4706 goto out;
4707
4708 /*
4709 * Change the owner of the symlink located in the class directory of
4710 * the device class associated with @dev which points to the actual
4711 * directory entry for @dev to @kuid/@kgid. This ensures that the
4712 * symlink shows the same permissions as its target.
4713 */
4714 sp = class_to_subsys(dev->class);
4715 if (!sp) {
4716 error = -EINVAL;
4717 goto out;
4718 }
4719 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4720 subsys_put(sp);
4721
4722 out:
4723 put_device(dev);
4724 return error;
4725 }
4726 EXPORT_SYMBOL_GPL(device_change_owner);
4727
4728 /**
4729 * device_shutdown - call ->shutdown() on each device to shutdown.
4730 */
device_shutdown(void)4731 void device_shutdown(void)
4732 {
4733 struct device *dev, *parent;
4734
4735 wait_for_device_probe();
4736 device_block_probing();
4737
4738 cpufreq_suspend();
4739
4740 spin_lock(&devices_kset->list_lock);
4741 /*
4742 * Walk the devices list backward, shutting down each in turn.
4743 * Beware that device unplug events may also start pulling
4744 * devices offline, even as the system is shutting down.
4745 */
4746 while (!list_empty(&devices_kset->list)) {
4747 dev = list_entry(devices_kset->list.prev, struct device,
4748 kobj.entry);
4749
4750 /*
4751 * hold reference count of device's parent to
4752 * prevent it from being freed because parent's
4753 * lock is to be held
4754 */
4755 parent = get_device(dev->parent);
4756 get_device(dev);
4757 /*
4758 * Make sure the device is off the kset list, in the
4759 * event that dev->*->shutdown() doesn't remove it.
4760 */
4761 list_del_init(&dev->kobj.entry);
4762 spin_unlock(&devices_kset->list_lock);
4763
4764 /* hold lock to avoid race with probe/release */
4765 if (parent)
4766 device_lock(parent);
4767 device_lock(dev);
4768
4769 /* Don't allow any more runtime suspends */
4770 pm_runtime_get_noresume(dev);
4771 pm_runtime_barrier(dev);
4772
4773 if (dev->class && dev->class->shutdown_pre) {
4774 if (initcall_debug)
4775 dev_info(dev, "shutdown_pre\n");
4776 dev->class->shutdown_pre(dev);
4777 }
4778 if (dev->bus && dev->bus->shutdown) {
4779 if (initcall_debug)
4780 dev_info(dev, "shutdown\n");
4781 dev->bus->shutdown(dev);
4782 } else if (dev->driver && dev->driver->shutdown) {
4783 if (initcall_debug)
4784 dev_info(dev, "shutdown\n");
4785 dev->driver->shutdown(dev);
4786 }
4787
4788 device_unlock(dev);
4789 if (parent)
4790 device_unlock(parent);
4791
4792 put_device(dev);
4793 put_device(parent);
4794
4795 spin_lock(&devices_kset->list_lock);
4796 }
4797 spin_unlock(&devices_kset->list_lock);
4798 }
4799
4800 /*
4801 * Device logging functions
4802 */
4803
4804 #ifdef CONFIG_PRINTK
4805 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4806 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4807 {
4808 const char *subsys;
4809
4810 memset(dev_info, 0, sizeof(*dev_info));
4811
4812 if (dev->class)
4813 subsys = dev->class->name;
4814 else if (dev->bus)
4815 subsys = dev->bus->name;
4816 else
4817 return;
4818
4819 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4820
4821 /*
4822 * Add device identifier DEVICE=:
4823 * b12:8 block dev_t
4824 * c127:3 char dev_t
4825 * n8 netdev ifindex
4826 * +sound:card0 subsystem:devname
4827 */
4828 if (MAJOR(dev->devt)) {
4829 char c;
4830
4831 if (strcmp(subsys, "block") == 0)
4832 c = 'b';
4833 else
4834 c = 'c';
4835
4836 snprintf(dev_info->device, sizeof(dev_info->device),
4837 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4838 } else if (strcmp(subsys, "net") == 0) {
4839 struct net_device *net = to_net_dev(dev);
4840
4841 snprintf(dev_info->device, sizeof(dev_info->device),
4842 "n%u", net->ifindex);
4843 } else {
4844 snprintf(dev_info->device, sizeof(dev_info->device),
4845 "+%s:%s", subsys, dev_name(dev));
4846 }
4847 }
4848
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4849 int dev_vprintk_emit(int level, const struct device *dev,
4850 const char *fmt, va_list args)
4851 {
4852 struct dev_printk_info dev_info;
4853
4854 set_dev_info(dev, &dev_info);
4855
4856 return vprintk_emit(0, level, &dev_info, fmt, args);
4857 }
4858 EXPORT_SYMBOL(dev_vprintk_emit);
4859
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4860 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4861 {
4862 va_list args;
4863 int r;
4864
4865 va_start(args, fmt);
4866
4867 r = dev_vprintk_emit(level, dev, fmt, args);
4868
4869 va_end(args);
4870
4871 return r;
4872 }
4873 EXPORT_SYMBOL(dev_printk_emit);
4874
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4875 static void __dev_printk(const char *level, const struct device *dev,
4876 struct va_format *vaf)
4877 {
4878 if (dev)
4879 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4880 dev_driver_string(dev), dev_name(dev), vaf);
4881 else
4882 printk("%s(NULL device *): %pV", level, vaf);
4883 }
4884
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4885 void _dev_printk(const char *level, const struct device *dev,
4886 const char *fmt, ...)
4887 {
4888 struct va_format vaf;
4889 va_list args;
4890
4891 va_start(args, fmt);
4892
4893 vaf.fmt = fmt;
4894 vaf.va = &args;
4895
4896 __dev_printk(level, dev, &vaf);
4897
4898 va_end(args);
4899 }
4900 EXPORT_SYMBOL(_dev_printk);
4901
4902 #define define_dev_printk_level(func, kern_level) \
4903 void func(const struct device *dev, const char *fmt, ...) \
4904 { \
4905 struct va_format vaf; \
4906 va_list args; \
4907 \
4908 va_start(args, fmt); \
4909 \
4910 vaf.fmt = fmt; \
4911 vaf.va = &args; \
4912 \
4913 __dev_printk(kern_level, dev, &vaf); \
4914 \
4915 va_end(args); \
4916 } \
4917 EXPORT_SYMBOL(func);
4918
4919 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4920 define_dev_printk_level(_dev_alert, KERN_ALERT);
4921 define_dev_printk_level(_dev_crit, KERN_CRIT);
4922 define_dev_printk_level(_dev_err, KERN_ERR);
4923 define_dev_printk_level(_dev_warn, KERN_WARNING);
4924 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4925 define_dev_printk_level(_dev_info, KERN_INFO);
4926
4927 #endif
4928
4929 /**
4930 * dev_err_probe - probe error check and log helper
4931 * @dev: the pointer to the struct device
4932 * @err: error value to test
4933 * @fmt: printf-style format string
4934 * @...: arguments as specified in the format string
4935 *
4936 * This helper implements common pattern present in probe functions for error
4937 * checking: print debug or error message depending if the error value is
4938 * -EPROBE_DEFER and propagate error upwards.
4939 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4940 * checked later by reading devices_deferred debugfs attribute.
4941 * It replaces code sequence::
4942 *
4943 * if (err != -EPROBE_DEFER)
4944 * dev_err(dev, ...);
4945 * else
4946 * dev_dbg(dev, ...);
4947 * return err;
4948 *
4949 * with::
4950 *
4951 * return dev_err_probe(dev, err, ...);
4952 *
4953 * Note that it is deemed acceptable to use this function for error
4954 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4955 * The benefit compared to a normal dev_err() is the standardized format
4956 * of the error code and the fact that the error code is returned.
4957 *
4958 * Returns @err.
4959 *
4960 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)4961 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4962 {
4963 struct va_format vaf;
4964 va_list args;
4965
4966 va_start(args, fmt);
4967 vaf.fmt = fmt;
4968 vaf.va = &args;
4969
4970 if (err != -EPROBE_DEFER) {
4971 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4972 } else {
4973 device_set_deferred_probe_reason(dev, &vaf);
4974 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4975 }
4976
4977 va_end(args);
4978
4979 return err;
4980 }
4981 EXPORT_SYMBOL_GPL(dev_err_probe);
4982
fwnode_is_primary(struct fwnode_handle * fwnode)4983 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4984 {
4985 return fwnode && !IS_ERR(fwnode->secondary);
4986 }
4987
4988 /**
4989 * set_primary_fwnode - Change the primary firmware node of a given device.
4990 * @dev: Device to handle.
4991 * @fwnode: New primary firmware node of the device.
4992 *
4993 * Set the device's firmware node pointer to @fwnode, but if a secondary
4994 * firmware node of the device is present, preserve it.
4995 *
4996 * Valid fwnode cases are:
4997 * - primary --> secondary --> -ENODEV
4998 * - primary --> NULL
4999 * - secondary --> -ENODEV
5000 * - NULL
5001 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5002 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5003 {
5004 struct device *parent = dev->parent;
5005 struct fwnode_handle *fn = dev->fwnode;
5006
5007 if (fwnode) {
5008 if (fwnode_is_primary(fn))
5009 fn = fn->secondary;
5010
5011 if (fn) {
5012 WARN_ON(fwnode->secondary);
5013 fwnode->secondary = fn;
5014 }
5015 dev->fwnode = fwnode;
5016 } else {
5017 if (fwnode_is_primary(fn)) {
5018 dev->fwnode = fn->secondary;
5019
5020 /* Skip nullifying fn->secondary if the primary is shared */
5021 if (parent && fn == parent->fwnode)
5022 return;
5023
5024 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5025 fn->secondary = NULL;
5026 } else {
5027 dev->fwnode = NULL;
5028 }
5029 }
5030 }
5031 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5032
5033 /**
5034 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5035 * @dev: Device to handle.
5036 * @fwnode: New secondary firmware node of the device.
5037 *
5038 * If a primary firmware node of the device is present, set its secondary
5039 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5040 * @fwnode.
5041 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5042 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5043 {
5044 if (fwnode)
5045 fwnode->secondary = ERR_PTR(-ENODEV);
5046
5047 if (fwnode_is_primary(dev->fwnode))
5048 dev->fwnode->secondary = fwnode;
5049 else
5050 dev->fwnode = fwnode;
5051 }
5052 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5053
5054 /**
5055 * device_set_of_node_from_dev - reuse device-tree node of another device
5056 * @dev: device whose device-tree node is being set
5057 * @dev2: device whose device-tree node is being reused
5058 *
5059 * Takes another reference to the new device-tree node after first dropping
5060 * any reference held to the old node.
5061 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5062 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5063 {
5064 of_node_put(dev->of_node);
5065 dev->of_node = of_node_get(dev2->of_node);
5066 dev->of_node_reused = true;
5067 }
5068 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5069
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5070 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5071 {
5072 dev->fwnode = fwnode;
5073 dev->of_node = to_of_node(fwnode);
5074 }
5075 EXPORT_SYMBOL_GPL(device_set_node);
5076
device_match_name(struct device * dev,const void * name)5077 int device_match_name(struct device *dev, const void *name)
5078 {
5079 return sysfs_streq(dev_name(dev), name);
5080 }
5081 EXPORT_SYMBOL_GPL(device_match_name);
5082
device_match_of_node(struct device * dev,const void * np)5083 int device_match_of_node(struct device *dev, const void *np)
5084 {
5085 return dev->of_node == np;
5086 }
5087 EXPORT_SYMBOL_GPL(device_match_of_node);
5088
device_match_fwnode(struct device * dev,const void * fwnode)5089 int device_match_fwnode(struct device *dev, const void *fwnode)
5090 {
5091 return dev_fwnode(dev) == fwnode;
5092 }
5093 EXPORT_SYMBOL_GPL(device_match_fwnode);
5094
device_match_devt(struct device * dev,const void * pdevt)5095 int device_match_devt(struct device *dev, const void *pdevt)
5096 {
5097 return dev->devt == *(dev_t *)pdevt;
5098 }
5099 EXPORT_SYMBOL_GPL(device_match_devt);
5100
device_match_acpi_dev(struct device * dev,const void * adev)5101 int device_match_acpi_dev(struct device *dev, const void *adev)
5102 {
5103 return ACPI_COMPANION(dev) == adev;
5104 }
5105 EXPORT_SYMBOL(device_match_acpi_dev);
5106
device_match_acpi_handle(struct device * dev,const void * handle)5107 int device_match_acpi_handle(struct device *dev, const void *handle)
5108 {
5109 return ACPI_HANDLE(dev) == handle;
5110 }
5111 EXPORT_SYMBOL(device_match_acpi_handle);
5112
device_match_any(struct device * dev,const void * unused)5113 int device_match_any(struct device *dev, const void *unused)
5114 {
5115 return 1;
5116 }
5117 EXPORT_SYMBOL_GPL(device_match_any);
5118