1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 struct kvm_caps kvm_caps __read_mostly = {
96 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97 };
98 EXPORT_SYMBOL_GPL(kvm_caps);
99
100 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
101
102 #define emul_to_vcpu(ctxt) \
103 ((struct kvm_vcpu *)(ctxt)->vcpu)
104
105 /* EFER defaults:
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
108 */
109 #ifdef CONFIG_X86_64
110 static
111 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112 #else
113 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114 #endif
115
116 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126 static void process_nmi(struct kvm_vcpu *vcpu);
127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128 static void store_regs(struct kvm_vcpu *vcpu);
129 static int sync_regs(struct kvm_vcpu *vcpu);
130 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135 static DEFINE_MUTEX(vendor_module_lock);
136 struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138 #define KVM_X86_OP(func) \
139 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
140 *(((struct kvm_x86_ops *)0)->func));
141 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143 #include <asm/kvm-x86-ops.h>
144 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147 static bool __read_mostly ignore_msrs = 0;
148 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149
150 bool __read_mostly report_ignored_msrs = true;
151 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152 EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154 unsigned int min_timer_period_us = 200;
155 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156
157 static bool __read_mostly kvmclock_periodic_sync = true;
158 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159
160 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161 static u32 __read_mostly tsc_tolerance_ppm = 250;
162 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163
164 /*
165 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns. '0' disables
167 * advancement entirely. Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 */
170 static int __read_mostly lapic_timer_advance_ns = -1;
171 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172
173 static bool __read_mostly vector_hashing = true;
174 module_param(vector_hashing, bool, S_IRUGO);
175
176 bool __read_mostly enable_vmware_backdoor = false;
177 module_param(enable_vmware_backdoor, bool, S_IRUGO);
178 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180 /*
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
183 */
184 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
185 static int __read_mostly force_emulation_prefix;
186 module_param(force_emulation_prefix, int, 0644);
187
188 int __read_mostly pi_inject_timer = -1;
189 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190
191 /* Enable/disable PMU virtualization */
192 bool __read_mostly enable_pmu = true;
193 EXPORT_SYMBOL_GPL(enable_pmu);
194 module_param(enable_pmu, bool, 0444);
195
196 bool __read_mostly eager_page_split = true;
197 module_param(eager_page_split, bool, 0644);
198
199 /* Enable/disable SMT_RSB bug mitigation */
200 static bool __read_mostly mitigate_smt_rsb;
201 module_param(mitigate_smt_rsb, bool, 0444);
202
203 /*
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
207 */
208 #define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210 struct kvm_user_return_msrs {
211 struct user_return_notifier urn;
212 bool registered;
213 struct kvm_user_return_msr_values {
214 u64 host;
215 u64 curr;
216 } values[KVM_MAX_NR_USER_RETURN_MSRS];
217 };
218
219 u32 __read_mostly kvm_nr_uret_msrs;
220 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222 static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229 u64 __read_mostly host_efer;
230 EXPORT_SYMBOL_GPL(host_efer);
231
232 bool __read_mostly allow_smaller_maxphyaddr = 0;
233 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235 bool __read_mostly enable_apicv = true;
236 EXPORT_SYMBOL_GPL(enable_apicv);
237
238 u64 __read_mostly host_xss;
239 EXPORT_SYMBOL_GPL(host_xss);
240
241 u64 __read_mostly host_arch_capabilities;
242 EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245 KVM_GENERIC_VM_STATS(),
246 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247 STATS_DESC_COUNTER(VM, mmu_pte_write),
248 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249 STATS_DESC_COUNTER(VM, mmu_flooded),
250 STATS_DESC_COUNTER(VM, mmu_recycled),
251 STATS_DESC_COUNTER(VM, mmu_cache_miss),
252 STATS_DESC_ICOUNTER(VM, mmu_unsync),
253 STATS_DESC_ICOUNTER(VM, pages_4k),
254 STATS_DESC_ICOUNTER(VM, pages_2m),
255 STATS_DESC_ICOUNTER(VM, pages_1g),
256 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259 };
260
261 const struct kvm_stats_header kvm_vm_stats_header = {
262 .name_size = KVM_STATS_NAME_SIZE,
263 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264 .id_offset = sizeof(struct kvm_stats_header),
265 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267 sizeof(kvm_vm_stats_desc),
268 };
269
270 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271 KVM_GENERIC_VCPU_STATS(),
272 STATS_DESC_COUNTER(VCPU, pf_taken),
273 STATS_DESC_COUNTER(VCPU, pf_fixed),
274 STATS_DESC_COUNTER(VCPU, pf_emulate),
275 STATS_DESC_COUNTER(VCPU, pf_spurious),
276 STATS_DESC_COUNTER(VCPU, pf_fast),
277 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278 STATS_DESC_COUNTER(VCPU, pf_guest),
279 STATS_DESC_COUNTER(VCPU, tlb_flush),
280 STATS_DESC_COUNTER(VCPU, invlpg),
281 STATS_DESC_COUNTER(VCPU, exits),
282 STATS_DESC_COUNTER(VCPU, io_exits),
283 STATS_DESC_COUNTER(VCPU, mmio_exits),
284 STATS_DESC_COUNTER(VCPU, signal_exits),
285 STATS_DESC_COUNTER(VCPU, irq_window_exits),
286 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287 STATS_DESC_COUNTER(VCPU, l1d_flush),
288 STATS_DESC_COUNTER(VCPU, halt_exits),
289 STATS_DESC_COUNTER(VCPU, request_irq_exits),
290 STATS_DESC_COUNTER(VCPU, irq_exits),
291 STATS_DESC_COUNTER(VCPU, host_state_reload),
292 STATS_DESC_COUNTER(VCPU, fpu_reload),
293 STATS_DESC_COUNTER(VCPU, insn_emulation),
294 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295 STATS_DESC_COUNTER(VCPU, hypercalls),
296 STATS_DESC_COUNTER(VCPU, irq_injections),
297 STATS_DESC_COUNTER(VCPU, nmi_injections),
298 STATS_DESC_COUNTER(VCPU, req_event),
299 STATS_DESC_COUNTER(VCPU, nested_run),
300 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302 STATS_DESC_COUNTER(VCPU, preemption_reported),
303 STATS_DESC_COUNTER(VCPU, preemption_other),
304 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305 STATS_DESC_COUNTER(VCPU, notify_window_exits),
306 };
307
308 const struct kvm_stats_header kvm_vcpu_stats_header = {
309 .name_size = KVM_STATS_NAME_SIZE,
310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311 .id_offset = sizeof(struct kvm_stats_header),
312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314 sizeof(kvm_vcpu_stats_desc),
315 };
316
317 u64 __read_mostly host_xcr0;
318
319 static struct kmem_cache *x86_emulator_cache;
320
321 /*
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
324 */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)325 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326 {
327 const char *op = write ? "wrmsr" : "rdmsr";
328
329 if (ignore_msrs) {
330 if (report_ignored_msrs)
331 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332 op, msr, data);
333 /* Mask the error */
334 return true;
335 } else {
336 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337 op, msr, data);
338 return false;
339 }
340 }
341
kvm_alloc_emulator_cache(void)342 static struct kmem_cache *kvm_alloc_emulator_cache(void)
343 {
344 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345 unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347 return kmem_cache_create_usercopy("x86_emulator", size,
348 __alignof__(struct x86_emulate_ctxt),
349 SLAB_ACCOUNT, useroffset,
350 size - useroffset, NULL);
351 }
352
353 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)355 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356 {
357 int i;
358 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359 vcpu->arch.apf.gfns[i] = ~0;
360 }
361
kvm_on_user_return(struct user_return_notifier * urn)362 static void kvm_on_user_return(struct user_return_notifier *urn)
363 {
364 unsigned slot;
365 struct kvm_user_return_msrs *msrs
366 = container_of(urn, struct kvm_user_return_msrs, urn);
367 struct kvm_user_return_msr_values *values;
368 unsigned long flags;
369
370 /*
371 * Disabling irqs at this point since the following code could be
372 * interrupted and executed through kvm_arch_hardware_disable()
373 */
374 local_irq_save(flags);
375 if (msrs->registered) {
376 msrs->registered = false;
377 user_return_notifier_unregister(urn);
378 }
379 local_irq_restore(flags);
380 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381 values = &msrs->values[slot];
382 if (values->host != values->curr) {
383 wrmsrl(kvm_uret_msrs_list[slot], values->host);
384 values->curr = values->host;
385 }
386 }
387 }
388
kvm_probe_user_return_msr(u32 msr)389 static int kvm_probe_user_return_msr(u32 msr)
390 {
391 u64 val;
392 int ret;
393
394 preempt_disable();
395 ret = rdmsrl_safe(msr, &val);
396 if (ret)
397 goto out;
398 ret = wrmsrl_safe(msr, val);
399 out:
400 preempt_enable();
401 return ret;
402 }
403
kvm_add_user_return_msr(u32 msr)404 int kvm_add_user_return_msr(u32 msr)
405 {
406 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408 if (kvm_probe_user_return_msr(msr))
409 return -1;
410
411 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412 return kvm_nr_uret_msrs++;
413 }
414 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
kvm_find_user_return_msr(u32 msr)416 int kvm_find_user_return_msr(u32 msr)
417 {
418 int i;
419
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 if (kvm_uret_msrs_list[i] == msr)
422 return i;
423 }
424 return -1;
425 }
426 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
kvm_user_return_msr_cpu_online(void)428 static void kvm_user_return_msr_cpu_online(void)
429 {
430 unsigned int cpu = smp_processor_id();
431 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432 u64 value;
433 int i;
434
435 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437 msrs->values[i].host = value;
438 msrs->values[i].curr = value;
439 }
440 }
441
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)442 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443 {
444 unsigned int cpu = smp_processor_id();
445 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446 int err;
447
448 value = (value & mask) | (msrs->values[slot].host & ~mask);
449 if (value == msrs->values[slot].curr)
450 return 0;
451 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452 if (err)
453 return 1;
454
455 msrs->values[slot].curr = value;
456 if (!msrs->registered) {
457 msrs->urn.on_user_return = kvm_on_user_return;
458 user_return_notifier_register(&msrs->urn);
459 msrs->registered = true;
460 }
461 return 0;
462 }
463 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
drop_user_return_notifiers(void)465 static void drop_user_return_notifiers(void)
466 {
467 unsigned int cpu = smp_processor_id();
468 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470 if (msrs->registered)
471 kvm_on_user_return(&msrs->urn);
472 }
473
kvm_get_apic_base(struct kvm_vcpu * vcpu)474 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475 {
476 return vcpu->arch.apic_base;
477 }
478
kvm_get_apic_mode(struct kvm_vcpu * vcpu)479 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480 {
481 return kvm_apic_mode(kvm_get_apic_base(vcpu));
482 }
483 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)485 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486 {
487 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493 return 1;
494 if (!msr_info->host_initiated) {
495 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496 return 1;
497 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498 return 1;
499 }
500
501 kvm_lapic_set_base(vcpu, msr_info->data);
502 kvm_recalculate_apic_map(vcpu->kvm);
503 return 0;
504 }
505
506 /*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running. Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
kvm_spurious_fault(void)513 noinstr void kvm_spurious_fault(void)
514 {
515 /* Fault while not rebooting. We want the trace. */
516 BUG_ON(!kvm_rebooting);
517 }
518 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520 #define EXCPT_BENIGN 0
521 #define EXCPT_CONTRIBUTORY 1
522 #define EXCPT_PF 2
523
exception_class(int vector)524 static int exception_class(int vector)
525 {
526 switch (vector) {
527 case PF_VECTOR:
528 return EXCPT_PF;
529 case DE_VECTOR:
530 case TS_VECTOR:
531 case NP_VECTOR:
532 case SS_VECTOR:
533 case GP_VECTOR:
534 return EXCPT_CONTRIBUTORY;
535 default:
536 break;
537 }
538 return EXCPT_BENIGN;
539 }
540
541 #define EXCPT_FAULT 0
542 #define EXCPT_TRAP 1
543 #define EXCPT_ABORT 2
544 #define EXCPT_INTERRUPT 3
545 #define EXCPT_DB 4
546
exception_type(int vector)547 static int exception_type(int vector)
548 {
549 unsigned int mask;
550
551 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552 return EXCPT_INTERRUPT;
553
554 mask = 1 << vector;
555
556 /*
557 * #DBs can be trap-like or fault-like, the caller must check other CPU
558 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559 */
560 if (mask & (1 << DB_VECTOR))
561 return EXCPT_DB;
562
563 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564 return EXCPT_TRAP;
565
566 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567 return EXCPT_ABORT;
568
569 /* Reserved exceptions will result in fault */
570 return EXCPT_FAULT;
571 }
572
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)573 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574 struct kvm_queued_exception *ex)
575 {
576 if (!ex->has_payload)
577 return;
578
579 switch (ex->vector) {
580 case DB_VECTOR:
581 /*
582 * "Certain debug exceptions may clear bit 0-3. The
583 * remaining contents of the DR6 register are never
584 * cleared by the processor".
585 */
586 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587 /*
588 * In order to reflect the #DB exception payload in guest
589 * dr6, three components need to be considered: active low
590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591 * DR6_BS and DR6_BT)
592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593 * In the target guest dr6:
594 * FIXED_1 bits should always be set.
595 * Active low bits should be cleared if 1-setting in payload.
596 * Active high bits should be set if 1-setting in payload.
597 *
598 * Note, the payload is compatible with the pending debug
599 * exceptions/exit qualification under VMX, that active_low bits
600 * are active high in payload.
601 * So they need to be flipped for DR6.
602 */
603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604 vcpu->arch.dr6 |= ex->payload;
605 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607 /*
608 * The #DB payload is defined as compatible with the 'pending
609 * debug exceptions' field under VMX, not DR6. While bit 12 is
610 * defined in the 'pending debug exceptions' field (enabled
611 * breakpoint), it is reserved and must be zero in DR6.
612 */
613 vcpu->arch.dr6 &= ~BIT(12);
614 break;
615 case PF_VECTOR:
616 vcpu->arch.cr2 = ex->payload;
617 break;
618 }
619
620 ex->has_payload = false;
621 ex->payload = 0;
622 }
623 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)625 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626 bool has_error_code, u32 error_code,
627 bool has_payload, unsigned long payload)
628 {
629 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631 ex->vector = vector;
632 ex->injected = false;
633 ex->pending = true;
634 ex->has_error_code = has_error_code;
635 ex->error_code = error_code;
636 ex->has_payload = has_payload;
637 ex->payload = payload;
638 }
639
640 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)641 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642 {
643 kvm_x86_ops.nested_ops->leave_nested(vcpu);
644 }
645
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)646 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647 unsigned nr, bool has_error, u32 error_code,
648 bool has_payload, unsigned long payload, bool reinject)
649 {
650 u32 prev_nr;
651 int class1, class2;
652
653 kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655 /*
656 * If the exception is destined for L2 and isn't being reinjected,
657 * morph it to a VM-Exit if L1 wants to intercept the exception. A
658 * previously injected exception is not checked because it was checked
659 * when it was original queued, and re-checking is incorrect if _L1_
660 * injected the exception, in which case it's exempt from interception.
661 */
662 if (!reinject && is_guest_mode(vcpu) &&
663 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665 has_payload, payload);
666 return;
667 }
668
669 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670 queue:
671 if (reinject) {
672 /*
673 * On VM-Entry, an exception can be pending if and only
674 * if event injection was blocked by nested_run_pending.
675 * In that case, however, vcpu_enter_guest() requests an
676 * immediate exit, and the guest shouldn't proceed far
677 * enough to need reinjection.
678 */
679 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680 vcpu->arch.exception.injected = true;
681 if (WARN_ON_ONCE(has_payload)) {
682 /*
683 * A reinjected event has already
684 * delivered its payload.
685 */
686 has_payload = false;
687 payload = 0;
688 }
689 } else {
690 vcpu->arch.exception.pending = true;
691 vcpu->arch.exception.injected = false;
692 }
693 vcpu->arch.exception.has_error_code = has_error;
694 vcpu->arch.exception.vector = nr;
695 vcpu->arch.exception.error_code = error_code;
696 vcpu->arch.exception.has_payload = has_payload;
697 vcpu->arch.exception.payload = payload;
698 if (!is_guest_mode(vcpu))
699 kvm_deliver_exception_payload(vcpu,
700 &vcpu->arch.exception);
701 return;
702 }
703
704 /* to check exception */
705 prev_nr = vcpu->arch.exception.vector;
706 if (prev_nr == DF_VECTOR) {
707 /* triple fault -> shutdown */
708 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709 return;
710 }
711 class1 = exception_class(prev_nr);
712 class2 = exception_class(nr);
713 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715 /*
716 * Synthesize #DF. Clear the previously injected or pending
717 * exception so as not to incorrectly trigger shutdown.
718 */
719 vcpu->arch.exception.injected = false;
720 vcpu->arch.exception.pending = false;
721
722 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723 } else {
724 /* replace previous exception with a new one in a hope
725 that instruction re-execution will regenerate lost
726 exception */
727 goto queue;
728 }
729 }
730
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)731 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732 {
733 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734 }
735 EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)737 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738 {
739 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740 }
741 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)743 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744 unsigned long payload)
745 {
746 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747 }
748 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)750 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751 u32 error_code, unsigned long payload)
752 {
753 kvm_multiple_exception(vcpu, nr, true, error_code,
754 true, payload, false);
755 }
756
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)757 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758 {
759 if (err)
760 kvm_inject_gp(vcpu, 0);
761 else
762 return kvm_skip_emulated_instruction(vcpu);
763
764 return 1;
765 }
766 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)768 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769 {
770 if (err) {
771 kvm_inject_gp(vcpu, 0);
772 return 1;
773 }
774
775 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776 EMULTYPE_COMPLETE_USER_EXIT);
777 }
778
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)779 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780 {
781 ++vcpu->stat.pf_guest;
782
783 /*
784 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785 * whether or not L1 wants to intercept "regular" #PF.
786 */
787 if (is_guest_mode(vcpu) && fault->async_page_fault)
788 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789 true, fault->error_code,
790 true, fault->address);
791 else
792 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793 fault->address);
794 }
795
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)796 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797 struct x86_exception *fault)
798 {
799 struct kvm_mmu *fault_mmu;
800 WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803 vcpu->arch.walk_mmu;
804
805 /*
806 * Invalidate the TLB entry for the faulting address, if it exists,
807 * else the access will fault indefinitely (and to emulate hardware).
808 */
809 if ((fault->error_code & PFERR_PRESENT_MASK) &&
810 !(fault->error_code & PFERR_RSVD_MASK))
811 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812 KVM_MMU_ROOT_CURRENT);
813
814 fault_mmu->inject_page_fault(vcpu, fault);
815 }
816 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
kvm_inject_nmi(struct kvm_vcpu * vcpu)818 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819 {
820 atomic_inc(&vcpu->arch.nmi_queued);
821 kvm_make_request(KVM_REQ_NMI, vcpu);
822 }
823
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)824 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825 {
826 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827 }
828 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)830 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831 {
832 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833 }
834 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836 /*
837 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
838 * a #GP and return false.
839 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)840 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841 {
842 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843 return true;
844 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845 return false;
846 }
847
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)848 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849 {
850 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851 return true;
852
853 kvm_queue_exception(vcpu, UD_VECTOR);
854 return false;
855 }
856 EXPORT_SYMBOL_GPL(kvm_require_dr);
857
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)858 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859 {
860 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861 }
862
863 /*
864 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
865 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)866 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867 {
868 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870 gpa_t real_gpa;
871 int i;
872 int ret;
873 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875 /*
876 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877 * to an L1 GPA.
878 */
879 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881 if (real_gpa == INVALID_GPA)
882 return 0;
883
884 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886 cr3 & GENMASK(11, 5), sizeof(pdpte));
887 if (ret < 0)
888 return 0;
889
890 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891 if ((pdpte[i] & PT_PRESENT_MASK) &&
892 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893 return 0;
894 }
895 }
896
897 /*
898 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899 * Shadow page roots need to be reconstructed instead.
900 */
901 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907 vcpu->arch.pdptrs_from_userspace = false;
908
909 return 1;
910 }
911 EXPORT_SYMBOL_GPL(load_pdptrs);
912
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)913 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914 {
915 #ifdef CONFIG_X86_64
916 if (cr0 & 0xffffffff00000000UL)
917 return false;
918 #endif
919
920 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921 return false;
922
923 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924 return false;
925
926 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927 }
928
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)929 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930 {
931 /*
932 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933 * indirect shadow MMUs. If paging is disabled, no updates are needed
934 * as there are no permission bits to emulate. If TDP is enabled, the
935 * MMU's metadata needs to be updated, e.g. so that emulating guest
936 * translations does the right thing, but there's no need to unload the
937 * root as CR0.WP doesn't affect SPTEs.
938 */
939 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940 if (!(cr0 & X86_CR0_PG))
941 return;
942
943 if (tdp_enabled) {
944 kvm_init_mmu(vcpu);
945 return;
946 }
947 }
948
949 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950 kvm_clear_async_pf_completion_queue(vcpu);
951 kvm_async_pf_hash_reset(vcpu);
952
953 /*
954 * Clearing CR0.PG is defined to flush the TLB from the guest's
955 * perspective.
956 */
957 if (!(cr0 & X86_CR0_PG))
958 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959 }
960
961 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962 kvm_mmu_reset_context(vcpu);
963
964 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968 }
969 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)971 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972 {
973 unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975 if (!kvm_is_valid_cr0(vcpu, cr0))
976 return 1;
977
978 cr0 |= X86_CR0_ET;
979
980 /* Write to CR0 reserved bits are ignored, even on Intel. */
981 cr0 &= ~CR0_RESERVED_BITS;
982
983 #ifdef CONFIG_X86_64
984 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985 (cr0 & X86_CR0_PG)) {
986 int cs_db, cs_l;
987
988 if (!is_pae(vcpu))
989 return 1;
990 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991 if (cs_l)
992 return 1;
993 }
994 #endif
995 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998 return 1;
999
1000 if (!(cr0 & X86_CR0_PG) &&
1001 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002 return 1;
1003
1004 static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008 return 0;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1012 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013 {
1014 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1018 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019 {
1020 if (vcpu->arch.guest_state_protected)
1021 return;
1022
1023 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025 if (vcpu->arch.xcr0 != host_xcr0)
1026 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029 vcpu->arch.ia32_xss != host_xss)
1030 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031 }
1032
1033 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037 write_pkru(vcpu->arch.pkru);
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1041 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042 {
1043 if (vcpu->arch.guest_state_protected)
1044 return;
1045
1046 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049 vcpu->arch.pkru = rdpkru();
1050 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051 write_pkru(vcpu->arch.host_pkru);
1052 }
1053
1054 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056 if (vcpu->arch.xcr0 != host_xcr0)
1057 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060 vcpu->arch.ia32_xss != host_xss)
1061 wrmsrl(MSR_IA32_XSS, host_xss);
1062 }
1063
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1068 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069 {
1070 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071 }
1072 #endif
1073
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1074 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075 {
1076 u64 xcr0 = xcr;
1077 u64 old_xcr0 = vcpu->arch.xcr0;
1078 u64 valid_bits;
1079
1080 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1081 if (index != XCR_XFEATURE_ENABLED_MASK)
1082 return 1;
1083 if (!(xcr0 & XFEATURE_MASK_FP))
1084 return 1;
1085 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086 return 1;
1087
1088 /*
1089 * Do not allow the guest to set bits that we do not support
1090 * saving. However, xcr0 bit 0 is always set, even if the
1091 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092 */
1093 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094 if (xcr0 & ~valid_bits)
1095 return 1;
1096
1097 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099 return 1;
1100
1101 if (xcr0 & XFEATURE_MASK_AVX512) {
1102 if (!(xcr0 & XFEATURE_MASK_YMM))
1103 return 1;
1104 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105 return 1;
1106 }
1107
1108 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110 return 1;
1111
1112 vcpu->arch.xcr0 = xcr0;
1113
1114 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115 kvm_update_cpuid_runtime(vcpu);
1116 return 0;
1117 }
1118
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1119 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120 {
1121 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124 kvm_inject_gp(vcpu, 0);
1125 return 1;
1126 }
1127
1128 return kvm_skip_emulated_instruction(vcpu);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1132 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133 {
1134 if (cr4 & cr4_reserved_bits)
1135 return false;
1136
1137 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138 return false;
1139
1140 return true;
1141 }
1142 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1144 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145 {
1146 return __kvm_is_valid_cr4(vcpu, cr4) &&
1147 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148 }
1149
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1150 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151 {
1152 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153 kvm_mmu_reset_context(vcpu);
1154
1155 /*
1156 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157 * according to the SDM; however, stale prev_roots could be reused
1158 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161 * so fall through.
1162 */
1163 if (!tdp_enabled &&
1164 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165 kvm_mmu_unload(vcpu);
1166
1167 /*
1168 * The TLB has to be flushed for all PCIDs if any of the following
1169 * (architecturally required) changes happen:
1170 * - CR4.PCIDE is changed from 1 to 0
1171 * - CR4.PGE is toggled
1172 *
1173 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174 */
1175 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179 /*
1180 * The TLB has to be flushed for the current PCID if any of the
1181 * following (architecturally required) changes happen:
1182 * - CR4.SMEP is changed from 0 to 1
1183 * - CR4.PAE is toggled
1184 */
1185 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1192 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193 {
1194 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196 if (!kvm_is_valid_cr4(vcpu, cr4))
1197 return 1;
1198
1199 if (is_long_mode(vcpu)) {
1200 if (!(cr4 & X86_CR4_PAE))
1201 return 1;
1202 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203 return 1;
1204 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207 return 1;
1208
1209 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212 return 1;
1213 }
1214
1215 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219 return 0;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1223 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224 {
1225 struct kvm_mmu *mmu = vcpu->arch.mmu;
1226 unsigned long roots_to_free = 0;
1227 int i;
1228
1229 /*
1230 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1232 * also via the emulator. KVM's TDP page tables are not in the scope of
1233 * the invalidation, but the guest's TLB entries need to be flushed as
1234 * the CPU may have cached entries in its TLB for the target PCID.
1235 */
1236 if (unlikely(tdp_enabled)) {
1237 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238 return;
1239 }
1240
1241 /*
1242 * If neither the current CR3 nor any of the prev_roots use the given
1243 * PCID, then nothing needs to be done here because a resync will
1244 * happen anyway before switching to any other CR3.
1245 */
1246 if (kvm_get_active_pcid(vcpu) == pcid) {
1247 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249 }
1250
1251 /*
1252 * If PCID is disabled, there is no need to free prev_roots even if the
1253 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254 * with PCIDE=0.
1255 */
1256 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257 return;
1258
1259 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264 }
1265
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1266 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267 {
1268 bool skip_tlb_flush = false;
1269 unsigned long pcid = 0;
1270 #ifdef CONFIG_X86_64
1271 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274 pcid = cr3 & X86_CR3_PCID_MASK;
1275 }
1276 #endif
1277
1278 /* PDPTRs are always reloaded for PAE paging. */
1279 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280 goto handle_tlb_flush;
1281
1282 /*
1283 * Do not condition the GPA check on long mode, this helper is used to
1284 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285 * the current vCPU mode is accurate.
1286 */
1287 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288 return 1;
1289
1290 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291 return 1;
1292
1293 if (cr3 != kvm_read_cr3(vcpu))
1294 kvm_mmu_new_pgd(vcpu, cr3);
1295
1296 vcpu->arch.cr3 = cr3;
1297 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1299
1300 handle_tlb_flush:
1301 /*
1302 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1304 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306 * i.e. only PCID=0 can be relevant.
1307 */
1308 if (!skip_tlb_flush)
1309 kvm_invalidate_pcid(vcpu, pcid);
1310
1311 return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1315 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316 {
1317 if (cr8 & CR8_RESERVED_BITS)
1318 return 1;
1319 if (lapic_in_kernel(vcpu))
1320 kvm_lapic_set_tpr(vcpu, cr8);
1321 else
1322 vcpu->arch.cr8 = cr8;
1323 return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
kvm_get_cr8(struct kvm_vcpu * vcpu)1327 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328 {
1329 if (lapic_in_kernel(vcpu))
1330 return kvm_lapic_get_cr8(vcpu);
1331 else
1332 return vcpu->arch.cr8;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
kvm_update_dr0123(struct kvm_vcpu * vcpu)1336 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337 {
1338 int i;
1339
1340 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341 for (i = 0; i < KVM_NR_DB_REGS; i++)
1342 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343 }
1344 }
1345
kvm_update_dr7(struct kvm_vcpu * vcpu)1346 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347 {
1348 unsigned long dr7;
1349
1350 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351 dr7 = vcpu->arch.guest_debug_dr7;
1352 else
1353 dr7 = vcpu->arch.dr7;
1354 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356 if (dr7 & DR7_BP_EN_MASK)
1357 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1361 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362 {
1363 u64 fixed = DR6_FIXED_1;
1364
1365 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366 fixed |= DR6_RTM;
1367
1368 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369 fixed |= DR6_BUS_LOCK;
1370 return fixed;
1371 }
1372
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1373 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374 {
1375 size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377 switch (dr) {
1378 case 0 ... 3:
1379 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381 vcpu->arch.eff_db[dr] = val;
1382 break;
1383 case 4:
1384 case 6:
1385 if (!kvm_dr6_valid(val))
1386 return 1; /* #GP */
1387 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388 break;
1389 case 5:
1390 default: /* 7 */
1391 if (!kvm_dr7_valid(val))
1392 return 1; /* #GP */
1393 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394 kvm_update_dr7(vcpu);
1395 break;
1396 }
1397
1398 return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1402 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403 {
1404 size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406 switch (dr) {
1407 case 0 ... 3:
1408 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1409 break;
1410 case 4:
1411 case 6:
1412 *val = vcpu->arch.dr6;
1413 break;
1414 case 5:
1415 default: /* 7 */
1416 *val = vcpu->arch.dr7;
1417 break;
1418 }
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1422 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423 {
1424 u32 ecx = kvm_rcx_read(vcpu);
1425 u64 data;
1426
1427 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428 kvm_inject_gp(vcpu, 0);
1429 return 1;
1430 }
1431
1432 kvm_rax_write(vcpu, (u32)data);
1433 kvm_rdx_write(vcpu, data >> 32);
1434 return kvm_skip_emulated_instruction(vcpu);
1435 }
1436 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438 /*
1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1442 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1443 * MSRs that KVM emulates without strictly requiring host support.
1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1446 * msrs_to_save and emulated_msrs.
1447 */
1448
1449 static const u32 msrs_to_save_base[] = {
1450 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451 MSR_STAR,
1452 #ifdef CONFIG_X86_64
1453 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454 #endif
1455 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464 MSR_IA32_UMWAIT_CONTROL,
1465
1466 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467 };
1468
1469 static const u32 msrs_to_save_pmu[] = {
1470 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498 };
1499
1500 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501 ARRAY_SIZE(msrs_to_save_pmu)];
1502 static unsigned num_msrs_to_save;
1503
1504 static const u32 emulated_msrs_all[] = {
1505 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512 HV_X64_MSR_RESET,
1513 HV_X64_MSR_VP_INDEX,
1514 HV_X64_MSR_VP_RUNTIME,
1515 HV_X64_MSR_SCONTROL,
1516 HV_X64_MSR_STIMER0_CONFIG,
1517 HV_X64_MSR_VP_ASSIST_PAGE,
1518 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520 HV_X64_MSR_SYNDBG_OPTIONS,
1521 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524
1525 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527
1528 MSR_IA32_TSC_ADJUST,
1529 MSR_IA32_TSC_DEADLINE,
1530 MSR_IA32_ARCH_CAPABILITIES,
1531 MSR_IA32_PERF_CAPABILITIES,
1532 MSR_IA32_MISC_ENABLE,
1533 MSR_IA32_MCG_STATUS,
1534 MSR_IA32_MCG_CTL,
1535 MSR_IA32_MCG_EXT_CTL,
1536 MSR_IA32_SMBASE,
1537 MSR_SMI_COUNT,
1538 MSR_PLATFORM_INFO,
1539 MSR_MISC_FEATURES_ENABLES,
1540 MSR_AMD64_VIRT_SPEC_CTRL,
1541 MSR_AMD64_TSC_RATIO,
1542 MSR_IA32_POWER_CTL,
1543 MSR_IA32_UCODE_REV,
1544
1545 /*
1546 * KVM always supports the "true" VMX control MSRs, even if the host
1547 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1548 * doesn't strictly require them to exist in the host (ignoring that
1549 * KVM would refuse to load in the first place if the core set of MSRs
1550 * aren't supported).
1551 */
1552 MSR_IA32_VMX_BASIC,
1553 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557 MSR_IA32_VMX_MISC,
1558 MSR_IA32_VMX_CR0_FIXED0,
1559 MSR_IA32_VMX_CR4_FIXED0,
1560 MSR_IA32_VMX_VMCS_ENUM,
1561 MSR_IA32_VMX_PROCBASED_CTLS2,
1562 MSR_IA32_VMX_EPT_VPID_CAP,
1563 MSR_IA32_VMX_VMFUNC,
1564
1565 MSR_K7_HWCR,
1566 MSR_KVM_POLL_CONTROL,
1567 };
1568
1569 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570 static unsigned num_emulated_msrs;
1571
1572 /*
1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1575 * feature MSRs, but are handled separately to allow expedited lookups.
1576 */
1577 static const u32 msr_based_features_all_except_vmx[] = {
1578 MSR_AMD64_DE_CFG,
1579 MSR_IA32_UCODE_REV,
1580 MSR_IA32_ARCH_CAPABILITIES,
1581 MSR_IA32_PERF_CAPABILITIES,
1582 };
1583
1584 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586 static unsigned int num_msr_based_features;
1587
1588 /*
1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590 * patch, are immutable once the vCPU model is defined.
1591 */
kvm_is_immutable_feature_msr(u32 msr)1592 static bool kvm_is_immutable_feature_msr(u32 msr)
1593 {
1594 int i;
1595
1596 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597 return true;
1598
1599 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600 if (msr == msr_based_features_all_except_vmx[i])
1601 return msr != MSR_IA32_UCODE_REV;
1602 }
1603
1604 return false;
1605 }
1606
1607 /*
1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609 * does not yet virtualize. These include:
1610 * 10 - MISC_PACKAGE_CTRLS
1611 * 11 - ENERGY_FILTERING_CTL
1612 * 12 - DOITM
1613 * 18 - FB_CLEAR_CTRL
1614 * 21 - XAPIC_DISABLE_STATUS
1615 * 23 - OVERCLOCKING_STATUS
1616 */
1617
1618 #define KVM_SUPPORTED_ARCH_CAP \
1619 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1624
kvm_get_arch_capabilities(void)1625 static u64 kvm_get_arch_capabilities(void)
1626 {
1627 u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1628
1629 /*
1630 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1631 * the nested hypervisor runs with NX huge pages. If it is not,
1632 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1633 * L1 guests, so it need not worry about its own (L2) guests.
1634 */
1635 data |= ARCH_CAP_PSCHANGE_MC_NO;
1636
1637 /*
1638 * If we're doing cache flushes (either "always" or "cond")
1639 * we will do one whenever the guest does a vmlaunch/vmresume.
1640 * If an outer hypervisor is doing the cache flush for us
1641 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1642 * capability to the guest too, and if EPT is disabled we're not
1643 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1644 * require a nested hypervisor to do a flush of its own.
1645 */
1646 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1647 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1648
1649 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1650 data |= ARCH_CAP_RDCL_NO;
1651 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1652 data |= ARCH_CAP_SSB_NO;
1653 if (!boot_cpu_has_bug(X86_BUG_MDS))
1654 data |= ARCH_CAP_MDS_NO;
1655
1656 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1657 /*
1658 * If RTM=0 because the kernel has disabled TSX, the host might
1659 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1660 * and therefore knows that there cannot be TAA) but keep
1661 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1662 * and we want to allow migrating those guests to tsx=off hosts.
1663 */
1664 data &= ~ARCH_CAP_TAA_NO;
1665 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1666 data |= ARCH_CAP_TAA_NO;
1667 } else {
1668 /*
1669 * Nothing to do here; we emulate TSX_CTRL if present on the
1670 * host so the guest can choose between disabling TSX or
1671 * using VERW to clear CPU buffers.
1672 */
1673 }
1674
1675 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1676 data |= ARCH_CAP_GDS_NO;
1677
1678 return data;
1679 }
1680
kvm_get_msr_feature(struct kvm_msr_entry * msr)1681 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1682 {
1683 switch (msr->index) {
1684 case MSR_IA32_ARCH_CAPABILITIES:
1685 msr->data = kvm_get_arch_capabilities();
1686 break;
1687 case MSR_IA32_PERF_CAPABILITIES:
1688 msr->data = kvm_caps.supported_perf_cap;
1689 break;
1690 case MSR_IA32_UCODE_REV:
1691 rdmsrl_safe(msr->index, &msr->data);
1692 break;
1693 default:
1694 return static_call(kvm_x86_get_msr_feature)(msr);
1695 }
1696 return 0;
1697 }
1698
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1699 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1700 {
1701 struct kvm_msr_entry msr;
1702 int r;
1703
1704 msr.index = index;
1705 r = kvm_get_msr_feature(&msr);
1706
1707 if (r == KVM_MSR_RET_INVALID) {
1708 /* Unconditionally clear the output for simplicity */
1709 *data = 0;
1710 if (kvm_msr_ignored_check(index, 0, false))
1711 r = 0;
1712 }
1713
1714 if (r)
1715 return r;
1716
1717 *data = msr.data;
1718
1719 return 0;
1720 }
1721
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1722 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1723 {
1724 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1725 return false;
1726
1727 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1728 return false;
1729
1730 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1731 return false;
1732
1733 if (efer & (EFER_LME | EFER_LMA) &&
1734 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1735 return false;
1736
1737 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1738 return false;
1739
1740 return true;
1741
1742 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1743 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1744 {
1745 if (efer & efer_reserved_bits)
1746 return false;
1747
1748 return __kvm_valid_efer(vcpu, efer);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1751
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1752 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1753 {
1754 u64 old_efer = vcpu->arch.efer;
1755 u64 efer = msr_info->data;
1756 int r;
1757
1758 if (efer & efer_reserved_bits)
1759 return 1;
1760
1761 if (!msr_info->host_initiated) {
1762 if (!__kvm_valid_efer(vcpu, efer))
1763 return 1;
1764
1765 if (is_paging(vcpu) &&
1766 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1767 return 1;
1768 }
1769
1770 efer &= ~EFER_LMA;
1771 efer |= vcpu->arch.efer & EFER_LMA;
1772
1773 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1774 if (r) {
1775 WARN_ON(r > 0);
1776 return r;
1777 }
1778
1779 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1780 kvm_mmu_reset_context(vcpu);
1781
1782 return 0;
1783 }
1784
kvm_enable_efer_bits(u64 mask)1785 void kvm_enable_efer_bits(u64 mask)
1786 {
1787 efer_reserved_bits &= ~mask;
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1790
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1791 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1792 {
1793 struct kvm_x86_msr_filter *msr_filter;
1794 struct msr_bitmap_range *ranges;
1795 struct kvm *kvm = vcpu->kvm;
1796 bool allowed;
1797 int idx;
1798 u32 i;
1799
1800 /* x2APIC MSRs do not support filtering. */
1801 if (index >= 0x800 && index <= 0x8ff)
1802 return true;
1803
1804 idx = srcu_read_lock(&kvm->srcu);
1805
1806 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1807 if (!msr_filter) {
1808 allowed = true;
1809 goto out;
1810 }
1811
1812 allowed = msr_filter->default_allow;
1813 ranges = msr_filter->ranges;
1814
1815 for (i = 0; i < msr_filter->count; i++) {
1816 u32 start = ranges[i].base;
1817 u32 end = start + ranges[i].nmsrs;
1818 u32 flags = ranges[i].flags;
1819 unsigned long *bitmap = ranges[i].bitmap;
1820
1821 if ((index >= start) && (index < end) && (flags & type)) {
1822 allowed = test_bit(index - start, bitmap);
1823 break;
1824 }
1825 }
1826
1827 out:
1828 srcu_read_unlock(&kvm->srcu, idx);
1829
1830 return allowed;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1833
1834 /*
1835 * Write @data into the MSR specified by @index. Select MSR specific fault
1836 * checks are bypassed if @host_initiated is %true.
1837 * Returns 0 on success, non-0 otherwise.
1838 * Assumes vcpu_load() was already called.
1839 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1840 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1841 bool host_initiated)
1842 {
1843 struct msr_data msr;
1844
1845 switch (index) {
1846 case MSR_FS_BASE:
1847 case MSR_GS_BASE:
1848 case MSR_KERNEL_GS_BASE:
1849 case MSR_CSTAR:
1850 case MSR_LSTAR:
1851 if (is_noncanonical_address(data, vcpu))
1852 return 1;
1853 break;
1854 case MSR_IA32_SYSENTER_EIP:
1855 case MSR_IA32_SYSENTER_ESP:
1856 /*
1857 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1858 * non-canonical address is written on Intel but not on
1859 * AMD (which ignores the top 32-bits, because it does
1860 * not implement 64-bit SYSENTER).
1861 *
1862 * 64-bit code should hence be able to write a non-canonical
1863 * value on AMD. Making the address canonical ensures that
1864 * vmentry does not fail on Intel after writing a non-canonical
1865 * value, and that something deterministic happens if the guest
1866 * invokes 64-bit SYSENTER.
1867 */
1868 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1869 break;
1870 case MSR_TSC_AUX:
1871 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1872 return 1;
1873
1874 if (!host_initiated &&
1875 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1876 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1877 return 1;
1878
1879 /*
1880 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1881 * incomplete and conflicting architectural behavior. Current
1882 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1883 * reserved and always read as zeros. Enforce Intel's reserved
1884 * bits check if and only if the guest CPU is Intel, and clear
1885 * the bits in all other cases. This ensures cross-vendor
1886 * migration will provide consistent behavior for the guest.
1887 */
1888 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1889 return 1;
1890
1891 data = (u32)data;
1892 break;
1893 }
1894
1895 msr.data = data;
1896 msr.index = index;
1897 msr.host_initiated = host_initiated;
1898
1899 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1900 }
1901
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1902 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1903 u32 index, u64 data, bool host_initiated)
1904 {
1905 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1906
1907 if (ret == KVM_MSR_RET_INVALID)
1908 if (kvm_msr_ignored_check(index, data, true))
1909 ret = 0;
1910
1911 return ret;
1912 }
1913
1914 /*
1915 * Read the MSR specified by @index into @data. Select MSR specific fault
1916 * checks are bypassed if @host_initiated is %true.
1917 * Returns 0 on success, non-0 otherwise.
1918 * Assumes vcpu_load() was already called.
1919 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1920 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1921 bool host_initiated)
1922 {
1923 struct msr_data msr;
1924 int ret;
1925
1926 switch (index) {
1927 case MSR_TSC_AUX:
1928 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1929 return 1;
1930
1931 if (!host_initiated &&
1932 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1934 return 1;
1935 break;
1936 }
1937
1938 msr.index = index;
1939 msr.host_initiated = host_initiated;
1940
1941 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1942 if (!ret)
1943 *data = msr.data;
1944 return ret;
1945 }
1946
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1947 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1948 u32 index, u64 *data, bool host_initiated)
1949 {
1950 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1951
1952 if (ret == KVM_MSR_RET_INVALID) {
1953 /* Unconditionally clear *data for simplicity */
1954 *data = 0;
1955 if (kvm_msr_ignored_check(index, 0, false))
1956 ret = 0;
1957 }
1958
1959 return ret;
1960 }
1961
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1962 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1963 {
1964 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1965 return KVM_MSR_RET_FILTERED;
1966 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1967 }
1968
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1969 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1970 {
1971 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1972 return KVM_MSR_RET_FILTERED;
1973 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1974 }
1975
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1976 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1977 {
1978 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1979 }
1980 EXPORT_SYMBOL_GPL(kvm_get_msr);
1981
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1982 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1983 {
1984 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_set_msr);
1987
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1988 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1989 {
1990 if (!vcpu->run->msr.error) {
1991 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1992 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1993 }
1994 }
1995
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1996 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1997 {
1998 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1999 }
2000
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2001 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2002 {
2003 complete_userspace_rdmsr(vcpu);
2004 return complete_emulated_msr_access(vcpu);
2005 }
2006
complete_fast_msr_access(struct kvm_vcpu * vcpu)2007 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2008 {
2009 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2010 }
2011
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2012 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2013 {
2014 complete_userspace_rdmsr(vcpu);
2015 return complete_fast_msr_access(vcpu);
2016 }
2017
kvm_msr_reason(int r)2018 static u64 kvm_msr_reason(int r)
2019 {
2020 switch (r) {
2021 case KVM_MSR_RET_INVALID:
2022 return KVM_MSR_EXIT_REASON_UNKNOWN;
2023 case KVM_MSR_RET_FILTERED:
2024 return KVM_MSR_EXIT_REASON_FILTER;
2025 default:
2026 return KVM_MSR_EXIT_REASON_INVAL;
2027 }
2028 }
2029
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2030 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2031 u32 exit_reason, u64 data,
2032 int (*completion)(struct kvm_vcpu *vcpu),
2033 int r)
2034 {
2035 u64 msr_reason = kvm_msr_reason(r);
2036
2037 /* Check if the user wanted to know about this MSR fault */
2038 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2039 return 0;
2040
2041 vcpu->run->exit_reason = exit_reason;
2042 vcpu->run->msr.error = 0;
2043 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2044 vcpu->run->msr.reason = msr_reason;
2045 vcpu->run->msr.index = index;
2046 vcpu->run->msr.data = data;
2047 vcpu->arch.complete_userspace_io = completion;
2048
2049 return 1;
2050 }
2051
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2052 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2053 {
2054 u32 ecx = kvm_rcx_read(vcpu);
2055 u64 data;
2056 int r;
2057
2058 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2059
2060 if (!r) {
2061 trace_kvm_msr_read(ecx, data);
2062
2063 kvm_rax_write(vcpu, data & -1u);
2064 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2065 } else {
2066 /* MSR read failed? See if we should ask user space */
2067 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2068 complete_fast_rdmsr, r))
2069 return 0;
2070 trace_kvm_msr_read_ex(ecx);
2071 }
2072
2073 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2074 }
2075 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2076
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2077 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2078 {
2079 u32 ecx = kvm_rcx_read(vcpu);
2080 u64 data = kvm_read_edx_eax(vcpu);
2081 int r;
2082
2083 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2084
2085 if (!r) {
2086 trace_kvm_msr_write(ecx, data);
2087 } else {
2088 /* MSR write failed? See if we should ask user space */
2089 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2090 complete_fast_msr_access, r))
2091 return 0;
2092 /* Signal all other negative errors to userspace */
2093 if (r < 0)
2094 return r;
2095 trace_kvm_msr_write_ex(ecx, data);
2096 }
2097
2098 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2101
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2102 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2103 {
2104 return kvm_skip_emulated_instruction(vcpu);
2105 }
2106
kvm_emulate_invd(struct kvm_vcpu * vcpu)2107 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2108 {
2109 /* Treat an INVD instruction as a NOP and just skip it. */
2110 return kvm_emulate_as_nop(vcpu);
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2113
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2114 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2115 {
2116 kvm_queue_exception(vcpu, UD_VECTOR);
2117 return 1;
2118 }
2119 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2120
2121
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2122 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2123 {
2124 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2125 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2126 return kvm_handle_invalid_op(vcpu);
2127
2128 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2129 return kvm_emulate_as_nop(vcpu);
2130 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2131 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2132 {
2133 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2136
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2138 {
2139 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2140 }
2141 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2142
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2143 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2144 {
2145 xfer_to_guest_mode_prepare();
2146 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2147 xfer_to_guest_mode_work_pending();
2148 }
2149
2150 /*
2151 * The fast path for frequent and performance sensitive wrmsr emulation,
2152 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2153 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2154 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2155 * other cases which must be called after interrupts are enabled on the host.
2156 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2157 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2158 {
2159 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2160 return 1;
2161
2162 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2163 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2164 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2165 ((u32)(data >> 32) != X2APIC_BROADCAST))
2166 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2167
2168 return 1;
2169 }
2170
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2171 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2172 {
2173 if (!kvm_can_use_hv_timer(vcpu))
2174 return 1;
2175
2176 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2177 return 0;
2178 }
2179
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2180 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2181 {
2182 u32 msr = kvm_rcx_read(vcpu);
2183 u64 data;
2184 fastpath_t ret = EXIT_FASTPATH_NONE;
2185
2186 kvm_vcpu_srcu_read_lock(vcpu);
2187
2188 switch (msr) {
2189 case APIC_BASE_MSR + (APIC_ICR >> 4):
2190 data = kvm_read_edx_eax(vcpu);
2191 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2192 kvm_skip_emulated_instruction(vcpu);
2193 ret = EXIT_FASTPATH_EXIT_HANDLED;
2194 }
2195 break;
2196 case MSR_IA32_TSC_DEADLINE:
2197 data = kvm_read_edx_eax(vcpu);
2198 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2199 kvm_skip_emulated_instruction(vcpu);
2200 ret = EXIT_FASTPATH_REENTER_GUEST;
2201 }
2202 break;
2203 default:
2204 break;
2205 }
2206
2207 if (ret != EXIT_FASTPATH_NONE)
2208 trace_kvm_msr_write(msr, data);
2209
2210 kvm_vcpu_srcu_read_unlock(vcpu);
2211
2212 return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2215
2216 /*
2217 * Adapt set_msr() to msr_io()'s calling convention
2218 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2219 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2220 {
2221 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2222 }
2223
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2225 {
2226 u64 val;
2227
2228 /*
2229 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2230 * not support modifying the guest vCPU model on the fly, e.g. changing
2231 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2232 * writes of the same value, e.g. to allow userspace to blindly stuff
2233 * all MSRs when emulating RESET.
2234 */
2235 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2236 if (do_get_msr(vcpu, index, &val) || *data != val)
2237 return -EINVAL;
2238
2239 return 0;
2240 }
2241
2242 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2243 }
2244
2245 #ifdef CONFIG_X86_64
2246 struct pvclock_clock {
2247 int vclock_mode;
2248 u64 cycle_last;
2249 u64 mask;
2250 u32 mult;
2251 u32 shift;
2252 u64 base_cycles;
2253 u64 offset;
2254 };
2255
2256 struct pvclock_gtod_data {
2257 seqcount_t seq;
2258
2259 struct pvclock_clock clock; /* extract of a clocksource struct */
2260 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2261
2262 ktime_t offs_boot;
2263 u64 wall_time_sec;
2264 };
2265
2266 static struct pvclock_gtod_data pvclock_gtod_data;
2267
update_pvclock_gtod(struct timekeeper * tk)2268 static void update_pvclock_gtod(struct timekeeper *tk)
2269 {
2270 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2271
2272 write_seqcount_begin(&vdata->seq);
2273
2274 /* copy pvclock gtod data */
2275 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2276 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2277 vdata->clock.mask = tk->tkr_mono.mask;
2278 vdata->clock.mult = tk->tkr_mono.mult;
2279 vdata->clock.shift = tk->tkr_mono.shift;
2280 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2281 vdata->clock.offset = tk->tkr_mono.base;
2282
2283 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2284 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2285 vdata->raw_clock.mask = tk->tkr_raw.mask;
2286 vdata->raw_clock.mult = tk->tkr_raw.mult;
2287 vdata->raw_clock.shift = tk->tkr_raw.shift;
2288 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2289 vdata->raw_clock.offset = tk->tkr_raw.base;
2290
2291 vdata->wall_time_sec = tk->xtime_sec;
2292
2293 vdata->offs_boot = tk->offs_boot;
2294
2295 write_seqcount_end(&vdata->seq);
2296 }
2297
get_kvmclock_base_ns(void)2298 static s64 get_kvmclock_base_ns(void)
2299 {
2300 /* Count up from boot time, but with the frequency of the raw clock. */
2301 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2302 }
2303 #else
get_kvmclock_base_ns(void)2304 static s64 get_kvmclock_base_ns(void)
2305 {
2306 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2307 return ktime_get_boottime_ns();
2308 }
2309 #endif
2310
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2311 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2312 {
2313 int version;
2314 int r;
2315 struct pvclock_wall_clock wc;
2316 u32 wc_sec_hi;
2317 u64 wall_nsec;
2318
2319 if (!wall_clock)
2320 return;
2321
2322 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2323 if (r)
2324 return;
2325
2326 if (version & 1)
2327 ++version; /* first time write, random junk */
2328
2329 ++version;
2330
2331 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2332 return;
2333
2334 /*
2335 * The guest calculates current wall clock time by adding
2336 * system time (updated by kvm_guest_time_update below) to the
2337 * wall clock specified here. We do the reverse here.
2338 */
2339 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2340
2341 wc.nsec = do_div(wall_nsec, 1000000000);
2342 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2343 wc.version = version;
2344
2345 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2346
2347 if (sec_hi_ofs) {
2348 wc_sec_hi = wall_nsec >> 32;
2349 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2350 &wc_sec_hi, sizeof(wc_sec_hi));
2351 }
2352
2353 version++;
2354 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2355 }
2356
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2357 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2358 bool old_msr, bool host_initiated)
2359 {
2360 struct kvm_arch *ka = &vcpu->kvm->arch;
2361
2362 if (vcpu->vcpu_id == 0 && !host_initiated) {
2363 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2364 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2365
2366 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2367 }
2368
2369 vcpu->arch.time = system_time;
2370 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2371
2372 /* we verify if the enable bit is set... */
2373 if (system_time & 1)
2374 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2375 sizeof(struct pvclock_vcpu_time_info));
2376 else
2377 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2378
2379 return;
2380 }
2381
div_frac(uint32_t dividend,uint32_t divisor)2382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2383 {
2384 do_shl32_div32(dividend, divisor);
2385 return dividend;
2386 }
2387
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2389 s8 *pshift, u32 *pmultiplier)
2390 {
2391 uint64_t scaled64;
2392 int32_t shift = 0;
2393 uint64_t tps64;
2394 uint32_t tps32;
2395
2396 tps64 = base_hz;
2397 scaled64 = scaled_hz;
2398 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2399 tps64 >>= 1;
2400 shift--;
2401 }
2402
2403 tps32 = (uint32_t)tps64;
2404 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2405 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2406 scaled64 >>= 1;
2407 else
2408 tps32 <<= 1;
2409 shift++;
2410 }
2411
2412 *pshift = shift;
2413 *pmultiplier = div_frac(scaled64, tps32);
2414 }
2415
2416 #ifdef CONFIG_X86_64
2417 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2418 #endif
2419
2420 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2421 static unsigned long max_tsc_khz;
2422
adjust_tsc_khz(u32 khz,s32 ppm)2423 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2424 {
2425 u64 v = (u64)khz * (1000000 + ppm);
2426 do_div(v, 1000000);
2427 return v;
2428 }
2429
2430 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2431
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2432 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2433 {
2434 u64 ratio;
2435
2436 /* Guest TSC same frequency as host TSC? */
2437 if (!scale) {
2438 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2439 return 0;
2440 }
2441
2442 /* TSC scaling supported? */
2443 if (!kvm_caps.has_tsc_control) {
2444 if (user_tsc_khz > tsc_khz) {
2445 vcpu->arch.tsc_catchup = 1;
2446 vcpu->arch.tsc_always_catchup = 1;
2447 return 0;
2448 } else {
2449 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2450 return -1;
2451 }
2452 }
2453
2454 /* TSC scaling required - calculate ratio */
2455 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2456 user_tsc_khz, tsc_khz);
2457
2458 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2459 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2460 user_tsc_khz);
2461 return -1;
2462 }
2463
2464 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2465 return 0;
2466 }
2467
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2468 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2469 {
2470 u32 thresh_lo, thresh_hi;
2471 int use_scaling = 0;
2472
2473 /* tsc_khz can be zero if TSC calibration fails */
2474 if (user_tsc_khz == 0) {
2475 /* set tsc_scaling_ratio to a safe value */
2476 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2477 return -1;
2478 }
2479
2480 /* Compute a scale to convert nanoseconds in TSC cycles */
2481 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2482 &vcpu->arch.virtual_tsc_shift,
2483 &vcpu->arch.virtual_tsc_mult);
2484 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2485
2486 /*
2487 * Compute the variation in TSC rate which is acceptable
2488 * within the range of tolerance and decide if the
2489 * rate being applied is within that bounds of the hardware
2490 * rate. If so, no scaling or compensation need be done.
2491 */
2492 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2493 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2494 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2495 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2496 user_tsc_khz, thresh_lo, thresh_hi);
2497 use_scaling = 1;
2498 }
2499 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2500 }
2501
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2503 {
2504 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2505 vcpu->arch.virtual_tsc_mult,
2506 vcpu->arch.virtual_tsc_shift);
2507 tsc += vcpu->arch.this_tsc_write;
2508 return tsc;
2509 }
2510
2511 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2512 static inline int gtod_is_based_on_tsc(int mode)
2513 {
2514 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2515 }
2516 #endif
2517
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2518 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2519 {
2520 #ifdef CONFIG_X86_64
2521 bool vcpus_matched;
2522 struct kvm_arch *ka = &vcpu->kvm->arch;
2523 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2524
2525 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2526 atomic_read(&vcpu->kvm->online_vcpus));
2527
2528 /*
2529 * Once the masterclock is enabled, always perform request in
2530 * order to update it.
2531 *
2532 * In order to enable masterclock, the host clocksource must be TSC
2533 * and the vcpus need to have matched TSCs. When that happens,
2534 * perform request to enable masterclock.
2535 */
2536 if (ka->use_master_clock ||
2537 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2538 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2539
2540 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2541 atomic_read(&vcpu->kvm->online_vcpus),
2542 ka->use_master_clock, gtod->clock.vclock_mode);
2543 #endif
2544 }
2545
2546 /*
2547 * Multiply tsc by a fixed point number represented by ratio.
2548 *
2549 * The most significant 64-N bits (mult) of ratio represent the
2550 * integral part of the fixed point number; the remaining N bits
2551 * (frac) represent the fractional part, ie. ratio represents a fixed
2552 * point number (mult + frac * 2^(-N)).
2553 *
2554 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2555 */
__scale_tsc(u64 ratio,u64 tsc)2556 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2557 {
2558 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2559 }
2560
kvm_scale_tsc(u64 tsc,u64 ratio)2561 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2562 {
2563 u64 _tsc = tsc;
2564
2565 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2566 _tsc = __scale_tsc(ratio, tsc);
2567
2568 return _tsc;
2569 }
2570
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2571 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2572 {
2573 u64 tsc;
2574
2575 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2576
2577 return target_tsc - tsc;
2578 }
2579
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2580 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2581 {
2582 return vcpu->arch.l1_tsc_offset +
2583 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2584 }
2585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2586
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2587 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2588 {
2589 u64 nested_offset;
2590
2591 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2592 nested_offset = l1_offset;
2593 else
2594 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2595 kvm_caps.tsc_scaling_ratio_frac_bits);
2596
2597 nested_offset += l2_offset;
2598 return nested_offset;
2599 }
2600 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2601
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2602 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2603 {
2604 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2605 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2606 kvm_caps.tsc_scaling_ratio_frac_bits);
2607
2608 return l1_multiplier;
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2611
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2612 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2613 {
2614 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2615 vcpu->arch.l1_tsc_offset,
2616 l1_offset);
2617
2618 vcpu->arch.l1_tsc_offset = l1_offset;
2619
2620 /*
2621 * If we are here because L1 chose not to trap WRMSR to TSC then
2622 * according to the spec this should set L1's TSC (as opposed to
2623 * setting L1's offset for L2).
2624 */
2625 if (is_guest_mode(vcpu))
2626 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2627 l1_offset,
2628 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2629 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2630 else
2631 vcpu->arch.tsc_offset = l1_offset;
2632
2633 static_call(kvm_x86_write_tsc_offset)(vcpu);
2634 }
2635
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2636 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2637 {
2638 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2639
2640 /* Userspace is changing the multiplier while L2 is active */
2641 if (is_guest_mode(vcpu))
2642 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2643 l1_multiplier,
2644 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2645 else
2646 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2647
2648 if (kvm_caps.has_tsc_control)
2649 static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2650 }
2651
kvm_check_tsc_unstable(void)2652 static inline bool kvm_check_tsc_unstable(void)
2653 {
2654 #ifdef CONFIG_X86_64
2655 /*
2656 * TSC is marked unstable when we're running on Hyper-V,
2657 * 'TSC page' clocksource is good.
2658 */
2659 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2660 return false;
2661 #endif
2662 return check_tsc_unstable();
2663 }
2664
2665 /*
2666 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2667 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2668 * participates in.
2669 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2670 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2671 u64 ns, bool matched)
2672 {
2673 struct kvm *kvm = vcpu->kvm;
2674
2675 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2676
2677 /*
2678 * We also track th most recent recorded KHZ, write and time to
2679 * allow the matching interval to be extended at each write.
2680 */
2681 kvm->arch.last_tsc_nsec = ns;
2682 kvm->arch.last_tsc_write = tsc;
2683 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2684 kvm->arch.last_tsc_offset = offset;
2685
2686 vcpu->arch.last_guest_tsc = tsc;
2687
2688 kvm_vcpu_write_tsc_offset(vcpu, offset);
2689
2690 if (!matched) {
2691 /*
2692 * We split periods of matched TSC writes into generations.
2693 * For each generation, we track the original measured
2694 * nanosecond time, offset, and write, so if TSCs are in
2695 * sync, we can match exact offset, and if not, we can match
2696 * exact software computation in compute_guest_tsc()
2697 *
2698 * These values are tracked in kvm->arch.cur_xxx variables.
2699 */
2700 kvm->arch.cur_tsc_generation++;
2701 kvm->arch.cur_tsc_nsec = ns;
2702 kvm->arch.cur_tsc_write = tsc;
2703 kvm->arch.cur_tsc_offset = offset;
2704 kvm->arch.nr_vcpus_matched_tsc = 0;
2705 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2706 kvm->arch.nr_vcpus_matched_tsc++;
2707 }
2708
2709 /* Keep track of which generation this VCPU has synchronized to */
2710 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2711 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2712 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2713
2714 kvm_track_tsc_matching(vcpu);
2715 }
2716
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2717 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2718 {
2719 struct kvm *kvm = vcpu->kvm;
2720 u64 offset, ns, elapsed;
2721 unsigned long flags;
2722 bool matched = false;
2723 bool synchronizing = false;
2724
2725 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2726 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2727 ns = get_kvmclock_base_ns();
2728 elapsed = ns - kvm->arch.last_tsc_nsec;
2729
2730 if (vcpu->arch.virtual_tsc_khz) {
2731 if (data == 0) {
2732 /*
2733 * detection of vcpu initialization -- need to sync
2734 * with other vCPUs. This particularly helps to keep
2735 * kvm_clock stable after CPU hotplug
2736 */
2737 synchronizing = true;
2738 } else {
2739 u64 tsc_exp = kvm->arch.last_tsc_write +
2740 nsec_to_cycles(vcpu, elapsed);
2741 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2742 /*
2743 * Special case: TSC write with a small delta (1 second)
2744 * of virtual cycle time against real time is
2745 * interpreted as an attempt to synchronize the CPU.
2746 */
2747 synchronizing = data < tsc_exp + tsc_hz &&
2748 data + tsc_hz > tsc_exp;
2749 }
2750 }
2751
2752 /*
2753 * For a reliable TSC, we can match TSC offsets, and for an unstable
2754 * TSC, we add elapsed time in this computation. We could let the
2755 * compensation code attempt to catch up if we fall behind, but
2756 * it's better to try to match offsets from the beginning.
2757 */
2758 if (synchronizing &&
2759 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2760 if (!kvm_check_tsc_unstable()) {
2761 offset = kvm->arch.cur_tsc_offset;
2762 } else {
2763 u64 delta = nsec_to_cycles(vcpu, elapsed);
2764 data += delta;
2765 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2766 }
2767 matched = true;
2768 }
2769
2770 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2771 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2772 }
2773
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2774 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2775 s64 adjustment)
2776 {
2777 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2778 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2779 }
2780
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2781 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2782 {
2783 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2784 WARN_ON(adjustment < 0);
2785 adjustment = kvm_scale_tsc((u64) adjustment,
2786 vcpu->arch.l1_tsc_scaling_ratio);
2787 adjust_tsc_offset_guest(vcpu, adjustment);
2788 }
2789
2790 #ifdef CONFIG_X86_64
2791
read_tsc(void)2792 static u64 read_tsc(void)
2793 {
2794 u64 ret = (u64)rdtsc_ordered();
2795 u64 last = pvclock_gtod_data.clock.cycle_last;
2796
2797 if (likely(ret >= last))
2798 return ret;
2799
2800 /*
2801 * GCC likes to generate cmov here, but this branch is extremely
2802 * predictable (it's just a function of time and the likely is
2803 * very likely) and there's a data dependence, so force GCC
2804 * to generate a branch instead. I don't barrier() because
2805 * we don't actually need a barrier, and if this function
2806 * ever gets inlined it will generate worse code.
2807 */
2808 asm volatile ("");
2809 return last;
2810 }
2811
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2812 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2813 int *mode)
2814 {
2815 u64 tsc_pg_val;
2816 long v;
2817
2818 switch (clock->vclock_mode) {
2819 case VDSO_CLOCKMODE_HVCLOCK:
2820 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2821 tsc_timestamp, &tsc_pg_val)) {
2822 /* TSC page valid */
2823 *mode = VDSO_CLOCKMODE_HVCLOCK;
2824 v = (tsc_pg_val - clock->cycle_last) &
2825 clock->mask;
2826 } else {
2827 /* TSC page invalid */
2828 *mode = VDSO_CLOCKMODE_NONE;
2829 }
2830 break;
2831 case VDSO_CLOCKMODE_TSC:
2832 *mode = VDSO_CLOCKMODE_TSC;
2833 *tsc_timestamp = read_tsc();
2834 v = (*tsc_timestamp - clock->cycle_last) &
2835 clock->mask;
2836 break;
2837 default:
2838 *mode = VDSO_CLOCKMODE_NONE;
2839 }
2840
2841 if (*mode == VDSO_CLOCKMODE_NONE)
2842 *tsc_timestamp = v = 0;
2843
2844 return v * clock->mult;
2845 }
2846
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2847 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2848 {
2849 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2850 unsigned long seq;
2851 int mode;
2852 u64 ns;
2853
2854 do {
2855 seq = read_seqcount_begin(>od->seq);
2856 ns = gtod->raw_clock.base_cycles;
2857 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2858 ns >>= gtod->raw_clock.shift;
2859 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2860 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2861 *t = ns;
2862
2863 return mode;
2864 }
2865
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2866 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2867 {
2868 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2869 unsigned long seq;
2870 int mode;
2871 u64 ns;
2872
2873 do {
2874 seq = read_seqcount_begin(>od->seq);
2875 ts->tv_sec = gtod->wall_time_sec;
2876 ns = gtod->clock.base_cycles;
2877 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2878 ns >>= gtod->clock.shift;
2879 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2880
2881 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2882 ts->tv_nsec = ns;
2883
2884 return mode;
2885 }
2886
2887 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2888 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2889 {
2890 /* checked again under seqlock below */
2891 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2892 return false;
2893
2894 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2895 tsc_timestamp));
2896 }
2897
2898 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2899 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2900 u64 *tsc_timestamp)
2901 {
2902 /* checked again under seqlock below */
2903 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2904 return false;
2905
2906 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2907 }
2908 #endif
2909
2910 /*
2911 *
2912 * Assuming a stable TSC across physical CPUS, and a stable TSC
2913 * across virtual CPUs, the following condition is possible.
2914 * Each numbered line represents an event visible to both
2915 * CPUs at the next numbered event.
2916 *
2917 * "timespecX" represents host monotonic time. "tscX" represents
2918 * RDTSC value.
2919 *
2920 * VCPU0 on CPU0 | VCPU1 on CPU1
2921 *
2922 * 1. read timespec0,tsc0
2923 * 2. | timespec1 = timespec0 + N
2924 * | tsc1 = tsc0 + M
2925 * 3. transition to guest | transition to guest
2926 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2927 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2928 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2929 *
2930 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2931 *
2932 * - ret0 < ret1
2933 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2934 * ...
2935 * - 0 < N - M => M < N
2936 *
2937 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2938 * always the case (the difference between two distinct xtime instances
2939 * might be smaller then the difference between corresponding TSC reads,
2940 * when updating guest vcpus pvclock areas).
2941 *
2942 * To avoid that problem, do not allow visibility of distinct
2943 * system_timestamp/tsc_timestamp values simultaneously: use a master
2944 * copy of host monotonic time values. Update that master copy
2945 * in lockstep.
2946 *
2947 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2948 *
2949 */
2950
pvclock_update_vm_gtod_copy(struct kvm * kvm)2951 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2952 {
2953 #ifdef CONFIG_X86_64
2954 struct kvm_arch *ka = &kvm->arch;
2955 int vclock_mode;
2956 bool host_tsc_clocksource, vcpus_matched;
2957
2958 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2959 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2960 atomic_read(&kvm->online_vcpus));
2961
2962 /*
2963 * If the host uses TSC clock, then passthrough TSC as stable
2964 * to the guest.
2965 */
2966 host_tsc_clocksource = kvm_get_time_and_clockread(
2967 &ka->master_kernel_ns,
2968 &ka->master_cycle_now);
2969
2970 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2971 && !ka->backwards_tsc_observed
2972 && !ka->boot_vcpu_runs_old_kvmclock;
2973
2974 if (ka->use_master_clock)
2975 atomic_set(&kvm_guest_has_master_clock, 1);
2976
2977 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2978 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2979 vcpus_matched);
2980 #endif
2981 }
2982
kvm_make_mclock_inprogress_request(struct kvm * kvm)2983 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2984 {
2985 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2986 }
2987
__kvm_start_pvclock_update(struct kvm * kvm)2988 static void __kvm_start_pvclock_update(struct kvm *kvm)
2989 {
2990 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2991 write_seqcount_begin(&kvm->arch.pvclock_sc);
2992 }
2993
kvm_start_pvclock_update(struct kvm * kvm)2994 static void kvm_start_pvclock_update(struct kvm *kvm)
2995 {
2996 kvm_make_mclock_inprogress_request(kvm);
2997
2998 /* no guest entries from this point */
2999 __kvm_start_pvclock_update(kvm);
3000 }
3001
kvm_end_pvclock_update(struct kvm * kvm)3002 static void kvm_end_pvclock_update(struct kvm *kvm)
3003 {
3004 struct kvm_arch *ka = &kvm->arch;
3005 struct kvm_vcpu *vcpu;
3006 unsigned long i;
3007
3008 write_seqcount_end(&ka->pvclock_sc);
3009 raw_spin_unlock_irq(&ka->tsc_write_lock);
3010 kvm_for_each_vcpu(i, vcpu, kvm)
3011 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3012
3013 /* guest entries allowed */
3014 kvm_for_each_vcpu(i, vcpu, kvm)
3015 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3016 }
3017
kvm_update_masterclock(struct kvm * kvm)3018 static void kvm_update_masterclock(struct kvm *kvm)
3019 {
3020 kvm_hv_request_tsc_page_update(kvm);
3021 kvm_start_pvclock_update(kvm);
3022 pvclock_update_vm_gtod_copy(kvm);
3023 kvm_end_pvclock_update(kvm);
3024 }
3025
3026 /*
3027 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3028 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3029 * can change during boot even if the TSC is constant, as it's possible for KVM
3030 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3031 * notification when calibration completes, but practically speaking calibration
3032 * will complete before userspace is alive enough to create VMs.
3033 */
get_cpu_tsc_khz(void)3034 static unsigned long get_cpu_tsc_khz(void)
3035 {
3036 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3037 return tsc_khz;
3038 else
3039 return __this_cpu_read(cpu_tsc_khz);
3040 }
3041
3042 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3043 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3044 {
3045 struct kvm_arch *ka = &kvm->arch;
3046 struct pvclock_vcpu_time_info hv_clock;
3047
3048 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3049 get_cpu();
3050
3051 data->flags = 0;
3052 if (ka->use_master_clock &&
3053 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3054 #ifdef CONFIG_X86_64
3055 struct timespec64 ts;
3056
3057 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3058 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3059 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3060 } else
3061 #endif
3062 data->host_tsc = rdtsc();
3063
3064 data->flags |= KVM_CLOCK_TSC_STABLE;
3065 hv_clock.tsc_timestamp = ka->master_cycle_now;
3066 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3067 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3068 &hv_clock.tsc_shift,
3069 &hv_clock.tsc_to_system_mul);
3070 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3071 } else {
3072 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3073 }
3074
3075 put_cpu();
3076 }
3077
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3078 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3079 {
3080 struct kvm_arch *ka = &kvm->arch;
3081 unsigned seq;
3082
3083 do {
3084 seq = read_seqcount_begin(&ka->pvclock_sc);
3085 __get_kvmclock(kvm, data);
3086 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3087 }
3088
get_kvmclock_ns(struct kvm * kvm)3089 u64 get_kvmclock_ns(struct kvm *kvm)
3090 {
3091 struct kvm_clock_data data;
3092
3093 get_kvmclock(kvm, &data);
3094 return data.clock;
3095 }
3096
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset)3097 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3098 struct gfn_to_pfn_cache *gpc,
3099 unsigned int offset)
3100 {
3101 struct kvm_vcpu_arch *vcpu = &v->arch;
3102 struct pvclock_vcpu_time_info *guest_hv_clock;
3103 unsigned long flags;
3104
3105 read_lock_irqsave(&gpc->lock, flags);
3106 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3107 read_unlock_irqrestore(&gpc->lock, flags);
3108
3109 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3110 return;
3111
3112 read_lock_irqsave(&gpc->lock, flags);
3113 }
3114
3115 guest_hv_clock = (void *)(gpc->khva + offset);
3116
3117 /*
3118 * This VCPU is paused, but it's legal for a guest to read another
3119 * VCPU's kvmclock, so we really have to follow the specification where
3120 * it says that version is odd if data is being modified, and even after
3121 * it is consistent.
3122 */
3123
3124 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3125 smp_wmb();
3126
3127 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3128 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3129
3130 if (vcpu->pvclock_set_guest_stopped_request) {
3131 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3132 vcpu->pvclock_set_guest_stopped_request = false;
3133 }
3134
3135 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3136 smp_wmb();
3137
3138 guest_hv_clock->version = ++vcpu->hv_clock.version;
3139
3140 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3141 read_unlock_irqrestore(&gpc->lock, flags);
3142
3143 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3144 }
3145
kvm_guest_time_update(struct kvm_vcpu * v)3146 static int kvm_guest_time_update(struct kvm_vcpu *v)
3147 {
3148 unsigned long flags, tgt_tsc_khz;
3149 unsigned seq;
3150 struct kvm_vcpu_arch *vcpu = &v->arch;
3151 struct kvm_arch *ka = &v->kvm->arch;
3152 s64 kernel_ns;
3153 u64 tsc_timestamp, host_tsc;
3154 u8 pvclock_flags;
3155 bool use_master_clock;
3156
3157 kernel_ns = 0;
3158 host_tsc = 0;
3159
3160 /*
3161 * If the host uses TSC clock, then passthrough TSC as stable
3162 * to the guest.
3163 */
3164 do {
3165 seq = read_seqcount_begin(&ka->pvclock_sc);
3166 use_master_clock = ka->use_master_clock;
3167 if (use_master_clock) {
3168 host_tsc = ka->master_cycle_now;
3169 kernel_ns = ka->master_kernel_ns;
3170 }
3171 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3172
3173 /* Keep irq disabled to prevent changes to the clock */
3174 local_irq_save(flags);
3175 tgt_tsc_khz = get_cpu_tsc_khz();
3176 if (unlikely(tgt_tsc_khz == 0)) {
3177 local_irq_restore(flags);
3178 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3179 return 1;
3180 }
3181 if (!use_master_clock) {
3182 host_tsc = rdtsc();
3183 kernel_ns = get_kvmclock_base_ns();
3184 }
3185
3186 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3187
3188 /*
3189 * We may have to catch up the TSC to match elapsed wall clock
3190 * time for two reasons, even if kvmclock is used.
3191 * 1) CPU could have been running below the maximum TSC rate
3192 * 2) Broken TSC compensation resets the base at each VCPU
3193 * entry to avoid unknown leaps of TSC even when running
3194 * again on the same CPU. This may cause apparent elapsed
3195 * time to disappear, and the guest to stand still or run
3196 * very slowly.
3197 */
3198 if (vcpu->tsc_catchup) {
3199 u64 tsc = compute_guest_tsc(v, kernel_ns);
3200 if (tsc > tsc_timestamp) {
3201 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3202 tsc_timestamp = tsc;
3203 }
3204 }
3205
3206 local_irq_restore(flags);
3207
3208 /* With all the info we got, fill in the values */
3209
3210 if (kvm_caps.has_tsc_control)
3211 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3212 v->arch.l1_tsc_scaling_ratio);
3213
3214 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3215 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3216 &vcpu->hv_clock.tsc_shift,
3217 &vcpu->hv_clock.tsc_to_system_mul);
3218 vcpu->hw_tsc_khz = tgt_tsc_khz;
3219 kvm_xen_update_tsc_info(v);
3220 }
3221
3222 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3223 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3224 vcpu->last_guest_tsc = tsc_timestamp;
3225
3226 /* If the host uses TSC clocksource, then it is stable */
3227 pvclock_flags = 0;
3228 if (use_master_clock)
3229 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3230
3231 vcpu->hv_clock.flags = pvclock_flags;
3232
3233 if (vcpu->pv_time.active)
3234 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3235 if (vcpu->xen.vcpu_info_cache.active)
3236 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3237 offsetof(struct compat_vcpu_info, time));
3238 if (vcpu->xen.vcpu_time_info_cache.active)
3239 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3240 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3241 return 0;
3242 }
3243
3244 /*
3245 * kvmclock updates which are isolated to a given vcpu, such as
3246 * vcpu->cpu migration, should not allow system_timestamp from
3247 * the rest of the vcpus to remain static. Otherwise ntp frequency
3248 * correction applies to one vcpu's system_timestamp but not
3249 * the others.
3250 *
3251 * So in those cases, request a kvmclock update for all vcpus.
3252 * We need to rate-limit these requests though, as they can
3253 * considerably slow guests that have a large number of vcpus.
3254 * The time for a remote vcpu to update its kvmclock is bound
3255 * by the delay we use to rate-limit the updates.
3256 */
3257
3258 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3259
kvmclock_update_fn(struct work_struct * work)3260 static void kvmclock_update_fn(struct work_struct *work)
3261 {
3262 unsigned long i;
3263 struct delayed_work *dwork = to_delayed_work(work);
3264 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3265 kvmclock_update_work);
3266 struct kvm *kvm = container_of(ka, struct kvm, arch);
3267 struct kvm_vcpu *vcpu;
3268
3269 kvm_for_each_vcpu(i, vcpu, kvm) {
3270 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3271 kvm_vcpu_kick(vcpu);
3272 }
3273 }
3274
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3275 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3276 {
3277 struct kvm *kvm = v->kvm;
3278
3279 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3280 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3281 KVMCLOCK_UPDATE_DELAY);
3282 }
3283
3284 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3285
kvmclock_sync_fn(struct work_struct * work)3286 static void kvmclock_sync_fn(struct work_struct *work)
3287 {
3288 struct delayed_work *dwork = to_delayed_work(work);
3289 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3290 kvmclock_sync_work);
3291 struct kvm *kvm = container_of(ka, struct kvm, arch);
3292
3293 if (!kvmclock_periodic_sync)
3294 return;
3295
3296 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3297 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3298 KVMCLOCK_SYNC_PERIOD);
3299 }
3300
3301 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3302 static bool is_mci_control_msr(u32 msr)
3303 {
3304 return (msr & 3) == 0;
3305 }
is_mci_status_msr(u32 msr)3306 static bool is_mci_status_msr(u32 msr)
3307 {
3308 return (msr & 3) == 1;
3309 }
3310
3311 /*
3312 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3313 */
can_set_mci_status(struct kvm_vcpu * vcpu)3314 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3315 {
3316 /* McStatusWrEn enabled? */
3317 if (guest_cpuid_is_amd_or_hygon(vcpu))
3318 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3319
3320 return false;
3321 }
3322
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3323 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3324 {
3325 u64 mcg_cap = vcpu->arch.mcg_cap;
3326 unsigned bank_num = mcg_cap & 0xff;
3327 u32 msr = msr_info->index;
3328 u64 data = msr_info->data;
3329 u32 offset, last_msr;
3330
3331 switch (msr) {
3332 case MSR_IA32_MCG_STATUS:
3333 vcpu->arch.mcg_status = data;
3334 break;
3335 case MSR_IA32_MCG_CTL:
3336 if (!(mcg_cap & MCG_CTL_P) &&
3337 (data || !msr_info->host_initiated))
3338 return 1;
3339 if (data != 0 && data != ~(u64)0)
3340 return 1;
3341 vcpu->arch.mcg_ctl = data;
3342 break;
3343 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3344 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3345 if (msr > last_msr)
3346 return 1;
3347
3348 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3349 return 1;
3350 /* An attempt to write a 1 to a reserved bit raises #GP */
3351 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3352 return 1;
3353 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3354 last_msr + 1 - MSR_IA32_MC0_CTL2);
3355 vcpu->arch.mci_ctl2_banks[offset] = data;
3356 break;
3357 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3358 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3359 if (msr > last_msr)
3360 return 1;
3361
3362 /*
3363 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3364 * values are architecturally undefined. But, some Linux
3365 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3366 * issue on AMD K8s, allow bit 10 to be clear when setting all
3367 * other bits in order to avoid an uncaught #GP in the guest.
3368 *
3369 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3370 * single-bit ECC data errors.
3371 */
3372 if (is_mci_control_msr(msr) &&
3373 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3374 return 1;
3375
3376 /*
3377 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3378 * AMD-based CPUs allow non-zero values, but if and only if
3379 * HWCR[McStatusWrEn] is set.
3380 */
3381 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3382 data != 0 && !can_set_mci_status(vcpu))
3383 return 1;
3384
3385 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3386 last_msr + 1 - MSR_IA32_MC0_CTL);
3387 vcpu->arch.mce_banks[offset] = data;
3388 break;
3389 default:
3390 return 1;
3391 }
3392 return 0;
3393 }
3394
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3395 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3396 {
3397 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3398
3399 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3400 }
3401
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3402 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3403 {
3404 gpa_t gpa = data & ~0x3f;
3405
3406 /* Bits 4:5 are reserved, Should be zero */
3407 if (data & 0x30)
3408 return 1;
3409
3410 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3411 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3412 return 1;
3413
3414 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3415 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3416 return 1;
3417
3418 if (!lapic_in_kernel(vcpu))
3419 return data ? 1 : 0;
3420
3421 vcpu->arch.apf.msr_en_val = data;
3422
3423 if (!kvm_pv_async_pf_enabled(vcpu)) {
3424 kvm_clear_async_pf_completion_queue(vcpu);
3425 kvm_async_pf_hash_reset(vcpu);
3426 return 0;
3427 }
3428
3429 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3430 sizeof(u64)))
3431 return 1;
3432
3433 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3434 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3435
3436 kvm_async_pf_wakeup_all(vcpu);
3437
3438 return 0;
3439 }
3440
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3441 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3442 {
3443 /* Bits 8-63 are reserved */
3444 if (data >> 8)
3445 return 1;
3446
3447 if (!lapic_in_kernel(vcpu))
3448 return 1;
3449
3450 vcpu->arch.apf.msr_int_val = data;
3451
3452 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3453
3454 return 0;
3455 }
3456
kvmclock_reset(struct kvm_vcpu * vcpu)3457 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3458 {
3459 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3460 vcpu->arch.time = 0;
3461 }
3462
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3463 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3464 {
3465 ++vcpu->stat.tlb_flush;
3466 static_call(kvm_x86_flush_tlb_all)(vcpu);
3467
3468 /* Flushing all ASIDs flushes the current ASID... */
3469 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3470 }
3471
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3472 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3473 {
3474 ++vcpu->stat.tlb_flush;
3475
3476 if (!tdp_enabled) {
3477 /*
3478 * A TLB flush on behalf of the guest is equivalent to
3479 * INVPCID(all), toggling CR4.PGE, etc., which requires
3480 * a forced sync of the shadow page tables. Ensure all the
3481 * roots are synced and the guest TLB in hardware is clean.
3482 */
3483 kvm_mmu_sync_roots(vcpu);
3484 kvm_mmu_sync_prev_roots(vcpu);
3485 }
3486
3487 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3488
3489 /*
3490 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3491 * grained flushing.
3492 */
3493 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3494 }
3495
3496
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3497 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3498 {
3499 ++vcpu->stat.tlb_flush;
3500 static_call(kvm_x86_flush_tlb_current)(vcpu);
3501 }
3502
3503 /*
3504 * Service "local" TLB flush requests, which are specific to the current MMU
3505 * context. In addition to the generic event handling in vcpu_enter_guest(),
3506 * TLB flushes that are targeted at an MMU context also need to be serviced
3507 * prior before nested VM-Enter/VM-Exit.
3508 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3509 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3510 {
3511 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3512 kvm_vcpu_flush_tlb_current(vcpu);
3513
3514 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3515 kvm_vcpu_flush_tlb_guest(vcpu);
3516 }
3517 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3518
record_steal_time(struct kvm_vcpu * vcpu)3519 static void record_steal_time(struct kvm_vcpu *vcpu)
3520 {
3521 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3522 struct kvm_steal_time __user *st;
3523 struct kvm_memslots *slots;
3524 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3525 u64 steal;
3526 u32 version;
3527
3528 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3529 kvm_xen_runstate_set_running(vcpu);
3530 return;
3531 }
3532
3533 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3534 return;
3535
3536 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3537 return;
3538
3539 slots = kvm_memslots(vcpu->kvm);
3540
3541 if (unlikely(slots->generation != ghc->generation ||
3542 gpa != ghc->gpa ||
3543 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3544 /* We rely on the fact that it fits in a single page. */
3545 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3546
3547 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3548 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3549 return;
3550 }
3551
3552 st = (struct kvm_steal_time __user *)ghc->hva;
3553 /*
3554 * Doing a TLB flush here, on the guest's behalf, can avoid
3555 * expensive IPIs.
3556 */
3557 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3558 u8 st_preempted = 0;
3559 int err = -EFAULT;
3560
3561 if (!user_access_begin(st, sizeof(*st)))
3562 return;
3563
3564 asm volatile("1: xchgb %0, %2\n"
3565 "xor %1, %1\n"
3566 "2:\n"
3567 _ASM_EXTABLE_UA(1b, 2b)
3568 : "+q" (st_preempted),
3569 "+&r" (err),
3570 "+m" (st->preempted));
3571 if (err)
3572 goto out;
3573
3574 user_access_end();
3575
3576 vcpu->arch.st.preempted = 0;
3577
3578 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3579 st_preempted & KVM_VCPU_FLUSH_TLB);
3580 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3581 kvm_vcpu_flush_tlb_guest(vcpu);
3582
3583 if (!user_access_begin(st, sizeof(*st)))
3584 goto dirty;
3585 } else {
3586 if (!user_access_begin(st, sizeof(*st)))
3587 return;
3588
3589 unsafe_put_user(0, &st->preempted, out);
3590 vcpu->arch.st.preempted = 0;
3591 }
3592
3593 unsafe_get_user(version, &st->version, out);
3594 if (version & 1)
3595 version += 1; /* first time write, random junk */
3596
3597 version += 1;
3598 unsafe_put_user(version, &st->version, out);
3599
3600 smp_wmb();
3601
3602 unsafe_get_user(steal, &st->steal, out);
3603 steal += current->sched_info.run_delay -
3604 vcpu->arch.st.last_steal;
3605 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3606 unsafe_put_user(steal, &st->steal, out);
3607
3608 version += 1;
3609 unsafe_put_user(version, &st->version, out);
3610
3611 out:
3612 user_access_end();
3613 dirty:
3614 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3615 }
3616
kvm_is_msr_to_save(u32 msr_index)3617 static bool kvm_is_msr_to_save(u32 msr_index)
3618 {
3619 unsigned int i;
3620
3621 for (i = 0; i < num_msrs_to_save; i++) {
3622 if (msrs_to_save[i] == msr_index)
3623 return true;
3624 }
3625
3626 return false;
3627 }
3628
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3629 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3630 {
3631 u32 msr = msr_info->index;
3632 u64 data = msr_info->data;
3633
3634 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3635 return kvm_xen_write_hypercall_page(vcpu, data);
3636
3637 switch (msr) {
3638 case MSR_AMD64_NB_CFG:
3639 case MSR_IA32_UCODE_WRITE:
3640 case MSR_VM_HSAVE_PA:
3641 case MSR_AMD64_PATCH_LOADER:
3642 case MSR_AMD64_BU_CFG2:
3643 case MSR_AMD64_DC_CFG:
3644 case MSR_AMD64_TW_CFG:
3645 case MSR_F15H_EX_CFG:
3646 break;
3647
3648 case MSR_IA32_UCODE_REV:
3649 if (msr_info->host_initiated)
3650 vcpu->arch.microcode_version = data;
3651 break;
3652 case MSR_IA32_ARCH_CAPABILITIES:
3653 if (!msr_info->host_initiated)
3654 return 1;
3655 vcpu->arch.arch_capabilities = data;
3656 break;
3657 case MSR_IA32_PERF_CAPABILITIES:
3658 if (!msr_info->host_initiated)
3659 return 1;
3660 if (data & ~kvm_caps.supported_perf_cap)
3661 return 1;
3662
3663 /*
3664 * Note, this is not just a performance optimization! KVM
3665 * disallows changing feature MSRs after the vCPU has run; PMU
3666 * refresh will bug the VM if called after the vCPU has run.
3667 */
3668 if (vcpu->arch.perf_capabilities == data)
3669 break;
3670
3671 vcpu->arch.perf_capabilities = data;
3672 kvm_pmu_refresh(vcpu);
3673 break;
3674 case MSR_IA32_PRED_CMD:
3675 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3676 return 1;
3677
3678 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3679 return 1;
3680 if (!data)
3681 break;
3682
3683 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3684 break;
3685 case MSR_IA32_FLUSH_CMD:
3686 if (!msr_info->host_initiated &&
3687 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3688 return 1;
3689
3690 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3691 return 1;
3692 if (!data)
3693 break;
3694
3695 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3696 break;
3697 case MSR_EFER:
3698 return set_efer(vcpu, msr_info);
3699 case MSR_K7_HWCR:
3700 data &= ~(u64)0x40; /* ignore flush filter disable */
3701 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3702 data &= ~(u64)0x8; /* ignore TLB cache disable */
3703
3704 /* Handle McStatusWrEn */
3705 if (data == BIT_ULL(18)) {
3706 vcpu->arch.msr_hwcr = data;
3707 } else if (data != 0) {
3708 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3709 return 1;
3710 }
3711 break;
3712 case MSR_FAM10H_MMIO_CONF_BASE:
3713 if (data != 0) {
3714 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3715 return 1;
3716 }
3717 break;
3718 case MSR_IA32_CR_PAT:
3719 if (!kvm_pat_valid(data))
3720 return 1;
3721
3722 vcpu->arch.pat = data;
3723 break;
3724 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3725 case MSR_MTRRdefType:
3726 return kvm_mtrr_set_msr(vcpu, msr, data);
3727 case MSR_IA32_APICBASE:
3728 return kvm_set_apic_base(vcpu, msr_info);
3729 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3730 return kvm_x2apic_msr_write(vcpu, msr, data);
3731 case MSR_IA32_TSC_DEADLINE:
3732 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3733 break;
3734 case MSR_IA32_TSC_ADJUST:
3735 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3736 if (!msr_info->host_initiated) {
3737 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3738 adjust_tsc_offset_guest(vcpu, adj);
3739 /* Before back to guest, tsc_timestamp must be adjusted
3740 * as well, otherwise guest's percpu pvclock time could jump.
3741 */
3742 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3743 }
3744 vcpu->arch.ia32_tsc_adjust_msr = data;
3745 }
3746 break;
3747 case MSR_IA32_MISC_ENABLE: {
3748 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3749
3750 if (!msr_info->host_initiated) {
3751 /* RO bits */
3752 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3753 return 1;
3754
3755 /* R bits, i.e. writes are ignored, but don't fault. */
3756 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3757 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3758 }
3759
3760 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3761 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3762 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3763 return 1;
3764 vcpu->arch.ia32_misc_enable_msr = data;
3765 kvm_update_cpuid_runtime(vcpu);
3766 } else {
3767 vcpu->arch.ia32_misc_enable_msr = data;
3768 }
3769 break;
3770 }
3771 case MSR_IA32_SMBASE:
3772 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3773 return 1;
3774 vcpu->arch.smbase = data;
3775 break;
3776 case MSR_IA32_POWER_CTL:
3777 vcpu->arch.msr_ia32_power_ctl = data;
3778 break;
3779 case MSR_IA32_TSC:
3780 if (msr_info->host_initiated) {
3781 kvm_synchronize_tsc(vcpu, data);
3782 } else {
3783 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3784 adjust_tsc_offset_guest(vcpu, adj);
3785 vcpu->arch.ia32_tsc_adjust_msr += adj;
3786 }
3787 break;
3788 case MSR_IA32_XSS:
3789 if (!msr_info->host_initiated &&
3790 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3791 return 1;
3792 /*
3793 * KVM supports exposing PT to the guest, but does not support
3794 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3795 * XSAVES/XRSTORS to save/restore PT MSRs.
3796 */
3797 if (data & ~kvm_caps.supported_xss)
3798 return 1;
3799 vcpu->arch.ia32_xss = data;
3800 kvm_update_cpuid_runtime(vcpu);
3801 break;
3802 case MSR_SMI_COUNT:
3803 if (!msr_info->host_initiated)
3804 return 1;
3805 vcpu->arch.smi_count = data;
3806 break;
3807 case MSR_KVM_WALL_CLOCK_NEW:
3808 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3809 return 1;
3810
3811 vcpu->kvm->arch.wall_clock = data;
3812 kvm_write_wall_clock(vcpu->kvm, data, 0);
3813 break;
3814 case MSR_KVM_WALL_CLOCK:
3815 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3816 return 1;
3817
3818 vcpu->kvm->arch.wall_clock = data;
3819 kvm_write_wall_clock(vcpu->kvm, data, 0);
3820 break;
3821 case MSR_KVM_SYSTEM_TIME_NEW:
3822 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3823 return 1;
3824
3825 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3826 break;
3827 case MSR_KVM_SYSTEM_TIME:
3828 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3829 return 1;
3830
3831 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3832 break;
3833 case MSR_KVM_ASYNC_PF_EN:
3834 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3835 return 1;
3836
3837 if (kvm_pv_enable_async_pf(vcpu, data))
3838 return 1;
3839 break;
3840 case MSR_KVM_ASYNC_PF_INT:
3841 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3842 return 1;
3843
3844 if (kvm_pv_enable_async_pf_int(vcpu, data))
3845 return 1;
3846 break;
3847 case MSR_KVM_ASYNC_PF_ACK:
3848 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3849 return 1;
3850 if (data & 0x1) {
3851 vcpu->arch.apf.pageready_pending = false;
3852 kvm_check_async_pf_completion(vcpu);
3853 }
3854 break;
3855 case MSR_KVM_STEAL_TIME:
3856 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3857 return 1;
3858
3859 if (unlikely(!sched_info_on()))
3860 return 1;
3861
3862 if (data & KVM_STEAL_RESERVED_MASK)
3863 return 1;
3864
3865 vcpu->arch.st.msr_val = data;
3866
3867 if (!(data & KVM_MSR_ENABLED))
3868 break;
3869
3870 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3871
3872 break;
3873 case MSR_KVM_PV_EOI_EN:
3874 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3875 return 1;
3876
3877 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3878 return 1;
3879 break;
3880
3881 case MSR_KVM_POLL_CONTROL:
3882 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3883 return 1;
3884
3885 /* only enable bit supported */
3886 if (data & (-1ULL << 1))
3887 return 1;
3888
3889 vcpu->arch.msr_kvm_poll_control = data;
3890 break;
3891
3892 case MSR_IA32_MCG_CTL:
3893 case MSR_IA32_MCG_STATUS:
3894 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3895 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3896 return set_msr_mce(vcpu, msr_info);
3897
3898 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3899 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3900 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3901 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3902 if (kvm_pmu_is_valid_msr(vcpu, msr))
3903 return kvm_pmu_set_msr(vcpu, msr_info);
3904
3905 if (data)
3906 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3907 break;
3908 case MSR_K7_CLK_CTL:
3909 /*
3910 * Ignore all writes to this no longer documented MSR.
3911 * Writes are only relevant for old K7 processors,
3912 * all pre-dating SVM, but a recommended workaround from
3913 * AMD for these chips. It is possible to specify the
3914 * affected processor models on the command line, hence
3915 * the need to ignore the workaround.
3916 */
3917 break;
3918 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3919 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3920 case HV_X64_MSR_SYNDBG_OPTIONS:
3921 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3922 case HV_X64_MSR_CRASH_CTL:
3923 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3924 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3925 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3926 case HV_X64_MSR_TSC_EMULATION_STATUS:
3927 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3928 return kvm_hv_set_msr_common(vcpu, msr, data,
3929 msr_info->host_initiated);
3930 case MSR_IA32_BBL_CR_CTL3:
3931 /* Drop writes to this legacy MSR -- see rdmsr
3932 * counterpart for further detail.
3933 */
3934 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3935 break;
3936 case MSR_AMD64_OSVW_ID_LENGTH:
3937 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3938 return 1;
3939 vcpu->arch.osvw.length = data;
3940 break;
3941 case MSR_AMD64_OSVW_STATUS:
3942 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3943 return 1;
3944 vcpu->arch.osvw.status = data;
3945 break;
3946 case MSR_PLATFORM_INFO:
3947 if (!msr_info->host_initiated ||
3948 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3949 cpuid_fault_enabled(vcpu)))
3950 return 1;
3951 vcpu->arch.msr_platform_info = data;
3952 break;
3953 case MSR_MISC_FEATURES_ENABLES:
3954 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3955 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3956 !supports_cpuid_fault(vcpu)))
3957 return 1;
3958 vcpu->arch.msr_misc_features_enables = data;
3959 break;
3960 #ifdef CONFIG_X86_64
3961 case MSR_IA32_XFD:
3962 if (!msr_info->host_initiated &&
3963 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3964 return 1;
3965
3966 if (data & ~kvm_guest_supported_xfd(vcpu))
3967 return 1;
3968
3969 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3970 break;
3971 case MSR_IA32_XFD_ERR:
3972 if (!msr_info->host_initiated &&
3973 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3974 return 1;
3975
3976 if (data & ~kvm_guest_supported_xfd(vcpu))
3977 return 1;
3978
3979 vcpu->arch.guest_fpu.xfd_err = data;
3980 break;
3981 #endif
3982 default:
3983 if (kvm_pmu_is_valid_msr(vcpu, msr))
3984 return kvm_pmu_set_msr(vcpu, msr_info);
3985
3986 /*
3987 * Userspace is allowed to write '0' to MSRs that KVM reports
3988 * as to-be-saved, even if an MSRs isn't fully supported.
3989 */
3990 if (msr_info->host_initiated && !data &&
3991 kvm_is_msr_to_save(msr))
3992 break;
3993
3994 return KVM_MSR_RET_INVALID;
3995 }
3996 return 0;
3997 }
3998 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3999
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4000 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4001 {
4002 u64 data;
4003 u64 mcg_cap = vcpu->arch.mcg_cap;
4004 unsigned bank_num = mcg_cap & 0xff;
4005 u32 offset, last_msr;
4006
4007 switch (msr) {
4008 case MSR_IA32_P5_MC_ADDR:
4009 case MSR_IA32_P5_MC_TYPE:
4010 data = 0;
4011 break;
4012 case MSR_IA32_MCG_CAP:
4013 data = vcpu->arch.mcg_cap;
4014 break;
4015 case MSR_IA32_MCG_CTL:
4016 if (!(mcg_cap & MCG_CTL_P) && !host)
4017 return 1;
4018 data = vcpu->arch.mcg_ctl;
4019 break;
4020 case MSR_IA32_MCG_STATUS:
4021 data = vcpu->arch.mcg_status;
4022 break;
4023 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4024 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4025 if (msr > last_msr)
4026 return 1;
4027
4028 if (!(mcg_cap & MCG_CMCI_P) && !host)
4029 return 1;
4030 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4031 last_msr + 1 - MSR_IA32_MC0_CTL2);
4032 data = vcpu->arch.mci_ctl2_banks[offset];
4033 break;
4034 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4035 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4036 if (msr > last_msr)
4037 return 1;
4038
4039 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4040 last_msr + 1 - MSR_IA32_MC0_CTL);
4041 data = vcpu->arch.mce_banks[offset];
4042 break;
4043 default:
4044 return 1;
4045 }
4046 *pdata = data;
4047 return 0;
4048 }
4049
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4050 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4051 {
4052 switch (msr_info->index) {
4053 case MSR_IA32_PLATFORM_ID:
4054 case MSR_IA32_EBL_CR_POWERON:
4055 case MSR_IA32_LASTBRANCHFROMIP:
4056 case MSR_IA32_LASTBRANCHTOIP:
4057 case MSR_IA32_LASTINTFROMIP:
4058 case MSR_IA32_LASTINTTOIP:
4059 case MSR_AMD64_SYSCFG:
4060 case MSR_K8_TSEG_ADDR:
4061 case MSR_K8_TSEG_MASK:
4062 case MSR_VM_HSAVE_PA:
4063 case MSR_K8_INT_PENDING_MSG:
4064 case MSR_AMD64_NB_CFG:
4065 case MSR_FAM10H_MMIO_CONF_BASE:
4066 case MSR_AMD64_BU_CFG2:
4067 case MSR_IA32_PERF_CTL:
4068 case MSR_AMD64_DC_CFG:
4069 case MSR_AMD64_TW_CFG:
4070 case MSR_F15H_EX_CFG:
4071 /*
4072 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4073 * limit) MSRs. Just return 0, as we do not want to expose the host
4074 * data here. Do not conditionalize this on CPUID, as KVM does not do
4075 * so for existing CPU-specific MSRs.
4076 */
4077 case MSR_RAPL_POWER_UNIT:
4078 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4079 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4080 case MSR_PKG_ENERGY_STATUS: /* Total package */
4081 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4082 msr_info->data = 0;
4083 break;
4084 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4085 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4086 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4087 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4088 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4089 return kvm_pmu_get_msr(vcpu, msr_info);
4090 msr_info->data = 0;
4091 break;
4092 case MSR_IA32_UCODE_REV:
4093 msr_info->data = vcpu->arch.microcode_version;
4094 break;
4095 case MSR_IA32_ARCH_CAPABILITIES:
4096 if (!msr_info->host_initiated &&
4097 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4098 return 1;
4099 msr_info->data = vcpu->arch.arch_capabilities;
4100 break;
4101 case MSR_IA32_PERF_CAPABILITIES:
4102 if (!msr_info->host_initiated &&
4103 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4104 return 1;
4105 msr_info->data = vcpu->arch.perf_capabilities;
4106 break;
4107 case MSR_IA32_POWER_CTL:
4108 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4109 break;
4110 case MSR_IA32_TSC: {
4111 /*
4112 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4113 * even when not intercepted. AMD manual doesn't explicitly
4114 * state this but appears to behave the same.
4115 *
4116 * On userspace reads and writes, however, we unconditionally
4117 * return L1's TSC value to ensure backwards-compatible
4118 * behavior for migration.
4119 */
4120 u64 offset, ratio;
4121
4122 if (msr_info->host_initiated) {
4123 offset = vcpu->arch.l1_tsc_offset;
4124 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4125 } else {
4126 offset = vcpu->arch.tsc_offset;
4127 ratio = vcpu->arch.tsc_scaling_ratio;
4128 }
4129
4130 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4131 break;
4132 }
4133 case MSR_IA32_CR_PAT:
4134 msr_info->data = vcpu->arch.pat;
4135 break;
4136 case MSR_MTRRcap:
4137 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4138 case MSR_MTRRdefType:
4139 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4140 case 0xcd: /* fsb frequency */
4141 msr_info->data = 3;
4142 break;
4143 /*
4144 * MSR_EBC_FREQUENCY_ID
4145 * Conservative value valid for even the basic CPU models.
4146 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4147 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4148 * and 266MHz for model 3, or 4. Set Core Clock
4149 * Frequency to System Bus Frequency Ratio to 1 (bits
4150 * 31:24) even though these are only valid for CPU
4151 * models > 2, however guests may end up dividing or
4152 * multiplying by zero otherwise.
4153 */
4154 case MSR_EBC_FREQUENCY_ID:
4155 msr_info->data = 1 << 24;
4156 break;
4157 case MSR_IA32_APICBASE:
4158 msr_info->data = kvm_get_apic_base(vcpu);
4159 break;
4160 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4161 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4162 case MSR_IA32_TSC_DEADLINE:
4163 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4164 break;
4165 case MSR_IA32_TSC_ADJUST:
4166 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4167 break;
4168 case MSR_IA32_MISC_ENABLE:
4169 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4170 break;
4171 case MSR_IA32_SMBASE:
4172 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4173 return 1;
4174 msr_info->data = vcpu->arch.smbase;
4175 break;
4176 case MSR_SMI_COUNT:
4177 msr_info->data = vcpu->arch.smi_count;
4178 break;
4179 case MSR_IA32_PERF_STATUS:
4180 /* TSC increment by tick */
4181 msr_info->data = 1000ULL;
4182 /* CPU multiplier */
4183 msr_info->data |= (((uint64_t)4ULL) << 40);
4184 break;
4185 case MSR_EFER:
4186 msr_info->data = vcpu->arch.efer;
4187 break;
4188 case MSR_KVM_WALL_CLOCK:
4189 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4190 return 1;
4191
4192 msr_info->data = vcpu->kvm->arch.wall_clock;
4193 break;
4194 case MSR_KVM_WALL_CLOCK_NEW:
4195 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4196 return 1;
4197
4198 msr_info->data = vcpu->kvm->arch.wall_clock;
4199 break;
4200 case MSR_KVM_SYSTEM_TIME:
4201 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4202 return 1;
4203
4204 msr_info->data = vcpu->arch.time;
4205 break;
4206 case MSR_KVM_SYSTEM_TIME_NEW:
4207 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4208 return 1;
4209
4210 msr_info->data = vcpu->arch.time;
4211 break;
4212 case MSR_KVM_ASYNC_PF_EN:
4213 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4214 return 1;
4215
4216 msr_info->data = vcpu->arch.apf.msr_en_val;
4217 break;
4218 case MSR_KVM_ASYNC_PF_INT:
4219 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4220 return 1;
4221
4222 msr_info->data = vcpu->arch.apf.msr_int_val;
4223 break;
4224 case MSR_KVM_ASYNC_PF_ACK:
4225 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4226 return 1;
4227
4228 msr_info->data = 0;
4229 break;
4230 case MSR_KVM_STEAL_TIME:
4231 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4232 return 1;
4233
4234 msr_info->data = vcpu->arch.st.msr_val;
4235 break;
4236 case MSR_KVM_PV_EOI_EN:
4237 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4238 return 1;
4239
4240 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4241 break;
4242 case MSR_KVM_POLL_CONTROL:
4243 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4244 return 1;
4245
4246 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4247 break;
4248 case MSR_IA32_P5_MC_ADDR:
4249 case MSR_IA32_P5_MC_TYPE:
4250 case MSR_IA32_MCG_CAP:
4251 case MSR_IA32_MCG_CTL:
4252 case MSR_IA32_MCG_STATUS:
4253 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4254 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4255 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4256 msr_info->host_initiated);
4257 case MSR_IA32_XSS:
4258 if (!msr_info->host_initiated &&
4259 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4260 return 1;
4261 msr_info->data = vcpu->arch.ia32_xss;
4262 break;
4263 case MSR_K7_CLK_CTL:
4264 /*
4265 * Provide expected ramp-up count for K7. All other
4266 * are set to zero, indicating minimum divisors for
4267 * every field.
4268 *
4269 * This prevents guest kernels on AMD host with CPU
4270 * type 6, model 8 and higher from exploding due to
4271 * the rdmsr failing.
4272 */
4273 msr_info->data = 0x20000000;
4274 break;
4275 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4276 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4277 case HV_X64_MSR_SYNDBG_OPTIONS:
4278 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4279 case HV_X64_MSR_CRASH_CTL:
4280 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4281 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4282 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4283 case HV_X64_MSR_TSC_EMULATION_STATUS:
4284 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4285 return kvm_hv_get_msr_common(vcpu,
4286 msr_info->index, &msr_info->data,
4287 msr_info->host_initiated);
4288 case MSR_IA32_BBL_CR_CTL3:
4289 /* This legacy MSR exists but isn't fully documented in current
4290 * silicon. It is however accessed by winxp in very narrow
4291 * scenarios where it sets bit #19, itself documented as
4292 * a "reserved" bit. Best effort attempt to source coherent
4293 * read data here should the balance of the register be
4294 * interpreted by the guest:
4295 *
4296 * L2 cache control register 3: 64GB range, 256KB size,
4297 * enabled, latency 0x1, configured
4298 */
4299 msr_info->data = 0xbe702111;
4300 break;
4301 case MSR_AMD64_OSVW_ID_LENGTH:
4302 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4303 return 1;
4304 msr_info->data = vcpu->arch.osvw.length;
4305 break;
4306 case MSR_AMD64_OSVW_STATUS:
4307 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4308 return 1;
4309 msr_info->data = vcpu->arch.osvw.status;
4310 break;
4311 case MSR_PLATFORM_INFO:
4312 if (!msr_info->host_initiated &&
4313 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4314 return 1;
4315 msr_info->data = vcpu->arch.msr_platform_info;
4316 break;
4317 case MSR_MISC_FEATURES_ENABLES:
4318 msr_info->data = vcpu->arch.msr_misc_features_enables;
4319 break;
4320 case MSR_K7_HWCR:
4321 msr_info->data = vcpu->arch.msr_hwcr;
4322 break;
4323 #ifdef CONFIG_X86_64
4324 case MSR_IA32_XFD:
4325 if (!msr_info->host_initiated &&
4326 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4327 return 1;
4328
4329 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4330 break;
4331 case MSR_IA32_XFD_ERR:
4332 if (!msr_info->host_initiated &&
4333 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4334 return 1;
4335
4336 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4337 break;
4338 #endif
4339 default:
4340 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4341 return kvm_pmu_get_msr(vcpu, msr_info);
4342
4343 /*
4344 * Userspace is allowed to read MSRs that KVM reports as
4345 * to-be-saved, even if an MSR isn't fully supported.
4346 */
4347 if (msr_info->host_initiated &&
4348 kvm_is_msr_to_save(msr_info->index)) {
4349 msr_info->data = 0;
4350 break;
4351 }
4352
4353 return KVM_MSR_RET_INVALID;
4354 }
4355 return 0;
4356 }
4357 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4358
4359 /*
4360 * Read or write a bunch of msrs. All parameters are kernel addresses.
4361 *
4362 * @return number of msrs set successfully.
4363 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4364 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4365 struct kvm_msr_entry *entries,
4366 int (*do_msr)(struct kvm_vcpu *vcpu,
4367 unsigned index, u64 *data))
4368 {
4369 int i;
4370
4371 for (i = 0; i < msrs->nmsrs; ++i)
4372 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4373 break;
4374
4375 return i;
4376 }
4377
4378 /*
4379 * Read or write a bunch of msrs. Parameters are user addresses.
4380 *
4381 * @return number of msrs set successfully.
4382 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4383 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4384 int (*do_msr)(struct kvm_vcpu *vcpu,
4385 unsigned index, u64 *data),
4386 int writeback)
4387 {
4388 struct kvm_msrs msrs;
4389 struct kvm_msr_entry *entries;
4390 unsigned size;
4391 int r;
4392
4393 r = -EFAULT;
4394 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4395 goto out;
4396
4397 r = -E2BIG;
4398 if (msrs.nmsrs >= MAX_IO_MSRS)
4399 goto out;
4400
4401 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4402 entries = memdup_user(user_msrs->entries, size);
4403 if (IS_ERR(entries)) {
4404 r = PTR_ERR(entries);
4405 goto out;
4406 }
4407
4408 r = __msr_io(vcpu, &msrs, entries, do_msr);
4409
4410 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4411 r = -EFAULT;
4412
4413 kfree(entries);
4414 out:
4415 return r;
4416 }
4417
kvm_can_mwait_in_guest(void)4418 static inline bool kvm_can_mwait_in_guest(void)
4419 {
4420 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4421 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4422 boot_cpu_has(X86_FEATURE_ARAT);
4423 }
4424
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4425 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4426 struct kvm_cpuid2 __user *cpuid_arg)
4427 {
4428 struct kvm_cpuid2 cpuid;
4429 int r;
4430
4431 r = -EFAULT;
4432 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4433 return r;
4434
4435 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4436 if (r)
4437 return r;
4438
4439 r = -EFAULT;
4440 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4441 return r;
4442
4443 return 0;
4444 }
4445
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4446 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4447 {
4448 int r = 0;
4449
4450 switch (ext) {
4451 case KVM_CAP_IRQCHIP:
4452 case KVM_CAP_HLT:
4453 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4454 case KVM_CAP_SET_TSS_ADDR:
4455 case KVM_CAP_EXT_CPUID:
4456 case KVM_CAP_EXT_EMUL_CPUID:
4457 case KVM_CAP_CLOCKSOURCE:
4458 case KVM_CAP_PIT:
4459 case KVM_CAP_NOP_IO_DELAY:
4460 case KVM_CAP_MP_STATE:
4461 case KVM_CAP_SYNC_MMU:
4462 case KVM_CAP_USER_NMI:
4463 case KVM_CAP_REINJECT_CONTROL:
4464 case KVM_CAP_IRQ_INJECT_STATUS:
4465 case KVM_CAP_IOEVENTFD:
4466 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4467 case KVM_CAP_PIT2:
4468 case KVM_CAP_PIT_STATE2:
4469 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4470 case KVM_CAP_VCPU_EVENTS:
4471 case KVM_CAP_HYPERV:
4472 case KVM_CAP_HYPERV_VAPIC:
4473 case KVM_CAP_HYPERV_SPIN:
4474 case KVM_CAP_HYPERV_SYNIC:
4475 case KVM_CAP_HYPERV_SYNIC2:
4476 case KVM_CAP_HYPERV_VP_INDEX:
4477 case KVM_CAP_HYPERV_EVENTFD:
4478 case KVM_CAP_HYPERV_TLBFLUSH:
4479 case KVM_CAP_HYPERV_SEND_IPI:
4480 case KVM_CAP_HYPERV_CPUID:
4481 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4482 case KVM_CAP_SYS_HYPERV_CPUID:
4483 case KVM_CAP_PCI_SEGMENT:
4484 case KVM_CAP_DEBUGREGS:
4485 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4486 case KVM_CAP_XSAVE:
4487 case KVM_CAP_ASYNC_PF:
4488 case KVM_CAP_ASYNC_PF_INT:
4489 case KVM_CAP_GET_TSC_KHZ:
4490 case KVM_CAP_KVMCLOCK_CTRL:
4491 case KVM_CAP_READONLY_MEM:
4492 case KVM_CAP_HYPERV_TIME:
4493 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4494 case KVM_CAP_TSC_DEADLINE_TIMER:
4495 case KVM_CAP_DISABLE_QUIRKS:
4496 case KVM_CAP_SET_BOOT_CPU_ID:
4497 case KVM_CAP_SPLIT_IRQCHIP:
4498 case KVM_CAP_IMMEDIATE_EXIT:
4499 case KVM_CAP_PMU_EVENT_FILTER:
4500 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4501 case KVM_CAP_GET_MSR_FEATURES:
4502 case KVM_CAP_MSR_PLATFORM_INFO:
4503 case KVM_CAP_EXCEPTION_PAYLOAD:
4504 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4505 case KVM_CAP_SET_GUEST_DEBUG:
4506 case KVM_CAP_LAST_CPU:
4507 case KVM_CAP_X86_USER_SPACE_MSR:
4508 case KVM_CAP_X86_MSR_FILTER:
4509 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4510 #ifdef CONFIG_X86_SGX_KVM
4511 case KVM_CAP_SGX_ATTRIBUTE:
4512 #endif
4513 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4514 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4515 case KVM_CAP_SREGS2:
4516 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4517 case KVM_CAP_VCPU_ATTRIBUTES:
4518 case KVM_CAP_SYS_ATTRIBUTES:
4519 case KVM_CAP_VAPIC:
4520 case KVM_CAP_ENABLE_CAP:
4521 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4522 case KVM_CAP_IRQFD_RESAMPLE:
4523 r = 1;
4524 break;
4525 case KVM_CAP_EXIT_HYPERCALL:
4526 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4527 break;
4528 case KVM_CAP_SET_GUEST_DEBUG2:
4529 return KVM_GUESTDBG_VALID_MASK;
4530 #ifdef CONFIG_KVM_XEN
4531 case KVM_CAP_XEN_HVM:
4532 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4533 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4534 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4535 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4536 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4537 if (sched_info_on())
4538 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4539 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4540 break;
4541 #endif
4542 case KVM_CAP_SYNC_REGS:
4543 r = KVM_SYNC_X86_VALID_FIELDS;
4544 break;
4545 case KVM_CAP_ADJUST_CLOCK:
4546 r = KVM_CLOCK_VALID_FLAGS;
4547 break;
4548 case KVM_CAP_X86_DISABLE_EXITS:
4549 r = KVM_X86_DISABLE_EXITS_PAUSE;
4550
4551 if (!mitigate_smt_rsb) {
4552 r |= KVM_X86_DISABLE_EXITS_HLT |
4553 KVM_X86_DISABLE_EXITS_CSTATE;
4554
4555 if (kvm_can_mwait_in_guest())
4556 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4557 }
4558 break;
4559 case KVM_CAP_X86_SMM:
4560 if (!IS_ENABLED(CONFIG_KVM_SMM))
4561 break;
4562
4563 /* SMBASE is usually relocated above 1M on modern chipsets,
4564 * and SMM handlers might indeed rely on 4G segment limits,
4565 * so do not report SMM to be available if real mode is
4566 * emulated via vm86 mode. Still, do not go to great lengths
4567 * to avoid userspace's usage of the feature, because it is a
4568 * fringe case that is not enabled except via specific settings
4569 * of the module parameters.
4570 */
4571 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4572 break;
4573 case KVM_CAP_NR_VCPUS:
4574 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4575 break;
4576 case KVM_CAP_MAX_VCPUS:
4577 r = KVM_MAX_VCPUS;
4578 break;
4579 case KVM_CAP_MAX_VCPU_ID:
4580 r = KVM_MAX_VCPU_IDS;
4581 break;
4582 case KVM_CAP_PV_MMU: /* obsolete */
4583 r = 0;
4584 break;
4585 case KVM_CAP_MCE:
4586 r = KVM_MAX_MCE_BANKS;
4587 break;
4588 case KVM_CAP_XCRS:
4589 r = boot_cpu_has(X86_FEATURE_XSAVE);
4590 break;
4591 case KVM_CAP_TSC_CONTROL:
4592 case KVM_CAP_VM_TSC_CONTROL:
4593 r = kvm_caps.has_tsc_control;
4594 break;
4595 case KVM_CAP_X2APIC_API:
4596 r = KVM_X2APIC_API_VALID_FLAGS;
4597 break;
4598 case KVM_CAP_NESTED_STATE:
4599 r = kvm_x86_ops.nested_ops->get_state ?
4600 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4601 break;
4602 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4603 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4604 break;
4605 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4606 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4607 break;
4608 case KVM_CAP_SMALLER_MAXPHYADDR:
4609 r = (int) allow_smaller_maxphyaddr;
4610 break;
4611 case KVM_CAP_STEAL_TIME:
4612 r = sched_info_on();
4613 break;
4614 case KVM_CAP_X86_BUS_LOCK_EXIT:
4615 if (kvm_caps.has_bus_lock_exit)
4616 r = KVM_BUS_LOCK_DETECTION_OFF |
4617 KVM_BUS_LOCK_DETECTION_EXIT;
4618 else
4619 r = 0;
4620 break;
4621 case KVM_CAP_XSAVE2: {
4622 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4623 if (r < sizeof(struct kvm_xsave))
4624 r = sizeof(struct kvm_xsave);
4625 break;
4626 }
4627 case KVM_CAP_PMU_CAPABILITY:
4628 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4629 break;
4630 case KVM_CAP_DISABLE_QUIRKS2:
4631 r = KVM_X86_VALID_QUIRKS;
4632 break;
4633 case KVM_CAP_X86_NOTIFY_VMEXIT:
4634 r = kvm_caps.has_notify_vmexit;
4635 break;
4636 default:
4637 break;
4638 }
4639 return r;
4640 }
4641
kvm_get_attr_addr(struct kvm_device_attr * attr)4642 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4643 {
4644 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4645
4646 if ((u64)(unsigned long)uaddr != attr->addr)
4647 return ERR_PTR_USR(-EFAULT);
4648 return uaddr;
4649 }
4650
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4651 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4652 {
4653 u64 __user *uaddr = kvm_get_attr_addr(attr);
4654
4655 if (attr->group)
4656 return -ENXIO;
4657
4658 if (IS_ERR(uaddr))
4659 return PTR_ERR(uaddr);
4660
4661 switch (attr->attr) {
4662 case KVM_X86_XCOMP_GUEST_SUPP:
4663 if (put_user(kvm_caps.supported_xcr0, uaddr))
4664 return -EFAULT;
4665 return 0;
4666 default:
4667 return -ENXIO;
4668 }
4669 }
4670
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4671 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4672 {
4673 if (attr->group)
4674 return -ENXIO;
4675
4676 switch (attr->attr) {
4677 case KVM_X86_XCOMP_GUEST_SUPP:
4678 return 0;
4679 default:
4680 return -ENXIO;
4681 }
4682 }
4683
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4684 long kvm_arch_dev_ioctl(struct file *filp,
4685 unsigned int ioctl, unsigned long arg)
4686 {
4687 void __user *argp = (void __user *)arg;
4688 long r;
4689
4690 switch (ioctl) {
4691 case KVM_GET_MSR_INDEX_LIST: {
4692 struct kvm_msr_list __user *user_msr_list = argp;
4693 struct kvm_msr_list msr_list;
4694 unsigned n;
4695
4696 r = -EFAULT;
4697 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4698 goto out;
4699 n = msr_list.nmsrs;
4700 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4701 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4702 goto out;
4703 r = -E2BIG;
4704 if (n < msr_list.nmsrs)
4705 goto out;
4706 r = -EFAULT;
4707 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4708 num_msrs_to_save * sizeof(u32)))
4709 goto out;
4710 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4711 &emulated_msrs,
4712 num_emulated_msrs * sizeof(u32)))
4713 goto out;
4714 r = 0;
4715 break;
4716 }
4717 case KVM_GET_SUPPORTED_CPUID:
4718 case KVM_GET_EMULATED_CPUID: {
4719 struct kvm_cpuid2 __user *cpuid_arg = argp;
4720 struct kvm_cpuid2 cpuid;
4721
4722 r = -EFAULT;
4723 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4724 goto out;
4725
4726 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4727 ioctl);
4728 if (r)
4729 goto out;
4730
4731 r = -EFAULT;
4732 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4733 goto out;
4734 r = 0;
4735 break;
4736 }
4737 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4738 r = -EFAULT;
4739 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4740 sizeof(kvm_caps.supported_mce_cap)))
4741 goto out;
4742 r = 0;
4743 break;
4744 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4745 struct kvm_msr_list __user *user_msr_list = argp;
4746 struct kvm_msr_list msr_list;
4747 unsigned int n;
4748
4749 r = -EFAULT;
4750 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4751 goto out;
4752 n = msr_list.nmsrs;
4753 msr_list.nmsrs = num_msr_based_features;
4754 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4755 goto out;
4756 r = -E2BIG;
4757 if (n < msr_list.nmsrs)
4758 goto out;
4759 r = -EFAULT;
4760 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4761 num_msr_based_features * sizeof(u32)))
4762 goto out;
4763 r = 0;
4764 break;
4765 }
4766 case KVM_GET_MSRS:
4767 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4768 break;
4769 case KVM_GET_SUPPORTED_HV_CPUID:
4770 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4771 break;
4772 case KVM_GET_DEVICE_ATTR: {
4773 struct kvm_device_attr attr;
4774 r = -EFAULT;
4775 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4776 break;
4777 r = kvm_x86_dev_get_attr(&attr);
4778 break;
4779 }
4780 case KVM_HAS_DEVICE_ATTR: {
4781 struct kvm_device_attr attr;
4782 r = -EFAULT;
4783 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4784 break;
4785 r = kvm_x86_dev_has_attr(&attr);
4786 break;
4787 }
4788 default:
4789 r = -EINVAL;
4790 break;
4791 }
4792 out:
4793 return r;
4794 }
4795
wbinvd_ipi(void * garbage)4796 static void wbinvd_ipi(void *garbage)
4797 {
4798 wbinvd();
4799 }
4800
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4801 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4802 {
4803 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4804 }
4805
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4806 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4807 {
4808 /* Address WBINVD may be executed by guest */
4809 if (need_emulate_wbinvd(vcpu)) {
4810 if (static_call(kvm_x86_has_wbinvd_exit)())
4811 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4812 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4813 smp_call_function_single(vcpu->cpu,
4814 wbinvd_ipi, NULL, 1);
4815 }
4816
4817 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4818
4819 /* Save host pkru register if supported */
4820 vcpu->arch.host_pkru = read_pkru();
4821
4822 /* Apply any externally detected TSC adjustments (due to suspend) */
4823 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4824 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4825 vcpu->arch.tsc_offset_adjustment = 0;
4826 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4827 }
4828
4829 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4830 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4831 rdtsc() - vcpu->arch.last_host_tsc;
4832 if (tsc_delta < 0)
4833 mark_tsc_unstable("KVM discovered backwards TSC");
4834
4835 if (kvm_check_tsc_unstable()) {
4836 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4837 vcpu->arch.last_guest_tsc);
4838 kvm_vcpu_write_tsc_offset(vcpu, offset);
4839 vcpu->arch.tsc_catchup = 1;
4840 }
4841
4842 if (kvm_lapic_hv_timer_in_use(vcpu))
4843 kvm_lapic_restart_hv_timer(vcpu);
4844
4845 /*
4846 * On a host with synchronized TSC, there is no need to update
4847 * kvmclock on vcpu->cpu migration
4848 */
4849 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4850 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4851 if (vcpu->cpu != cpu)
4852 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4853 vcpu->cpu = cpu;
4854 }
4855
4856 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4857 }
4858
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4859 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4860 {
4861 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4862 struct kvm_steal_time __user *st;
4863 struct kvm_memslots *slots;
4864 static const u8 preempted = KVM_VCPU_PREEMPTED;
4865 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4866
4867 /*
4868 * The vCPU can be marked preempted if and only if the VM-Exit was on
4869 * an instruction boundary and will not trigger guest emulation of any
4870 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4871 * when this is true, for example allowing the vCPU to be marked
4872 * preempted if and only if the VM-Exit was due to a host interrupt.
4873 */
4874 if (!vcpu->arch.at_instruction_boundary) {
4875 vcpu->stat.preemption_other++;
4876 return;
4877 }
4878
4879 vcpu->stat.preemption_reported++;
4880 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4881 return;
4882
4883 if (vcpu->arch.st.preempted)
4884 return;
4885
4886 /* This happens on process exit */
4887 if (unlikely(current->mm != vcpu->kvm->mm))
4888 return;
4889
4890 slots = kvm_memslots(vcpu->kvm);
4891
4892 if (unlikely(slots->generation != ghc->generation ||
4893 gpa != ghc->gpa ||
4894 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4895 return;
4896
4897 st = (struct kvm_steal_time __user *)ghc->hva;
4898 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4899
4900 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4901 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4902
4903 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4904 }
4905
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4906 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4907 {
4908 int idx;
4909
4910 if (vcpu->preempted) {
4911 if (!vcpu->arch.guest_state_protected)
4912 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4913
4914 /*
4915 * Take the srcu lock as memslots will be accessed to check the gfn
4916 * cache generation against the memslots generation.
4917 */
4918 idx = srcu_read_lock(&vcpu->kvm->srcu);
4919 if (kvm_xen_msr_enabled(vcpu->kvm))
4920 kvm_xen_runstate_set_preempted(vcpu);
4921 else
4922 kvm_steal_time_set_preempted(vcpu);
4923 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4924 }
4925
4926 static_call(kvm_x86_vcpu_put)(vcpu);
4927 vcpu->arch.last_host_tsc = rdtsc();
4928 }
4929
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4930 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4931 struct kvm_lapic_state *s)
4932 {
4933 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4934
4935 return kvm_apic_get_state(vcpu, s);
4936 }
4937
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4938 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4939 struct kvm_lapic_state *s)
4940 {
4941 int r;
4942
4943 r = kvm_apic_set_state(vcpu, s);
4944 if (r)
4945 return r;
4946 update_cr8_intercept(vcpu);
4947
4948 return 0;
4949 }
4950
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4951 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4952 {
4953 /*
4954 * We can accept userspace's request for interrupt injection
4955 * as long as we have a place to store the interrupt number.
4956 * The actual injection will happen when the CPU is able to
4957 * deliver the interrupt.
4958 */
4959 if (kvm_cpu_has_extint(vcpu))
4960 return false;
4961
4962 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4963 return (!lapic_in_kernel(vcpu) ||
4964 kvm_apic_accept_pic_intr(vcpu));
4965 }
4966
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4967 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4968 {
4969 /*
4970 * Do not cause an interrupt window exit if an exception
4971 * is pending or an event needs reinjection; userspace
4972 * might want to inject the interrupt manually using KVM_SET_REGS
4973 * or KVM_SET_SREGS. For that to work, we must be at an
4974 * instruction boundary and with no events half-injected.
4975 */
4976 return (kvm_arch_interrupt_allowed(vcpu) &&
4977 kvm_cpu_accept_dm_intr(vcpu) &&
4978 !kvm_event_needs_reinjection(vcpu) &&
4979 !kvm_is_exception_pending(vcpu));
4980 }
4981
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4982 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4983 struct kvm_interrupt *irq)
4984 {
4985 if (irq->irq >= KVM_NR_INTERRUPTS)
4986 return -EINVAL;
4987
4988 if (!irqchip_in_kernel(vcpu->kvm)) {
4989 kvm_queue_interrupt(vcpu, irq->irq, false);
4990 kvm_make_request(KVM_REQ_EVENT, vcpu);
4991 return 0;
4992 }
4993
4994 /*
4995 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4996 * fail for in-kernel 8259.
4997 */
4998 if (pic_in_kernel(vcpu->kvm))
4999 return -ENXIO;
5000
5001 if (vcpu->arch.pending_external_vector != -1)
5002 return -EEXIST;
5003
5004 vcpu->arch.pending_external_vector = irq->irq;
5005 kvm_make_request(KVM_REQ_EVENT, vcpu);
5006 return 0;
5007 }
5008
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5009 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5010 {
5011 kvm_inject_nmi(vcpu);
5012
5013 return 0;
5014 }
5015
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5016 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5017 struct kvm_tpr_access_ctl *tac)
5018 {
5019 if (tac->flags)
5020 return -EINVAL;
5021 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5022 return 0;
5023 }
5024
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5025 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5026 u64 mcg_cap)
5027 {
5028 int r;
5029 unsigned bank_num = mcg_cap & 0xff, bank;
5030
5031 r = -EINVAL;
5032 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5033 goto out;
5034 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5035 goto out;
5036 r = 0;
5037 vcpu->arch.mcg_cap = mcg_cap;
5038 /* Init IA32_MCG_CTL to all 1s */
5039 if (mcg_cap & MCG_CTL_P)
5040 vcpu->arch.mcg_ctl = ~(u64)0;
5041 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5042 for (bank = 0; bank < bank_num; bank++) {
5043 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5044 if (mcg_cap & MCG_CMCI_P)
5045 vcpu->arch.mci_ctl2_banks[bank] = 0;
5046 }
5047
5048 kvm_apic_after_set_mcg_cap(vcpu);
5049
5050 static_call(kvm_x86_setup_mce)(vcpu);
5051 out:
5052 return r;
5053 }
5054
5055 /*
5056 * Validate this is an UCNA (uncorrectable no action) error by checking the
5057 * MCG_STATUS and MCi_STATUS registers:
5058 * - none of the bits for Machine Check Exceptions are set
5059 * - both the VAL (valid) and UC (uncorrectable) bits are set
5060 * MCI_STATUS_PCC - Processor Context Corrupted
5061 * MCI_STATUS_S - Signaled as a Machine Check Exception
5062 * MCI_STATUS_AR - Software recoverable Action Required
5063 */
is_ucna(struct kvm_x86_mce * mce)5064 static bool is_ucna(struct kvm_x86_mce *mce)
5065 {
5066 return !mce->mcg_status &&
5067 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5068 (mce->status & MCI_STATUS_VAL) &&
5069 (mce->status & MCI_STATUS_UC);
5070 }
5071
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5072 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5073 {
5074 u64 mcg_cap = vcpu->arch.mcg_cap;
5075
5076 banks[1] = mce->status;
5077 banks[2] = mce->addr;
5078 banks[3] = mce->misc;
5079 vcpu->arch.mcg_status = mce->mcg_status;
5080
5081 if (!(mcg_cap & MCG_CMCI_P) ||
5082 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5083 return 0;
5084
5085 if (lapic_in_kernel(vcpu))
5086 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5087
5088 return 0;
5089 }
5090
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5091 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5092 struct kvm_x86_mce *mce)
5093 {
5094 u64 mcg_cap = vcpu->arch.mcg_cap;
5095 unsigned bank_num = mcg_cap & 0xff;
5096 u64 *banks = vcpu->arch.mce_banks;
5097
5098 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5099 return -EINVAL;
5100
5101 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5102
5103 if (is_ucna(mce))
5104 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5105
5106 /*
5107 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5108 * reporting is disabled
5109 */
5110 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5111 vcpu->arch.mcg_ctl != ~(u64)0)
5112 return 0;
5113 /*
5114 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5115 * reporting is disabled for the bank
5116 */
5117 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5118 return 0;
5119 if (mce->status & MCI_STATUS_UC) {
5120 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5121 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5122 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5123 return 0;
5124 }
5125 if (banks[1] & MCI_STATUS_VAL)
5126 mce->status |= MCI_STATUS_OVER;
5127 banks[2] = mce->addr;
5128 banks[3] = mce->misc;
5129 vcpu->arch.mcg_status = mce->mcg_status;
5130 banks[1] = mce->status;
5131 kvm_queue_exception(vcpu, MC_VECTOR);
5132 } else if (!(banks[1] & MCI_STATUS_VAL)
5133 || !(banks[1] & MCI_STATUS_UC)) {
5134 if (banks[1] & MCI_STATUS_VAL)
5135 mce->status |= MCI_STATUS_OVER;
5136 banks[2] = mce->addr;
5137 banks[3] = mce->misc;
5138 banks[1] = mce->status;
5139 } else
5140 banks[1] |= MCI_STATUS_OVER;
5141 return 0;
5142 }
5143
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5144 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5145 struct kvm_vcpu_events *events)
5146 {
5147 struct kvm_queued_exception *ex;
5148
5149 process_nmi(vcpu);
5150
5151 #ifdef CONFIG_KVM_SMM
5152 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5153 process_smi(vcpu);
5154 #endif
5155
5156 /*
5157 * KVM's ABI only allows for one exception to be migrated. Luckily,
5158 * the only time there can be two queued exceptions is if there's a
5159 * non-exiting _injected_ exception, and a pending exiting exception.
5160 * In that case, ignore the VM-Exiting exception as it's an extension
5161 * of the injected exception.
5162 */
5163 if (vcpu->arch.exception_vmexit.pending &&
5164 !vcpu->arch.exception.pending &&
5165 !vcpu->arch.exception.injected)
5166 ex = &vcpu->arch.exception_vmexit;
5167 else
5168 ex = &vcpu->arch.exception;
5169
5170 /*
5171 * In guest mode, payload delivery should be deferred if the exception
5172 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5173 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5174 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5175 * propagate the payload and so it cannot be safely deferred. Deliver
5176 * the payload if the capability hasn't been requested.
5177 */
5178 if (!vcpu->kvm->arch.exception_payload_enabled &&
5179 ex->pending && ex->has_payload)
5180 kvm_deliver_exception_payload(vcpu, ex);
5181
5182 memset(events, 0, sizeof(*events));
5183
5184 /*
5185 * The API doesn't provide the instruction length for software
5186 * exceptions, so don't report them. As long as the guest RIP
5187 * isn't advanced, we should expect to encounter the exception
5188 * again.
5189 */
5190 if (!kvm_exception_is_soft(ex->vector)) {
5191 events->exception.injected = ex->injected;
5192 events->exception.pending = ex->pending;
5193 /*
5194 * For ABI compatibility, deliberately conflate
5195 * pending and injected exceptions when
5196 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5197 */
5198 if (!vcpu->kvm->arch.exception_payload_enabled)
5199 events->exception.injected |= ex->pending;
5200 }
5201 events->exception.nr = ex->vector;
5202 events->exception.has_error_code = ex->has_error_code;
5203 events->exception.error_code = ex->error_code;
5204 events->exception_has_payload = ex->has_payload;
5205 events->exception_payload = ex->payload;
5206
5207 events->interrupt.injected =
5208 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5209 events->interrupt.nr = vcpu->arch.interrupt.nr;
5210 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5211
5212 events->nmi.injected = vcpu->arch.nmi_injected;
5213 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5214 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5215
5216 /* events->sipi_vector is never valid when reporting to user space */
5217
5218 #ifdef CONFIG_KVM_SMM
5219 events->smi.smm = is_smm(vcpu);
5220 events->smi.pending = vcpu->arch.smi_pending;
5221 events->smi.smm_inside_nmi =
5222 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5223 #endif
5224 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5225
5226 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5227 | KVM_VCPUEVENT_VALID_SHADOW
5228 | KVM_VCPUEVENT_VALID_SMM);
5229 if (vcpu->kvm->arch.exception_payload_enabled)
5230 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5231 if (vcpu->kvm->arch.triple_fault_event) {
5232 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5233 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5234 }
5235 }
5236
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5237 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5238 struct kvm_vcpu_events *events)
5239 {
5240 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5241 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5242 | KVM_VCPUEVENT_VALID_SHADOW
5243 | KVM_VCPUEVENT_VALID_SMM
5244 | KVM_VCPUEVENT_VALID_PAYLOAD
5245 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5246 return -EINVAL;
5247
5248 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5249 if (!vcpu->kvm->arch.exception_payload_enabled)
5250 return -EINVAL;
5251 if (events->exception.pending)
5252 events->exception.injected = 0;
5253 else
5254 events->exception_has_payload = 0;
5255 } else {
5256 events->exception.pending = 0;
5257 events->exception_has_payload = 0;
5258 }
5259
5260 if ((events->exception.injected || events->exception.pending) &&
5261 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5262 return -EINVAL;
5263
5264 /* INITs are latched while in SMM */
5265 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5266 (events->smi.smm || events->smi.pending) &&
5267 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5268 return -EINVAL;
5269
5270 process_nmi(vcpu);
5271
5272 /*
5273 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5274 * morph the exception to a VM-Exit if appropriate. Do this only for
5275 * pending exceptions, already-injected exceptions are not subject to
5276 * intercpetion. Note, userspace that conflates pending and injected
5277 * is hosed, and will incorrectly convert an injected exception into a
5278 * pending exception, which in turn may cause a spurious VM-Exit.
5279 */
5280 vcpu->arch.exception_from_userspace = events->exception.pending;
5281
5282 vcpu->arch.exception_vmexit.pending = false;
5283
5284 vcpu->arch.exception.injected = events->exception.injected;
5285 vcpu->arch.exception.pending = events->exception.pending;
5286 vcpu->arch.exception.vector = events->exception.nr;
5287 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5288 vcpu->arch.exception.error_code = events->exception.error_code;
5289 vcpu->arch.exception.has_payload = events->exception_has_payload;
5290 vcpu->arch.exception.payload = events->exception_payload;
5291
5292 vcpu->arch.interrupt.injected = events->interrupt.injected;
5293 vcpu->arch.interrupt.nr = events->interrupt.nr;
5294 vcpu->arch.interrupt.soft = events->interrupt.soft;
5295 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5296 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5297 events->interrupt.shadow);
5298
5299 vcpu->arch.nmi_injected = events->nmi.injected;
5300 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5301 vcpu->arch.nmi_pending = 0;
5302 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5303 if (events->nmi.pending)
5304 kvm_make_request(KVM_REQ_NMI, vcpu);
5305 }
5306 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5307
5308 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5309 lapic_in_kernel(vcpu))
5310 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5311
5312 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5313 #ifdef CONFIG_KVM_SMM
5314 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5315 kvm_leave_nested(vcpu);
5316 kvm_smm_changed(vcpu, events->smi.smm);
5317 }
5318
5319 vcpu->arch.smi_pending = events->smi.pending;
5320
5321 if (events->smi.smm) {
5322 if (events->smi.smm_inside_nmi)
5323 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5324 else
5325 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5326 }
5327
5328 #else
5329 if (events->smi.smm || events->smi.pending ||
5330 events->smi.smm_inside_nmi)
5331 return -EINVAL;
5332 #endif
5333
5334 if (lapic_in_kernel(vcpu)) {
5335 if (events->smi.latched_init)
5336 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5337 else
5338 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5339 }
5340 }
5341
5342 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5343 if (!vcpu->kvm->arch.triple_fault_event)
5344 return -EINVAL;
5345 if (events->triple_fault.pending)
5346 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5347 else
5348 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5349 }
5350
5351 kvm_make_request(KVM_REQ_EVENT, vcpu);
5352
5353 return 0;
5354 }
5355
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5356 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5357 struct kvm_debugregs *dbgregs)
5358 {
5359 unsigned long val;
5360
5361 memset(dbgregs, 0, sizeof(*dbgregs));
5362 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5363 kvm_get_dr(vcpu, 6, &val);
5364 dbgregs->dr6 = val;
5365 dbgregs->dr7 = vcpu->arch.dr7;
5366 }
5367
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5368 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5369 struct kvm_debugregs *dbgregs)
5370 {
5371 if (dbgregs->flags)
5372 return -EINVAL;
5373
5374 if (!kvm_dr6_valid(dbgregs->dr6))
5375 return -EINVAL;
5376 if (!kvm_dr7_valid(dbgregs->dr7))
5377 return -EINVAL;
5378
5379 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5380 kvm_update_dr0123(vcpu);
5381 vcpu->arch.dr6 = dbgregs->dr6;
5382 vcpu->arch.dr7 = dbgregs->dr7;
5383 kvm_update_dr7(vcpu);
5384
5385 return 0;
5386 }
5387
5388
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5389 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5390 u8 *state, unsigned int size)
5391 {
5392 /*
5393 * Only copy state for features that are enabled for the guest. The
5394 * state itself isn't problematic, but setting bits in the header for
5395 * features that are supported in *this* host but not exposed to the
5396 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5397 * compatible host without the features that are NOT exposed to the
5398 * guest.
5399 *
5400 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5401 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5402 * supported by the host.
5403 */
5404 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5405 XFEATURE_MASK_FPSSE;
5406
5407 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5408 return;
5409
5410 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5411 supported_xcr0, vcpu->arch.pkru);
5412 }
5413
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5414 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5415 struct kvm_xsave *guest_xsave)
5416 {
5417 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5418 sizeof(guest_xsave->region));
5419 }
5420
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5421 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5422 struct kvm_xsave *guest_xsave)
5423 {
5424 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5425 return 0;
5426
5427 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5428 guest_xsave->region,
5429 kvm_caps.supported_xcr0,
5430 &vcpu->arch.pkru);
5431 }
5432
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5433 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5434 struct kvm_xcrs *guest_xcrs)
5435 {
5436 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5437 guest_xcrs->nr_xcrs = 0;
5438 return;
5439 }
5440
5441 guest_xcrs->nr_xcrs = 1;
5442 guest_xcrs->flags = 0;
5443 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5444 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5445 }
5446
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5447 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5448 struct kvm_xcrs *guest_xcrs)
5449 {
5450 int i, r = 0;
5451
5452 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5453 return -EINVAL;
5454
5455 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5456 return -EINVAL;
5457
5458 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5459 /* Only support XCR0 currently */
5460 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5461 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5462 guest_xcrs->xcrs[i].value);
5463 break;
5464 }
5465 if (r)
5466 r = -EINVAL;
5467 return r;
5468 }
5469
5470 /*
5471 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5472 * stopped by the hypervisor. This function will be called from the host only.
5473 * EINVAL is returned when the host attempts to set the flag for a guest that
5474 * does not support pv clocks.
5475 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5476 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5477 {
5478 if (!vcpu->arch.pv_time.active)
5479 return -EINVAL;
5480 vcpu->arch.pvclock_set_guest_stopped_request = true;
5481 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5482 return 0;
5483 }
5484
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5485 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5486 struct kvm_device_attr *attr)
5487 {
5488 int r;
5489
5490 switch (attr->attr) {
5491 case KVM_VCPU_TSC_OFFSET:
5492 r = 0;
5493 break;
5494 default:
5495 r = -ENXIO;
5496 }
5497
5498 return r;
5499 }
5500
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5501 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5502 struct kvm_device_attr *attr)
5503 {
5504 u64 __user *uaddr = kvm_get_attr_addr(attr);
5505 int r;
5506
5507 if (IS_ERR(uaddr))
5508 return PTR_ERR(uaddr);
5509
5510 switch (attr->attr) {
5511 case KVM_VCPU_TSC_OFFSET:
5512 r = -EFAULT;
5513 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5514 break;
5515 r = 0;
5516 break;
5517 default:
5518 r = -ENXIO;
5519 }
5520
5521 return r;
5522 }
5523
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5524 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5525 struct kvm_device_attr *attr)
5526 {
5527 u64 __user *uaddr = kvm_get_attr_addr(attr);
5528 struct kvm *kvm = vcpu->kvm;
5529 int r;
5530
5531 if (IS_ERR(uaddr))
5532 return PTR_ERR(uaddr);
5533
5534 switch (attr->attr) {
5535 case KVM_VCPU_TSC_OFFSET: {
5536 u64 offset, tsc, ns;
5537 unsigned long flags;
5538 bool matched;
5539
5540 r = -EFAULT;
5541 if (get_user(offset, uaddr))
5542 break;
5543
5544 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5545
5546 matched = (vcpu->arch.virtual_tsc_khz &&
5547 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5548 kvm->arch.last_tsc_offset == offset);
5549
5550 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5551 ns = get_kvmclock_base_ns();
5552
5553 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5554 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5555
5556 r = 0;
5557 break;
5558 }
5559 default:
5560 r = -ENXIO;
5561 }
5562
5563 return r;
5564 }
5565
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5566 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5567 unsigned int ioctl,
5568 void __user *argp)
5569 {
5570 struct kvm_device_attr attr;
5571 int r;
5572
5573 if (copy_from_user(&attr, argp, sizeof(attr)))
5574 return -EFAULT;
5575
5576 if (attr.group != KVM_VCPU_TSC_CTRL)
5577 return -ENXIO;
5578
5579 switch (ioctl) {
5580 case KVM_HAS_DEVICE_ATTR:
5581 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5582 break;
5583 case KVM_GET_DEVICE_ATTR:
5584 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5585 break;
5586 case KVM_SET_DEVICE_ATTR:
5587 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5588 break;
5589 }
5590
5591 return r;
5592 }
5593
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5594 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5595 struct kvm_enable_cap *cap)
5596 {
5597 int r;
5598 uint16_t vmcs_version;
5599 void __user *user_ptr;
5600
5601 if (cap->flags)
5602 return -EINVAL;
5603
5604 switch (cap->cap) {
5605 case KVM_CAP_HYPERV_SYNIC2:
5606 if (cap->args[0])
5607 return -EINVAL;
5608 fallthrough;
5609
5610 case KVM_CAP_HYPERV_SYNIC:
5611 if (!irqchip_in_kernel(vcpu->kvm))
5612 return -EINVAL;
5613 return kvm_hv_activate_synic(vcpu, cap->cap ==
5614 KVM_CAP_HYPERV_SYNIC2);
5615 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5616 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5617 return -ENOTTY;
5618 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5619 if (!r) {
5620 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5621 if (copy_to_user(user_ptr, &vmcs_version,
5622 sizeof(vmcs_version)))
5623 r = -EFAULT;
5624 }
5625 return r;
5626 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5627 if (!kvm_x86_ops.enable_l2_tlb_flush)
5628 return -ENOTTY;
5629
5630 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5631
5632 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5633 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5634
5635 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5636 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5637 if (vcpu->arch.pv_cpuid.enforce)
5638 kvm_update_pv_runtime(vcpu);
5639
5640 return 0;
5641 default:
5642 return -EINVAL;
5643 }
5644 }
5645
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5646 long kvm_arch_vcpu_ioctl(struct file *filp,
5647 unsigned int ioctl, unsigned long arg)
5648 {
5649 struct kvm_vcpu *vcpu = filp->private_data;
5650 void __user *argp = (void __user *)arg;
5651 int r;
5652 union {
5653 struct kvm_sregs2 *sregs2;
5654 struct kvm_lapic_state *lapic;
5655 struct kvm_xsave *xsave;
5656 struct kvm_xcrs *xcrs;
5657 void *buffer;
5658 } u;
5659
5660 vcpu_load(vcpu);
5661
5662 u.buffer = NULL;
5663 switch (ioctl) {
5664 case KVM_GET_LAPIC: {
5665 r = -EINVAL;
5666 if (!lapic_in_kernel(vcpu))
5667 goto out;
5668 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5669 GFP_KERNEL_ACCOUNT);
5670
5671 r = -ENOMEM;
5672 if (!u.lapic)
5673 goto out;
5674 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5675 if (r)
5676 goto out;
5677 r = -EFAULT;
5678 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5679 goto out;
5680 r = 0;
5681 break;
5682 }
5683 case KVM_SET_LAPIC: {
5684 r = -EINVAL;
5685 if (!lapic_in_kernel(vcpu))
5686 goto out;
5687 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5688 if (IS_ERR(u.lapic)) {
5689 r = PTR_ERR(u.lapic);
5690 goto out_nofree;
5691 }
5692
5693 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5694 break;
5695 }
5696 case KVM_INTERRUPT: {
5697 struct kvm_interrupt irq;
5698
5699 r = -EFAULT;
5700 if (copy_from_user(&irq, argp, sizeof(irq)))
5701 goto out;
5702 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5703 break;
5704 }
5705 case KVM_NMI: {
5706 r = kvm_vcpu_ioctl_nmi(vcpu);
5707 break;
5708 }
5709 case KVM_SMI: {
5710 r = kvm_inject_smi(vcpu);
5711 break;
5712 }
5713 case KVM_SET_CPUID: {
5714 struct kvm_cpuid __user *cpuid_arg = argp;
5715 struct kvm_cpuid cpuid;
5716
5717 r = -EFAULT;
5718 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5719 goto out;
5720 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5721 break;
5722 }
5723 case KVM_SET_CPUID2: {
5724 struct kvm_cpuid2 __user *cpuid_arg = argp;
5725 struct kvm_cpuid2 cpuid;
5726
5727 r = -EFAULT;
5728 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5729 goto out;
5730 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5731 cpuid_arg->entries);
5732 break;
5733 }
5734 case KVM_GET_CPUID2: {
5735 struct kvm_cpuid2 __user *cpuid_arg = argp;
5736 struct kvm_cpuid2 cpuid;
5737
5738 r = -EFAULT;
5739 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5740 goto out;
5741 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5742 cpuid_arg->entries);
5743 if (r)
5744 goto out;
5745 r = -EFAULT;
5746 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5747 goto out;
5748 r = 0;
5749 break;
5750 }
5751 case KVM_GET_MSRS: {
5752 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5753 r = msr_io(vcpu, argp, do_get_msr, 1);
5754 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5755 break;
5756 }
5757 case KVM_SET_MSRS: {
5758 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5759 r = msr_io(vcpu, argp, do_set_msr, 0);
5760 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5761 break;
5762 }
5763 case KVM_TPR_ACCESS_REPORTING: {
5764 struct kvm_tpr_access_ctl tac;
5765
5766 r = -EFAULT;
5767 if (copy_from_user(&tac, argp, sizeof(tac)))
5768 goto out;
5769 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5770 if (r)
5771 goto out;
5772 r = -EFAULT;
5773 if (copy_to_user(argp, &tac, sizeof(tac)))
5774 goto out;
5775 r = 0;
5776 break;
5777 };
5778 case KVM_SET_VAPIC_ADDR: {
5779 struct kvm_vapic_addr va;
5780 int idx;
5781
5782 r = -EINVAL;
5783 if (!lapic_in_kernel(vcpu))
5784 goto out;
5785 r = -EFAULT;
5786 if (copy_from_user(&va, argp, sizeof(va)))
5787 goto out;
5788 idx = srcu_read_lock(&vcpu->kvm->srcu);
5789 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5790 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5791 break;
5792 }
5793 case KVM_X86_SETUP_MCE: {
5794 u64 mcg_cap;
5795
5796 r = -EFAULT;
5797 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5798 goto out;
5799 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5800 break;
5801 }
5802 case KVM_X86_SET_MCE: {
5803 struct kvm_x86_mce mce;
5804
5805 r = -EFAULT;
5806 if (copy_from_user(&mce, argp, sizeof(mce)))
5807 goto out;
5808 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5809 break;
5810 }
5811 case KVM_GET_VCPU_EVENTS: {
5812 struct kvm_vcpu_events events;
5813
5814 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5815
5816 r = -EFAULT;
5817 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5818 break;
5819 r = 0;
5820 break;
5821 }
5822 case KVM_SET_VCPU_EVENTS: {
5823 struct kvm_vcpu_events events;
5824
5825 r = -EFAULT;
5826 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5827 break;
5828
5829 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5830 break;
5831 }
5832 case KVM_GET_DEBUGREGS: {
5833 struct kvm_debugregs dbgregs;
5834
5835 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5836
5837 r = -EFAULT;
5838 if (copy_to_user(argp, &dbgregs,
5839 sizeof(struct kvm_debugregs)))
5840 break;
5841 r = 0;
5842 break;
5843 }
5844 case KVM_SET_DEBUGREGS: {
5845 struct kvm_debugregs dbgregs;
5846
5847 r = -EFAULT;
5848 if (copy_from_user(&dbgregs, argp,
5849 sizeof(struct kvm_debugregs)))
5850 break;
5851
5852 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5853 break;
5854 }
5855 case KVM_GET_XSAVE: {
5856 r = -EINVAL;
5857 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5858 break;
5859
5860 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5861 r = -ENOMEM;
5862 if (!u.xsave)
5863 break;
5864
5865 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5866
5867 r = -EFAULT;
5868 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5869 break;
5870 r = 0;
5871 break;
5872 }
5873 case KVM_SET_XSAVE: {
5874 int size = vcpu->arch.guest_fpu.uabi_size;
5875
5876 u.xsave = memdup_user(argp, size);
5877 if (IS_ERR(u.xsave)) {
5878 r = PTR_ERR(u.xsave);
5879 goto out_nofree;
5880 }
5881
5882 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5883 break;
5884 }
5885
5886 case KVM_GET_XSAVE2: {
5887 int size = vcpu->arch.guest_fpu.uabi_size;
5888
5889 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5890 r = -ENOMEM;
5891 if (!u.xsave)
5892 break;
5893
5894 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5895
5896 r = -EFAULT;
5897 if (copy_to_user(argp, u.xsave, size))
5898 break;
5899
5900 r = 0;
5901 break;
5902 }
5903
5904 case KVM_GET_XCRS: {
5905 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5906 r = -ENOMEM;
5907 if (!u.xcrs)
5908 break;
5909
5910 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5911
5912 r = -EFAULT;
5913 if (copy_to_user(argp, u.xcrs,
5914 sizeof(struct kvm_xcrs)))
5915 break;
5916 r = 0;
5917 break;
5918 }
5919 case KVM_SET_XCRS: {
5920 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5921 if (IS_ERR(u.xcrs)) {
5922 r = PTR_ERR(u.xcrs);
5923 goto out_nofree;
5924 }
5925
5926 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5927 break;
5928 }
5929 case KVM_SET_TSC_KHZ: {
5930 u32 user_tsc_khz;
5931
5932 r = -EINVAL;
5933 user_tsc_khz = (u32)arg;
5934
5935 if (kvm_caps.has_tsc_control &&
5936 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5937 goto out;
5938
5939 if (user_tsc_khz == 0)
5940 user_tsc_khz = tsc_khz;
5941
5942 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5943 r = 0;
5944
5945 goto out;
5946 }
5947 case KVM_GET_TSC_KHZ: {
5948 r = vcpu->arch.virtual_tsc_khz;
5949 goto out;
5950 }
5951 case KVM_KVMCLOCK_CTRL: {
5952 r = kvm_set_guest_paused(vcpu);
5953 goto out;
5954 }
5955 case KVM_ENABLE_CAP: {
5956 struct kvm_enable_cap cap;
5957
5958 r = -EFAULT;
5959 if (copy_from_user(&cap, argp, sizeof(cap)))
5960 goto out;
5961 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5962 break;
5963 }
5964 case KVM_GET_NESTED_STATE: {
5965 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5966 u32 user_data_size;
5967
5968 r = -EINVAL;
5969 if (!kvm_x86_ops.nested_ops->get_state)
5970 break;
5971
5972 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5973 r = -EFAULT;
5974 if (get_user(user_data_size, &user_kvm_nested_state->size))
5975 break;
5976
5977 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5978 user_data_size);
5979 if (r < 0)
5980 break;
5981
5982 if (r > user_data_size) {
5983 if (put_user(r, &user_kvm_nested_state->size))
5984 r = -EFAULT;
5985 else
5986 r = -E2BIG;
5987 break;
5988 }
5989
5990 r = 0;
5991 break;
5992 }
5993 case KVM_SET_NESTED_STATE: {
5994 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5995 struct kvm_nested_state kvm_state;
5996 int idx;
5997
5998 r = -EINVAL;
5999 if (!kvm_x86_ops.nested_ops->set_state)
6000 break;
6001
6002 r = -EFAULT;
6003 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6004 break;
6005
6006 r = -EINVAL;
6007 if (kvm_state.size < sizeof(kvm_state))
6008 break;
6009
6010 if (kvm_state.flags &
6011 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6012 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6013 | KVM_STATE_NESTED_GIF_SET))
6014 break;
6015
6016 /* nested_run_pending implies guest_mode. */
6017 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6018 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6019 break;
6020
6021 idx = srcu_read_lock(&vcpu->kvm->srcu);
6022 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6023 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6024 break;
6025 }
6026 case KVM_GET_SUPPORTED_HV_CPUID:
6027 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6028 break;
6029 #ifdef CONFIG_KVM_XEN
6030 case KVM_XEN_VCPU_GET_ATTR: {
6031 struct kvm_xen_vcpu_attr xva;
6032
6033 r = -EFAULT;
6034 if (copy_from_user(&xva, argp, sizeof(xva)))
6035 goto out;
6036 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6037 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6038 r = -EFAULT;
6039 break;
6040 }
6041 case KVM_XEN_VCPU_SET_ATTR: {
6042 struct kvm_xen_vcpu_attr xva;
6043
6044 r = -EFAULT;
6045 if (copy_from_user(&xva, argp, sizeof(xva)))
6046 goto out;
6047 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6048 break;
6049 }
6050 #endif
6051 case KVM_GET_SREGS2: {
6052 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6053 r = -ENOMEM;
6054 if (!u.sregs2)
6055 goto out;
6056 __get_sregs2(vcpu, u.sregs2);
6057 r = -EFAULT;
6058 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6059 goto out;
6060 r = 0;
6061 break;
6062 }
6063 case KVM_SET_SREGS2: {
6064 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6065 if (IS_ERR(u.sregs2)) {
6066 r = PTR_ERR(u.sregs2);
6067 u.sregs2 = NULL;
6068 goto out;
6069 }
6070 r = __set_sregs2(vcpu, u.sregs2);
6071 break;
6072 }
6073 case KVM_HAS_DEVICE_ATTR:
6074 case KVM_GET_DEVICE_ATTR:
6075 case KVM_SET_DEVICE_ATTR:
6076 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6077 break;
6078 default:
6079 r = -EINVAL;
6080 }
6081 out:
6082 kfree(u.buffer);
6083 out_nofree:
6084 vcpu_put(vcpu);
6085 return r;
6086 }
6087
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6088 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6089 {
6090 return VM_FAULT_SIGBUS;
6091 }
6092
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6093 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6094 {
6095 int ret;
6096
6097 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6098 return -EINVAL;
6099 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6100 return ret;
6101 }
6102
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6103 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6104 u64 ident_addr)
6105 {
6106 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6107 }
6108
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6109 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6110 unsigned long kvm_nr_mmu_pages)
6111 {
6112 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6113 return -EINVAL;
6114
6115 mutex_lock(&kvm->slots_lock);
6116
6117 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6118 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6119
6120 mutex_unlock(&kvm->slots_lock);
6121 return 0;
6122 }
6123
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6124 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6125 {
6126 struct kvm_pic *pic = kvm->arch.vpic;
6127 int r;
6128
6129 r = 0;
6130 switch (chip->chip_id) {
6131 case KVM_IRQCHIP_PIC_MASTER:
6132 memcpy(&chip->chip.pic, &pic->pics[0],
6133 sizeof(struct kvm_pic_state));
6134 break;
6135 case KVM_IRQCHIP_PIC_SLAVE:
6136 memcpy(&chip->chip.pic, &pic->pics[1],
6137 sizeof(struct kvm_pic_state));
6138 break;
6139 case KVM_IRQCHIP_IOAPIC:
6140 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6141 break;
6142 default:
6143 r = -EINVAL;
6144 break;
6145 }
6146 return r;
6147 }
6148
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6149 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6150 {
6151 struct kvm_pic *pic = kvm->arch.vpic;
6152 int r;
6153
6154 r = 0;
6155 switch (chip->chip_id) {
6156 case KVM_IRQCHIP_PIC_MASTER:
6157 spin_lock(&pic->lock);
6158 memcpy(&pic->pics[0], &chip->chip.pic,
6159 sizeof(struct kvm_pic_state));
6160 spin_unlock(&pic->lock);
6161 break;
6162 case KVM_IRQCHIP_PIC_SLAVE:
6163 spin_lock(&pic->lock);
6164 memcpy(&pic->pics[1], &chip->chip.pic,
6165 sizeof(struct kvm_pic_state));
6166 spin_unlock(&pic->lock);
6167 break;
6168 case KVM_IRQCHIP_IOAPIC:
6169 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6170 break;
6171 default:
6172 r = -EINVAL;
6173 break;
6174 }
6175 kvm_pic_update_irq(pic);
6176 return r;
6177 }
6178
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6179 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6180 {
6181 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6182
6183 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6184
6185 mutex_lock(&kps->lock);
6186 memcpy(ps, &kps->channels, sizeof(*ps));
6187 mutex_unlock(&kps->lock);
6188 return 0;
6189 }
6190
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6191 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6192 {
6193 int i;
6194 struct kvm_pit *pit = kvm->arch.vpit;
6195
6196 mutex_lock(&pit->pit_state.lock);
6197 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6198 for (i = 0; i < 3; i++)
6199 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6200 mutex_unlock(&pit->pit_state.lock);
6201 return 0;
6202 }
6203
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6204 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6205 {
6206 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6207 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6208 sizeof(ps->channels));
6209 ps->flags = kvm->arch.vpit->pit_state.flags;
6210 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6211 memset(&ps->reserved, 0, sizeof(ps->reserved));
6212 return 0;
6213 }
6214
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6215 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6216 {
6217 int start = 0;
6218 int i;
6219 u32 prev_legacy, cur_legacy;
6220 struct kvm_pit *pit = kvm->arch.vpit;
6221
6222 mutex_lock(&pit->pit_state.lock);
6223 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6224 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6225 if (!prev_legacy && cur_legacy)
6226 start = 1;
6227 memcpy(&pit->pit_state.channels, &ps->channels,
6228 sizeof(pit->pit_state.channels));
6229 pit->pit_state.flags = ps->flags;
6230 for (i = 0; i < 3; i++)
6231 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6232 start && i == 0);
6233 mutex_unlock(&pit->pit_state.lock);
6234 return 0;
6235 }
6236
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6237 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6238 struct kvm_reinject_control *control)
6239 {
6240 struct kvm_pit *pit = kvm->arch.vpit;
6241
6242 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6243 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6244 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6245 */
6246 mutex_lock(&pit->pit_state.lock);
6247 kvm_pit_set_reinject(pit, control->pit_reinject);
6248 mutex_unlock(&pit->pit_state.lock);
6249
6250 return 0;
6251 }
6252
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6253 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6254 {
6255
6256 /*
6257 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6258 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6259 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6260 * VM-Exit.
6261 */
6262 struct kvm_vcpu *vcpu;
6263 unsigned long i;
6264
6265 kvm_for_each_vcpu(i, vcpu, kvm)
6266 kvm_vcpu_kick(vcpu);
6267 }
6268
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6269 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6270 bool line_status)
6271 {
6272 if (!irqchip_in_kernel(kvm))
6273 return -ENXIO;
6274
6275 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6276 irq_event->irq, irq_event->level,
6277 line_status);
6278 return 0;
6279 }
6280
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6281 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6282 struct kvm_enable_cap *cap)
6283 {
6284 int r;
6285
6286 if (cap->flags)
6287 return -EINVAL;
6288
6289 switch (cap->cap) {
6290 case KVM_CAP_DISABLE_QUIRKS2:
6291 r = -EINVAL;
6292 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6293 break;
6294 fallthrough;
6295 case KVM_CAP_DISABLE_QUIRKS:
6296 kvm->arch.disabled_quirks = cap->args[0];
6297 r = 0;
6298 break;
6299 case KVM_CAP_SPLIT_IRQCHIP: {
6300 mutex_lock(&kvm->lock);
6301 r = -EINVAL;
6302 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6303 goto split_irqchip_unlock;
6304 r = -EEXIST;
6305 if (irqchip_in_kernel(kvm))
6306 goto split_irqchip_unlock;
6307 if (kvm->created_vcpus)
6308 goto split_irqchip_unlock;
6309 r = kvm_setup_empty_irq_routing(kvm);
6310 if (r)
6311 goto split_irqchip_unlock;
6312 /* Pairs with irqchip_in_kernel. */
6313 smp_wmb();
6314 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6315 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6316 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6317 r = 0;
6318 split_irqchip_unlock:
6319 mutex_unlock(&kvm->lock);
6320 break;
6321 }
6322 case KVM_CAP_X2APIC_API:
6323 r = -EINVAL;
6324 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6325 break;
6326
6327 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6328 kvm->arch.x2apic_format = true;
6329 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6330 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6331
6332 r = 0;
6333 break;
6334 case KVM_CAP_X86_DISABLE_EXITS:
6335 r = -EINVAL;
6336 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6337 break;
6338
6339 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6340 kvm->arch.pause_in_guest = true;
6341
6342 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6343 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6344
6345 if (!mitigate_smt_rsb) {
6346 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6347 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6348 pr_warn_once(SMT_RSB_MSG);
6349
6350 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6351 kvm_can_mwait_in_guest())
6352 kvm->arch.mwait_in_guest = true;
6353 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6354 kvm->arch.hlt_in_guest = true;
6355 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6356 kvm->arch.cstate_in_guest = true;
6357 }
6358
6359 r = 0;
6360 break;
6361 case KVM_CAP_MSR_PLATFORM_INFO:
6362 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6363 r = 0;
6364 break;
6365 case KVM_CAP_EXCEPTION_PAYLOAD:
6366 kvm->arch.exception_payload_enabled = cap->args[0];
6367 r = 0;
6368 break;
6369 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6370 kvm->arch.triple_fault_event = cap->args[0];
6371 r = 0;
6372 break;
6373 case KVM_CAP_X86_USER_SPACE_MSR:
6374 r = -EINVAL;
6375 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6376 break;
6377 kvm->arch.user_space_msr_mask = cap->args[0];
6378 r = 0;
6379 break;
6380 case KVM_CAP_X86_BUS_LOCK_EXIT:
6381 r = -EINVAL;
6382 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6383 break;
6384
6385 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6386 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6387 break;
6388
6389 if (kvm_caps.has_bus_lock_exit &&
6390 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6391 kvm->arch.bus_lock_detection_enabled = true;
6392 r = 0;
6393 break;
6394 #ifdef CONFIG_X86_SGX_KVM
6395 case KVM_CAP_SGX_ATTRIBUTE: {
6396 unsigned long allowed_attributes = 0;
6397
6398 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6399 if (r)
6400 break;
6401
6402 /* KVM only supports the PROVISIONKEY privileged attribute. */
6403 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6404 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6405 kvm->arch.sgx_provisioning_allowed = true;
6406 else
6407 r = -EINVAL;
6408 break;
6409 }
6410 #endif
6411 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6412 r = -EINVAL;
6413 if (!kvm_x86_ops.vm_copy_enc_context_from)
6414 break;
6415
6416 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6417 break;
6418 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6419 r = -EINVAL;
6420 if (!kvm_x86_ops.vm_move_enc_context_from)
6421 break;
6422
6423 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6424 break;
6425 case KVM_CAP_EXIT_HYPERCALL:
6426 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6427 r = -EINVAL;
6428 break;
6429 }
6430 kvm->arch.hypercall_exit_enabled = cap->args[0];
6431 r = 0;
6432 break;
6433 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6434 r = -EINVAL;
6435 if (cap->args[0] & ~1)
6436 break;
6437 kvm->arch.exit_on_emulation_error = cap->args[0];
6438 r = 0;
6439 break;
6440 case KVM_CAP_PMU_CAPABILITY:
6441 r = -EINVAL;
6442 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6443 break;
6444
6445 mutex_lock(&kvm->lock);
6446 if (!kvm->created_vcpus) {
6447 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6448 r = 0;
6449 }
6450 mutex_unlock(&kvm->lock);
6451 break;
6452 case KVM_CAP_MAX_VCPU_ID:
6453 r = -EINVAL;
6454 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6455 break;
6456
6457 mutex_lock(&kvm->lock);
6458 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6459 r = 0;
6460 } else if (!kvm->arch.max_vcpu_ids) {
6461 kvm->arch.max_vcpu_ids = cap->args[0];
6462 r = 0;
6463 }
6464 mutex_unlock(&kvm->lock);
6465 break;
6466 case KVM_CAP_X86_NOTIFY_VMEXIT:
6467 r = -EINVAL;
6468 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6469 break;
6470 if (!kvm_caps.has_notify_vmexit)
6471 break;
6472 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6473 break;
6474 mutex_lock(&kvm->lock);
6475 if (!kvm->created_vcpus) {
6476 kvm->arch.notify_window = cap->args[0] >> 32;
6477 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6478 r = 0;
6479 }
6480 mutex_unlock(&kvm->lock);
6481 break;
6482 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6483 r = -EINVAL;
6484
6485 /*
6486 * Since the risk of disabling NX hugepages is a guest crashing
6487 * the system, ensure the userspace process has permission to
6488 * reboot the system.
6489 *
6490 * Note that unlike the reboot() syscall, the process must have
6491 * this capability in the root namespace because exposing
6492 * /dev/kvm into a container does not limit the scope of the
6493 * iTLB multihit bug to that container. In other words,
6494 * this must use capable(), not ns_capable().
6495 */
6496 if (!capable(CAP_SYS_BOOT)) {
6497 r = -EPERM;
6498 break;
6499 }
6500
6501 if (cap->args[0])
6502 break;
6503
6504 mutex_lock(&kvm->lock);
6505 if (!kvm->created_vcpus) {
6506 kvm->arch.disable_nx_huge_pages = true;
6507 r = 0;
6508 }
6509 mutex_unlock(&kvm->lock);
6510 break;
6511 default:
6512 r = -EINVAL;
6513 break;
6514 }
6515 return r;
6516 }
6517
kvm_alloc_msr_filter(bool default_allow)6518 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6519 {
6520 struct kvm_x86_msr_filter *msr_filter;
6521
6522 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6523 if (!msr_filter)
6524 return NULL;
6525
6526 msr_filter->default_allow = default_allow;
6527 return msr_filter;
6528 }
6529
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6530 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6531 {
6532 u32 i;
6533
6534 if (!msr_filter)
6535 return;
6536
6537 for (i = 0; i < msr_filter->count; i++)
6538 kfree(msr_filter->ranges[i].bitmap);
6539
6540 kfree(msr_filter);
6541 }
6542
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6543 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6544 struct kvm_msr_filter_range *user_range)
6545 {
6546 unsigned long *bitmap;
6547 size_t bitmap_size;
6548
6549 if (!user_range->nmsrs)
6550 return 0;
6551
6552 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6553 return -EINVAL;
6554
6555 if (!user_range->flags)
6556 return -EINVAL;
6557
6558 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6559 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6560 return -EINVAL;
6561
6562 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6563 if (IS_ERR(bitmap))
6564 return PTR_ERR(bitmap);
6565
6566 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6567 .flags = user_range->flags,
6568 .base = user_range->base,
6569 .nmsrs = user_range->nmsrs,
6570 .bitmap = bitmap,
6571 };
6572
6573 msr_filter->count++;
6574 return 0;
6575 }
6576
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6577 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6578 struct kvm_msr_filter *filter)
6579 {
6580 struct kvm_x86_msr_filter *new_filter, *old_filter;
6581 bool default_allow;
6582 bool empty = true;
6583 int r;
6584 u32 i;
6585
6586 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6587 return -EINVAL;
6588
6589 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6590 empty &= !filter->ranges[i].nmsrs;
6591
6592 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6593 if (empty && !default_allow)
6594 return -EINVAL;
6595
6596 new_filter = kvm_alloc_msr_filter(default_allow);
6597 if (!new_filter)
6598 return -ENOMEM;
6599
6600 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6601 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6602 if (r) {
6603 kvm_free_msr_filter(new_filter);
6604 return r;
6605 }
6606 }
6607
6608 mutex_lock(&kvm->lock);
6609 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6610 mutex_is_locked(&kvm->lock));
6611 mutex_unlock(&kvm->lock);
6612 synchronize_srcu(&kvm->srcu);
6613
6614 kvm_free_msr_filter(old_filter);
6615
6616 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6617
6618 return 0;
6619 }
6620
6621 #ifdef CONFIG_KVM_COMPAT
6622 /* for KVM_X86_SET_MSR_FILTER */
6623 struct kvm_msr_filter_range_compat {
6624 __u32 flags;
6625 __u32 nmsrs;
6626 __u32 base;
6627 __u32 bitmap;
6628 };
6629
6630 struct kvm_msr_filter_compat {
6631 __u32 flags;
6632 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6633 };
6634
6635 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6636
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6637 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6638 unsigned long arg)
6639 {
6640 void __user *argp = (void __user *)arg;
6641 struct kvm *kvm = filp->private_data;
6642 long r = -ENOTTY;
6643
6644 switch (ioctl) {
6645 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6646 struct kvm_msr_filter __user *user_msr_filter = argp;
6647 struct kvm_msr_filter_compat filter_compat;
6648 struct kvm_msr_filter filter;
6649 int i;
6650
6651 if (copy_from_user(&filter_compat, user_msr_filter,
6652 sizeof(filter_compat)))
6653 return -EFAULT;
6654
6655 filter.flags = filter_compat.flags;
6656 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6657 struct kvm_msr_filter_range_compat *cr;
6658
6659 cr = &filter_compat.ranges[i];
6660 filter.ranges[i] = (struct kvm_msr_filter_range) {
6661 .flags = cr->flags,
6662 .nmsrs = cr->nmsrs,
6663 .base = cr->base,
6664 .bitmap = (__u8 *)(ulong)cr->bitmap,
6665 };
6666 }
6667
6668 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6669 break;
6670 }
6671 }
6672
6673 return r;
6674 }
6675 #endif
6676
6677 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6678 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6679 {
6680 struct kvm_vcpu *vcpu;
6681 unsigned long i;
6682 int ret = 0;
6683
6684 mutex_lock(&kvm->lock);
6685 kvm_for_each_vcpu(i, vcpu, kvm) {
6686 if (!vcpu->arch.pv_time.active)
6687 continue;
6688
6689 ret = kvm_set_guest_paused(vcpu);
6690 if (ret) {
6691 kvm_err("Failed to pause guest VCPU%d: %d\n",
6692 vcpu->vcpu_id, ret);
6693 break;
6694 }
6695 }
6696 mutex_unlock(&kvm->lock);
6697
6698 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6699 }
6700
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6701 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6702 {
6703 switch (state) {
6704 case PM_HIBERNATION_PREPARE:
6705 case PM_SUSPEND_PREPARE:
6706 return kvm_arch_suspend_notifier(kvm);
6707 }
6708
6709 return NOTIFY_DONE;
6710 }
6711 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6712
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6713 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6714 {
6715 struct kvm_clock_data data = { 0 };
6716
6717 get_kvmclock(kvm, &data);
6718 if (copy_to_user(argp, &data, sizeof(data)))
6719 return -EFAULT;
6720
6721 return 0;
6722 }
6723
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6724 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6725 {
6726 struct kvm_arch *ka = &kvm->arch;
6727 struct kvm_clock_data data;
6728 u64 now_raw_ns;
6729
6730 if (copy_from_user(&data, argp, sizeof(data)))
6731 return -EFAULT;
6732
6733 /*
6734 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6735 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6736 */
6737 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6738 return -EINVAL;
6739
6740 kvm_hv_request_tsc_page_update(kvm);
6741 kvm_start_pvclock_update(kvm);
6742 pvclock_update_vm_gtod_copy(kvm);
6743
6744 /*
6745 * This pairs with kvm_guest_time_update(): when masterclock is
6746 * in use, we use master_kernel_ns + kvmclock_offset to set
6747 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6748 * is slightly ahead) here we risk going negative on unsigned
6749 * 'system_time' when 'data.clock' is very small.
6750 */
6751 if (data.flags & KVM_CLOCK_REALTIME) {
6752 u64 now_real_ns = ktime_get_real_ns();
6753
6754 /*
6755 * Avoid stepping the kvmclock backwards.
6756 */
6757 if (now_real_ns > data.realtime)
6758 data.clock += now_real_ns - data.realtime;
6759 }
6760
6761 if (ka->use_master_clock)
6762 now_raw_ns = ka->master_kernel_ns;
6763 else
6764 now_raw_ns = get_kvmclock_base_ns();
6765 ka->kvmclock_offset = data.clock - now_raw_ns;
6766 kvm_end_pvclock_update(kvm);
6767 return 0;
6768 }
6769
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6770 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6771 {
6772 struct kvm *kvm = filp->private_data;
6773 void __user *argp = (void __user *)arg;
6774 int r = -ENOTTY;
6775 /*
6776 * This union makes it completely explicit to gcc-3.x
6777 * that these two variables' stack usage should be
6778 * combined, not added together.
6779 */
6780 union {
6781 struct kvm_pit_state ps;
6782 struct kvm_pit_state2 ps2;
6783 struct kvm_pit_config pit_config;
6784 } u;
6785
6786 switch (ioctl) {
6787 case KVM_SET_TSS_ADDR:
6788 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6789 break;
6790 case KVM_SET_IDENTITY_MAP_ADDR: {
6791 u64 ident_addr;
6792
6793 mutex_lock(&kvm->lock);
6794 r = -EINVAL;
6795 if (kvm->created_vcpus)
6796 goto set_identity_unlock;
6797 r = -EFAULT;
6798 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6799 goto set_identity_unlock;
6800 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6801 set_identity_unlock:
6802 mutex_unlock(&kvm->lock);
6803 break;
6804 }
6805 case KVM_SET_NR_MMU_PAGES:
6806 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6807 break;
6808 case KVM_CREATE_IRQCHIP: {
6809 mutex_lock(&kvm->lock);
6810
6811 r = -EEXIST;
6812 if (irqchip_in_kernel(kvm))
6813 goto create_irqchip_unlock;
6814
6815 r = -EINVAL;
6816 if (kvm->created_vcpus)
6817 goto create_irqchip_unlock;
6818
6819 r = kvm_pic_init(kvm);
6820 if (r)
6821 goto create_irqchip_unlock;
6822
6823 r = kvm_ioapic_init(kvm);
6824 if (r) {
6825 kvm_pic_destroy(kvm);
6826 goto create_irqchip_unlock;
6827 }
6828
6829 r = kvm_setup_default_irq_routing(kvm);
6830 if (r) {
6831 kvm_ioapic_destroy(kvm);
6832 kvm_pic_destroy(kvm);
6833 goto create_irqchip_unlock;
6834 }
6835 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6836 smp_wmb();
6837 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6838 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6839 create_irqchip_unlock:
6840 mutex_unlock(&kvm->lock);
6841 break;
6842 }
6843 case KVM_CREATE_PIT:
6844 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6845 goto create_pit;
6846 case KVM_CREATE_PIT2:
6847 r = -EFAULT;
6848 if (copy_from_user(&u.pit_config, argp,
6849 sizeof(struct kvm_pit_config)))
6850 goto out;
6851 create_pit:
6852 mutex_lock(&kvm->lock);
6853 r = -EEXIST;
6854 if (kvm->arch.vpit)
6855 goto create_pit_unlock;
6856 r = -ENOMEM;
6857 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6858 if (kvm->arch.vpit)
6859 r = 0;
6860 create_pit_unlock:
6861 mutex_unlock(&kvm->lock);
6862 break;
6863 case KVM_GET_IRQCHIP: {
6864 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6865 struct kvm_irqchip *chip;
6866
6867 chip = memdup_user(argp, sizeof(*chip));
6868 if (IS_ERR(chip)) {
6869 r = PTR_ERR(chip);
6870 goto out;
6871 }
6872
6873 r = -ENXIO;
6874 if (!irqchip_kernel(kvm))
6875 goto get_irqchip_out;
6876 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6877 if (r)
6878 goto get_irqchip_out;
6879 r = -EFAULT;
6880 if (copy_to_user(argp, chip, sizeof(*chip)))
6881 goto get_irqchip_out;
6882 r = 0;
6883 get_irqchip_out:
6884 kfree(chip);
6885 break;
6886 }
6887 case KVM_SET_IRQCHIP: {
6888 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6889 struct kvm_irqchip *chip;
6890
6891 chip = memdup_user(argp, sizeof(*chip));
6892 if (IS_ERR(chip)) {
6893 r = PTR_ERR(chip);
6894 goto out;
6895 }
6896
6897 r = -ENXIO;
6898 if (!irqchip_kernel(kvm))
6899 goto set_irqchip_out;
6900 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6901 set_irqchip_out:
6902 kfree(chip);
6903 break;
6904 }
6905 case KVM_GET_PIT: {
6906 r = -EFAULT;
6907 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6908 goto out;
6909 r = -ENXIO;
6910 if (!kvm->arch.vpit)
6911 goto out;
6912 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6913 if (r)
6914 goto out;
6915 r = -EFAULT;
6916 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6917 goto out;
6918 r = 0;
6919 break;
6920 }
6921 case KVM_SET_PIT: {
6922 r = -EFAULT;
6923 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6924 goto out;
6925 mutex_lock(&kvm->lock);
6926 r = -ENXIO;
6927 if (!kvm->arch.vpit)
6928 goto set_pit_out;
6929 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6930 set_pit_out:
6931 mutex_unlock(&kvm->lock);
6932 break;
6933 }
6934 case KVM_GET_PIT2: {
6935 r = -ENXIO;
6936 if (!kvm->arch.vpit)
6937 goto out;
6938 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6939 if (r)
6940 goto out;
6941 r = -EFAULT;
6942 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6943 goto out;
6944 r = 0;
6945 break;
6946 }
6947 case KVM_SET_PIT2: {
6948 r = -EFAULT;
6949 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6950 goto out;
6951 mutex_lock(&kvm->lock);
6952 r = -ENXIO;
6953 if (!kvm->arch.vpit)
6954 goto set_pit2_out;
6955 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6956 set_pit2_out:
6957 mutex_unlock(&kvm->lock);
6958 break;
6959 }
6960 case KVM_REINJECT_CONTROL: {
6961 struct kvm_reinject_control control;
6962 r = -EFAULT;
6963 if (copy_from_user(&control, argp, sizeof(control)))
6964 goto out;
6965 r = -ENXIO;
6966 if (!kvm->arch.vpit)
6967 goto out;
6968 r = kvm_vm_ioctl_reinject(kvm, &control);
6969 break;
6970 }
6971 case KVM_SET_BOOT_CPU_ID:
6972 r = 0;
6973 mutex_lock(&kvm->lock);
6974 if (kvm->created_vcpus)
6975 r = -EBUSY;
6976 else
6977 kvm->arch.bsp_vcpu_id = arg;
6978 mutex_unlock(&kvm->lock);
6979 break;
6980 #ifdef CONFIG_KVM_XEN
6981 case KVM_XEN_HVM_CONFIG: {
6982 struct kvm_xen_hvm_config xhc;
6983 r = -EFAULT;
6984 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6985 goto out;
6986 r = kvm_xen_hvm_config(kvm, &xhc);
6987 break;
6988 }
6989 case KVM_XEN_HVM_GET_ATTR: {
6990 struct kvm_xen_hvm_attr xha;
6991
6992 r = -EFAULT;
6993 if (copy_from_user(&xha, argp, sizeof(xha)))
6994 goto out;
6995 r = kvm_xen_hvm_get_attr(kvm, &xha);
6996 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6997 r = -EFAULT;
6998 break;
6999 }
7000 case KVM_XEN_HVM_SET_ATTR: {
7001 struct kvm_xen_hvm_attr xha;
7002
7003 r = -EFAULT;
7004 if (copy_from_user(&xha, argp, sizeof(xha)))
7005 goto out;
7006 r = kvm_xen_hvm_set_attr(kvm, &xha);
7007 break;
7008 }
7009 case KVM_XEN_HVM_EVTCHN_SEND: {
7010 struct kvm_irq_routing_xen_evtchn uxe;
7011
7012 r = -EFAULT;
7013 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7014 goto out;
7015 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7016 break;
7017 }
7018 #endif
7019 case KVM_SET_CLOCK:
7020 r = kvm_vm_ioctl_set_clock(kvm, argp);
7021 break;
7022 case KVM_GET_CLOCK:
7023 r = kvm_vm_ioctl_get_clock(kvm, argp);
7024 break;
7025 case KVM_SET_TSC_KHZ: {
7026 u32 user_tsc_khz;
7027
7028 r = -EINVAL;
7029 user_tsc_khz = (u32)arg;
7030
7031 if (kvm_caps.has_tsc_control &&
7032 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7033 goto out;
7034
7035 if (user_tsc_khz == 0)
7036 user_tsc_khz = tsc_khz;
7037
7038 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7039 r = 0;
7040
7041 goto out;
7042 }
7043 case KVM_GET_TSC_KHZ: {
7044 r = READ_ONCE(kvm->arch.default_tsc_khz);
7045 goto out;
7046 }
7047 case KVM_MEMORY_ENCRYPT_OP: {
7048 r = -ENOTTY;
7049 if (!kvm_x86_ops.mem_enc_ioctl)
7050 goto out;
7051
7052 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7053 break;
7054 }
7055 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7056 struct kvm_enc_region region;
7057
7058 r = -EFAULT;
7059 if (copy_from_user(®ion, argp, sizeof(region)))
7060 goto out;
7061
7062 r = -ENOTTY;
7063 if (!kvm_x86_ops.mem_enc_register_region)
7064 goto out;
7065
7066 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
7067 break;
7068 }
7069 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7070 struct kvm_enc_region region;
7071
7072 r = -EFAULT;
7073 if (copy_from_user(®ion, argp, sizeof(region)))
7074 goto out;
7075
7076 r = -ENOTTY;
7077 if (!kvm_x86_ops.mem_enc_unregister_region)
7078 goto out;
7079
7080 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
7081 break;
7082 }
7083 case KVM_HYPERV_EVENTFD: {
7084 struct kvm_hyperv_eventfd hvevfd;
7085
7086 r = -EFAULT;
7087 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7088 goto out;
7089 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7090 break;
7091 }
7092 case KVM_SET_PMU_EVENT_FILTER:
7093 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7094 break;
7095 case KVM_X86_SET_MSR_FILTER: {
7096 struct kvm_msr_filter __user *user_msr_filter = argp;
7097 struct kvm_msr_filter filter;
7098
7099 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7100 return -EFAULT;
7101
7102 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7103 break;
7104 }
7105 default:
7106 r = -ENOTTY;
7107 }
7108 out:
7109 return r;
7110 }
7111
kvm_probe_feature_msr(u32 msr_index)7112 static void kvm_probe_feature_msr(u32 msr_index)
7113 {
7114 struct kvm_msr_entry msr = {
7115 .index = msr_index,
7116 };
7117
7118 if (kvm_get_msr_feature(&msr))
7119 return;
7120
7121 msr_based_features[num_msr_based_features++] = msr_index;
7122 }
7123
kvm_probe_msr_to_save(u32 msr_index)7124 static void kvm_probe_msr_to_save(u32 msr_index)
7125 {
7126 u32 dummy[2];
7127
7128 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7129 return;
7130
7131 /*
7132 * Even MSRs that are valid in the host may not be exposed to guests in
7133 * some cases.
7134 */
7135 switch (msr_index) {
7136 case MSR_IA32_BNDCFGS:
7137 if (!kvm_mpx_supported())
7138 return;
7139 break;
7140 case MSR_TSC_AUX:
7141 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7142 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7143 return;
7144 break;
7145 case MSR_IA32_UMWAIT_CONTROL:
7146 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7147 return;
7148 break;
7149 case MSR_IA32_RTIT_CTL:
7150 case MSR_IA32_RTIT_STATUS:
7151 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7152 return;
7153 break;
7154 case MSR_IA32_RTIT_CR3_MATCH:
7155 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7156 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7157 return;
7158 break;
7159 case MSR_IA32_RTIT_OUTPUT_BASE:
7160 case MSR_IA32_RTIT_OUTPUT_MASK:
7161 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7162 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7163 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7164 return;
7165 break;
7166 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7167 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7168 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7169 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7170 return;
7171 break;
7172 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7173 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7174 kvm_pmu_cap.num_counters_gp)
7175 return;
7176 break;
7177 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7178 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7179 kvm_pmu_cap.num_counters_gp)
7180 return;
7181 break;
7182 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7183 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7184 kvm_pmu_cap.num_counters_fixed)
7185 return;
7186 break;
7187 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7188 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7189 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7190 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7191 return;
7192 break;
7193 case MSR_IA32_XFD:
7194 case MSR_IA32_XFD_ERR:
7195 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7196 return;
7197 break;
7198 case MSR_IA32_TSX_CTRL:
7199 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7200 return;
7201 break;
7202 default:
7203 break;
7204 }
7205
7206 msrs_to_save[num_msrs_to_save++] = msr_index;
7207 }
7208
kvm_init_msr_lists(void)7209 static void kvm_init_msr_lists(void)
7210 {
7211 unsigned i;
7212
7213 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7214 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7215
7216 num_msrs_to_save = 0;
7217 num_emulated_msrs = 0;
7218 num_msr_based_features = 0;
7219
7220 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7221 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7222
7223 if (enable_pmu) {
7224 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7225 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7226 }
7227
7228 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7229 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7230 continue;
7231
7232 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7233 }
7234
7235 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7236 kvm_probe_feature_msr(i);
7237
7238 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7239 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7240 }
7241
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7242 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7243 const void *v)
7244 {
7245 int handled = 0;
7246 int n;
7247
7248 do {
7249 n = min(len, 8);
7250 if (!(lapic_in_kernel(vcpu) &&
7251 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7252 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7253 break;
7254 handled += n;
7255 addr += n;
7256 len -= n;
7257 v += n;
7258 } while (len);
7259
7260 return handled;
7261 }
7262
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7263 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7264 {
7265 int handled = 0;
7266 int n;
7267
7268 do {
7269 n = min(len, 8);
7270 if (!(lapic_in_kernel(vcpu) &&
7271 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7272 addr, n, v))
7273 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7274 break;
7275 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7276 handled += n;
7277 addr += n;
7278 len -= n;
7279 v += n;
7280 } while (len);
7281
7282 return handled;
7283 }
7284
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7285 void kvm_set_segment(struct kvm_vcpu *vcpu,
7286 struct kvm_segment *var, int seg)
7287 {
7288 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7289 }
7290
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7291 void kvm_get_segment(struct kvm_vcpu *vcpu,
7292 struct kvm_segment *var, int seg)
7293 {
7294 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7295 }
7296
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7297 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7298 struct x86_exception *exception)
7299 {
7300 struct kvm_mmu *mmu = vcpu->arch.mmu;
7301 gpa_t t_gpa;
7302
7303 BUG_ON(!mmu_is_nested(vcpu));
7304
7305 /* NPT walks are always user-walks */
7306 access |= PFERR_USER_MASK;
7307 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7308
7309 return t_gpa;
7310 }
7311
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7312 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7313 struct x86_exception *exception)
7314 {
7315 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7316
7317 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7318 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7319 }
7320 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7321
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7322 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7323 struct x86_exception *exception)
7324 {
7325 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7326
7327 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7328 access |= PFERR_WRITE_MASK;
7329 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7330 }
7331 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7332
7333 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7334 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7335 struct x86_exception *exception)
7336 {
7337 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7338
7339 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7340 }
7341
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7342 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7343 struct kvm_vcpu *vcpu, u64 access,
7344 struct x86_exception *exception)
7345 {
7346 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7347 void *data = val;
7348 int r = X86EMUL_CONTINUE;
7349
7350 while (bytes) {
7351 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7352 unsigned offset = addr & (PAGE_SIZE-1);
7353 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7354 int ret;
7355
7356 if (gpa == INVALID_GPA)
7357 return X86EMUL_PROPAGATE_FAULT;
7358 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7359 offset, toread);
7360 if (ret < 0) {
7361 r = X86EMUL_IO_NEEDED;
7362 goto out;
7363 }
7364
7365 bytes -= toread;
7366 data += toread;
7367 addr += toread;
7368 }
7369 out:
7370 return r;
7371 }
7372
7373 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7374 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7375 gva_t addr, void *val, unsigned int bytes,
7376 struct x86_exception *exception)
7377 {
7378 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7379 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7380 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7381 unsigned offset;
7382 int ret;
7383
7384 /* Inline kvm_read_guest_virt_helper for speed. */
7385 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7386 exception);
7387 if (unlikely(gpa == INVALID_GPA))
7388 return X86EMUL_PROPAGATE_FAULT;
7389
7390 offset = addr & (PAGE_SIZE-1);
7391 if (WARN_ON(offset + bytes > PAGE_SIZE))
7392 bytes = (unsigned)PAGE_SIZE - offset;
7393 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7394 offset, bytes);
7395 if (unlikely(ret < 0))
7396 return X86EMUL_IO_NEEDED;
7397
7398 return X86EMUL_CONTINUE;
7399 }
7400
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7401 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7402 gva_t addr, void *val, unsigned int bytes,
7403 struct x86_exception *exception)
7404 {
7405 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7406
7407 /*
7408 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7409 * is returned, but our callers are not ready for that and they blindly
7410 * call kvm_inject_page_fault. Ensure that they at least do not leak
7411 * uninitialized kernel stack memory into cr2 and error code.
7412 */
7413 memset(exception, 0, sizeof(*exception));
7414 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7415 exception);
7416 }
7417 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7418
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7419 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7420 gva_t addr, void *val, unsigned int bytes,
7421 struct x86_exception *exception, bool system)
7422 {
7423 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7424 u64 access = 0;
7425
7426 if (system)
7427 access |= PFERR_IMPLICIT_ACCESS;
7428 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7429 access |= PFERR_USER_MASK;
7430
7431 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7432 }
7433
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7434 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7435 struct kvm_vcpu *vcpu, u64 access,
7436 struct x86_exception *exception)
7437 {
7438 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7439 void *data = val;
7440 int r = X86EMUL_CONTINUE;
7441
7442 while (bytes) {
7443 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7444 unsigned offset = addr & (PAGE_SIZE-1);
7445 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7446 int ret;
7447
7448 if (gpa == INVALID_GPA)
7449 return X86EMUL_PROPAGATE_FAULT;
7450 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7451 if (ret < 0) {
7452 r = X86EMUL_IO_NEEDED;
7453 goto out;
7454 }
7455
7456 bytes -= towrite;
7457 data += towrite;
7458 addr += towrite;
7459 }
7460 out:
7461 return r;
7462 }
7463
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7464 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7465 unsigned int bytes, struct x86_exception *exception,
7466 bool system)
7467 {
7468 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7469 u64 access = PFERR_WRITE_MASK;
7470
7471 if (system)
7472 access |= PFERR_IMPLICIT_ACCESS;
7473 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7474 access |= PFERR_USER_MASK;
7475
7476 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7477 access, exception);
7478 }
7479
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7480 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7481 unsigned int bytes, struct x86_exception *exception)
7482 {
7483 /* kvm_write_guest_virt_system can pull in tons of pages. */
7484 vcpu->arch.l1tf_flush_l1d = true;
7485
7486 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7487 PFERR_WRITE_MASK, exception);
7488 }
7489 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7490
kvm_can_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7491 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7492 void *insn, int insn_len)
7493 {
7494 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7495 insn, insn_len);
7496 }
7497
handle_ud(struct kvm_vcpu * vcpu)7498 int handle_ud(struct kvm_vcpu *vcpu)
7499 {
7500 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7501 int fep_flags = READ_ONCE(force_emulation_prefix);
7502 int emul_type = EMULTYPE_TRAP_UD;
7503 char sig[5]; /* ud2; .ascii "kvm" */
7504 struct x86_exception e;
7505
7506 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7507 return 1;
7508
7509 if (fep_flags &&
7510 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7511 sig, sizeof(sig), &e) == 0 &&
7512 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7513 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7514 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7515 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7516 emul_type = EMULTYPE_TRAP_UD_FORCED;
7517 }
7518
7519 return kvm_emulate_instruction(vcpu, emul_type);
7520 }
7521 EXPORT_SYMBOL_GPL(handle_ud);
7522
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7523 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7524 gpa_t gpa, bool write)
7525 {
7526 /* For APIC access vmexit */
7527 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7528 return 1;
7529
7530 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7531 trace_vcpu_match_mmio(gva, gpa, write, true);
7532 return 1;
7533 }
7534
7535 return 0;
7536 }
7537
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7538 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7539 gpa_t *gpa, struct x86_exception *exception,
7540 bool write)
7541 {
7542 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7543 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7544 | (write ? PFERR_WRITE_MASK : 0);
7545
7546 /*
7547 * currently PKRU is only applied to ept enabled guest so
7548 * there is no pkey in EPT page table for L1 guest or EPT
7549 * shadow page table for L2 guest.
7550 */
7551 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7552 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7553 vcpu->arch.mmio_access, 0, access))) {
7554 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7555 (gva & (PAGE_SIZE - 1));
7556 trace_vcpu_match_mmio(gva, *gpa, write, false);
7557 return 1;
7558 }
7559
7560 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7561
7562 if (*gpa == INVALID_GPA)
7563 return -1;
7564
7565 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7566 }
7567
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7568 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7569 const void *val, int bytes)
7570 {
7571 int ret;
7572
7573 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7574 if (ret < 0)
7575 return 0;
7576 kvm_page_track_write(vcpu, gpa, val, bytes);
7577 return 1;
7578 }
7579
7580 struct read_write_emulator_ops {
7581 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7582 int bytes);
7583 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7584 void *val, int bytes);
7585 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7586 int bytes, void *val);
7587 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7588 void *val, int bytes);
7589 bool write;
7590 };
7591
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7592 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7593 {
7594 if (vcpu->mmio_read_completed) {
7595 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7596 vcpu->mmio_fragments[0].gpa, val);
7597 vcpu->mmio_read_completed = 0;
7598 return 1;
7599 }
7600
7601 return 0;
7602 }
7603
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7604 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7605 void *val, int bytes)
7606 {
7607 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7608 }
7609
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7610 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7611 void *val, int bytes)
7612 {
7613 return emulator_write_phys(vcpu, gpa, val, bytes);
7614 }
7615
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7616 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7617 {
7618 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7619 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7620 }
7621
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7622 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7623 void *val, int bytes)
7624 {
7625 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7626 return X86EMUL_IO_NEEDED;
7627 }
7628
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7629 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7630 void *val, int bytes)
7631 {
7632 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7633
7634 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7635 return X86EMUL_CONTINUE;
7636 }
7637
7638 static const struct read_write_emulator_ops read_emultor = {
7639 .read_write_prepare = read_prepare,
7640 .read_write_emulate = read_emulate,
7641 .read_write_mmio = vcpu_mmio_read,
7642 .read_write_exit_mmio = read_exit_mmio,
7643 };
7644
7645 static const struct read_write_emulator_ops write_emultor = {
7646 .read_write_emulate = write_emulate,
7647 .read_write_mmio = write_mmio,
7648 .read_write_exit_mmio = write_exit_mmio,
7649 .write = true,
7650 };
7651
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7652 static int emulator_read_write_onepage(unsigned long addr, void *val,
7653 unsigned int bytes,
7654 struct x86_exception *exception,
7655 struct kvm_vcpu *vcpu,
7656 const struct read_write_emulator_ops *ops)
7657 {
7658 gpa_t gpa;
7659 int handled, ret;
7660 bool write = ops->write;
7661 struct kvm_mmio_fragment *frag;
7662 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7663
7664 /*
7665 * If the exit was due to a NPF we may already have a GPA.
7666 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7667 * Note, this cannot be used on string operations since string
7668 * operation using rep will only have the initial GPA from the NPF
7669 * occurred.
7670 */
7671 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7672 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7673 gpa = ctxt->gpa_val;
7674 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7675 } else {
7676 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7677 if (ret < 0)
7678 return X86EMUL_PROPAGATE_FAULT;
7679 }
7680
7681 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7682 return X86EMUL_CONTINUE;
7683
7684 /*
7685 * Is this MMIO handled locally?
7686 */
7687 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7688 if (handled == bytes)
7689 return X86EMUL_CONTINUE;
7690
7691 gpa += handled;
7692 bytes -= handled;
7693 val += handled;
7694
7695 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7696 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7697 frag->gpa = gpa;
7698 frag->data = val;
7699 frag->len = bytes;
7700 return X86EMUL_CONTINUE;
7701 }
7702
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7703 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7704 unsigned long addr,
7705 void *val, unsigned int bytes,
7706 struct x86_exception *exception,
7707 const struct read_write_emulator_ops *ops)
7708 {
7709 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7710 gpa_t gpa;
7711 int rc;
7712
7713 if (ops->read_write_prepare &&
7714 ops->read_write_prepare(vcpu, val, bytes))
7715 return X86EMUL_CONTINUE;
7716
7717 vcpu->mmio_nr_fragments = 0;
7718
7719 /* Crossing a page boundary? */
7720 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7721 int now;
7722
7723 now = -addr & ~PAGE_MASK;
7724 rc = emulator_read_write_onepage(addr, val, now, exception,
7725 vcpu, ops);
7726
7727 if (rc != X86EMUL_CONTINUE)
7728 return rc;
7729 addr += now;
7730 if (ctxt->mode != X86EMUL_MODE_PROT64)
7731 addr = (u32)addr;
7732 val += now;
7733 bytes -= now;
7734 }
7735
7736 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7737 vcpu, ops);
7738 if (rc != X86EMUL_CONTINUE)
7739 return rc;
7740
7741 if (!vcpu->mmio_nr_fragments)
7742 return rc;
7743
7744 gpa = vcpu->mmio_fragments[0].gpa;
7745
7746 vcpu->mmio_needed = 1;
7747 vcpu->mmio_cur_fragment = 0;
7748
7749 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7750 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7751 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7752 vcpu->run->mmio.phys_addr = gpa;
7753
7754 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7755 }
7756
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7757 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7758 unsigned long addr,
7759 void *val,
7760 unsigned int bytes,
7761 struct x86_exception *exception)
7762 {
7763 return emulator_read_write(ctxt, addr, val, bytes,
7764 exception, &read_emultor);
7765 }
7766
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7767 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7768 unsigned long addr,
7769 const void *val,
7770 unsigned int bytes,
7771 struct x86_exception *exception)
7772 {
7773 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7774 exception, &write_emultor);
7775 }
7776
7777 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7778 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7779
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7780 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7781 unsigned long addr,
7782 const void *old,
7783 const void *new,
7784 unsigned int bytes,
7785 struct x86_exception *exception)
7786 {
7787 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7788 u64 page_line_mask;
7789 unsigned long hva;
7790 gpa_t gpa;
7791 int r;
7792
7793 /* guests cmpxchg8b have to be emulated atomically */
7794 if (bytes > 8 || (bytes & (bytes - 1)))
7795 goto emul_write;
7796
7797 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7798
7799 if (gpa == INVALID_GPA ||
7800 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7801 goto emul_write;
7802
7803 /*
7804 * Emulate the atomic as a straight write to avoid #AC if SLD is
7805 * enabled in the host and the access splits a cache line.
7806 */
7807 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7808 page_line_mask = ~(cache_line_size() - 1);
7809 else
7810 page_line_mask = PAGE_MASK;
7811
7812 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7813 goto emul_write;
7814
7815 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7816 if (kvm_is_error_hva(hva))
7817 goto emul_write;
7818
7819 hva += offset_in_page(gpa);
7820
7821 switch (bytes) {
7822 case 1:
7823 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7824 break;
7825 case 2:
7826 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7827 break;
7828 case 4:
7829 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7830 break;
7831 case 8:
7832 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7833 break;
7834 default:
7835 BUG();
7836 }
7837
7838 if (r < 0)
7839 return X86EMUL_UNHANDLEABLE;
7840 if (r)
7841 return X86EMUL_CMPXCHG_FAILED;
7842
7843 kvm_page_track_write(vcpu, gpa, new, bytes);
7844
7845 return X86EMUL_CONTINUE;
7846
7847 emul_write:
7848 pr_warn_once("emulating exchange as write\n");
7849
7850 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7851 }
7852
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)7853 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7854 unsigned short port, void *data,
7855 unsigned int count, bool in)
7856 {
7857 unsigned i;
7858 int r;
7859
7860 WARN_ON_ONCE(vcpu->arch.pio.count);
7861 for (i = 0; i < count; i++) {
7862 if (in)
7863 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7864 else
7865 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7866
7867 if (r) {
7868 if (i == 0)
7869 goto userspace_io;
7870
7871 /*
7872 * Userspace must have unregistered the device while PIO
7873 * was running. Drop writes / read as 0.
7874 */
7875 if (in)
7876 memset(data, 0, size * (count - i));
7877 break;
7878 }
7879
7880 data += size;
7881 }
7882 return 1;
7883
7884 userspace_io:
7885 vcpu->arch.pio.port = port;
7886 vcpu->arch.pio.in = in;
7887 vcpu->arch.pio.count = count;
7888 vcpu->arch.pio.size = size;
7889
7890 if (in)
7891 memset(vcpu->arch.pio_data, 0, size * count);
7892 else
7893 memcpy(vcpu->arch.pio_data, data, size * count);
7894
7895 vcpu->run->exit_reason = KVM_EXIT_IO;
7896 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7897 vcpu->run->io.size = size;
7898 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7899 vcpu->run->io.count = count;
7900 vcpu->run->io.port = port;
7901 return 0;
7902 }
7903
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7904 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7905 unsigned short port, void *val, unsigned int count)
7906 {
7907 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7908 if (r)
7909 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7910
7911 return r;
7912 }
7913
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7914 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7915 {
7916 int size = vcpu->arch.pio.size;
7917 unsigned int count = vcpu->arch.pio.count;
7918 memcpy(val, vcpu->arch.pio_data, size * count);
7919 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7920 vcpu->arch.pio.count = 0;
7921 }
7922
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7923 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7924 int size, unsigned short port, void *val,
7925 unsigned int count)
7926 {
7927 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7928 if (vcpu->arch.pio.count) {
7929 /*
7930 * Complete a previous iteration that required userspace I/O.
7931 * Note, @count isn't guaranteed to match pio.count as userspace
7932 * can modify ECX before rerunning the vCPU. Ignore any such
7933 * shenanigans as KVM doesn't support modifying the rep count,
7934 * and the emulator ensures @count doesn't overflow the buffer.
7935 */
7936 complete_emulator_pio_in(vcpu, val);
7937 return 1;
7938 }
7939
7940 return emulator_pio_in(vcpu, size, port, val, count);
7941 }
7942
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7943 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7944 unsigned short port, const void *val,
7945 unsigned int count)
7946 {
7947 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7948 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7949 }
7950
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7951 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7952 int size, unsigned short port,
7953 const void *val, unsigned int count)
7954 {
7955 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7956 }
7957
get_segment_base(struct kvm_vcpu * vcpu,int seg)7958 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7959 {
7960 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7961 }
7962
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7963 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7964 {
7965 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7966 }
7967
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7968 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7969 {
7970 if (!need_emulate_wbinvd(vcpu))
7971 return X86EMUL_CONTINUE;
7972
7973 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7974 int cpu = get_cpu();
7975
7976 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7977 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7978 wbinvd_ipi, NULL, 1);
7979 put_cpu();
7980 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7981 } else
7982 wbinvd();
7983 return X86EMUL_CONTINUE;
7984 }
7985
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)7986 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7987 {
7988 kvm_emulate_wbinvd_noskip(vcpu);
7989 return kvm_skip_emulated_instruction(vcpu);
7990 }
7991 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7992
7993
7994
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)7995 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7996 {
7997 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7998 }
7999
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)8000 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8001 unsigned long *dest)
8002 {
8003 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8004 }
8005
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8006 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8007 unsigned long value)
8008 {
8009
8010 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8011 }
8012
mk_cr_64(u64 curr_cr,u32 new_val)8013 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8014 {
8015 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8016 }
8017
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8018 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8019 {
8020 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8021 unsigned long value;
8022
8023 switch (cr) {
8024 case 0:
8025 value = kvm_read_cr0(vcpu);
8026 break;
8027 case 2:
8028 value = vcpu->arch.cr2;
8029 break;
8030 case 3:
8031 value = kvm_read_cr3(vcpu);
8032 break;
8033 case 4:
8034 value = kvm_read_cr4(vcpu);
8035 break;
8036 case 8:
8037 value = kvm_get_cr8(vcpu);
8038 break;
8039 default:
8040 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8041 return 0;
8042 }
8043
8044 return value;
8045 }
8046
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8047 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8048 {
8049 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8050 int res = 0;
8051
8052 switch (cr) {
8053 case 0:
8054 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8055 break;
8056 case 2:
8057 vcpu->arch.cr2 = val;
8058 break;
8059 case 3:
8060 res = kvm_set_cr3(vcpu, val);
8061 break;
8062 case 4:
8063 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8064 break;
8065 case 8:
8066 res = kvm_set_cr8(vcpu, val);
8067 break;
8068 default:
8069 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8070 res = -1;
8071 }
8072
8073 return res;
8074 }
8075
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8076 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8077 {
8078 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8079 }
8080
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8081 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8082 {
8083 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8084 }
8085
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8086 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8087 {
8088 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8089 }
8090
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8091 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8092 {
8093 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8094 }
8095
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8096 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8097 {
8098 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8099 }
8100
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8101 static unsigned long emulator_get_cached_segment_base(
8102 struct x86_emulate_ctxt *ctxt, int seg)
8103 {
8104 return get_segment_base(emul_to_vcpu(ctxt), seg);
8105 }
8106
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8107 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8108 struct desc_struct *desc, u32 *base3,
8109 int seg)
8110 {
8111 struct kvm_segment var;
8112
8113 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8114 *selector = var.selector;
8115
8116 if (var.unusable) {
8117 memset(desc, 0, sizeof(*desc));
8118 if (base3)
8119 *base3 = 0;
8120 return false;
8121 }
8122
8123 if (var.g)
8124 var.limit >>= 12;
8125 set_desc_limit(desc, var.limit);
8126 set_desc_base(desc, (unsigned long)var.base);
8127 #ifdef CONFIG_X86_64
8128 if (base3)
8129 *base3 = var.base >> 32;
8130 #endif
8131 desc->type = var.type;
8132 desc->s = var.s;
8133 desc->dpl = var.dpl;
8134 desc->p = var.present;
8135 desc->avl = var.avl;
8136 desc->l = var.l;
8137 desc->d = var.db;
8138 desc->g = var.g;
8139
8140 return true;
8141 }
8142
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8143 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8144 struct desc_struct *desc, u32 base3,
8145 int seg)
8146 {
8147 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8148 struct kvm_segment var;
8149
8150 var.selector = selector;
8151 var.base = get_desc_base(desc);
8152 #ifdef CONFIG_X86_64
8153 var.base |= ((u64)base3) << 32;
8154 #endif
8155 var.limit = get_desc_limit(desc);
8156 if (desc->g)
8157 var.limit = (var.limit << 12) | 0xfff;
8158 var.type = desc->type;
8159 var.dpl = desc->dpl;
8160 var.db = desc->d;
8161 var.s = desc->s;
8162 var.l = desc->l;
8163 var.g = desc->g;
8164 var.avl = desc->avl;
8165 var.present = desc->p;
8166 var.unusable = !var.present;
8167 var.padding = 0;
8168
8169 kvm_set_segment(vcpu, &var, seg);
8170 return;
8171 }
8172
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8173 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8174 u32 msr_index, u64 *pdata)
8175 {
8176 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8177 int r;
8178
8179 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8180 if (r < 0)
8181 return X86EMUL_UNHANDLEABLE;
8182
8183 if (r) {
8184 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8185 complete_emulated_rdmsr, r))
8186 return X86EMUL_IO_NEEDED;
8187
8188 trace_kvm_msr_read_ex(msr_index);
8189 return X86EMUL_PROPAGATE_FAULT;
8190 }
8191
8192 trace_kvm_msr_read(msr_index, *pdata);
8193 return X86EMUL_CONTINUE;
8194 }
8195
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8196 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8197 u32 msr_index, u64 data)
8198 {
8199 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8200 int r;
8201
8202 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8203 if (r < 0)
8204 return X86EMUL_UNHANDLEABLE;
8205
8206 if (r) {
8207 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8208 complete_emulated_msr_access, r))
8209 return X86EMUL_IO_NEEDED;
8210
8211 trace_kvm_msr_write_ex(msr_index, data);
8212 return X86EMUL_PROPAGATE_FAULT;
8213 }
8214
8215 trace_kvm_msr_write(msr_index, data);
8216 return X86EMUL_CONTINUE;
8217 }
8218
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8219 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8220 u32 msr_index, u64 *pdata)
8221 {
8222 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8223 }
8224
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)8225 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8226 u32 pmc)
8227 {
8228 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8229 return 0;
8230 return -EINVAL;
8231 }
8232
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8233 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8234 u32 pmc, u64 *pdata)
8235 {
8236 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8237 }
8238
emulator_halt(struct x86_emulate_ctxt * ctxt)8239 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8240 {
8241 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8242 }
8243
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8244 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8245 struct x86_instruction_info *info,
8246 enum x86_intercept_stage stage)
8247 {
8248 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8249 &ctxt->exception);
8250 }
8251
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8252 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8253 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8254 bool exact_only)
8255 {
8256 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8257 }
8258
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8259 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8260 {
8261 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8262 }
8263
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8264 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8265 {
8266 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8267 }
8268
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8269 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8270 {
8271 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8272 }
8273
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8274 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8275 {
8276 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8277 }
8278
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8279 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8280 {
8281 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8282 }
8283
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8284 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8285 {
8286 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8287 }
8288
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8289 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8290 {
8291 return is_smm(emul_to_vcpu(ctxt));
8292 }
8293
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8294 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8295 {
8296 return is_guest_mode(emul_to_vcpu(ctxt));
8297 }
8298
8299 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8300 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8301 {
8302 WARN_ON_ONCE(1);
8303 return X86EMUL_UNHANDLEABLE;
8304 }
8305 #endif
8306
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8307 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8308 {
8309 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8310 }
8311
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8312 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8313 {
8314 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8315 }
8316
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8317 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8318 {
8319 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8320
8321 if (!kvm->vm_bugged)
8322 kvm_vm_bugged(kvm);
8323 }
8324
8325 static const struct x86_emulate_ops emulate_ops = {
8326 .vm_bugged = emulator_vm_bugged,
8327 .read_gpr = emulator_read_gpr,
8328 .write_gpr = emulator_write_gpr,
8329 .read_std = emulator_read_std,
8330 .write_std = emulator_write_std,
8331 .fetch = kvm_fetch_guest_virt,
8332 .read_emulated = emulator_read_emulated,
8333 .write_emulated = emulator_write_emulated,
8334 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8335 .invlpg = emulator_invlpg,
8336 .pio_in_emulated = emulator_pio_in_emulated,
8337 .pio_out_emulated = emulator_pio_out_emulated,
8338 .get_segment = emulator_get_segment,
8339 .set_segment = emulator_set_segment,
8340 .get_cached_segment_base = emulator_get_cached_segment_base,
8341 .get_gdt = emulator_get_gdt,
8342 .get_idt = emulator_get_idt,
8343 .set_gdt = emulator_set_gdt,
8344 .set_idt = emulator_set_idt,
8345 .get_cr = emulator_get_cr,
8346 .set_cr = emulator_set_cr,
8347 .cpl = emulator_get_cpl,
8348 .get_dr = emulator_get_dr,
8349 .set_dr = emulator_set_dr,
8350 .set_msr_with_filter = emulator_set_msr_with_filter,
8351 .get_msr_with_filter = emulator_get_msr_with_filter,
8352 .get_msr = emulator_get_msr,
8353 .check_pmc = emulator_check_pmc,
8354 .read_pmc = emulator_read_pmc,
8355 .halt = emulator_halt,
8356 .wbinvd = emulator_wbinvd,
8357 .fix_hypercall = emulator_fix_hypercall,
8358 .intercept = emulator_intercept,
8359 .get_cpuid = emulator_get_cpuid,
8360 .guest_has_movbe = emulator_guest_has_movbe,
8361 .guest_has_fxsr = emulator_guest_has_fxsr,
8362 .guest_has_rdpid = emulator_guest_has_rdpid,
8363 .set_nmi_mask = emulator_set_nmi_mask,
8364 .is_smm = emulator_is_smm,
8365 .is_guest_mode = emulator_is_guest_mode,
8366 .leave_smm = emulator_leave_smm,
8367 .triple_fault = emulator_triple_fault,
8368 .set_xcr = emulator_set_xcr,
8369 };
8370
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8371 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8372 {
8373 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8374 /*
8375 * an sti; sti; sequence only disable interrupts for the first
8376 * instruction. So, if the last instruction, be it emulated or
8377 * not, left the system with the INT_STI flag enabled, it
8378 * means that the last instruction is an sti. We should not
8379 * leave the flag on in this case. The same goes for mov ss
8380 */
8381 if (int_shadow & mask)
8382 mask = 0;
8383 if (unlikely(int_shadow || mask)) {
8384 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8385 if (!mask)
8386 kvm_make_request(KVM_REQ_EVENT, vcpu);
8387 }
8388 }
8389
inject_emulated_exception(struct kvm_vcpu * vcpu)8390 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8391 {
8392 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8393
8394 if (ctxt->exception.vector == PF_VECTOR)
8395 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8396 else if (ctxt->exception.error_code_valid)
8397 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8398 ctxt->exception.error_code);
8399 else
8400 kvm_queue_exception(vcpu, ctxt->exception.vector);
8401 }
8402
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8403 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8404 {
8405 struct x86_emulate_ctxt *ctxt;
8406
8407 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8408 if (!ctxt) {
8409 pr_err("failed to allocate vcpu's emulator\n");
8410 return NULL;
8411 }
8412
8413 ctxt->vcpu = vcpu;
8414 ctxt->ops = &emulate_ops;
8415 vcpu->arch.emulate_ctxt = ctxt;
8416
8417 return ctxt;
8418 }
8419
init_emulate_ctxt(struct kvm_vcpu * vcpu)8420 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8421 {
8422 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8423 int cs_db, cs_l;
8424
8425 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8426
8427 ctxt->gpa_available = false;
8428 ctxt->eflags = kvm_get_rflags(vcpu);
8429 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8430
8431 ctxt->eip = kvm_rip_read(vcpu);
8432 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8433 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8434 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8435 cs_db ? X86EMUL_MODE_PROT32 :
8436 X86EMUL_MODE_PROT16;
8437 ctxt->interruptibility = 0;
8438 ctxt->have_exception = false;
8439 ctxt->exception.vector = -1;
8440 ctxt->perm_ok = false;
8441
8442 init_decode_cache(ctxt);
8443 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8444 }
8445
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8446 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8447 {
8448 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8449 int ret;
8450
8451 init_emulate_ctxt(vcpu);
8452
8453 ctxt->op_bytes = 2;
8454 ctxt->ad_bytes = 2;
8455 ctxt->_eip = ctxt->eip + inc_eip;
8456 ret = emulate_int_real(ctxt, irq);
8457
8458 if (ret != X86EMUL_CONTINUE) {
8459 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8460 } else {
8461 ctxt->eip = ctxt->_eip;
8462 kvm_rip_write(vcpu, ctxt->eip);
8463 kvm_set_rflags(vcpu, ctxt->eflags);
8464 }
8465 }
8466 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8467
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8468 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8469 u8 ndata, u8 *insn_bytes, u8 insn_size)
8470 {
8471 struct kvm_run *run = vcpu->run;
8472 u64 info[5];
8473 u8 info_start;
8474
8475 /*
8476 * Zero the whole array used to retrieve the exit info, as casting to
8477 * u32 for select entries will leave some chunks uninitialized.
8478 */
8479 memset(&info, 0, sizeof(info));
8480
8481 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8482 &info[2], (u32 *)&info[3],
8483 (u32 *)&info[4]);
8484
8485 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8486 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8487
8488 /*
8489 * There's currently space for 13 entries, but 5 are used for the exit
8490 * reason and info. Restrict to 4 to reduce the maintenance burden
8491 * when expanding kvm_run.emulation_failure in the future.
8492 */
8493 if (WARN_ON_ONCE(ndata > 4))
8494 ndata = 4;
8495
8496 /* Always include the flags as a 'data' entry. */
8497 info_start = 1;
8498 run->emulation_failure.flags = 0;
8499
8500 if (insn_size) {
8501 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8502 sizeof(run->emulation_failure.insn_bytes) != 16));
8503 info_start += 2;
8504 run->emulation_failure.flags |=
8505 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8506 run->emulation_failure.insn_size = insn_size;
8507 memset(run->emulation_failure.insn_bytes, 0x90,
8508 sizeof(run->emulation_failure.insn_bytes));
8509 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8510 }
8511
8512 memcpy(&run->internal.data[info_start], info, sizeof(info));
8513 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8514 ndata * sizeof(data[0]));
8515
8516 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8517 }
8518
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8519 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8520 {
8521 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8522
8523 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8524 ctxt->fetch.end - ctxt->fetch.data);
8525 }
8526
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8527 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8528 u8 ndata)
8529 {
8530 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8531 }
8532 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8533
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8534 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8535 {
8536 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8537 }
8538 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8539
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8540 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8541 {
8542 struct kvm *kvm = vcpu->kvm;
8543
8544 ++vcpu->stat.insn_emulation_fail;
8545 trace_kvm_emulate_insn_failed(vcpu);
8546
8547 if (emulation_type & EMULTYPE_VMWARE_GP) {
8548 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8549 return 1;
8550 }
8551
8552 if (kvm->arch.exit_on_emulation_error ||
8553 (emulation_type & EMULTYPE_SKIP)) {
8554 prepare_emulation_ctxt_failure_exit(vcpu);
8555 return 0;
8556 }
8557
8558 kvm_queue_exception(vcpu, UD_VECTOR);
8559
8560 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8561 prepare_emulation_ctxt_failure_exit(vcpu);
8562 return 0;
8563 }
8564
8565 return 1;
8566 }
8567
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8568 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8569 int emulation_type)
8570 {
8571 gpa_t gpa = cr2_or_gpa;
8572 kvm_pfn_t pfn;
8573
8574 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8575 return false;
8576
8577 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8578 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8579 return false;
8580
8581 if (!vcpu->arch.mmu->root_role.direct) {
8582 /*
8583 * Write permission should be allowed since only
8584 * write access need to be emulated.
8585 */
8586 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8587
8588 /*
8589 * If the mapping is invalid in guest, let cpu retry
8590 * it to generate fault.
8591 */
8592 if (gpa == INVALID_GPA)
8593 return true;
8594 }
8595
8596 /*
8597 * Do not retry the unhandleable instruction if it faults on the
8598 * readonly host memory, otherwise it will goto a infinite loop:
8599 * retry instruction -> write #PF -> emulation fail -> retry
8600 * instruction -> ...
8601 */
8602 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8603
8604 /*
8605 * If the instruction failed on the error pfn, it can not be fixed,
8606 * report the error to userspace.
8607 */
8608 if (is_error_noslot_pfn(pfn))
8609 return false;
8610
8611 kvm_release_pfn_clean(pfn);
8612
8613 /* The instructions are well-emulated on direct mmu. */
8614 if (vcpu->arch.mmu->root_role.direct) {
8615 unsigned int indirect_shadow_pages;
8616
8617 write_lock(&vcpu->kvm->mmu_lock);
8618 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8619 write_unlock(&vcpu->kvm->mmu_lock);
8620
8621 if (indirect_shadow_pages)
8622 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8623
8624 return true;
8625 }
8626
8627 /*
8628 * if emulation was due to access to shadowed page table
8629 * and it failed try to unshadow page and re-enter the
8630 * guest to let CPU execute the instruction.
8631 */
8632 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8633
8634 /*
8635 * If the access faults on its page table, it can not
8636 * be fixed by unprotecting shadow page and it should
8637 * be reported to userspace.
8638 */
8639 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8640 }
8641
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)8642 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8643 gpa_t cr2_or_gpa, int emulation_type)
8644 {
8645 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8646 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8647
8648 last_retry_eip = vcpu->arch.last_retry_eip;
8649 last_retry_addr = vcpu->arch.last_retry_addr;
8650
8651 /*
8652 * If the emulation is caused by #PF and it is non-page_table
8653 * writing instruction, it means the VM-EXIT is caused by shadow
8654 * page protected, we can zap the shadow page and retry this
8655 * instruction directly.
8656 *
8657 * Note: if the guest uses a non-page-table modifying instruction
8658 * on the PDE that points to the instruction, then we will unmap
8659 * the instruction and go to an infinite loop. So, we cache the
8660 * last retried eip and the last fault address, if we meet the eip
8661 * and the address again, we can break out of the potential infinite
8662 * loop.
8663 */
8664 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8665
8666 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8667 return false;
8668
8669 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8670 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8671 return false;
8672
8673 if (x86_page_table_writing_insn(ctxt))
8674 return false;
8675
8676 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8677 return false;
8678
8679 vcpu->arch.last_retry_eip = ctxt->eip;
8680 vcpu->arch.last_retry_addr = cr2_or_gpa;
8681
8682 if (!vcpu->arch.mmu->root_role.direct)
8683 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8684
8685 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8686
8687 return true;
8688 }
8689
8690 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8691 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8692
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8693 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8694 unsigned long *db)
8695 {
8696 u32 dr6 = 0;
8697 int i;
8698 u32 enable, rwlen;
8699
8700 enable = dr7;
8701 rwlen = dr7 >> 16;
8702 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8703 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8704 dr6 |= (1 << i);
8705 return dr6;
8706 }
8707
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8708 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8709 {
8710 struct kvm_run *kvm_run = vcpu->run;
8711
8712 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8713 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8714 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8715 kvm_run->debug.arch.exception = DB_VECTOR;
8716 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8717 return 0;
8718 }
8719 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8720 return 1;
8721 }
8722
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8723 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8724 {
8725 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8726 int r;
8727
8728 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8729 if (unlikely(!r))
8730 return 0;
8731
8732 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8733
8734 /*
8735 * rflags is the old, "raw" value of the flags. The new value has
8736 * not been saved yet.
8737 *
8738 * This is correct even for TF set by the guest, because "the
8739 * processor will not generate this exception after the instruction
8740 * that sets the TF flag".
8741 */
8742 if (unlikely(rflags & X86_EFLAGS_TF))
8743 r = kvm_vcpu_do_singlestep(vcpu);
8744 return r;
8745 }
8746 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8747
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8748 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8749 {
8750 u32 shadow;
8751
8752 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8753 return true;
8754
8755 /*
8756 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8757 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8758 * to avoid the relatively expensive CPUID lookup.
8759 */
8760 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8761 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8762 guest_cpuid_is_intel(vcpu);
8763 }
8764
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8765 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8766 int emulation_type, int *r)
8767 {
8768 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8769
8770 /*
8771 * Do not check for code breakpoints if hardware has already done the
8772 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8773 * the instruction has passed all exception checks, and all intercepted
8774 * exceptions that trigger emulation have lower priority than code
8775 * breakpoints, i.e. the fact that the intercepted exception occurred
8776 * means any code breakpoints have already been serviced.
8777 *
8778 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8779 * hardware has checked the RIP of the magic prefix, but not the RIP of
8780 * the instruction being emulated. The intent of forced emulation is
8781 * to behave as if KVM intercepted the instruction without an exception
8782 * and without a prefix.
8783 */
8784 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8785 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8786 return false;
8787
8788 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8789 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8790 struct kvm_run *kvm_run = vcpu->run;
8791 unsigned long eip = kvm_get_linear_rip(vcpu);
8792 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8793 vcpu->arch.guest_debug_dr7,
8794 vcpu->arch.eff_db);
8795
8796 if (dr6 != 0) {
8797 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8798 kvm_run->debug.arch.pc = eip;
8799 kvm_run->debug.arch.exception = DB_VECTOR;
8800 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8801 *r = 0;
8802 return true;
8803 }
8804 }
8805
8806 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8807 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8808 unsigned long eip = kvm_get_linear_rip(vcpu);
8809 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8810 vcpu->arch.dr7,
8811 vcpu->arch.db);
8812
8813 if (dr6 != 0) {
8814 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8815 *r = 1;
8816 return true;
8817 }
8818 }
8819
8820 return false;
8821 }
8822
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8823 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8824 {
8825 switch (ctxt->opcode_len) {
8826 case 1:
8827 switch (ctxt->b) {
8828 case 0xe4: /* IN */
8829 case 0xe5:
8830 case 0xec:
8831 case 0xed:
8832 case 0xe6: /* OUT */
8833 case 0xe7:
8834 case 0xee:
8835 case 0xef:
8836 case 0x6c: /* INS */
8837 case 0x6d:
8838 case 0x6e: /* OUTS */
8839 case 0x6f:
8840 return true;
8841 }
8842 break;
8843 case 2:
8844 switch (ctxt->b) {
8845 case 0x33: /* RDPMC */
8846 return true;
8847 }
8848 break;
8849 }
8850
8851 return false;
8852 }
8853
8854 /*
8855 * Decode an instruction for emulation. The caller is responsible for handling
8856 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8857 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8858 * code breakpoints have higher priority and thus have already been done by
8859 * hardware.
8860 *
8861 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8862 * response to a machine check.
8863 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8864 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8865 void *insn, int insn_len)
8866 {
8867 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8868 int r;
8869
8870 init_emulate_ctxt(vcpu);
8871
8872 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8873
8874 trace_kvm_emulate_insn_start(vcpu);
8875 ++vcpu->stat.insn_emulation;
8876
8877 return r;
8878 }
8879 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8880
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8881 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8882 int emulation_type, void *insn, int insn_len)
8883 {
8884 int r;
8885 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8886 bool writeback = true;
8887
8888 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8889 return 1;
8890
8891 vcpu->arch.l1tf_flush_l1d = true;
8892
8893 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8894 kvm_clear_exception_queue(vcpu);
8895
8896 /*
8897 * Return immediately if RIP hits a code breakpoint, such #DBs
8898 * are fault-like and are higher priority than any faults on
8899 * the code fetch itself.
8900 */
8901 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8902 return r;
8903
8904 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8905 insn, insn_len);
8906 if (r != EMULATION_OK) {
8907 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8908 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8909 kvm_queue_exception(vcpu, UD_VECTOR);
8910 return 1;
8911 }
8912 if (reexecute_instruction(vcpu, cr2_or_gpa,
8913 emulation_type))
8914 return 1;
8915
8916 if (ctxt->have_exception &&
8917 !(emulation_type & EMULTYPE_SKIP)) {
8918 /*
8919 * #UD should result in just EMULATION_FAILED, and trap-like
8920 * exception should not be encountered during decode.
8921 */
8922 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8923 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8924 inject_emulated_exception(vcpu);
8925 return 1;
8926 }
8927 return handle_emulation_failure(vcpu, emulation_type);
8928 }
8929 }
8930
8931 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8932 !is_vmware_backdoor_opcode(ctxt)) {
8933 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8934 return 1;
8935 }
8936
8937 /*
8938 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8939 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8940 * The caller is responsible for updating interruptibility state and
8941 * injecting single-step #DBs.
8942 */
8943 if (emulation_type & EMULTYPE_SKIP) {
8944 if (ctxt->mode != X86EMUL_MODE_PROT64)
8945 ctxt->eip = (u32)ctxt->_eip;
8946 else
8947 ctxt->eip = ctxt->_eip;
8948
8949 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8950 r = 1;
8951 goto writeback;
8952 }
8953
8954 kvm_rip_write(vcpu, ctxt->eip);
8955 if (ctxt->eflags & X86_EFLAGS_RF)
8956 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8957 return 1;
8958 }
8959
8960 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8961 return 1;
8962
8963 /* this is needed for vmware backdoor interface to work since it
8964 changes registers values during IO operation */
8965 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8966 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8967 emulator_invalidate_register_cache(ctxt);
8968 }
8969
8970 restart:
8971 if (emulation_type & EMULTYPE_PF) {
8972 /* Save the faulting GPA (cr2) in the address field */
8973 ctxt->exception.address = cr2_or_gpa;
8974
8975 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8976 if (vcpu->arch.mmu->root_role.direct) {
8977 ctxt->gpa_available = true;
8978 ctxt->gpa_val = cr2_or_gpa;
8979 }
8980 } else {
8981 /* Sanitize the address out of an abundance of paranoia. */
8982 ctxt->exception.address = 0;
8983 }
8984
8985 r = x86_emulate_insn(ctxt);
8986
8987 if (r == EMULATION_INTERCEPTED)
8988 return 1;
8989
8990 if (r == EMULATION_FAILED) {
8991 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8992 return 1;
8993
8994 return handle_emulation_failure(vcpu, emulation_type);
8995 }
8996
8997 if (ctxt->have_exception) {
8998 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8999 vcpu->mmio_needed = false;
9000 r = 1;
9001 inject_emulated_exception(vcpu);
9002 } else if (vcpu->arch.pio.count) {
9003 if (!vcpu->arch.pio.in) {
9004 /* FIXME: return into emulator if single-stepping. */
9005 vcpu->arch.pio.count = 0;
9006 } else {
9007 writeback = false;
9008 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9009 }
9010 r = 0;
9011 } else if (vcpu->mmio_needed) {
9012 ++vcpu->stat.mmio_exits;
9013
9014 if (!vcpu->mmio_is_write)
9015 writeback = false;
9016 r = 0;
9017 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9018 } else if (vcpu->arch.complete_userspace_io) {
9019 writeback = false;
9020 r = 0;
9021 } else if (r == EMULATION_RESTART)
9022 goto restart;
9023 else
9024 r = 1;
9025
9026 writeback:
9027 if (writeback) {
9028 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9029 toggle_interruptibility(vcpu, ctxt->interruptibility);
9030 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9031
9032 /*
9033 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9034 * only supports code breakpoints and general detect #DB, both
9035 * of which are fault-like.
9036 */
9037 if (!ctxt->have_exception ||
9038 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9039 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9040 if (ctxt->is_branch)
9041 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9042 kvm_rip_write(vcpu, ctxt->eip);
9043 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9044 r = kvm_vcpu_do_singlestep(vcpu);
9045 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9046 __kvm_set_rflags(vcpu, ctxt->eflags);
9047 }
9048
9049 /*
9050 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9051 * do nothing, and it will be requested again as soon as
9052 * the shadow expires. But we still need to check here,
9053 * because POPF has no interrupt shadow.
9054 */
9055 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9056 kvm_make_request(KVM_REQ_EVENT, vcpu);
9057 } else
9058 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9059
9060 return r;
9061 }
9062
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9063 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9064 {
9065 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9066 }
9067 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9068
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9069 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9070 void *insn, int insn_len)
9071 {
9072 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9073 }
9074 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9075
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9076 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9077 {
9078 vcpu->arch.pio.count = 0;
9079 return 1;
9080 }
9081
complete_fast_pio_out(struct kvm_vcpu * vcpu)9082 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9083 {
9084 vcpu->arch.pio.count = 0;
9085
9086 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9087 return 1;
9088
9089 return kvm_skip_emulated_instruction(vcpu);
9090 }
9091
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9092 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9093 unsigned short port)
9094 {
9095 unsigned long val = kvm_rax_read(vcpu);
9096 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9097
9098 if (ret)
9099 return ret;
9100
9101 /*
9102 * Workaround userspace that relies on old KVM behavior of %rip being
9103 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9104 */
9105 if (port == 0x7e &&
9106 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9107 vcpu->arch.complete_userspace_io =
9108 complete_fast_pio_out_port_0x7e;
9109 kvm_skip_emulated_instruction(vcpu);
9110 } else {
9111 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9112 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9113 }
9114 return 0;
9115 }
9116
complete_fast_pio_in(struct kvm_vcpu * vcpu)9117 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9118 {
9119 unsigned long val;
9120
9121 /* We should only ever be called with arch.pio.count equal to 1 */
9122 BUG_ON(vcpu->arch.pio.count != 1);
9123
9124 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9125 vcpu->arch.pio.count = 0;
9126 return 1;
9127 }
9128
9129 /* For size less than 4 we merge, else we zero extend */
9130 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9131
9132 complete_emulator_pio_in(vcpu, &val);
9133 kvm_rax_write(vcpu, val);
9134
9135 return kvm_skip_emulated_instruction(vcpu);
9136 }
9137
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9138 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9139 unsigned short port)
9140 {
9141 unsigned long val;
9142 int ret;
9143
9144 /* For size less than 4 we merge, else we zero extend */
9145 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9146
9147 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9148 if (ret) {
9149 kvm_rax_write(vcpu, val);
9150 return ret;
9151 }
9152
9153 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9154 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9155
9156 return 0;
9157 }
9158
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9159 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9160 {
9161 int ret;
9162
9163 if (in)
9164 ret = kvm_fast_pio_in(vcpu, size, port);
9165 else
9166 ret = kvm_fast_pio_out(vcpu, size, port);
9167 return ret && kvm_skip_emulated_instruction(vcpu);
9168 }
9169 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9170
kvmclock_cpu_down_prep(unsigned int cpu)9171 static int kvmclock_cpu_down_prep(unsigned int cpu)
9172 {
9173 __this_cpu_write(cpu_tsc_khz, 0);
9174 return 0;
9175 }
9176
tsc_khz_changed(void * data)9177 static void tsc_khz_changed(void *data)
9178 {
9179 struct cpufreq_freqs *freq = data;
9180 unsigned long khz;
9181
9182 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9183
9184 if (data)
9185 khz = freq->new;
9186 else
9187 khz = cpufreq_quick_get(raw_smp_processor_id());
9188 if (!khz)
9189 khz = tsc_khz;
9190 __this_cpu_write(cpu_tsc_khz, khz);
9191 }
9192
9193 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9194 static void kvm_hyperv_tsc_notifier(void)
9195 {
9196 struct kvm *kvm;
9197 int cpu;
9198
9199 mutex_lock(&kvm_lock);
9200 list_for_each_entry(kvm, &vm_list, vm_list)
9201 kvm_make_mclock_inprogress_request(kvm);
9202
9203 /* no guest entries from this point */
9204 hyperv_stop_tsc_emulation();
9205
9206 /* TSC frequency always matches when on Hyper-V */
9207 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9208 for_each_present_cpu(cpu)
9209 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9210 }
9211 kvm_caps.max_guest_tsc_khz = tsc_khz;
9212
9213 list_for_each_entry(kvm, &vm_list, vm_list) {
9214 __kvm_start_pvclock_update(kvm);
9215 pvclock_update_vm_gtod_copy(kvm);
9216 kvm_end_pvclock_update(kvm);
9217 }
9218
9219 mutex_unlock(&kvm_lock);
9220 }
9221 #endif
9222
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9223 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9224 {
9225 struct kvm *kvm;
9226 struct kvm_vcpu *vcpu;
9227 int send_ipi = 0;
9228 unsigned long i;
9229
9230 /*
9231 * We allow guests to temporarily run on slowing clocks,
9232 * provided we notify them after, or to run on accelerating
9233 * clocks, provided we notify them before. Thus time never
9234 * goes backwards.
9235 *
9236 * However, we have a problem. We can't atomically update
9237 * the frequency of a given CPU from this function; it is
9238 * merely a notifier, which can be called from any CPU.
9239 * Changing the TSC frequency at arbitrary points in time
9240 * requires a recomputation of local variables related to
9241 * the TSC for each VCPU. We must flag these local variables
9242 * to be updated and be sure the update takes place with the
9243 * new frequency before any guests proceed.
9244 *
9245 * Unfortunately, the combination of hotplug CPU and frequency
9246 * change creates an intractable locking scenario; the order
9247 * of when these callouts happen is undefined with respect to
9248 * CPU hotplug, and they can race with each other. As such,
9249 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9250 * undefined; you can actually have a CPU frequency change take
9251 * place in between the computation of X and the setting of the
9252 * variable. To protect against this problem, all updates of
9253 * the per_cpu tsc_khz variable are done in an interrupt
9254 * protected IPI, and all callers wishing to update the value
9255 * must wait for a synchronous IPI to complete (which is trivial
9256 * if the caller is on the CPU already). This establishes the
9257 * necessary total order on variable updates.
9258 *
9259 * Note that because a guest time update may take place
9260 * anytime after the setting of the VCPU's request bit, the
9261 * correct TSC value must be set before the request. However,
9262 * to ensure the update actually makes it to any guest which
9263 * starts running in hardware virtualization between the set
9264 * and the acquisition of the spinlock, we must also ping the
9265 * CPU after setting the request bit.
9266 *
9267 */
9268
9269 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9270
9271 mutex_lock(&kvm_lock);
9272 list_for_each_entry(kvm, &vm_list, vm_list) {
9273 kvm_for_each_vcpu(i, vcpu, kvm) {
9274 if (vcpu->cpu != cpu)
9275 continue;
9276 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9277 if (vcpu->cpu != raw_smp_processor_id())
9278 send_ipi = 1;
9279 }
9280 }
9281 mutex_unlock(&kvm_lock);
9282
9283 if (freq->old < freq->new && send_ipi) {
9284 /*
9285 * We upscale the frequency. Must make the guest
9286 * doesn't see old kvmclock values while running with
9287 * the new frequency, otherwise we risk the guest sees
9288 * time go backwards.
9289 *
9290 * In case we update the frequency for another cpu
9291 * (which might be in guest context) send an interrupt
9292 * to kick the cpu out of guest context. Next time
9293 * guest context is entered kvmclock will be updated,
9294 * so the guest will not see stale values.
9295 */
9296 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9297 }
9298 }
9299
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9300 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9301 void *data)
9302 {
9303 struct cpufreq_freqs *freq = data;
9304 int cpu;
9305
9306 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9307 return 0;
9308 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9309 return 0;
9310
9311 for_each_cpu(cpu, freq->policy->cpus)
9312 __kvmclock_cpufreq_notifier(freq, cpu);
9313
9314 return 0;
9315 }
9316
9317 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9318 .notifier_call = kvmclock_cpufreq_notifier
9319 };
9320
kvmclock_cpu_online(unsigned int cpu)9321 static int kvmclock_cpu_online(unsigned int cpu)
9322 {
9323 tsc_khz_changed(NULL);
9324 return 0;
9325 }
9326
kvm_timer_init(void)9327 static void kvm_timer_init(void)
9328 {
9329 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9330 max_tsc_khz = tsc_khz;
9331
9332 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9333 struct cpufreq_policy *policy;
9334 int cpu;
9335
9336 cpu = get_cpu();
9337 policy = cpufreq_cpu_get(cpu);
9338 if (policy) {
9339 if (policy->cpuinfo.max_freq)
9340 max_tsc_khz = policy->cpuinfo.max_freq;
9341 cpufreq_cpu_put(policy);
9342 }
9343 put_cpu();
9344 }
9345 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9346 CPUFREQ_TRANSITION_NOTIFIER);
9347
9348 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9349 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9350 }
9351 }
9352
9353 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9354 static void pvclock_gtod_update_fn(struct work_struct *work)
9355 {
9356 struct kvm *kvm;
9357 struct kvm_vcpu *vcpu;
9358 unsigned long i;
9359
9360 mutex_lock(&kvm_lock);
9361 list_for_each_entry(kvm, &vm_list, vm_list)
9362 kvm_for_each_vcpu(i, vcpu, kvm)
9363 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9364 atomic_set(&kvm_guest_has_master_clock, 0);
9365 mutex_unlock(&kvm_lock);
9366 }
9367
9368 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9369
9370 /*
9371 * Indirection to move queue_work() out of the tk_core.seq write held
9372 * region to prevent possible deadlocks against time accessors which
9373 * are invoked with work related locks held.
9374 */
pvclock_irq_work_fn(struct irq_work * w)9375 static void pvclock_irq_work_fn(struct irq_work *w)
9376 {
9377 queue_work(system_long_wq, &pvclock_gtod_work);
9378 }
9379
9380 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9381
9382 /*
9383 * Notification about pvclock gtod data update.
9384 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9385 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9386 void *priv)
9387 {
9388 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9389 struct timekeeper *tk = priv;
9390
9391 update_pvclock_gtod(tk);
9392
9393 /*
9394 * Disable master clock if host does not trust, or does not use,
9395 * TSC based clocksource. Delegate queue_work() to irq_work as
9396 * this is invoked with tk_core.seq write held.
9397 */
9398 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9399 atomic_read(&kvm_guest_has_master_clock) != 0)
9400 irq_work_queue(&pvclock_irq_work);
9401 return 0;
9402 }
9403
9404 static struct notifier_block pvclock_gtod_notifier = {
9405 .notifier_call = pvclock_gtod_notify,
9406 };
9407 #endif
9408
kvm_ops_update(struct kvm_x86_init_ops * ops)9409 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9410 {
9411 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9412
9413 #define __KVM_X86_OP(func) \
9414 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9415 #define KVM_X86_OP(func) \
9416 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9417 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9418 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9419 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9420 (void *)__static_call_return0);
9421 #include <asm/kvm-x86-ops.h>
9422 #undef __KVM_X86_OP
9423
9424 kvm_pmu_ops_update(ops->pmu_ops);
9425 }
9426
kvm_x86_check_processor_compatibility(void)9427 static int kvm_x86_check_processor_compatibility(void)
9428 {
9429 int cpu = smp_processor_id();
9430 struct cpuinfo_x86 *c = &cpu_data(cpu);
9431
9432 /*
9433 * Compatibility checks are done when loading KVM and when enabling
9434 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9435 * compatible, i.e. KVM should never perform a compatibility check on
9436 * an offline CPU.
9437 */
9438 WARN_ON(!cpu_online(cpu));
9439
9440 if (__cr4_reserved_bits(cpu_has, c) !=
9441 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9442 return -EIO;
9443
9444 return static_call(kvm_x86_check_processor_compatibility)();
9445 }
9446
kvm_x86_check_cpu_compat(void * ret)9447 static void kvm_x86_check_cpu_compat(void *ret)
9448 {
9449 *(int *)ret = kvm_x86_check_processor_compatibility();
9450 }
9451
__kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9452 static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9453 {
9454 u64 host_pat;
9455 int r, cpu;
9456
9457 if (kvm_x86_ops.hardware_enable) {
9458 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9459 return -EEXIST;
9460 }
9461
9462 /*
9463 * KVM explicitly assumes that the guest has an FPU and
9464 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9465 * vCPU's FPU state as a fxregs_state struct.
9466 */
9467 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9468 pr_err("inadequate fpu\n");
9469 return -EOPNOTSUPP;
9470 }
9471
9472 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9473 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9474 return -EOPNOTSUPP;
9475 }
9476
9477 /*
9478 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9479 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9480 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9481 * with an exception. PAT[0] is set to WB on RESET and also by the
9482 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9483 */
9484 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9485 (host_pat & GENMASK(2, 0)) != 6) {
9486 pr_err("host PAT[0] is not WB\n");
9487 return -EIO;
9488 }
9489
9490 x86_emulator_cache = kvm_alloc_emulator_cache();
9491 if (!x86_emulator_cache) {
9492 pr_err("failed to allocate cache for x86 emulator\n");
9493 return -ENOMEM;
9494 }
9495
9496 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9497 if (!user_return_msrs) {
9498 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9499 r = -ENOMEM;
9500 goto out_free_x86_emulator_cache;
9501 }
9502 kvm_nr_uret_msrs = 0;
9503
9504 r = kvm_mmu_vendor_module_init();
9505 if (r)
9506 goto out_free_percpu;
9507
9508 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9509 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9510 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9511 }
9512
9513 rdmsrl_safe(MSR_EFER, &host_efer);
9514
9515 if (boot_cpu_has(X86_FEATURE_XSAVES))
9516 rdmsrl(MSR_IA32_XSS, host_xss);
9517
9518 kvm_init_pmu_capability(ops->pmu_ops);
9519
9520 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9521 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9522
9523 r = ops->hardware_setup();
9524 if (r != 0)
9525 goto out_mmu_exit;
9526
9527 kvm_ops_update(ops);
9528
9529 for_each_online_cpu(cpu) {
9530 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9531 if (r < 0)
9532 goto out_unwind_ops;
9533 }
9534
9535 /*
9536 * Point of no return! DO NOT add error paths below this point unless
9537 * absolutely necessary, as most operations from this point forward
9538 * require unwinding.
9539 */
9540 kvm_timer_init();
9541
9542 if (pi_inject_timer == -1)
9543 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9544 #ifdef CONFIG_X86_64
9545 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9546
9547 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9548 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9549 #endif
9550
9551 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9552
9553 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9554 kvm_caps.supported_xss = 0;
9555
9556 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9557 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9558 #undef __kvm_cpu_cap_has
9559
9560 if (kvm_caps.has_tsc_control) {
9561 /*
9562 * Make sure the user can only configure tsc_khz values that
9563 * fit into a signed integer.
9564 * A min value is not calculated because it will always
9565 * be 1 on all machines.
9566 */
9567 u64 max = min(0x7fffffffULL,
9568 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9569 kvm_caps.max_guest_tsc_khz = max;
9570 }
9571 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9572 kvm_init_msr_lists();
9573 return 0;
9574
9575 out_unwind_ops:
9576 kvm_x86_ops.hardware_enable = NULL;
9577 static_call(kvm_x86_hardware_unsetup)();
9578 out_mmu_exit:
9579 kvm_mmu_vendor_module_exit();
9580 out_free_percpu:
9581 free_percpu(user_return_msrs);
9582 out_free_x86_emulator_cache:
9583 kmem_cache_destroy(x86_emulator_cache);
9584 return r;
9585 }
9586
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9587 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9588 {
9589 int r;
9590
9591 mutex_lock(&vendor_module_lock);
9592 r = __kvm_x86_vendor_init(ops);
9593 mutex_unlock(&vendor_module_lock);
9594
9595 return r;
9596 }
9597 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9598
kvm_x86_vendor_exit(void)9599 void kvm_x86_vendor_exit(void)
9600 {
9601 kvm_unregister_perf_callbacks();
9602
9603 #ifdef CONFIG_X86_64
9604 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9605 clear_hv_tscchange_cb();
9606 #endif
9607 kvm_lapic_exit();
9608
9609 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9610 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9611 CPUFREQ_TRANSITION_NOTIFIER);
9612 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9613 }
9614 #ifdef CONFIG_X86_64
9615 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9616 irq_work_sync(&pvclock_irq_work);
9617 cancel_work_sync(&pvclock_gtod_work);
9618 #endif
9619 static_call(kvm_x86_hardware_unsetup)();
9620 kvm_mmu_vendor_module_exit();
9621 free_percpu(user_return_msrs);
9622 kmem_cache_destroy(x86_emulator_cache);
9623 #ifdef CONFIG_KVM_XEN
9624 static_key_deferred_flush(&kvm_xen_enabled);
9625 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9626 #endif
9627 mutex_lock(&vendor_module_lock);
9628 kvm_x86_ops.hardware_enable = NULL;
9629 mutex_unlock(&vendor_module_lock);
9630 }
9631 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9632
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)9633 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9634 {
9635 /*
9636 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9637 * local APIC is in-kernel, the run loop will detect the non-runnable
9638 * state and halt the vCPU. Exit to userspace if the local APIC is
9639 * managed by userspace, in which case userspace is responsible for
9640 * handling wake events.
9641 */
9642 ++vcpu->stat.halt_exits;
9643 if (lapic_in_kernel(vcpu)) {
9644 vcpu->arch.mp_state = state;
9645 return 1;
9646 } else {
9647 vcpu->run->exit_reason = reason;
9648 return 0;
9649 }
9650 }
9651
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)9652 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9653 {
9654 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9655 }
9656 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9657
kvm_emulate_halt(struct kvm_vcpu * vcpu)9658 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9659 {
9660 int ret = kvm_skip_emulated_instruction(vcpu);
9661 /*
9662 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9663 * KVM_EXIT_DEBUG here.
9664 */
9665 return kvm_emulate_halt_noskip(vcpu) && ret;
9666 }
9667 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9668
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)9669 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9670 {
9671 int ret = kvm_skip_emulated_instruction(vcpu);
9672
9673 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9674 KVM_EXIT_AP_RESET_HOLD) && ret;
9675 }
9676 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9677
9678 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9679 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9680 unsigned long clock_type)
9681 {
9682 struct kvm_clock_pairing clock_pairing;
9683 struct timespec64 ts;
9684 u64 cycle;
9685 int ret;
9686
9687 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9688 return -KVM_EOPNOTSUPP;
9689
9690 /*
9691 * When tsc is in permanent catchup mode guests won't be able to use
9692 * pvclock_read_retry loop to get consistent view of pvclock
9693 */
9694 if (vcpu->arch.tsc_always_catchup)
9695 return -KVM_EOPNOTSUPP;
9696
9697 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9698 return -KVM_EOPNOTSUPP;
9699
9700 clock_pairing.sec = ts.tv_sec;
9701 clock_pairing.nsec = ts.tv_nsec;
9702 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9703 clock_pairing.flags = 0;
9704 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9705
9706 ret = 0;
9707 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9708 sizeof(struct kvm_clock_pairing)))
9709 ret = -KVM_EFAULT;
9710
9711 return ret;
9712 }
9713 #endif
9714
9715 /*
9716 * kvm_pv_kick_cpu_op: Kick a vcpu.
9717 *
9718 * @apicid - apicid of vcpu to be kicked.
9719 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9720 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9721 {
9722 /*
9723 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9724 * common code, e.g. for tracing. Defer initialization to the compiler.
9725 */
9726 struct kvm_lapic_irq lapic_irq = {
9727 .delivery_mode = APIC_DM_REMRD,
9728 .dest_mode = APIC_DEST_PHYSICAL,
9729 .shorthand = APIC_DEST_NOSHORT,
9730 .dest_id = apicid,
9731 };
9732
9733 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9734 }
9735
kvm_apicv_activated(struct kvm * kvm)9736 bool kvm_apicv_activated(struct kvm *kvm)
9737 {
9738 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9739 }
9740 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9741
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9742 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9743 {
9744 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9745 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9746
9747 return (vm_reasons | vcpu_reasons) == 0;
9748 }
9749 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9750
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9751 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9752 enum kvm_apicv_inhibit reason, bool set)
9753 {
9754 if (set)
9755 __set_bit(reason, inhibits);
9756 else
9757 __clear_bit(reason, inhibits);
9758
9759 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9760 }
9761
kvm_apicv_init(struct kvm * kvm)9762 static void kvm_apicv_init(struct kvm *kvm)
9763 {
9764 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9765
9766 init_rwsem(&kvm->arch.apicv_update_lock);
9767
9768 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9769
9770 if (!enable_apicv)
9771 set_or_clear_apicv_inhibit(inhibits,
9772 APICV_INHIBIT_REASON_DISABLE, true);
9773 }
9774
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9775 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9776 {
9777 struct kvm_vcpu *target = NULL;
9778 struct kvm_apic_map *map;
9779
9780 vcpu->stat.directed_yield_attempted++;
9781
9782 if (single_task_running())
9783 goto no_yield;
9784
9785 rcu_read_lock();
9786 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9787
9788 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9789 target = map->phys_map[dest_id]->vcpu;
9790
9791 rcu_read_unlock();
9792
9793 if (!target || !READ_ONCE(target->ready))
9794 goto no_yield;
9795
9796 /* Ignore requests to yield to self */
9797 if (vcpu == target)
9798 goto no_yield;
9799
9800 if (kvm_vcpu_yield_to(target) <= 0)
9801 goto no_yield;
9802
9803 vcpu->stat.directed_yield_successful++;
9804
9805 no_yield:
9806 return;
9807 }
9808
complete_hypercall_exit(struct kvm_vcpu * vcpu)9809 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9810 {
9811 u64 ret = vcpu->run->hypercall.ret;
9812
9813 if (!is_64_bit_mode(vcpu))
9814 ret = (u32)ret;
9815 kvm_rax_write(vcpu, ret);
9816 ++vcpu->stat.hypercalls;
9817 return kvm_skip_emulated_instruction(vcpu);
9818 }
9819
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)9820 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9821 {
9822 unsigned long nr, a0, a1, a2, a3, ret;
9823 int op_64_bit;
9824
9825 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9826 return kvm_xen_hypercall(vcpu);
9827
9828 if (kvm_hv_hypercall_enabled(vcpu))
9829 return kvm_hv_hypercall(vcpu);
9830
9831 nr = kvm_rax_read(vcpu);
9832 a0 = kvm_rbx_read(vcpu);
9833 a1 = kvm_rcx_read(vcpu);
9834 a2 = kvm_rdx_read(vcpu);
9835 a3 = kvm_rsi_read(vcpu);
9836
9837 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9838
9839 op_64_bit = is_64_bit_hypercall(vcpu);
9840 if (!op_64_bit) {
9841 nr &= 0xFFFFFFFF;
9842 a0 &= 0xFFFFFFFF;
9843 a1 &= 0xFFFFFFFF;
9844 a2 &= 0xFFFFFFFF;
9845 a3 &= 0xFFFFFFFF;
9846 }
9847
9848 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9849 ret = -KVM_EPERM;
9850 goto out;
9851 }
9852
9853 ret = -KVM_ENOSYS;
9854
9855 switch (nr) {
9856 case KVM_HC_VAPIC_POLL_IRQ:
9857 ret = 0;
9858 break;
9859 case KVM_HC_KICK_CPU:
9860 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9861 break;
9862
9863 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9864 kvm_sched_yield(vcpu, a1);
9865 ret = 0;
9866 break;
9867 #ifdef CONFIG_X86_64
9868 case KVM_HC_CLOCK_PAIRING:
9869 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9870 break;
9871 #endif
9872 case KVM_HC_SEND_IPI:
9873 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9874 break;
9875
9876 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9877 break;
9878 case KVM_HC_SCHED_YIELD:
9879 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9880 break;
9881
9882 kvm_sched_yield(vcpu, a0);
9883 ret = 0;
9884 break;
9885 case KVM_HC_MAP_GPA_RANGE: {
9886 u64 gpa = a0, npages = a1, attrs = a2;
9887
9888 ret = -KVM_ENOSYS;
9889 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9890 break;
9891
9892 if (!PAGE_ALIGNED(gpa) || !npages ||
9893 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9894 ret = -KVM_EINVAL;
9895 break;
9896 }
9897
9898 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9899 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9900 vcpu->run->hypercall.args[0] = gpa;
9901 vcpu->run->hypercall.args[1] = npages;
9902 vcpu->run->hypercall.args[2] = attrs;
9903 vcpu->run->hypercall.flags = 0;
9904 if (op_64_bit)
9905 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9906
9907 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9908 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9909 return 0;
9910 }
9911 default:
9912 ret = -KVM_ENOSYS;
9913 break;
9914 }
9915 out:
9916 if (!op_64_bit)
9917 ret = (u32)ret;
9918 kvm_rax_write(vcpu, ret);
9919
9920 ++vcpu->stat.hypercalls;
9921 return kvm_skip_emulated_instruction(vcpu);
9922 }
9923 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9924
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9925 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9926 {
9927 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9928 char instruction[3];
9929 unsigned long rip = kvm_rip_read(vcpu);
9930
9931 /*
9932 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9933 * the pieces.
9934 */
9935 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9936 ctxt->exception.error_code_valid = false;
9937 ctxt->exception.vector = UD_VECTOR;
9938 ctxt->have_exception = true;
9939 return X86EMUL_PROPAGATE_FAULT;
9940 }
9941
9942 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9943
9944 return emulator_write_emulated(ctxt, rip, instruction, 3,
9945 &ctxt->exception);
9946 }
9947
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9948 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9949 {
9950 return vcpu->run->request_interrupt_window &&
9951 likely(!pic_in_kernel(vcpu->kvm));
9952 }
9953
9954 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)9955 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9956 {
9957 struct kvm_run *kvm_run = vcpu->run;
9958
9959 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9960 kvm_run->cr8 = kvm_get_cr8(vcpu);
9961 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9962
9963 kvm_run->ready_for_interrupt_injection =
9964 pic_in_kernel(vcpu->kvm) ||
9965 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9966
9967 if (is_smm(vcpu))
9968 kvm_run->flags |= KVM_RUN_X86_SMM;
9969 }
9970
update_cr8_intercept(struct kvm_vcpu * vcpu)9971 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9972 {
9973 int max_irr, tpr;
9974
9975 if (!kvm_x86_ops.update_cr8_intercept)
9976 return;
9977
9978 if (!lapic_in_kernel(vcpu))
9979 return;
9980
9981 if (vcpu->arch.apic->apicv_active)
9982 return;
9983
9984 if (!vcpu->arch.apic->vapic_addr)
9985 max_irr = kvm_lapic_find_highest_irr(vcpu);
9986 else
9987 max_irr = -1;
9988
9989 if (max_irr != -1)
9990 max_irr >>= 4;
9991
9992 tpr = kvm_lapic_get_cr8(vcpu);
9993
9994 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9995 }
9996
9997
kvm_check_nested_events(struct kvm_vcpu * vcpu)9998 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9999 {
10000 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10001 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10002 return 1;
10003 }
10004
10005 return kvm_x86_ops.nested_ops->check_events(vcpu);
10006 }
10007
kvm_inject_exception(struct kvm_vcpu * vcpu)10008 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10009 {
10010 /*
10011 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10012 * exceptions don't report error codes. The presence of an error code
10013 * is carried with the exception and only stripped when the exception
10014 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10015 * report an error code despite the CPU being in Real Mode.
10016 */
10017 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10018
10019 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10020 vcpu->arch.exception.has_error_code,
10021 vcpu->arch.exception.error_code,
10022 vcpu->arch.exception.injected);
10023
10024 static_call(kvm_x86_inject_exception)(vcpu);
10025 }
10026
10027 /*
10028 * Check for any event (interrupt or exception) that is ready to be injected,
10029 * and if there is at least one event, inject the event with the highest
10030 * priority. This handles both "pending" events, i.e. events that have never
10031 * been injected into the guest, and "injected" events, i.e. events that were
10032 * injected as part of a previous VM-Enter, but weren't successfully delivered
10033 * and need to be re-injected.
10034 *
10035 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10036 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10037 * be able to inject exceptions in the "middle" of an instruction, and so must
10038 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10039 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10040 * boundaries is necessary and correct.
10041 *
10042 * For simplicity, KVM uses a single path to inject all events (except events
10043 * that are injected directly from L1 to L2) and doesn't explicitly track
10044 * instruction boundaries for asynchronous events. However, because VM-Exits
10045 * that can occur during instruction execution typically result in KVM skipping
10046 * the instruction or injecting an exception, e.g. instruction and exception
10047 * intercepts, and because pending exceptions have higher priority than pending
10048 * interrupts, KVM still honors instruction boundaries in most scenarios.
10049 *
10050 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10051 * the instruction or inject an exception, then KVM can incorrecty inject a new
10052 * asynchrounous event if the event became pending after the CPU fetched the
10053 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10054 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10055 * injected on the restarted instruction instead of being deferred until the
10056 * instruction completes.
10057 *
10058 * In practice, this virtualization hole is unlikely to be observed by the
10059 * guest, and even less likely to cause functional problems. To detect the
10060 * hole, the guest would have to trigger an event on a side effect of an early
10061 * phase of instruction execution, e.g. on the instruction fetch from memory.
10062 * And for it to be a functional problem, the guest would need to depend on the
10063 * ordering between that side effect, the instruction completing, _and_ the
10064 * delivery of the asynchronous event.
10065 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10066 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10067 bool *req_immediate_exit)
10068 {
10069 bool can_inject;
10070 int r;
10071
10072 /*
10073 * Process nested events first, as nested VM-Exit supercedes event
10074 * re-injection. If there's an event queued for re-injection, it will
10075 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10076 */
10077 if (is_guest_mode(vcpu))
10078 r = kvm_check_nested_events(vcpu);
10079 else
10080 r = 0;
10081
10082 /*
10083 * Re-inject exceptions and events *especially* if immediate entry+exit
10084 * to/from L2 is needed, as any event that has already been injected
10085 * into L2 needs to complete its lifecycle before injecting a new event.
10086 *
10087 * Don't re-inject an NMI or interrupt if there is a pending exception.
10088 * This collision arises if an exception occurred while vectoring the
10089 * injected event, KVM intercepted said exception, and KVM ultimately
10090 * determined the fault belongs to the guest and queues the exception
10091 * for injection back into the guest.
10092 *
10093 * "Injected" interrupts can also collide with pending exceptions if
10094 * userspace ignores the "ready for injection" flag and blindly queues
10095 * an interrupt. In that case, prioritizing the exception is correct,
10096 * as the exception "occurred" before the exit to userspace. Trap-like
10097 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10098 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10099 * priority, they're only generated (pended) during instruction
10100 * execution, and interrupts are recognized at instruction boundaries.
10101 * Thus a pending fault-like exception means the fault occurred on the
10102 * *previous* instruction and must be serviced prior to recognizing any
10103 * new events in order to fully complete the previous instruction.
10104 */
10105 if (vcpu->arch.exception.injected)
10106 kvm_inject_exception(vcpu);
10107 else if (kvm_is_exception_pending(vcpu))
10108 ; /* see above */
10109 else if (vcpu->arch.nmi_injected)
10110 static_call(kvm_x86_inject_nmi)(vcpu);
10111 else if (vcpu->arch.interrupt.injected)
10112 static_call(kvm_x86_inject_irq)(vcpu, true);
10113
10114 /*
10115 * Exceptions that morph to VM-Exits are handled above, and pending
10116 * exceptions on top of injected exceptions that do not VM-Exit should
10117 * either morph to #DF or, sadly, override the injected exception.
10118 */
10119 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10120 vcpu->arch.exception.pending);
10121
10122 /*
10123 * Bail if immediate entry+exit to/from the guest is needed to complete
10124 * nested VM-Enter or event re-injection so that a different pending
10125 * event can be serviced (or if KVM needs to exit to userspace).
10126 *
10127 * Otherwise, continue processing events even if VM-Exit occurred. The
10128 * VM-Exit will have cleared exceptions that were meant for L2, but
10129 * there may now be events that can be injected into L1.
10130 */
10131 if (r < 0)
10132 goto out;
10133
10134 /*
10135 * A pending exception VM-Exit should either result in nested VM-Exit
10136 * or force an immediate re-entry and exit to/from L2, and exception
10137 * VM-Exits cannot be injected (flag should _never_ be set).
10138 */
10139 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10140 vcpu->arch.exception_vmexit.pending);
10141
10142 /*
10143 * New events, other than exceptions, cannot be injected if KVM needs
10144 * to re-inject a previous event. See above comments on re-injecting
10145 * for why pending exceptions get priority.
10146 */
10147 can_inject = !kvm_event_needs_reinjection(vcpu);
10148
10149 if (vcpu->arch.exception.pending) {
10150 /*
10151 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10152 * value pushed on the stack. Trap-like exception and all #DBs
10153 * leave RF as-is (KVM follows Intel's behavior in this regard;
10154 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10155 *
10156 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10157 * describe the behavior of General Detect #DBs, which are
10158 * fault-like. They do _not_ set RF, a la code breakpoints.
10159 */
10160 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10161 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10162 X86_EFLAGS_RF);
10163
10164 if (vcpu->arch.exception.vector == DB_VECTOR) {
10165 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10166 if (vcpu->arch.dr7 & DR7_GD) {
10167 vcpu->arch.dr7 &= ~DR7_GD;
10168 kvm_update_dr7(vcpu);
10169 }
10170 }
10171
10172 kvm_inject_exception(vcpu);
10173
10174 vcpu->arch.exception.pending = false;
10175 vcpu->arch.exception.injected = true;
10176
10177 can_inject = false;
10178 }
10179
10180 /* Don't inject interrupts if the user asked to avoid doing so */
10181 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10182 return 0;
10183
10184 /*
10185 * Finally, inject interrupt events. If an event cannot be injected
10186 * due to architectural conditions (e.g. IF=0) a window-open exit
10187 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10188 * and can architecturally be injected, but we cannot do it right now:
10189 * an interrupt could have arrived just now and we have to inject it
10190 * as a vmexit, or there could already an event in the queue, which is
10191 * indicated by can_inject. In that case we request an immediate exit
10192 * in order to make progress and get back here for another iteration.
10193 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10194 */
10195 #ifdef CONFIG_KVM_SMM
10196 if (vcpu->arch.smi_pending) {
10197 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10198 if (r < 0)
10199 goto out;
10200 if (r) {
10201 vcpu->arch.smi_pending = false;
10202 ++vcpu->arch.smi_count;
10203 enter_smm(vcpu);
10204 can_inject = false;
10205 } else
10206 static_call(kvm_x86_enable_smi_window)(vcpu);
10207 }
10208 #endif
10209
10210 if (vcpu->arch.nmi_pending) {
10211 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10212 if (r < 0)
10213 goto out;
10214 if (r) {
10215 --vcpu->arch.nmi_pending;
10216 vcpu->arch.nmi_injected = true;
10217 static_call(kvm_x86_inject_nmi)(vcpu);
10218 can_inject = false;
10219 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10220 }
10221 if (vcpu->arch.nmi_pending)
10222 static_call(kvm_x86_enable_nmi_window)(vcpu);
10223 }
10224
10225 if (kvm_cpu_has_injectable_intr(vcpu)) {
10226 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10227 if (r < 0)
10228 goto out;
10229 if (r) {
10230 int irq = kvm_cpu_get_interrupt(vcpu);
10231
10232 if (!WARN_ON_ONCE(irq == -1)) {
10233 kvm_queue_interrupt(vcpu, irq, false);
10234 static_call(kvm_x86_inject_irq)(vcpu, false);
10235 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10236 }
10237 }
10238 if (kvm_cpu_has_injectable_intr(vcpu))
10239 static_call(kvm_x86_enable_irq_window)(vcpu);
10240 }
10241
10242 if (is_guest_mode(vcpu) &&
10243 kvm_x86_ops.nested_ops->has_events &&
10244 kvm_x86_ops.nested_ops->has_events(vcpu))
10245 *req_immediate_exit = true;
10246
10247 /*
10248 * KVM must never queue a new exception while injecting an event; KVM
10249 * is done emulating and should only propagate the to-be-injected event
10250 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10251 * infinite loop as KVM will bail from VM-Enter to inject the pending
10252 * exception and start the cycle all over.
10253 *
10254 * Exempt triple faults as they have special handling and won't put the
10255 * vCPU into an infinite loop. Triple fault can be queued when running
10256 * VMX without unrestricted guest, as that requires KVM to emulate Real
10257 * Mode events (see kvm_inject_realmode_interrupt()).
10258 */
10259 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10260 vcpu->arch.exception_vmexit.pending);
10261 return 0;
10262
10263 out:
10264 if (r == -EBUSY) {
10265 *req_immediate_exit = true;
10266 r = 0;
10267 }
10268 return r;
10269 }
10270
process_nmi(struct kvm_vcpu * vcpu)10271 static void process_nmi(struct kvm_vcpu *vcpu)
10272 {
10273 unsigned int limit;
10274
10275 /*
10276 * x86 is limited to one NMI pending, but because KVM can't react to
10277 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10278 * scheduled out, KVM needs to play nice with two queued NMIs showing
10279 * up at the same time. To handle this scenario, allow two NMIs to be
10280 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10281 * waiting for a previous NMI injection to complete (which effectively
10282 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10283 * will request an NMI window to handle the second NMI.
10284 */
10285 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10286 limit = 1;
10287 else
10288 limit = 2;
10289
10290 /*
10291 * Adjust the limit to account for pending virtual NMIs, which aren't
10292 * tracked in vcpu->arch.nmi_pending.
10293 */
10294 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10295 limit--;
10296
10297 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10298 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10299
10300 if (vcpu->arch.nmi_pending &&
10301 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10302 vcpu->arch.nmi_pending--;
10303
10304 if (vcpu->arch.nmi_pending)
10305 kvm_make_request(KVM_REQ_EVENT, vcpu);
10306 }
10307
10308 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10309 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10310 {
10311 return vcpu->arch.nmi_pending +
10312 static_call(kvm_x86_is_vnmi_pending)(vcpu);
10313 }
10314
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10315 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10316 unsigned long *vcpu_bitmap)
10317 {
10318 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10319 }
10320
kvm_make_scan_ioapic_request(struct kvm * kvm)10321 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10322 {
10323 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10324 }
10325
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10326 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10327 {
10328 struct kvm_lapic *apic = vcpu->arch.apic;
10329 bool activate;
10330
10331 if (!lapic_in_kernel(vcpu))
10332 return;
10333
10334 down_read(&vcpu->kvm->arch.apicv_update_lock);
10335 preempt_disable();
10336
10337 /* Do not activate APICV when APIC is disabled */
10338 activate = kvm_vcpu_apicv_activated(vcpu) &&
10339 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10340
10341 if (apic->apicv_active == activate)
10342 goto out;
10343
10344 apic->apicv_active = activate;
10345 kvm_apic_update_apicv(vcpu);
10346 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10347
10348 /*
10349 * When APICv gets disabled, we may still have injected interrupts
10350 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10351 * still active when the interrupt got accepted. Make sure
10352 * kvm_check_and_inject_events() is called to check for that.
10353 */
10354 if (!apic->apicv_active)
10355 kvm_make_request(KVM_REQ_EVENT, vcpu);
10356
10357 out:
10358 preempt_enable();
10359 up_read(&vcpu->kvm->arch.apicv_update_lock);
10360 }
10361 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10362
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10363 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10364 {
10365 if (!lapic_in_kernel(vcpu))
10366 return;
10367
10368 /*
10369 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10370 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10371 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10372 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10373 * this case so that KVM can the AVIC doorbell to inject interrupts to
10374 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10375 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10376 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10377 * access page is sticky.
10378 */
10379 if (apic_x2apic_mode(vcpu->arch.apic) &&
10380 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10381 kvm_inhibit_apic_access_page(vcpu);
10382
10383 __kvm_vcpu_update_apicv(vcpu);
10384 }
10385
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10386 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10387 enum kvm_apicv_inhibit reason, bool set)
10388 {
10389 unsigned long old, new;
10390
10391 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10392
10393 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10394 return;
10395
10396 old = new = kvm->arch.apicv_inhibit_reasons;
10397
10398 set_or_clear_apicv_inhibit(&new, reason, set);
10399
10400 if (!!old != !!new) {
10401 /*
10402 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10403 * false positives in the sanity check WARN in svm_vcpu_run().
10404 * This task will wait for all vCPUs to ack the kick IRQ before
10405 * updating apicv_inhibit_reasons, and all other vCPUs will
10406 * block on acquiring apicv_update_lock so that vCPUs can't
10407 * redo svm_vcpu_run() without seeing the new inhibit state.
10408 *
10409 * Note, holding apicv_update_lock and taking it in the read
10410 * side (handling the request) also prevents other vCPUs from
10411 * servicing the request with a stale apicv_inhibit_reasons.
10412 */
10413 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10414 kvm->arch.apicv_inhibit_reasons = new;
10415 if (new) {
10416 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10417 int idx = srcu_read_lock(&kvm->srcu);
10418
10419 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10420 srcu_read_unlock(&kvm->srcu, idx);
10421 }
10422 } else {
10423 kvm->arch.apicv_inhibit_reasons = new;
10424 }
10425 }
10426
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10427 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10428 enum kvm_apicv_inhibit reason, bool set)
10429 {
10430 if (!enable_apicv)
10431 return;
10432
10433 down_write(&kvm->arch.apicv_update_lock);
10434 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10435 up_write(&kvm->arch.apicv_update_lock);
10436 }
10437 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10438
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10439 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10440 {
10441 if (!kvm_apic_present(vcpu))
10442 return;
10443
10444 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10445
10446 if (irqchip_split(vcpu->kvm))
10447 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10448 else {
10449 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10450 if (ioapic_in_kernel(vcpu->kvm))
10451 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10452 }
10453
10454 if (is_guest_mode(vcpu))
10455 vcpu->arch.load_eoi_exitmap_pending = true;
10456 else
10457 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10458 }
10459
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10460 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10461 {
10462 u64 eoi_exit_bitmap[4];
10463
10464 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10465 return;
10466
10467 if (to_hv_vcpu(vcpu)) {
10468 bitmap_or((ulong *)eoi_exit_bitmap,
10469 vcpu->arch.ioapic_handled_vectors,
10470 to_hv_synic(vcpu)->vec_bitmap, 256);
10471 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10472 return;
10473 }
10474
10475 static_call_cond(kvm_x86_load_eoi_exitmap)(
10476 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10477 }
10478
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10479 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10480 {
10481 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10482 }
10483
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10484 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10485 {
10486 if (!lapic_in_kernel(vcpu))
10487 return;
10488
10489 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10490 }
10491
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)10492 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10493 {
10494 smp_send_reschedule(vcpu->cpu);
10495 }
10496 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10497
10498 /*
10499 * Called within kvm->srcu read side.
10500 * Returns 1 to let vcpu_run() continue the guest execution loop without
10501 * exiting to the userspace. Otherwise, the value will be returned to the
10502 * userspace.
10503 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10504 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10505 {
10506 int r;
10507 bool req_int_win =
10508 dm_request_for_irq_injection(vcpu) &&
10509 kvm_cpu_accept_dm_intr(vcpu);
10510 fastpath_t exit_fastpath;
10511
10512 bool req_immediate_exit = false;
10513
10514 if (kvm_request_pending(vcpu)) {
10515 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10516 r = -EIO;
10517 goto out;
10518 }
10519
10520 if (kvm_dirty_ring_check_request(vcpu)) {
10521 r = 0;
10522 goto out;
10523 }
10524
10525 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10526 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10527 r = 0;
10528 goto out;
10529 }
10530 }
10531 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10532 kvm_mmu_free_obsolete_roots(vcpu);
10533 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10534 __kvm_migrate_timers(vcpu);
10535 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10536 kvm_update_masterclock(vcpu->kvm);
10537 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10538 kvm_gen_kvmclock_update(vcpu);
10539 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10540 r = kvm_guest_time_update(vcpu);
10541 if (unlikely(r))
10542 goto out;
10543 }
10544 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10545 kvm_mmu_sync_roots(vcpu);
10546 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10547 kvm_mmu_load_pgd(vcpu);
10548
10549 /*
10550 * Note, the order matters here, as flushing "all" TLB entries
10551 * also flushes the "current" TLB entries, i.e. servicing the
10552 * flush "all" will clear any request to flush "current".
10553 */
10554 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10555 kvm_vcpu_flush_tlb_all(vcpu);
10556
10557 kvm_service_local_tlb_flush_requests(vcpu);
10558
10559 /*
10560 * Fall back to a "full" guest flush if Hyper-V's precise
10561 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10562 * the flushes are considered "remote" and not "local" because
10563 * the requests can be initiated from other vCPUs.
10564 */
10565 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10566 kvm_hv_vcpu_flush_tlb(vcpu))
10567 kvm_vcpu_flush_tlb_guest(vcpu);
10568
10569 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10570 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10571 r = 0;
10572 goto out;
10573 }
10574 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10575 if (is_guest_mode(vcpu))
10576 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10577
10578 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10579 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10580 vcpu->mmio_needed = 0;
10581 r = 0;
10582 goto out;
10583 }
10584 }
10585 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10586 /* Page is swapped out. Do synthetic halt */
10587 vcpu->arch.apf.halted = true;
10588 r = 1;
10589 goto out;
10590 }
10591 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10592 record_steal_time(vcpu);
10593 #ifdef CONFIG_KVM_SMM
10594 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10595 process_smi(vcpu);
10596 #endif
10597 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10598 process_nmi(vcpu);
10599 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10600 kvm_pmu_handle_event(vcpu);
10601 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10602 kvm_pmu_deliver_pmi(vcpu);
10603 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10604 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10605 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10606 vcpu->arch.ioapic_handled_vectors)) {
10607 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10608 vcpu->run->eoi.vector =
10609 vcpu->arch.pending_ioapic_eoi;
10610 r = 0;
10611 goto out;
10612 }
10613 }
10614 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10615 vcpu_scan_ioapic(vcpu);
10616 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10617 vcpu_load_eoi_exitmap(vcpu);
10618 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10619 kvm_vcpu_reload_apic_access_page(vcpu);
10620 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10621 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10622 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10623 vcpu->run->system_event.ndata = 0;
10624 r = 0;
10625 goto out;
10626 }
10627 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10628 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10629 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10630 vcpu->run->system_event.ndata = 0;
10631 r = 0;
10632 goto out;
10633 }
10634 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10635 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10636
10637 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10638 vcpu->run->hyperv = hv_vcpu->exit;
10639 r = 0;
10640 goto out;
10641 }
10642
10643 /*
10644 * KVM_REQ_HV_STIMER has to be processed after
10645 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10646 * depend on the guest clock being up-to-date
10647 */
10648 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10649 kvm_hv_process_stimers(vcpu);
10650 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10651 kvm_vcpu_update_apicv(vcpu);
10652 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10653 kvm_check_async_pf_completion(vcpu);
10654 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10655 static_call(kvm_x86_msr_filter_changed)(vcpu);
10656
10657 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10658 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10659 }
10660
10661 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10662 kvm_xen_has_interrupt(vcpu)) {
10663 ++vcpu->stat.req_event;
10664 r = kvm_apic_accept_events(vcpu);
10665 if (r < 0) {
10666 r = 0;
10667 goto out;
10668 }
10669 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10670 r = 1;
10671 goto out;
10672 }
10673
10674 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10675 if (r < 0) {
10676 r = 0;
10677 goto out;
10678 }
10679 if (req_int_win)
10680 static_call(kvm_x86_enable_irq_window)(vcpu);
10681
10682 if (kvm_lapic_enabled(vcpu)) {
10683 update_cr8_intercept(vcpu);
10684 kvm_lapic_sync_to_vapic(vcpu);
10685 }
10686 }
10687
10688 r = kvm_mmu_reload(vcpu);
10689 if (unlikely(r)) {
10690 goto cancel_injection;
10691 }
10692
10693 preempt_disable();
10694
10695 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10696
10697 /*
10698 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10699 * IPI are then delayed after guest entry, which ensures that they
10700 * result in virtual interrupt delivery.
10701 */
10702 local_irq_disable();
10703
10704 /* Store vcpu->apicv_active before vcpu->mode. */
10705 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10706
10707 kvm_vcpu_srcu_read_unlock(vcpu);
10708
10709 /*
10710 * 1) We should set ->mode before checking ->requests. Please see
10711 * the comment in kvm_vcpu_exiting_guest_mode().
10712 *
10713 * 2) For APICv, we should set ->mode before checking PID.ON. This
10714 * pairs with the memory barrier implicit in pi_test_and_set_on
10715 * (see vmx_deliver_posted_interrupt).
10716 *
10717 * 3) This also orders the write to mode from any reads to the page
10718 * tables done while the VCPU is running. Please see the comment
10719 * in kvm_flush_remote_tlbs.
10720 */
10721 smp_mb__after_srcu_read_unlock();
10722
10723 /*
10724 * Process pending posted interrupts to handle the case where the
10725 * notification IRQ arrived in the host, or was never sent (because the
10726 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10727 * status, KVM doesn't update assigned devices when APICv is inhibited,
10728 * i.e. they can post interrupts even if APICv is temporarily disabled.
10729 */
10730 if (kvm_lapic_enabled(vcpu))
10731 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10732
10733 if (kvm_vcpu_exit_request(vcpu)) {
10734 vcpu->mode = OUTSIDE_GUEST_MODE;
10735 smp_wmb();
10736 local_irq_enable();
10737 preempt_enable();
10738 kvm_vcpu_srcu_read_lock(vcpu);
10739 r = 1;
10740 goto cancel_injection;
10741 }
10742
10743 if (req_immediate_exit) {
10744 kvm_make_request(KVM_REQ_EVENT, vcpu);
10745 static_call(kvm_x86_request_immediate_exit)(vcpu);
10746 }
10747
10748 fpregs_assert_state_consistent();
10749 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10750 switch_fpu_return();
10751
10752 if (vcpu->arch.guest_fpu.xfd_err)
10753 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10754
10755 if (unlikely(vcpu->arch.switch_db_regs)) {
10756 set_debugreg(0, 7);
10757 set_debugreg(vcpu->arch.eff_db[0], 0);
10758 set_debugreg(vcpu->arch.eff_db[1], 1);
10759 set_debugreg(vcpu->arch.eff_db[2], 2);
10760 set_debugreg(vcpu->arch.eff_db[3], 3);
10761 } else if (unlikely(hw_breakpoint_active())) {
10762 set_debugreg(0, 7);
10763 }
10764
10765 guest_timing_enter_irqoff();
10766
10767 for (;;) {
10768 /*
10769 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10770 * update must kick and wait for all vCPUs before toggling the
10771 * per-VM state, and responsing vCPUs must wait for the update
10772 * to complete before servicing KVM_REQ_APICV_UPDATE.
10773 */
10774 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10775 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10776
10777 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10778 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10779 break;
10780
10781 if (kvm_lapic_enabled(vcpu))
10782 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10783
10784 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10785 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10786 break;
10787 }
10788
10789 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10790 ++vcpu->stat.exits;
10791 }
10792
10793 /*
10794 * Do this here before restoring debug registers on the host. And
10795 * since we do this before handling the vmexit, a DR access vmexit
10796 * can (a) read the correct value of the debug registers, (b) set
10797 * KVM_DEBUGREG_WONT_EXIT again.
10798 */
10799 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10800 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10801 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10802 kvm_update_dr0123(vcpu);
10803 kvm_update_dr7(vcpu);
10804 }
10805
10806 /*
10807 * If the guest has used debug registers, at least dr7
10808 * will be disabled while returning to the host.
10809 * If we don't have active breakpoints in the host, we don't
10810 * care about the messed up debug address registers. But if
10811 * we have some of them active, restore the old state.
10812 */
10813 if (hw_breakpoint_active())
10814 hw_breakpoint_restore();
10815
10816 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10817 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10818
10819 vcpu->mode = OUTSIDE_GUEST_MODE;
10820 smp_wmb();
10821
10822 /*
10823 * Sync xfd before calling handle_exit_irqoff() which may
10824 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10825 * in #NM irqoff handler).
10826 */
10827 if (vcpu->arch.xfd_no_write_intercept)
10828 fpu_sync_guest_vmexit_xfd_state();
10829
10830 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10831
10832 if (vcpu->arch.guest_fpu.xfd_err)
10833 wrmsrl(MSR_IA32_XFD_ERR, 0);
10834
10835 /*
10836 * Consume any pending interrupts, including the possible source of
10837 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10838 * An instruction is required after local_irq_enable() to fully unblock
10839 * interrupts on processors that implement an interrupt shadow, the
10840 * stat.exits increment will do nicely.
10841 */
10842 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10843 local_irq_enable();
10844 ++vcpu->stat.exits;
10845 local_irq_disable();
10846 kvm_after_interrupt(vcpu);
10847
10848 /*
10849 * Wait until after servicing IRQs to account guest time so that any
10850 * ticks that occurred while running the guest are properly accounted
10851 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10852 * of accounting via context tracking, but the loss of accuracy is
10853 * acceptable for all known use cases.
10854 */
10855 guest_timing_exit_irqoff();
10856
10857 local_irq_enable();
10858 preempt_enable();
10859
10860 kvm_vcpu_srcu_read_lock(vcpu);
10861
10862 /*
10863 * Profile KVM exit RIPs:
10864 */
10865 if (unlikely(prof_on == KVM_PROFILING)) {
10866 unsigned long rip = kvm_rip_read(vcpu);
10867 profile_hit(KVM_PROFILING, (void *)rip);
10868 }
10869
10870 if (unlikely(vcpu->arch.tsc_always_catchup))
10871 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10872
10873 if (vcpu->arch.apic_attention)
10874 kvm_lapic_sync_from_vapic(vcpu);
10875
10876 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10877 return r;
10878
10879 cancel_injection:
10880 if (req_immediate_exit)
10881 kvm_make_request(KVM_REQ_EVENT, vcpu);
10882 static_call(kvm_x86_cancel_injection)(vcpu);
10883 if (unlikely(vcpu->arch.apic_attention))
10884 kvm_lapic_sync_from_vapic(vcpu);
10885 out:
10886 return r;
10887 }
10888
10889 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)10890 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10891 {
10892 bool hv_timer;
10893
10894 if (!kvm_arch_vcpu_runnable(vcpu)) {
10895 /*
10896 * Switch to the software timer before halt-polling/blocking as
10897 * the guest's timer may be a break event for the vCPU, and the
10898 * hypervisor timer runs only when the CPU is in guest mode.
10899 * Switch before halt-polling so that KVM recognizes an expired
10900 * timer before blocking.
10901 */
10902 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10903 if (hv_timer)
10904 kvm_lapic_switch_to_sw_timer(vcpu);
10905
10906 kvm_vcpu_srcu_read_unlock(vcpu);
10907 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10908 kvm_vcpu_halt(vcpu);
10909 else
10910 kvm_vcpu_block(vcpu);
10911 kvm_vcpu_srcu_read_lock(vcpu);
10912
10913 if (hv_timer)
10914 kvm_lapic_switch_to_hv_timer(vcpu);
10915
10916 /*
10917 * If the vCPU is not runnable, a signal or another host event
10918 * of some kind is pending; service it without changing the
10919 * vCPU's activity state.
10920 */
10921 if (!kvm_arch_vcpu_runnable(vcpu))
10922 return 1;
10923 }
10924
10925 /*
10926 * Evaluate nested events before exiting the halted state. This allows
10927 * the halt state to be recorded properly in the VMCS12's activity
10928 * state field (AMD does not have a similar field and a VM-Exit always
10929 * causes a spurious wakeup from HLT).
10930 */
10931 if (is_guest_mode(vcpu)) {
10932 if (kvm_check_nested_events(vcpu) < 0)
10933 return 0;
10934 }
10935
10936 if (kvm_apic_accept_events(vcpu) < 0)
10937 return 0;
10938 switch(vcpu->arch.mp_state) {
10939 case KVM_MP_STATE_HALTED:
10940 case KVM_MP_STATE_AP_RESET_HOLD:
10941 vcpu->arch.pv.pv_unhalted = false;
10942 vcpu->arch.mp_state =
10943 KVM_MP_STATE_RUNNABLE;
10944 fallthrough;
10945 case KVM_MP_STATE_RUNNABLE:
10946 vcpu->arch.apf.halted = false;
10947 break;
10948 case KVM_MP_STATE_INIT_RECEIVED:
10949 break;
10950 default:
10951 WARN_ON_ONCE(1);
10952 break;
10953 }
10954 return 1;
10955 }
10956
kvm_vcpu_running(struct kvm_vcpu * vcpu)10957 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10958 {
10959 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10960 !vcpu->arch.apf.halted);
10961 }
10962
10963 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)10964 static int vcpu_run(struct kvm_vcpu *vcpu)
10965 {
10966 int r;
10967
10968 vcpu->arch.l1tf_flush_l1d = true;
10969
10970 for (;;) {
10971 /*
10972 * If another guest vCPU requests a PV TLB flush in the middle
10973 * of instruction emulation, the rest of the emulation could
10974 * use a stale page translation. Assume that any code after
10975 * this point can start executing an instruction.
10976 */
10977 vcpu->arch.at_instruction_boundary = false;
10978 if (kvm_vcpu_running(vcpu)) {
10979 r = vcpu_enter_guest(vcpu);
10980 } else {
10981 r = vcpu_block(vcpu);
10982 }
10983
10984 if (r <= 0)
10985 break;
10986
10987 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10988 if (kvm_xen_has_pending_events(vcpu))
10989 kvm_xen_inject_pending_events(vcpu);
10990
10991 if (kvm_cpu_has_pending_timer(vcpu))
10992 kvm_inject_pending_timer_irqs(vcpu);
10993
10994 if (dm_request_for_irq_injection(vcpu) &&
10995 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10996 r = 0;
10997 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10998 ++vcpu->stat.request_irq_exits;
10999 break;
11000 }
11001
11002 if (__xfer_to_guest_mode_work_pending()) {
11003 kvm_vcpu_srcu_read_unlock(vcpu);
11004 r = xfer_to_guest_mode_handle_work(vcpu);
11005 kvm_vcpu_srcu_read_lock(vcpu);
11006 if (r)
11007 return r;
11008 }
11009 }
11010
11011 return r;
11012 }
11013
complete_emulated_io(struct kvm_vcpu * vcpu)11014 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11015 {
11016 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11017 }
11018
complete_emulated_pio(struct kvm_vcpu * vcpu)11019 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11020 {
11021 BUG_ON(!vcpu->arch.pio.count);
11022
11023 return complete_emulated_io(vcpu);
11024 }
11025
11026 /*
11027 * Implements the following, as a state machine:
11028 *
11029 * read:
11030 * for each fragment
11031 * for each mmio piece in the fragment
11032 * write gpa, len
11033 * exit
11034 * copy data
11035 * execute insn
11036 *
11037 * write:
11038 * for each fragment
11039 * for each mmio piece in the fragment
11040 * write gpa, len
11041 * copy data
11042 * exit
11043 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11044 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11045 {
11046 struct kvm_run *run = vcpu->run;
11047 struct kvm_mmio_fragment *frag;
11048 unsigned len;
11049
11050 BUG_ON(!vcpu->mmio_needed);
11051
11052 /* Complete previous fragment */
11053 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11054 len = min(8u, frag->len);
11055 if (!vcpu->mmio_is_write)
11056 memcpy(frag->data, run->mmio.data, len);
11057
11058 if (frag->len <= 8) {
11059 /* Switch to the next fragment. */
11060 frag++;
11061 vcpu->mmio_cur_fragment++;
11062 } else {
11063 /* Go forward to the next mmio piece. */
11064 frag->data += len;
11065 frag->gpa += len;
11066 frag->len -= len;
11067 }
11068
11069 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11070 vcpu->mmio_needed = 0;
11071
11072 /* FIXME: return into emulator if single-stepping. */
11073 if (vcpu->mmio_is_write)
11074 return 1;
11075 vcpu->mmio_read_completed = 1;
11076 return complete_emulated_io(vcpu);
11077 }
11078
11079 run->exit_reason = KVM_EXIT_MMIO;
11080 run->mmio.phys_addr = frag->gpa;
11081 if (vcpu->mmio_is_write)
11082 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11083 run->mmio.len = min(8u, frag->len);
11084 run->mmio.is_write = vcpu->mmio_is_write;
11085 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11086 return 0;
11087 }
11088
11089 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11090 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11091 {
11092 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11093 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11094 trace_kvm_fpu(1);
11095 }
11096
11097 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11098 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11099 {
11100 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11101 ++vcpu->stat.fpu_reload;
11102 trace_kvm_fpu(0);
11103 }
11104
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11105 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11106 {
11107 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11108 struct kvm_run *kvm_run = vcpu->run;
11109 int r;
11110
11111 vcpu_load(vcpu);
11112 kvm_sigset_activate(vcpu);
11113 kvm_run->flags = 0;
11114 kvm_load_guest_fpu(vcpu);
11115
11116 kvm_vcpu_srcu_read_lock(vcpu);
11117 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11118 if (kvm_run->immediate_exit) {
11119 r = -EINTR;
11120 goto out;
11121 }
11122
11123 /*
11124 * Don't bother switching APIC timer emulation from the
11125 * hypervisor timer to the software timer, the only way for the
11126 * APIC timer to be active is if userspace stuffed vCPU state,
11127 * i.e. put the vCPU into a nonsensical state. Only an INIT
11128 * will transition the vCPU out of UNINITIALIZED (without more
11129 * state stuffing from userspace), which will reset the local
11130 * APIC and thus cancel the timer or drop the IRQ (if the timer
11131 * already expired).
11132 */
11133 kvm_vcpu_srcu_read_unlock(vcpu);
11134 kvm_vcpu_block(vcpu);
11135 kvm_vcpu_srcu_read_lock(vcpu);
11136
11137 if (kvm_apic_accept_events(vcpu) < 0) {
11138 r = 0;
11139 goto out;
11140 }
11141 r = -EAGAIN;
11142 if (signal_pending(current)) {
11143 r = -EINTR;
11144 kvm_run->exit_reason = KVM_EXIT_INTR;
11145 ++vcpu->stat.signal_exits;
11146 }
11147 goto out;
11148 }
11149
11150 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11151 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11152 r = -EINVAL;
11153 goto out;
11154 }
11155
11156 if (kvm_run->kvm_dirty_regs) {
11157 r = sync_regs(vcpu);
11158 if (r != 0)
11159 goto out;
11160 }
11161
11162 /* re-sync apic's tpr */
11163 if (!lapic_in_kernel(vcpu)) {
11164 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11165 r = -EINVAL;
11166 goto out;
11167 }
11168 }
11169
11170 /*
11171 * If userspace set a pending exception and L2 is active, convert it to
11172 * a pending VM-Exit if L1 wants to intercept the exception.
11173 */
11174 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11175 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11176 ex->error_code)) {
11177 kvm_queue_exception_vmexit(vcpu, ex->vector,
11178 ex->has_error_code, ex->error_code,
11179 ex->has_payload, ex->payload);
11180 ex->injected = false;
11181 ex->pending = false;
11182 }
11183 vcpu->arch.exception_from_userspace = false;
11184
11185 if (unlikely(vcpu->arch.complete_userspace_io)) {
11186 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11187 vcpu->arch.complete_userspace_io = NULL;
11188 r = cui(vcpu);
11189 if (r <= 0)
11190 goto out;
11191 } else {
11192 WARN_ON_ONCE(vcpu->arch.pio.count);
11193 WARN_ON_ONCE(vcpu->mmio_needed);
11194 }
11195
11196 if (kvm_run->immediate_exit) {
11197 r = -EINTR;
11198 goto out;
11199 }
11200
11201 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11202 if (r <= 0)
11203 goto out;
11204
11205 r = vcpu_run(vcpu);
11206
11207 out:
11208 kvm_put_guest_fpu(vcpu);
11209 if (kvm_run->kvm_valid_regs)
11210 store_regs(vcpu);
11211 post_kvm_run_save(vcpu);
11212 kvm_vcpu_srcu_read_unlock(vcpu);
11213
11214 kvm_sigset_deactivate(vcpu);
11215 vcpu_put(vcpu);
11216 return r;
11217 }
11218
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11219 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11220 {
11221 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11222 /*
11223 * We are here if userspace calls get_regs() in the middle of
11224 * instruction emulation. Registers state needs to be copied
11225 * back from emulation context to vcpu. Userspace shouldn't do
11226 * that usually, but some bad designed PV devices (vmware
11227 * backdoor interface) need this to work
11228 */
11229 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11230 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11231 }
11232 regs->rax = kvm_rax_read(vcpu);
11233 regs->rbx = kvm_rbx_read(vcpu);
11234 regs->rcx = kvm_rcx_read(vcpu);
11235 regs->rdx = kvm_rdx_read(vcpu);
11236 regs->rsi = kvm_rsi_read(vcpu);
11237 regs->rdi = kvm_rdi_read(vcpu);
11238 regs->rsp = kvm_rsp_read(vcpu);
11239 regs->rbp = kvm_rbp_read(vcpu);
11240 #ifdef CONFIG_X86_64
11241 regs->r8 = kvm_r8_read(vcpu);
11242 regs->r9 = kvm_r9_read(vcpu);
11243 regs->r10 = kvm_r10_read(vcpu);
11244 regs->r11 = kvm_r11_read(vcpu);
11245 regs->r12 = kvm_r12_read(vcpu);
11246 regs->r13 = kvm_r13_read(vcpu);
11247 regs->r14 = kvm_r14_read(vcpu);
11248 regs->r15 = kvm_r15_read(vcpu);
11249 #endif
11250
11251 regs->rip = kvm_rip_read(vcpu);
11252 regs->rflags = kvm_get_rflags(vcpu);
11253 }
11254
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11255 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11256 {
11257 vcpu_load(vcpu);
11258 __get_regs(vcpu, regs);
11259 vcpu_put(vcpu);
11260 return 0;
11261 }
11262
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11263 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11264 {
11265 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11266 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11267
11268 kvm_rax_write(vcpu, regs->rax);
11269 kvm_rbx_write(vcpu, regs->rbx);
11270 kvm_rcx_write(vcpu, regs->rcx);
11271 kvm_rdx_write(vcpu, regs->rdx);
11272 kvm_rsi_write(vcpu, regs->rsi);
11273 kvm_rdi_write(vcpu, regs->rdi);
11274 kvm_rsp_write(vcpu, regs->rsp);
11275 kvm_rbp_write(vcpu, regs->rbp);
11276 #ifdef CONFIG_X86_64
11277 kvm_r8_write(vcpu, regs->r8);
11278 kvm_r9_write(vcpu, regs->r9);
11279 kvm_r10_write(vcpu, regs->r10);
11280 kvm_r11_write(vcpu, regs->r11);
11281 kvm_r12_write(vcpu, regs->r12);
11282 kvm_r13_write(vcpu, regs->r13);
11283 kvm_r14_write(vcpu, regs->r14);
11284 kvm_r15_write(vcpu, regs->r15);
11285 #endif
11286
11287 kvm_rip_write(vcpu, regs->rip);
11288 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11289
11290 vcpu->arch.exception.pending = false;
11291 vcpu->arch.exception_vmexit.pending = false;
11292
11293 kvm_make_request(KVM_REQ_EVENT, vcpu);
11294 }
11295
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11296 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11297 {
11298 vcpu_load(vcpu);
11299 __set_regs(vcpu, regs);
11300 vcpu_put(vcpu);
11301 return 0;
11302 }
11303
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11304 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11305 {
11306 struct desc_ptr dt;
11307
11308 if (vcpu->arch.guest_state_protected)
11309 goto skip_protected_regs;
11310
11311 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11312 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11313 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11314 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11315 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11316 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11317
11318 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11319 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11320
11321 static_call(kvm_x86_get_idt)(vcpu, &dt);
11322 sregs->idt.limit = dt.size;
11323 sregs->idt.base = dt.address;
11324 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11325 sregs->gdt.limit = dt.size;
11326 sregs->gdt.base = dt.address;
11327
11328 sregs->cr2 = vcpu->arch.cr2;
11329 sregs->cr3 = kvm_read_cr3(vcpu);
11330
11331 skip_protected_regs:
11332 sregs->cr0 = kvm_read_cr0(vcpu);
11333 sregs->cr4 = kvm_read_cr4(vcpu);
11334 sregs->cr8 = kvm_get_cr8(vcpu);
11335 sregs->efer = vcpu->arch.efer;
11336 sregs->apic_base = kvm_get_apic_base(vcpu);
11337 }
11338
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11339 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11340 {
11341 __get_sregs_common(vcpu, sregs);
11342
11343 if (vcpu->arch.guest_state_protected)
11344 return;
11345
11346 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11347 set_bit(vcpu->arch.interrupt.nr,
11348 (unsigned long *)sregs->interrupt_bitmap);
11349 }
11350
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11351 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11352 {
11353 int i;
11354
11355 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11356
11357 if (vcpu->arch.guest_state_protected)
11358 return;
11359
11360 if (is_pae_paging(vcpu)) {
11361 for (i = 0 ; i < 4 ; i++)
11362 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11363 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11364 }
11365 }
11366
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11367 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11368 struct kvm_sregs *sregs)
11369 {
11370 vcpu_load(vcpu);
11371 __get_sregs(vcpu, sregs);
11372 vcpu_put(vcpu);
11373 return 0;
11374 }
11375
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11376 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11377 struct kvm_mp_state *mp_state)
11378 {
11379 int r;
11380
11381 vcpu_load(vcpu);
11382 if (kvm_mpx_supported())
11383 kvm_load_guest_fpu(vcpu);
11384
11385 r = kvm_apic_accept_events(vcpu);
11386 if (r < 0)
11387 goto out;
11388 r = 0;
11389
11390 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11391 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11392 vcpu->arch.pv.pv_unhalted)
11393 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11394 else
11395 mp_state->mp_state = vcpu->arch.mp_state;
11396
11397 out:
11398 if (kvm_mpx_supported())
11399 kvm_put_guest_fpu(vcpu);
11400 vcpu_put(vcpu);
11401 return r;
11402 }
11403
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11404 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11405 struct kvm_mp_state *mp_state)
11406 {
11407 int ret = -EINVAL;
11408
11409 vcpu_load(vcpu);
11410
11411 switch (mp_state->mp_state) {
11412 case KVM_MP_STATE_UNINITIALIZED:
11413 case KVM_MP_STATE_HALTED:
11414 case KVM_MP_STATE_AP_RESET_HOLD:
11415 case KVM_MP_STATE_INIT_RECEIVED:
11416 case KVM_MP_STATE_SIPI_RECEIVED:
11417 if (!lapic_in_kernel(vcpu))
11418 goto out;
11419 break;
11420
11421 case KVM_MP_STATE_RUNNABLE:
11422 break;
11423
11424 default:
11425 goto out;
11426 }
11427
11428 /*
11429 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11430 * forcing the guest into INIT/SIPI if those events are supposed to be
11431 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11432 * if an SMI is pending as well.
11433 */
11434 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11435 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11436 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11437 goto out;
11438
11439 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11440 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11441 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11442 } else
11443 vcpu->arch.mp_state = mp_state->mp_state;
11444 kvm_make_request(KVM_REQ_EVENT, vcpu);
11445
11446 ret = 0;
11447 out:
11448 vcpu_put(vcpu);
11449 return ret;
11450 }
11451
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11452 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11453 int reason, bool has_error_code, u32 error_code)
11454 {
11455 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11456 int ret;
11457
11458 init_emulate_ctxt(vcpu);
11459
11460 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11461 has_error_code, error_code);
11462 if (ret) {
11463 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11464 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11465 vcpu->run->internal.ndata = 0;
11466 return 0;
11467 }
11468
11469 kvm_rip_write(vcpu, ctxt->eip);
11470 kvm_set_rflags(vcpu, ctxt->eflags);
11471 return 1;
11472 }
11473 EXPORT_SYMBOL_GPL(kvm_task_switch);
11474
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11475 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11476 {
11477 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11478 /*
11479 * When EFER.LME and CR0.PG are set, the processor is in
11480 * 64-bit mode (though maybe in a 32-bit code segment).
11481 * CR4.PAE and EFER.LMA must be set.
11482 */
11483 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11484 return false;
11485 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11486 return false;
11487 } else {
11488 /*
11489 * Not in 64-bit mode: EFER.LMA is clear and the code
11490 * segment cannot be 64-bit.
11491 */
11492 if (sregs->efer & EFER_LMA || sregs->cs.l)
11493 return false;
11494 }
11495
11496 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11497 kvm_is_valid_cr0(vcpu, sregs->cr0);
11498 }
11499
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11500 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11501 int *mmu_reset_needed, bool update_pdptrs)
11502 {
11503 struct msr_data apic_base_msr;
11504 int idx;
11505 struct desc_ptr dt;
11506
11507 if (!kvm_is_valid_sregs(vcpu, sregs))
11508 return -EINVAL;
11509
11510 apic_base_msr.data = sregs->apic_base;
11511 apic_base_msr.host_initiated = true;
11512 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11513 return -EINVAL;
11514
11515 if (vcpu->arch.guest_state_protected)
11516 return 0;
11517
11518 dt.size = sregs->idt.limit;
11519 dt.address = sregs->idt.base;
11520 static_call(kvm_x86_set_idt)(vcpu, &dt);
11521 dt.size = sregs->gdt.limit;
11522 dt.address = sregs->gdt.base;
11523 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11524
11525 vcpu->arch.cr2 = sregs->cr2;
11526 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11527 vcpu->arch.cr3 = sregs->cr3;
11528 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11529 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11530
11531 kvm_set_cr8(vcpu, sregs->cr8);
11532
11533 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11534 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11535
11536 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11537 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11538 vcpu->arch.cr0 = sregs->cr0;
11539
11540 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11541 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11542
11543 if (update_pdptrs) {
11544 idx = srcu_read_lock(&vcpu->kvm->srcu);
11545 if (is_pae_paging(vcpu)) {
11546 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11547 *mmu_reset_needed = 1;
11548 }
11549 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11550 }
11551
11552 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11553 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11554 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11555 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11556 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11557 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11558
11559 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11560 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11561
11562 update_cr8_intercept(vcpu);
11563
11564 /* Older userspace won't unhalt the vcpu on reset. */
11565 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11566 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11567 !is_protmode(vcpu))
11568 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11569
11570 return 0;
11571 }
11572
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11573 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11574 {
11575 int pending_vec, max_bits;
11576 int mmu_reset_needed = 0;
11577 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11578
11579 if (ret)
11580 return ret;
11581
11582 if (mmu_reset_needed)
11583 kvm_mmu_reset_context(vcpu);
11584
11585 max_bits = KVM_NR_INTERRUPTS;
11586 pending_vec = find_first_bit(
11587 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11588
11589 if (pending_vec < max_bits) {
11590 kvm_queue_interrupt(vcpu, pending_vec, false);
11591 pr_debug("Set back pending irq %d\n", pending_vec);
11592 kvm_make_request(KVM_REQ_EVENT, vcpu);
11593 }
11594 return 0;
11595 }
11596
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11597 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11598 {
11599 int mmu_reset_needed = 0;
11600 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11601 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11602 !(sregs2->efer & EFER_LMA);
11603 int i, ret;
11604
11605 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11606 return -EINVAL;
11607
11608 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11609 return -EINVAL;
11610
11611 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11612 &mmu_reset_needed, !valid_pdptrs);
11613 if (ret)
11614 return ret;
11615
11616 if (valid_pdptrs) {
11617 for (i = 0; i < 4 ; i++)
11618 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11619
11620 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11621 mmu_reset_needed = 1;
11622 vcpu->arch.pdptrs_from_userspace = true;
11623 }
11624 if (mmu_reset_needed)
11625 kvm_mmu_reset_context(vcpu);
11626 return 0;
11627 }
11628
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11629 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11630 struct kvm_sregs *sregs)
11631 {
11632 int ret;
11633
11634 vcpu_load(vcpu);
11635 ret = __set_sregs(vcpu, sregs);
11636 vcpu_put(vcpu);
11637 return ret;
11638 }
11639
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)11640 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11641 {
11642 bool set = false;
11643 struct kvm_vcpu *vcpu;
11644 unsigned long i;
11645
11646 if (!enable_apicv)
11647 return;
11648
11649 down_write(&kvm->arch.apicv_update_lock);
11650
11651 kvm_for_each_vcpu(i, vcpu, kvm) {
11652 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11653 set = true;
11654 break;
11655 }
11656 }
11657 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11658 up_write(&kvm->arch.apicv_update_lock);
11659 }
11660
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)11661 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11662 struct kvm_guest_debug *dbg)
11663 {
11664 unsigned long rflags;
11665 int i, r;
11666
11667 if (vcpu->arch.guest_state_protected)
11668 return -EINVAL;
11669
11670 vcpu_load(vcpu);
11671
11672 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11673 r = -EBUSY;
11674 if (kvm_is_exception_pending(vcpu))
11675 goto out;
11676 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11677 kvm_queue_exception(vcpu, DB_VECTOR);
11678 else
11679 kvm_queue_exception(vcpu, BP_VECTOR);
11680 }
11681
11682 /*
11683 * Read rflags as long as potentially injected trace flags are still
11684 * filtered out.
11685 */
11686 rflags = kvm_get_rflags(vcpu);
11687
11688 vcpu->guest_debug = dbg->control;
11689 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11690 vcpu->guest_debug = 0;
11691
11692 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11693 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11694 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11695 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11696 } else {
11697 for (i = 0; i < KVM_NR_DB_REGS; i++)
11698 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11699 }
11700 kvm_update_dr7(vcpu);
11701
11702 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11703 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11704
11705 /*
11706 * Trigger an rflags update that will inject or remove the trace
11707 * flags.
11708 */
11709 kvm_set_rflags(vcpu, rflags);
11710
11711 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11712
11713 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11714
11715 r = 0;
11716
11717 out:
11718 vcpu_put(vcpu);
11719 return r;
11720 }
11721
11722 /*
11723 * Translate a guest virtual address to a guest physical address.
11724 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)11725 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11726 struct kvm_translation *tr)
11727 {
11728 unsigned long vaddr = tr->linear_address;
11729 gpa_t gpa;
11730 int idx;
11731
11732 vcpu_load(vcpu);
11733
11734 idx = srcu_read_lock(&vcpu->kvm->srcu);
11735 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11736 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11737 tr->physical_address = gpa;
11738 tr->valid = gpa != INVALID_GPA;
11739 tr->writeable = 1;
11740 tr->usermode = 0;
11741
11742 vcpu_put(vcpu);
11743 return 0;
11744 }
11745
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11746 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11747 {
11748 struct fxregs_state *fxsave;
11749
11750 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11751 return 0;
11752
11753 vcpu_load(vcpu);
11754
11755 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11756 memcpy(fpu->fpr, fxsave->st_space, 128);
11757 fpu->fcw = fxsave->cwd;
11758 fpu->fsw = fxsave->swd;
11759 fpu->ftwx = fxsave->twd;
11760 fpu->last_opcode = fxsave->fop;
11761 fpu->last_ip = fxsave->rip;
11762 fpu->last_dp = fxsave->rdp;
11763 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11764
11765 vcpu_put(vcpu);
11766 return 0;
11767 }
11768
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11769 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11770 {
11771 struct fxregs_state *fxsave;
11772
11773 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11774 return 0;
11775
11776 vcpu_load(vcpu);
11777
11778 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11779
11780 memcpy(fxsave->st_space, fpu->fpr, 128);
11781 fxsave->cwd = fpu->fcw;
11782 fxsave->swd = fpu->fsw;
11783 fxsave->twd = fpu->ftwx;
11784 fxsave->fop = fpu->last_opcode;
11785 fxsave->rip = fpu->last_ip;
11786 fxsave->rdp = fpu->last_dp;
11787 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11788
11789 vcpu_put(vcpu);
11790 return 0;
11791 }
11792
store_regs(struct kvm_vcpu * vcpu)11793 static void store_regs(struct kvm_vcpu *vcpu)
11794 {
11795 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11796
11797 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11798 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11799
11800 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11801 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11802
11803 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11804 kvm_vcpu_ioctl_x86_get_vcpu_events(
11805 vcpu, &vcpu->run->s.regs.events);
11806 }
11807
sync_regs(struct kvm_vcpu * vcpu)11808 static int sync_regs(struct kvm_vcpu *vcpu)
11809 {
11810 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11811 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11812 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11813 }
11814
11815 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11816 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11817
11818 if (__set_sregs(vcpu, &sregs))
11819 return -EINVAL;
11820
11821 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11822 }
11823
11824 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11825 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11826
11827 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11828 return -EINVAL;
11829
11830 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11831 }
11832
11833 return 0;
11834 }
11835
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)11836 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11837 {
11838 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11839 pr_warn_once("SMP vm created on host with unstable TSC; "
11840 "guest TSC will not be reliable\n");
11841
11842 if (!kvm->arch.max_vcpu_ids)
11843 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11844
11845 if (id >= kvm->arch.max_vcpu_ids)
11846 return -EINVAL;
11847
11848 return static_call(kvm_x86_vcpu_precreate)(kvm);
11849 }
11850
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11851 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11852 {
11853 struct page *page;
11854 int r;
11855
11856 vcpu->arch.last_vmentry_cpu = -1;
11857 vcpu->arch.regs_avail = ~0;
11858 vcpu->arch.regs_dirty = ~0;
11859
11860 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11861
11862 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11863 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11864 else
11865 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11866
11867 r = kvm_mmu_create(vcpu);
11868 if (r < 0)
11869 return r;
11870
11871 if (irqchip_in_kernel(vcpu->kvm)) {
11872 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11873 if (r < 0)
11874 goto fail_mmu_destroy;
11875
11876 /*
11877 * Defer evaluating inhibits until the vCPU is first run, as
11878 * this vCPU will not get notified of any changes until this
11879 * vCPU is visible to other vCPUs (marked online and added to
11880 * the set of vCPUs). Opportunistically mark APICv active as
11881 * VMX in particularly is highly unlikely to have inhibits.
11882 * Ignore the current per-VM APICv state so that vCPU creation
11883 * is guaranteed to run with a deterministic value, the request
11884 * will ensure the vCPU gets the correct state before VM-Entry.
11885 */
11886 if (enable_apicv) {
11887 vcpu->arch.apic->apicv_active = true;
11888 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11889 }
11890 } else
11891 static_branch_inc(&kvm_has_noapic_vcpu);
11892
11893 r = -ENOMEM;
11894
11895 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11896 if (!page)
11897 goto fail_free_lapic;
11898 vcpu->arch.pio_data = page_address(page);
11899
11900 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11901 GFP_KERNEL_ACCOUNT);
11902 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11903 GFP_KERNEL_ACCOUNT);
11904 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11905 goto fail_free_mce_banks;
11906 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11907
11908 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11909 GFP_KERNEL_ACCOUNT))
11910 goto fail_free_mce_banks;
11911
11912 if (!alloc_emulate_ctxt(vcpu))
11913 goto free_wbinvd_dirty_mask;
11914
11915 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11916 pr_err("failed to allocate vcpu's fpu\n");
11917 goto free_emulate_ctxt;
11918 }
11919
11920 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11921 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11922
11923 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11924
11925 kvm_async_pf_hash_reset(vcpu);
11926
11927 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11928 kvm_pmu_init(vcpu);
11929
11930 vcpu->arch.pending_external_vector = -1;
11931 vcpu->arch.preempted_in_kernel = false;
11932
11933 #if IS_ENABLED(CONFIG_HYPERV)
11934 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11935 #endif
11936
11937 r = static_call(kvm_x86_vcpu_create)(vcpu);
11938 if (r)
11939 goto free_guest_fpu;
11940
11941 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11942 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11943 kvm_xen_init_vcpu(vcpu);
11944 kvm_vcpu_mtrr_init(vcpu);
11945 vcpu_load(vcpu);
11946 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11947 kvm_vcpu_reset(vcpu, false);
11948 kvm_init_mmu(vcpu);
11949 vcpu_put(vcpu);
11950 return 0;
11951
11952 free_guest_fpu:
11953 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11954 free_emulate_ctxt:
11955 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11956 free_wbinvd_dirty_mask:
11957 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11958 fail_free_mce_banks:
11959 kfree(vcpu->arch.mce_banks);
11960 kfree(vcpu->arch.mci_ctl2_banks);
11961 free_page((unsigned long)vcpu->arch.pio_data);
11962 fail_free_lapic:
11963 kvm_free_lapic(vcpu);
11964 fail_mmu_destroy:
11965 kvm_mmu_destroy(vcpu);
11966 return r;
11967 }
11968
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11969 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11970 {
11971 struct kvm *kvm = vcpu->kvm;
11972
11973 if (mutex_lock_killable(&vcpu->mutex))
11974 return;
11975 vcpu_load(vcpu);
11976 kvm_synchronize_tsc(vcpu, 0);
11977 vcpu_put(vcpu);
11978
11979 /* poll control enabled by default */
11980 vcpu->arch.msr_kvm_poll_control = 1;
11981
11982 mutex_unlock(&vcpu->mutex);
11983
11984 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11985 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11986 KVMCLOCK_SYNC_PERIOD);
11987 }
11988
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)11989 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11990 {
11991 int idx;
11992
11993 kvmclock_reset(vcpu);
11994
11995 static_call(kvm_x86_vcpu_free)(vcpu);
11996
11997 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11998 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11999 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12000
12001 kvm_xen_destroy_vcpu(vcpu);
12002 kvm_hv_vcpu_uninit(vcpu);
12003 kvm_pmu_destroy(vcpu);
12004 kfree(vcpu->arch.mce_banks);
12005 kfree(vcpu->arch.mci_ctl2_banks);
12006 kvm_free_lapic(vcpu);
12007 idx = srcu_read_lock(&vcpu->kvm->srcu);
12008 kvm_mmu_destroy(vcpu);
12009 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12010 free_page((unsigned long)vcpu->arch.pio_data);
12011 kvfree(vcpu->arch.cpuid_entries);
12012 if (!lapic_in_kernel(vcpu))
12013 static_branch_dec(&kvm_has_noapic_vcpu);
12014 }
12015
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12016 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12017 {
12018 struct kvm_cpuid_entry2 *cpuid_0x1;
12019 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12020 unsigned long new_cr0;
12021
12022 /*
12023 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12024 * to handle side effects. RESET emulation hits those flows and relies
12025 * on emulated/virtualized registers, including those that are loaded
12026 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12027 * to detect improper or missing initialization.
12028 */
12029 WARN_ON_ONCE(!init_event &&
12030 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12031
12032 /*
12033 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12034 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12035 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12036 * bits), i.e. virtualization is disabled.
12037 */
12038 if (is_guest_mode(vcpu))
12039 kvm_leave_nested(vcpu);
12040
12041 kvm_lapic_reset(vcpu, init_event);
12042
12043 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12044 vcpu->arch.hflags = 0;
12045
12046 vcpu->arch.smi_pending = 0;
12047 vcpu->arch.smi_count = 0;
12048 atomic_set(&vcpu->arch.nmi_queued, 0);
12049 vcpu->arch.nmi_pending = 0;
12050 vcpu->arch.nmi_injected = false;
12051 kvm_clear_interrupt_queue(vcpu);
12052 kvm_clear_exception_queue(vcpu);
12053
12054 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12055 kvm_update_dr0123(vcpu);
12056 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12057 vcpu->arch.dr7 = DR7_FIXED_1;
12058 kvm_update_dr7(vcpu);
12059
12060 vcpu->arch.cr2 = 0;
12061
12062 kvm_make_request(KVM_REQ_EVENT, vcpu);
12063 vcpu->arch.apf.msr_en_val = 0;
12064 vcpu->arch.apf.msr_int_val = 0;
12065 vcpu->arch.st.msr_val = 0;
12066
12067 kvmclock_reset(vcpu);
12068
12069 kvm_clear_async_pf_completion_queue(vcpu);
12070 kvm_async_pf_hash_reset(vcpu);
12071 vcpu->arch.apf.halted = false;
12072
12073 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12074 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12075
12076 /*
12077 * All paths that lead to INIT are required to load the guest's
12078 * FPU state (because most paths are buried in KVM_RUN).
12079 */
12080 if (init_event)
12081 kvm_put_guest_fpu(vcpu);
12082
12083 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12084 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12085
12086 if (init_event)
12087 kvm_load_guest_fpu(vcpu);
12088 }
12089
12090 if (!init_event) {
12091 kvm_pmu_reset(vcpu);
12092 vcpu->arch.smbase = 0x30000;
12093
12094 vcpu->arch.msr_misc_features_enables = 0;
12095 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12096 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12097
12098 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12099 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12100 }
12101
12102 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12103 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12104 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12105
12106 /*
12107 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12108 * if no CPUID match is found. Note, it's impossible to get a match at
12109 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12110 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12111 * on RESET. But, go through the motions in case that's ever remedied.
12112 */
12113 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12114 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12115
12116 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12117
12118 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12119 kvm_rip_write(vcpu, 0xfff0);
12120
12121 vcpu->arch.cr3 = 0;
12122 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12123
12124 /*
12125 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12126 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12127 * (or qualify) that with a footnote stating that CD/NW are preserved.
12128 */
12129 new_cr0 = X86_CR0_ET;
12130 if (init_event)
12131 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12132 else
12133 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12134
12135 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12136 static_call(kvm_x86_set_cr4)(vcpu, 0);
12137 static_call(kvm_x86_set_efer)(vcpu, 0);
12138 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12139
12140 /*
12141 * On the standard CR0/CR4/EFER modification paths, there are several
12142 * complex conditions determining whether the MMU has to be reset and/or
12143 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12144 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12145 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12146 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12147 */
12148 if (old_cr0 & X86_CR0_PG) {
12149 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12150 kvm_mmu_reset_context(vcpu);
12151 }
12152
12153 /*
12154 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12155 * APM states the TLBs are untouched by INIT, but it also states that
12156 * the TLBs are flushed on "External initialization of the processor."
12157 * Flush the guest TLB regardless of vendor, there is no meaningful
12158 * benefit in relying on the guest to flush the TLB immediately after
12159 * INIT. A spurious TLB flush is benign and likely negligible from a
12160 * performance perspective.
12161 */
12162 if (init_event)
12163 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12164 }
12165 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12166
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12167 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12168 {
12169 struct kvm_segment cs;
12170
12171 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12172 cs.selector = vector << 8;
12173 cs.base = vector << 12;
12174 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12175 kvm_rip_write(vcpu, 0);
12176 }
12177 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12178
kvm_arch_hardware_enable(void)12179 int kvm_arch_hardware_enable(void)
12180 {
12181 struct kvm *kvm;
12182 struct kvm_vcpu *vcpu;
12183 unsigned long i;
12184 int ret;
12185 u64 local_tsc;
12186 u64 max_tsc = 0;
12187 bool stable, backwards_tsc = false;
12188
12189 kvm_user_return_msr_cpu_online();
12190
12191 ret = kvm_x86_check_processor_compatibility();
12192 if (ret)
12193 return ret;
12194
12195 ret = static_call(kvm_x86_hardware_enable)();
12196 if (ret != 0)
12197 return ret;
12198
12199 local_tsc = rdtsc();
12200 stable = !kvm_check_tsc_unstable();
12201 list_for_each_entry(kvm, &vm_list, vm_list) {
12202 kvm_for_each_vcpu(i, vcpu, kvm) {
12203 if (!stable && vcpu->cpu == smp_processor_id())
12204 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12205 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12206 backwards_tsc = true;
12207 if (vcpu->arch.last_host_tsc > max_tsc)
12208 max_tsc = vcpu->arch.last_host_tsc;
12209 }
12210 }
12211 }
12212
12213 /*
12214 * Sometimes, even reliable TSCs go backwards. This happens on
12215 * platforms that reset TSC during suspend or hibernate actions, but
12216 * maintain synchronization. We must compensate. Fortunately, we can
12217 * detect that condition here, which happens early in CPU bringup,
12218 * before any KVM threads can be running. Unfortunately, we can't
12219 * bring the TSCs fully up to date with real time, as we aren't yet far
12220 * enough into CPU bringup that we know how much real time has actually
12221 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12222 * variables that haven't been updated yet.
12223 *
12224 * So we simply find the maximum observed TSC above, then record the
12225 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12226 * the adjustment will be applied. Note that we accumulate
12227 * adjustments, in case multiple suspend cycles happen before some VCPU
12228 * gets a chance to run again. In the event that no KVM threads get a
12229 * chance to run, we will miss the entire elapsed period, as we'll have
12230 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12231 * loose cycle time. This isn't too big a deal, since the loss will be
12232 * uniform across all VCPUs (not to mention the scenario is extremely
12233 * unlikely). It is possible that a second hibernate recovery happens
12234 * much faster than a first, causing the observed TSC here to be
12235 * smaller; this would require additional padding adjustment, which is
12236 * why we set last_host_tsc to the local tsc observed here.
12237 *
12238 * N.B. - this code below runs only on platforms with reliable TSC,
12239 * as that is the only way backwards_tsc is set above. Also note
12240 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12241 * have the same delta_cyc adjustment applied if backwards_tsc
12242 * is detected. Note further, this adjustment is only done once,
12243 * as we reset last_host_tsc on all VCPUs to stop this from being
12244 * called multiple times (one for each physical CPU bringup).
12245 *
12246 * Platforms with unreliable TSCs don't have to deal with this, they
12247 * will be compensated by the logic in vcpu_load, which sets the TSC to
12248 * catchup mode. This will catchup all VCPUs to real time, but cannot
12249 * guarantee that they stay in perfect synchronization.
12250 */
12251 if (backwards_tsc) {
12252 u64 delta_cyc = max_tsc - local_tsc;
12253 list_for_each_entry(kvm, &vm_list, vm_list) {
12254 kvm->arch.backwards_tsc_observed = true;
12255 kvm_for_each_vcpu(i, vcpu, kvm) {
12256 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12257 vcpu->arch.last_host_tsc = local_tsc;
12258 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12259 }
12260
12261 /*
12262 * We have to disable TSC offset matching.. if you were
12263 * booting a VM while issuing an S4 host suspend....
12264 * you may have some problem. Solving this issue is
12265 * left as an exercise to the reader.
12266 */
12267 kvm->arch.last_tsc_nsec = 0;
12268 kvm->arch.last_tsc_write = 0;
12269 }
12270
12271 }
12272 return 0;
12273 }
12274
kvm_arch_hardware_disable(void)12275 void kvm_arch_hardware_disable(void)
12276 {
12277 static_call(kvm_x86_hardware_disable)();
12278 drop_user_return_notifiers();
12279 }
12280
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12281 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12282 {
12283 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12284 }
12285
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12286 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12287 {
12288 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12289 }
12290
12291 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12292 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12293
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)12294 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12295 {
12296 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12297
12298 vcpu->arch.l1tf_flush_l1d = true;
12299 if (pmu->version && unlikely(pmu->event_count)) {
12300 pmu->need_cleanup = true;
12301 kvm_make_request(KVM_REQ_PMU, vcpu);
12302 }
12303 static_call(kvm_x86_sched_in)(vcpu, cpu);
12304 }
12305
kvm_arch_free_vm(struct kvm * kvm)12306 void kvm_arch_free_vm(struct kvm *kvm)
12307 {
12308 kfree(to_kvm_hv(kvm)->hv_pa_pg);
12309 __kvm_arch_free_vm(kvm);
12310 }
12311
12312
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12313 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12314 {
12315 int ret;
12316 unsigned long flags;
12317
12318 if (type)
12319 return -EINVAL;
12320
12321 ret = kvm_page_track_init(kvm);
12322 if (ret)
12323 goto out;
12324
12325 kvm_mmu_init_vm(kvm);
12326
12327 ret = static_call(kvm_x86_vm_init)(kvm);
12328 if (ret)
12329 goto out_uninit_mmu;
12330
12331 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12332 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12333 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12334
12335 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12336 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12337 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12338 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12339 &kvm->arch.irq_sources_bitmap);
12340
12341 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12342 mutex_init(&kvm->arch.apic_map_lock);
12343 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12344 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12345
12346 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12347 pvclock_update_vm_gtod_copy(kvm);
12348 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12349
12350 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12351 kvm->arch.guest_can_read_msr_platform_info = true;
12352 kvm->arch.enable_pmu = enable_pmu;
12353
12354 #if IS_ENABLED(CONFIG_HYPERV)
12355 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12356 kvm->arch.hv_root_tdp = INVALID_PAGE;
12357 #endif
12358
12359 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12360 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12361
12362 kvm_apicv_init(kvm);
12363 kvm_hv_init_vm(kvm);
12364 kvm_xen_init_vm(kvm);
12365
12366 return 0;
12367
12368 out_uninit_mmu:
12369 kvm_mmu_uninit_vm(kvm);
12370 kvm_page_track_cleanup(kvm);
12371 out:
12372 return ret;
12373 }
12374
kvm_arch_post_init_vm(struct kvm * kvm)12375 int kvm_arch_post_init_vm(struct kvm *kvm)
12376 {
12377 return kvm_mmu_post_init_vm(kvm);
12378 }
12379
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12380 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12381 {
12382 vcpu_load(vcpu);
12383 kvm_mmu_unload(vcpu);
12384 vcpu_put(vcpu);
12385 }
12386
kvm_unload_vcpu_mmus(struct kvm * kvm)12387 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12388 {
12389 unsigned long i;
12390 struct kvm_vcpu *vcpu;
12391
12392 kvm_for_each_vcpu(i, vcpu, kvm) {
12393 kvm_clear_async_pf_completion_queue(vcpu);
12394 kvm_unload_vcpu_mmu(vcpu);
12395 }
12396 }
12397
kvm_arch_sync_events(struct kvm * kvm)12398 void kvm_arch_sync_events(struct kvm *kvm)
12399 {
12400 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12401 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12402 kvm_free_pit(kvm);
12403 }
12404
12405 /**
12406 * __x86_set_memory_region: Setup KVM internal memory slot
12407 *
12408 * @kvm: the kvm pointer to the VM.
12409 * @id: the slot ID to setup.
12410 * @gpa: the GPA to install the slot (unused when @size == 0).
12411 * @size: the size of the slot. Set to zero to uninstall a slot.
12412 *
12413 * This function helps to setup a KVM internal memory slot. Specify
12414 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12415 * slot. The return code can be one of the following:
12416 *
12417 * HVA: on success (uninstall will return a bogus HVA)
12418 * -errno: on error
12419 *
12420 * The caller should always use IS_ERR() to check the return value
12421 * before use. Note, the KVM internal memory slots are guaranteed to
12422 * remain valid and unchanged until the VM is destroyed, i.e., the
12423 * GPA->HVA translation will not change. However, the HVA is a user
12424 * address, i.e. its accessibility is not guaranteed, and must be
12425 * accessed via __copy_{to,from}_user().
12426 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12427 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12428 u32 size)
12429 {
12430 int i, r;
12431 unsigned long hva, old_npages;
12432 struct kvm_memslots *slots = kvm_memslots(kvm);
12433 struct kvm_memory_slot *slot;
12434
12435 /* Called with kvm->slots_lock held. */
12436 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12437 return ERR_PTR_USR(-EINVAL);
12438
12439 slot = id_to_memslot(slots, id);
12440 if (size) {
12441 if (slot && slot->npages)
12442 return ERR_PTR_USR(-EEXIST);
12443
12444 /*
12445 * MAP_SHARED to prevent internal slot pages from being moved
12446 * by fork()/COW.
12447 */
12448 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12449 MAP_SHARED | MAP_ANONYMOUS, 0);
12450 if (IS_ERR_VALUE(hva))
12451 return (void __user *)hva;
12452 } else {
12453 if (!slot || !slot->npages)
12454 return NULL;
12455
12456 old_npages = slot->npages;
12457 hva = slot->userspace_addr;
12458 }
12459
12460 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12461 struct kvm_userspace_memory_region m;
12462
12463 m.slot = id | (i << 16);
12464 m.flags = 0;
12465 m.guest_phys_addr = gpa;
12466 m.userspace_addr = hva;
12467 m.memory_size = size;
12468 r = __kvm_set_memory_region(kvm, &m);
12469 if (r < 0)
12470 return ERR_PTR_USR(r);
12471 }
12472
12473 if (!size)
12474 vm_munmap(hva, old_npages * PAGE_SIZE);
12475
12476 return (void __user *)hva;
12477 }
12478 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12479
kvm_arch_pre_destroy_vm(struct kvm * kvm)12480 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12481 {
12482 kvm_mmu_pre_destroy_vm(kvm);
12483 }
12484
kvm_arch_destroy_vm(struct kvm * kvm)12485 void kvm_arch_destroy_vm(struct kvm *kvm)
12486 {
12487 if (current->mm == kvm->mm) {
12488 /*
12489 * Free memory regions allocated on behalf of userspace,
12490 * unless the memory map has changed due to process exit
12491 * or fd copying.
12492 */
12493 mutex_lock(&kvm->slots_lock);
12494 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12495 0, 0);
12496 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12497 0, 0);
12498 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12499 mutex_unlock(&kvm->slots_lock);
12500 }
12501 kvm_unload_vcpu_mmus(kvm);
12502 static_call_cond(kvm_x86_vm_destroy)(kvm);
12503 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12504 kvm_pic_destroy(kvm);
12505 kvm_ioapic_destroy(kvm);
12506 kvm_destroy_vcpus(kvm);
12507 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12508 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12509 kvm_mmu_uninit_vm(kvm);
12510 kvm_page_track_cleanup(kvm);
12511 kvm_xen_destroy_vm(kvm);
12512 kvm_hv_destroy_vm(kvm);
12513 }
12514
memslot_rmap_free(struct kvm_memory_slot * slot)12515 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12516 {
12517 int i;
12518
12519 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12520 kvfree(slot->arch.rmap[i]);
12521 slot->arch.rmap[i] = NULL;
12522 }
12523 }
12524
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12525 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12526 {
12527 int i;
12528
12529 memslot_rmap_free(slot);
12530
12531 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12532 kvfree(slot->arch.lpage_info[i - 1]);
12533 slot->arch.lpage_info[i - 1] = NULL;
12534 }
12535
12536 kvm_page_track_free_memslot(slot);
12537 }
12538
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12539 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12540 {
12541 const int sz = sizeof(*slot->arch.rmap[0]);
12542 int i;
12543
12544 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12545 int level = i + 1;
12546 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12547
12548 if (slot->arch.rmap[i])
12549 continue;
12550
12551 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12552 if (!slot->arch.rmap[i]) {
12553 memslot_rmap_free(slot);
12554 return -ENOMEM;
12555 }
12556 }
12557
12558 return 0;
12559 }
12560
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12561 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12562 struct kvm_memory_slot *slot)
12563 {
12564 unsigned long npages = slot->npages;
12565 int i, r;
12566
12567 /*
12568 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12569 * old arrays will be freed by __kvm_set_memory_region() if installing
12570 * the new memslot is successful.
12571 */
12572 memset(&slot->arch, 0, sizeof(slot->arch));
12573
12574 if (kvm_memslots_have_rmaps(kvm)) {
12575 r = memslot_rmap_alloc(slot, npages);
12576 if (r)
12577 return r;
12578 }
12579
12580 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12581 struct kvm_lpage_info *linfo;
12582 unsigned long ugfn;
12583 int lpages;
12584 int level = i + 1;
12585
12586 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12587
12588 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12589 if (!linfo)
12590 goto out_free;
12591
12592 slot->arch.lpage_info[i - 1] = linfo;
12593
12594 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12595 linfo[0].disallow_lpage = 1;
12596 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12597 linfo[lpages - 1].disallow_lpage = 1;
12598 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12599 /*
12600 * If the gfn and userspace address are not aligned wrt each
12601 * other, disable large page support for this slot.
12602 */
12603 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12604 unsigned long j;
12605
12606 for (j = 0; j < lpages; ++j)
12607 linfo[j].disallow_lpage = 1;
12608 }
12609 }
12610
12611 if (kvm_page_track_create_memslot(kvm, slot, npages))
12612 goto out_free;
12613
12614 return 0;
12615
12616 out_free:
12617 memslot_rmap_free(slot);
12618
12619 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12620 kvfree(slot->arch.lpage_info[i - 1]);
12621 slot->arch.lpage_info[i - 1] = NULL;
12622 }
12623 return -ENOMEM;
12624 }
12625
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)12626 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12627 {
12628 struct kvm_vcpu *vcpu;
12629 unsigned long i;
12630
12631 /*
12632 * memslots->generation has been incremented.
12633 * mmio generation may have reached its maximum value.
12634 */
12635 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12636
12637 /* Force re-initialization of steal_time cache */
12638 kvm_for_each_vcpu(i, vcpu, kvm)
12639 kvm_vcpu_kick(vcpu);
12640 }
12641
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)12642 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12643 const struct kvm_memory_slot *old,
12644 struct kvm_memory_slot *new,
12645 enum kvm_mr_change change)
12646 {
12647 /*
12648 * KVM doesn't support moving memslots when there are external page
12649 * trackers attached to the VM, i.e. if KVMGT is in use.
12650 */
12651 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12652 return -EINVAL;
12653
12654 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12655 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12656 return -EINVAL;
12657
12658 return kvm_alloc_memslot_metadata(kvm, new);
12659 }
12660
12661 if (change == KVM_MR_FLAGS_ONLY)
12662 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12663 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12664 return -EIO;
12665
12666 return 0;
12667 }
12668
12669
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)12670 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12671 {
12672 int nr_slots;
12673
12674 if (!kvm_x86_ops.cpu_dirty_log_size)
12675 return;
12676
12677 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12678 if ((enable && nr_slots == 1) || !nr_slots)
12679 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12680 }
12681
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12682 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12683 struct kvm_memory_slot *old,
12684 const struct kvm_memory_slot *new,
12685 enum kvm_mr_change change)
12686 {
12687 u32 old_flags = old ? old->flags : 0;
12688 u32 new_flags = new ? new->flags : 0;
12689 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12690
12691 /*
12692 * Update CPU dirty logging if dirty logging is being toggled. This
12693 * applies to all operations.
12694 */
12695 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12696 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12697
12698 /*
12699 * Nothing more to do for RO slots (which can't be dirtied and can't be
12700 * made writable) or CREATE/MOVE/DELETE of a slot.
12701 *
12702 * For a memslot with dirty logging disabled:
12703 * CREATE: No dirty mappings will already exist.
12704 * MOVE/DELETE: The old mappings will already have been cleaned up by
12705 * kvm_arch_flush_shadow_memslot()
12706 *
12707 * For a memslot with dirty logging enabled:
12708 * CREATE: No shadow pages exist, thus nothing to write-protect
12709 * and no dirty bits to clear.
12710 * MOVE/DELETE: The old mappings will already have been cleaned up by
12711 * kvm_arch_flush_shadow_memslot().
12712 */
12713 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12714 return;
12715
12716 /*
12717 * READONLY and non-flags changes were filtered out above, and the only
12718 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12719 * logging isn't being toggled on or off.
12720 */
12721 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12722 return;
12723
12724 if (!log_dirty_pages) {
12725 /*
12726 * Dirty logging tracks sptes in 4k granularity, meaning that
12727 * large sptes have to be split. If live migration succeeds,
12728 * the guest in the source machine will be destroyed and large
12729 * sptes will be created in the destination. However, if the
12730 * guest continues to run in the source machine (for example if
12731 * live migration fails), small sptes will remain around and
12732 * cause bad performance.
12733 *
12734 * Scan sptes if dirty logging has been stopped, dropping those
12735 * which can be collapsed into a single large-page spte. Later
12736 * page faults will create the large-page sptes.
12737 */
12738 kvm_mmu_zap_collapsible_sptes(kvm, new);
12739 } else {
12740 /*
12741 * Initially-all-set does not require write protecting any page,
12742 * because they're all assumed to be dirty.
12743 */
12744 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12745 return;
12746
12747 if (READ_ONCE(eager_page_split))
12748 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12749
12750 if (kvm_x86_ops.cpu_dirty_log_size) {
12751 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12752 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12753 } else {
12754 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12755 }
12756
12757 /*
12758 * Unconditionally flush the TLBs after enabling dirty logging.
12759 * A flush is almost always going to be necessary (see below),
12760 * and unconditionally flushing allows the helpers to omit
12761 * the subtly complex checks when removing write access.
12762 *
12763 * Do the flush outside of mmu_lock to reduce the amount of
12764 * time mmu_lock is held. Flushing after dropping mmu_lock is
12765 * safe as KVM only needs to guarantee the slot is fully
12766 * write-protected before returning to userspace, i.e. before
12767 * userspace can consume the dirty status.
12768 *
12769 * Flushing outside of mmu_lock requires KVM to be careful when
12770 * making decisions based on writable status of an SPTE, e.g. a
12771 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12772 *
12773 * Specifically, KVM also write-protects guest page tables to
12774 * monitor changes when using shadow paging, and must guarantee
12775 * no CPUs can write to those page before mmu_lock is dropped.
12776 * Because CPUs may have stale TLB entries at this point, a
12777 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12778 *
12779 * KVM also allows making SPTES writable outside of mmu_lock,
12780 * e.g. to allow dirty logging without taking mmu_lock.
12781 *
12782 * To handle these scenarios, KVM uses a separate software-only
12783 * bit (MMU-writable) to track if a SPTE is !writable due to
12784 * a guest page table being write-protected (KVM clears the
12785 * MMU-writable flag when write-protecting for shadow paging).
12786 *
12787 * The use of MMU-writable is also the primary motivation for
12788 * the unconditional flush. Because KVM must guarantee that a
12789 * CPU doesn't contain stale, writable TLB entries for a
12790 * !MMU-writable SPTE, KVM must flush if it encounters any
12791 * MMU-writable SPTE regardless of whether the actual hardware
12792 * writable bit was set. I.e. KVM is almost guaranteed to need
12793 * to flush, while unconditionally flushing allows the "remove
12794 * write access" helpers to ignore MMU-writable entirely.
12795 *
12796 * See is_writable_pte() for more details (the case involving
12797 * access-tracked SPTEs is particularly relevant).
12798 */
12799 kvm_flush_remote_tlbs_memslot(kvm, new);
12800 }
12801 }
12802
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12803 void kvm_arch_commit_memory_region(struct kvm *kvm,
12804 struct kvm_memory_slot *old,
12805 const struct kvm_memory_slot *new,
12806 enum kvm_mr_change change)
12807 {
12808 if (change == KVM_MR_DELETE)
12809 kvm_page_track_delete_slot(kvm, old);
12810
12811 if (!kvm->arch.n_requested_mmu_pages &&
12812 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12813 unsigned long nr_mmu_pages;
12814
12815 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12816 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12817 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12818 }
12819
12820 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12821
12822 /* Free the arrays associated with the old memslot. */
12823 if (change == KVM_MR_MOVE)
12824 kvm_arch_free_memslot(kvm, old);
12825 }
12826
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12827 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12828 {
12829 return (is_guest_mode(vcpu) &&
12830 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12831 }
12832
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12833 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12834 {
12835 if (!list_empty_careful(&vcpu->async_pf.done))
12836 return true;
12837
12838 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12839 kvm_apic_init_sipi_allowed(vcpu))
12840 return true;
12841
12842 if (vcpu->arch.pv.pv_unhalted)
12843 return true;
12844
12845 if (kvm_is_exception_pending(vcpu))
12846 return true;
12847
12848 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12849 (vcpu->arch.nmi_pending &&
12850 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12851 return true;
12852
12853 #ifdef CONFIG_KVM_SMM
12854 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12855 (vcpu->arch.smi_pending &&
12856 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12857 return true;
12858 #endif
12859
12860 if (kvm_test_request(KVM_REQ_PMI, vcpu))
12861 return true;
12862
12863 if (kvm_arch_interrupt_allowed(vcpu) &&
12864 (kvm_cpu_has_interrupt(vcpu) ||
12865 kvm_guest_apic_has_interrupt(vcpu)))
12866 return true;
12867
12868 if (kvm_hv_has_stimer_pending(vcpu))
12869 return true;
12870
12871 if (is_guest_mode(vcpu) &&
12872 kvm_x86_ops.nested_ops->has_events &&
12873 kvm_x86_ops.nested_ops->has_events(vcpu))
12874 return true;
12875
12876 if (kvm_xen_has_pending_events(vcpu))
12877 return true;
12878
12879 return false;
12880 }
12881
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12882 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12883 {
12884 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12885 }
12886
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12887 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12888 {
12889 if (kvm_vcpu_apicv_active(vcpu) &&
12890 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12891 return true;
12892
12893 return false;
12894 }
12895
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12896 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12897 {
12898 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12899 return true;
12900
12901 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12902 #ifdef CONFIG_KVM_SMM
12903 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12904 #endif
12905 kvm_test_request(KVM_REQ_EVENT, vcpu))
12906 return true;
12907
12908 return kvm_arch_dy_has_pending_interrupt(vcpu);
12909 }
12910
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12911 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12912 {
12913 if (vcpu->arch.guest_state_protected)
12914 return true;
12915
12916 return vcpu->arch.preempted_in_kernel;
12917 }
12918
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)12919 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12920 {
12921 return kvm_rip_read(vcpu);
12922 }
12923
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12924 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12925 {
12926 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12927 }
12928
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12929 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12930 {
12931 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12932 }
12933
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12934 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12935 {
12936 /* Can't read the RIP when guest state is protected, just return 0 */
12937 if (vcpu->arch.guest_state_protected)
12938 return 0;
12939
12940 if (is_64_bit_mode(vcpu))
12941 return kvm_rip_read(vcpu);
12942 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12943 kvm_rip_read(vcpu));
12944 }
12945 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12946
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12947 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12948 {
12949 return kvm_get_linear_rip(vcpu) == linear_rip;
12950 }
12951 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12952
kvm_get_rflags(struct kvm_vcpu * vcpu)12953 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12954 {
12955 unsigned long rflags;
12956
12957 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12958 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12959 rflags &= ~X86_EFLAGS_TF;
12960 return rflags;
12961 }
12962 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12963
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12964 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12965 {
12966 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12967 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12968 rflags |= X86_EFLAGS_TF;
12969 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12970 }
12971
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12972 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12973 {
12974 __kvm_set_rflags(vcpu, rflags);
12975 kvm_make_request(KVM_REQ_EVENT, vcpu);
12976 }
12977 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12978
kvm_async_pf_hash_fn(gfn_t gfn)12979 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12980 {
12981 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12982
12983 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12984 }
12985
kvm_async_pf_next_probe(u32 key)12986 static inline u32 kvm_async_pf_next_probe(u32 key)
12987 {
12988 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12989 }
12990
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12991 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12992 {
12993 u32 key = kvm_async_pf_hash_fn(gfn);
12994
12995 while (vcpu->arch.apf.gfns[key] != ~0)
12996 key = kvm_async_pf_next_probe(key);
12997
12998 vcpu->arch.apf.gfns[key] = gfn;
12999 }
13000
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13001 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13002 {
13003 int i;
13004 u32 key = kvm_async_pf_hash_fn(gfn);
13005
13006 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13007 (vcpu->arch.apf.gfns[key] != gfn &&
13008 vcpu->arch.apf.gfns[key] != ~0); i++)
13009 key = kvm_async_pf_next_probe(key);
13010
13011 return key;
13012 }
13013
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13014 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13015 {
13016 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13017 }
13018
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13019 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13020 {
13021 u32 i, j, k;
13022
13023 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13024
13025 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13026 return;
13027
13028 while (true) {
13029 vcpu->arch.apf.gfns[i] = ~0;
13030 do {
13031 j = kvm_async_pf_next_probe(j);
13032 if (vcpu->arch.apf.gfns[j] == ~0)
13033 return;
13034 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13035 /*
13036 * k lies cyclically in ]i,j]
13037 * | i.k.j |
13038 * |....j i.k.| or |.k..j i...|
13039 */
13040 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13041 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13042 i = j;
13043 }
13044 }
13045
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13046 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13047 {
13048 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13049
13050 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13051 sizeof(reason));
13052 }
13053
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13054 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13055 {
13056 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13057
13058 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13059 &token, offset, sizeof(token));
13060 }
13061
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13062 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13063 {
13064 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13065 u32 val;
13066
13067 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13068 &val, offset, sizeof(val)))
13069 return false;
13070
13071 return !val;
13072 }
13073
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13074 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13075 {
13076
13077 if (!kvm_pv_async_pf_enabled(vcpu))
13078 return false;
13079
13080 if (vcpu->arch.apf.send_user_only &&
13081 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13082 return false;
13083
13084 if (is_guest_mode(vcpu)) {
13085 /*
13086 * L1 needs to opt into the special #PF vmexits that are
13087 * used to deliver async page faults.
13088 */
13089 return vcpu->arch.apf.delivery_as_pf_vmexit;
13090 } else {
13091 /*
13092 * Play it safe in case the guest temporarily disables paging.
13093 * The real mode IDT in particular is unlikely to have a #PF
13094 * exception setup.
13095 */
13096 return is_paging(vcpu);
13097 }
13098 }
13099
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13100 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13101 {
13102 if (unlikely(!lapic_in_kernel(vcpu) ||
13103 kvm_event_needs_reinjection(vcpu) ||
13104 kvm_is_exception_pending(vcpu)))
13105 return false;
13106
13107 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13108 return false;
13109
13110 /*
13111 * If interrupts are off we cannot even use an artificial
13112 * halt state.
13113 */
13114 return kvm_arch_interrupt_allowed(vcpu);
13115 }
13116
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13117 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13118 struct kvm_async_pf *work)
13119 {
13120 struct x86_exception fault;
13121
13122 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13123 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13124
13125 if (kvm_can_deliver_async_pf(vcpu) &&
13126 !apf_put_user_notpresent(vcpu)) {
13127 fault.vector = PF_VECTOR;
13128 fault.error_code_valid = true;
13129 fault.error_code = 0;
13130 fault.nested_page_fault = false;
13131 fault.address = work->arch.token;
13132 fault.async_page_fault = true;
13133 kvm_inject_page_fault(vcpu, &fault);
13134 return true;
13135 } else {
13136 /*
13137 * It is not possible to deliver a paravirtualized asynchronous
13138 * page fault, but putting the guest in an artificial halt state
13139 * can be beneficial nevertheless: if an interrupt arrives, we
13140 * can deliver it timely and perhaps the guest will schedule
13141 * another process. When the instruction that triggered a page
13142 * fault is retried, hopefully the page will be ready in the host.
13143 */
13144 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13145 return false;
13146 }
13147 }
13148
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13149 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13150 struct kvm_async_pf *work)
13151 {
13152 struct kvm_lapic_irq irq = {
13153 .delivery_mode = APIC_DM_FIXED,
13154 .vector = vcpu->arch.apf.vec
13155 };
13156
13157 if (work->wakeup_all)
13158 work->arch.token = ~0; /* broadcast wakeup */
13159 else
13160 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13161 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13162
13163 if ((work->wakeup_all || work->notpresent_injected) &&
13164 kvm_pv_async_pf_enabled(vcpu) &&
13165 !apf_put_user_ready(vcpu, work->arch.token)) {
13166 vcpu->arch.apf.pageready_pending = true;
13167 kvm_apic_set_irq(vcpu, &irq, NULL);
13168 }
13169
13170 vcpu->arch.apf.halted = false;
13171 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13172 }
13173
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13174 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13175 {
13176 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13177 if (!vcpu->arch.apf.pageready_pending)
13178 kvm_vcpu_kick(vcpu);
13179 }
13180
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13181 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13182 {
13183 if (!kvm_pv_async_pf_enabled(vcpu))
13184 return true;
13185 else
13186 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13187 }
13188
kvm_arch_start_assignment(struct kvm * kvm)13189 void kvm_arch_start_assignment(struct kvm *kvm)
13190 {
13191 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13192 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13193 }
13194 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13195
kvm_arch_end_assignment(struct kvm * kvm)13196 void kvm_arch_end_assignment(struct kvm *kvm)
13197 {
13198 atomic_dec(&kvm->arch.assigned_device_count);
13199 }
13200 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13201
kvm_arch_has_assigned_device(struct kvm * kvm)13202 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13203 {
13204 return raw_atomic_read(&kvm->arch.assigned_device_count);
13205 }
13206 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13207
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13208 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13209 {
13210 atomic_inc(&kvm->arch.noncoherent_dma_count);
13211 }
13212 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13213
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13214 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13215 {
13216 atomic_dec(&kvm->arch.noncoherent_dma_count);
13217 }
13218 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13219
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13220 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13221 {
13222 return atomic_read(&kvm->arch.noncoherent_dma_count);
13223 }
13224 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13225
kvm_arch_has_irq_bypass(void)13226 bool kvm_arch_has_irq_bypass(void)
13227 {
13228 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13229 }
13230
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13231 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13232 struct irq_bypass_producer *prod)
13233 {
13234 struct kvm_kernel_irqfd *irqfd =
13235 container_of(cons, struct kvm_kernel_irqfd, consumer);
13236 int ret;
13237
13238 irqfd->producer = prod;
13239 kvm_arch_start_assignment(irqfd->kvm);
13240 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13241 prod->irq, irqfd->gsi, 1);
13242
13243 if (ret)
13244 kvm_arch_end_assignment(irqfd->kvm);
13245
13246 return ret;
13247 }
13248
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13249 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13250 struct irq_bypass_producer *prod)
13251 {
13252 int ret;
13253 struct kvm_kernel_irqfd *irqfd =
13254 container_of(cons, struct kvm_kernel_irqfd, consumer);
13255
13256 WARN_ON(irqfd->producer != prod);
13257 irqfd->producer = NULL;
13258
13259 /*
13260 * When producer of consumer is unregistered, we change back to
13261 * remapped mode, so we can re-use the current implementation
13262 * when the irq is masked/disabled or the consumer side (KVM
13263 * int this case doesn't want to receive the interrupts.
13264 */
13265 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13266 if (ret)
13267 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13268 " fails: %d\n", irqfd->consumer.token, ret);
13269
13270 kvm_arch_end_assignment(irqfd->kvm);
13271 }
13272
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13273 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13274 uint32_t guest_irq, bool set)
13275 {
13276 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13277 }
13278
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13279 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13280 struct kvm_kernel_irq_routing_entry *new)
13281 {
13282 if (new->type != KVM_IRQ_ROUTING_MSI)
13283 return true;
13284
13285 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13286 }
13287
kvm_vector_hashing_enabled(void)13288 bool kvm_vector_hashing_enabled(void)
13289 {
13290 return vector_hashing;
13291 }
13292
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13293 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13294 {
13295 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13296 }
13297 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13298
13299
kvm_spec_ctrl_test_value(u64 value)13300 int kvm_spec_ctrl_test_value(u64 value)
13301 {
13302 /*
13303 * test that setting IA32_SPEC_CTRL to given value
13304 * is allowed by the host processor
13305 */
13306
13307 u64 saved_value;
13308 unsigned long flags;
13309 int ret = 0;
13310
13311 local_irq_save(flags);
13312
13313 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13314 ret = 1;
13315 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13316 ret = 1;
13317 else
13318 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13319
13320 local_irq_restore(flags);
13321
13322 return ret;
13323 }
13324 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13325
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13326 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13327 {
13328 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13329 struct x86_exception fault;
13330 u64 access = error_code &
13331 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13332
13333 if (!(error_code & PFERR_PRESENT_MASK) ||
13334 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13335 /*
13336 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13337 * tables probably do not match the TLB. Just proceed
13338 * with the error code that the processor gave.
13339 */
13340 fault.vector = PF_VECTOR;
13341 fault.error_code_valid = true;
13342 fault.error_code = error_code;
13343 fault.nested_page_fault = false;
13344 fault.address = gva;
13345 fault.async_page_fault = false;
13346 }
13347 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13348 }
13349 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13350
13351 /*
13352 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13353 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13354 * indicates whether exit to userspace is needed.
13355 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13356 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13357 struct x86_exception *e)
13358 {
13359 if (r == X86EMUL_PROPAGATE_FAULT) {
13360 if (KVM_BUG_ON(!e, vcpu->kvm))
13361 return -EIO;
13362
13363 kvm_inject_emulated_page_fault(vcpu, e);
13364 return 1;
13365 }
13366
13367 /*
13368 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13369 * while handling a VMX instruction KVM could've handled the request
13370 * correctly by exiting to userspace and performing I/O but there
13371 * doesn't seem to be a real use-case behind such requests, just return
13372 * KVM_EXIT_INTERNAL_ERROR for now.
13373 */
13374 kvm_prepare_emulation_failure_exit(vcpu);
13375
13376 return 0;
13377 }
13378 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13379
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13380 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13381 {
13382 bool pcid_enabled;
13383 struct x86_exception e;
13384 struct {
13385 u64 pcid;
13386 u64 gla;
13387 } operand;
13388 int r;
13389
13390 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13391 if (r != X86EMUL_CONTINUE)
13392 return kvm_handle_memory_failure(vcpu, r, &e);
13393
13394 if (operand.pcid >> 12 != 0) {
13395 kvm_inject_gp(vcpu, 0);
13396 return 1;
13397 }
13398
13399 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13400
13401 switch (type) {
13402 case INVPCID_TYPE_INDIV_ADDR:
13403 if ((!pcid_enabled && (operand.pcid != 0)) ||
13404 is_noncanonical_address(operand.gla, vcpu)) {
13405 kvm_inject_gp(vcpu, 0);
13406 return 1;
13407 }
13408 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13409 return kvm_skip_emulated_instruction(vcpu);
13410
13411 case INVPCID_TYPE_SINGLE_CTXT:
13412 if (!pcid_enabled && (operand.pcid != 0)) {
13413 kvm_inject_gp(vcpu, 0);
13414 return 1;
13415 }
13416
13417 kvm_invalidate_pcid(vcpu, operand.pcid);
13418 return kvm_skip_emulated_instruction(vcpu);
13419
13420 case INVPCID_TYPE_ALL_NON_GLOBAL:
13421 /*
13422 * Currently, KVM doesn't mark global entries in the shadow
13423 * page tables, so a non-global flush just degenerates to a
13424 * global flush. If needed, we could optimize this later by
13425 * keeping track of global entries in shadow page tables.
13426 */
13427
13428 fallthrough;
13429 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13430 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13431 return kvm_skip_emulated_instruction(vcpu);
13432
13433 default:
13434 kvm_inject_gp(vcpu, 0);
13435 return 1;
13436 }
13437 }
13438 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13439
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13440 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13441 {
13442 struct kvm_run *run = vcpu->run;
13443 struct kvm_mmio_fragment *frag;
13444 unsigned int len;
13445
13446 BUG_ON(!vcpu->mmio_needed);
13447
13448 /* Complete previous fragment */
13449 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13450 len = min(8u, frag->len);
13451 if (!vcpu->mmio_is_write)
13452 memcpy(frag->data, run->mmio.data, len);
13453
13454 if (frag->len <= 8) {
13455 /* Switch to the next fragment. */
13456 frag++;
13457 vcpu->mmio_cur_fragment++;
13458 } else {
13459 /* Go forward to the next mmio piece. */
13460 frag->data += len;
13461 frag->gpa += len;
13462 frag->len -= len;
13463 }
13464
13465 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13466 vcpu->mmio_needed = 0;
13467
13468 // VMG change, at this point, we're always done
13469 // RIP has already been advanced
13470 return 1;
13471 }
13472
13473 // More MMIO is needed
13474 run->mmio.phys_addr = frag->gpa;
13475 run->mmio.len = min(8u, frag->len);
13476 run->mmio.is_write = vcpu->mmio_is_write;
13477 if (run->mmio.is_write)
13478 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13479 run->exit_reason = KVM_EXIT_MMIO;
13480
13481 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13482
13483 return 0;
13484 }
13485
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13486 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13487 void *data)
13488 {
13489 int handled;
13490 struct kvm_mmio_fragment *frag;
13491
13492 if (!data)
13493 return -EINVAL;
13494
13495 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13496 if (handled == bytes)
13497 return 1;
13498
13499 bytes -= handled;
13500 gpa += handled;
13501 data += handled;
13502
13503 /*TODO: Check if need to increment number of frags */
13504 frag = vcpu->mmio_fragments;
13505 vcpu->mmio_nr_fragments = 1;
13506 frag->len = bytes;
13507 frag->gpa = gpa;
13508 frag->data = data;
13509
13510 vcpu->mmio_needed = 1;
13511 vcpu->mmio_cur_fragment = 0;
13512
13513 vcpu->run->mmio.phys_addr = gpa;
13514 vcpu->run->mmio.len = min(8u, frag->len);
13515 vcpu->run->mmio.is_write = 1;
13516 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13517 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13518
13519 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13520
13521 return 0;
13522 }
13523 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13524
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13525 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13526 void *data)
13527 {
13528 int handled;
13529 struct kvm_mmio_fragment *frag;
13530
13531 if (!data)
13532 return -EINVAL;
13533
13534 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13535 if (handled == bytes)
13536 return 1;
13537
13538 bytes -= handled;
13539 gpa += handled;
13540 data += handled;
13541
13542 /*TODO: Check if need to increment number of frags */
13543 frag = vcpu->mmio_fragments;
13544 vcpu->mmio_nr_fragments = 1;
13545 frag->len = bytes;
13546 frag->gpa = gpa;
13547 frag->data = data;
13548
13549 vcpu->mmio_needed = 1;
13550 vcpu->mmio_cur_fragment = 0;
13551
13552 vcpu->run->mmio.phys_addr = gpa;
13553 vcpu->run->mmio.len = min(8u, frag->len);
13554 vcpu->run->mmio.is_write = 0;
13555 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13556
13557 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13558
13559 return 0;
13560 }
13561 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13562
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13563 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13564 {
13565 vcpu->arch.sev_pio_count -= count;
13566 vcpu->arch.sev_pio_data += count * size;
13567 }
13568
13569 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13570 unsigned int port);
13571
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13572 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13573 {
13574 int size = vcpu->arch.pio.size;
13575 int port = vcpu->arch.pio.port;
13576
13577 vcpu->arch.pio.count = 0;
13578 if (vcpu->arch.sev_pio_count)
13579 return kvm_sev_es_outs(vcpu, size, port);
13580 return 1;
13581 }
13582
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13583 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13584 unsigned int port)
13585 {
13586 for (;;) {
13587 unsigned int count =
13588 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13589 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13590
13591 /* memcpy done already by emulator_pio_out. */
13592 advance_sev_es_emulated_pio(vcpu, count, size);
13593 if (!ret)
13594 break;
13595
13596 /* Emulation done by the kernel. */
13597 if (!vcpu->arch.sev_pio_count)
13598 return 1;
13599 }
13600
13601 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13602 return 0;
13603 }
13604
13605 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13606 unsigned int port);
13607
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13608 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13609 {
13610 unsigned count = vcpu->arch.pio.count;
13611 int size = vcpu->arch.pio.size;
13612 int port = vcpu->arch.pio.port;
13613
13614 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13615 advance_sev_es_emulated_pio(vcpu, count, size);
13616 if (vcpu->arch.sev_pio_count)
13617 return kvm_sev_es_ins(vcpu, size, port);
13618 return 1;
13619 }
13620
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13621 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13622 unsigned int port)
13623 {
13624 for (;;) {
13625 unsigned int count =
13626 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13627 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13628 break;
13629
13630 /* Emulation done by the kernel. */
13631 advance_sev_es_emulated_pio(vcpu, count, size);
13632 if (!vcpu->arch.sev_pio_count)
13633 return 1;
13634 }
13635
13636 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13637 return 0;
13638 }
13639
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13640 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13641 unsigned int port, void *data, unsigned int count,
13642 int in)
13643 {
13644 vcpu->arch.sev_pio_data = data;
13645 vcpu->arch.sev_pio_count = count;
13646 return in ? kvm_sev_es_ins(vcpu, size, port)
13647 : kvm_sev_es_outs(vcpu, size, port);
13648 }
13649 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13650
13651 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13652 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13653 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13654 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13655 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13656 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13657 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13658 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13659 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13660 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13661 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13662 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13663 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13664 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13665 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13666 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13667 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13668 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13669 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13670 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13671 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13672 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13673 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13674 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13675 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13676 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13677 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13678 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13679 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13680
kvm_x86_init(void)13681 static int __init kvm_x86_init(void)
13682 {
13683 kvm_mmu_x86_module_init();
13684 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13685 return 0;
13686 }
13687 module_init(kvm_x86_init);
13688
kvm_x86_exit(void)13689 static void __exit kvm_x86_exit(void)
13690 {
13691 /*
13692 * If module_init() is implemented, module_exit() must also be
13693 * implemented to allow module unload.
13694 */
13695 }
13696 module_exit(kvm_x86_exit);
13697