1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63
64 #include <asm/acpi.h>
65 #include <asm/cacheinfo.h>
66 #include <asm/desc.h>
67 #include <asm/nmi.h>
68 #include <asm/irq.h>
69 #include <asm/realmode.h>
70 #include <asm/cpu.h>
71 #include <asm/numa.h>
72 #include <asm/tlbflush.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/apic.h>
76 #include <asm/io_apic.h>
77 #include <asm/fpu/api.h>
78 #include <asm/setup.h>
79 #include <asm/uv/uv.h>
80 #include <asm/microcode.h>
81 #include <asm/i8259.h>
82 #include <asm/misc.h>
83 #include <asm/qspinlock.h>
84 #include <asm/intel-family.h>
85 #include <asm/cpu_device_id.h>
86 #include <asm/spec-ctrl.h>
87 #include <asm/hw_irq.h>
88 #include <asm/stackprotector.h>
89 #include <asm/sev.h>
90
91 /* representing HT siblings of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
94
95 /* representing HT and core siblings of each logical CPU */
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
97 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
98
99 /* representing HT, core, and die siblings of each logical CPU */
100 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
101 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
102
103 /* Per CPU bogomips and other parameters */
104 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
105 EXPORT_PER_CPU_SYMBOL(cpu_info);
106
107 /* CPUs which are the primary SMT threads */
108 struct cpumask __cpu_primary_thread_mask __read_mostly;
109
110 /* Representing CPUs for which sibling maps can be computed */
111 static cpumask_var_t cpu_sibling_setup_mask;
112
113 struct mwait_cpu_dead {
114 unsigned int control;
115 unsigned int status;
116 };
117
118 #define CPUDEAD_MWAIT_WAIT 0xDEADBEEF
119 #define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD
120
121 /*
122 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
123 * that it's unlikely to be touched by other CPUs.
124 */
125 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
126
127 /* Logical package management. We might want to allocate that dynamically */
128 unsigned int __max_logical_packages __read_mostly;
129 EXPORT_SYMBOL(__max_logical_packages);
130 static unsigned int logical_packages __read_mostly;
131 static unsigned int logical_die __read_mostly;
132
133 /* Maximum number of SMT threads on any online core */
134 int __read_mostly __max_smt_threads = 1;
135
136 /* Flag to indicate if a complete sched domain rebuild is required */
137 bool x86_topology_update;
138
arch_update_cpu_topology(void)139 int arch_update_cpu_topology(void)
140 {
141 int retval = x86_topology_update;
142
143 x86_topology_update = false;
144 return retval;
145 }
146
147 static unsigned int smpboot_warm_reset_vector_count;
148
smpboot_setup_warm_reset_vector(unsigned long start_eip)149 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
150 {
151 unsigned long flags;
152
153 spin_lock_irqsave(&rtc_lock, flags);
154 if (!smpboot_warm_reset_vector_count++) {
155 CMOS_WRITE(0xa, 0xf);
156 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
157 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
158 }
159 spin_unlock_irqrestore(&rtc_lock, flags);
160 }
161
smpboot_restore_warm_reset_vector(void)162 static inline void smpboot_restore_warm_reset_vector(void)
163 {
164 unsigned long flags;
165
166 /*
167 * Paranoid: Set warm reset code and vector here back
168 * to default values.
169 */
170 spin_lock_irqsave(&rtc_lock, flags);
171 if (!--smpboot_warm_reset_vector_count) {
172 CMOS_WRITE(0, 0xf);
173 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
174 }
175 spin_unlock_irqrestore(&rtc_lock, flags);
176
177 }
178
179 /* Run the next set of setup steps for the upcoming CPU */
ap_starting(void)180 static void ap_starting(void)
181 {
182 int cpuid = smp_processor_id();
183
184 /* Mop up eventual mwait_play_dead() wreckage */
185 this_cpu_write(mwait_cpu_dead.status, 0);
186 this_cpu_write(mwait_cpu_dead.control, 0);
187
188 /*
189 * If woken up by an INIT in an 82489DX configuration the alive
190 * synchronization guarantees that the CPU does not reach this
191 * point before an INIT_deassert IPI reaches the local APIC, so it
192 * is now safe to touch the local APIC.
193 *
194 * Set up this CPU, first the APIC, which is probably redundant on
195 * most boards.
196 */
197 apic_ap_setup();
198
199 /* Save the processor parameters. */
200 smp_store_cpu_info(cpuid);
201
202 /*
203 * The topology information must be up to date before
204 * notify_cpu_starting().
205 */
206 set_cpu_sibling_map(cpuid);
207
208 ap_init_aperfmperf();
209
210 pr_debug("Stack at about %p\n", &cpuid);
211
212 wmb();
213
214 /*
215 * This runs the AP through all the cpuhp states to its target
216 * state CPUHP_ONLINE.
217 */
218 notify_cpu_starting(cpuid);
219 }
220
ap_calibrate_delay(void)221 static void ap_calibrate_delay(void)
222 {
223 /*
224 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
225 * smp_store_cpu_info() stored a value that is close but not as
226 * accurate as the value just calculated.
227 *
228 * As this is invoked after the TSC synchronization check,
229 * calibrate_delay_is_known() will skip the calibration routine
230 * when TSC is synchronized across sockets.
231 */
232 calibrate_delay();
233 cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
234 }
235
236 /*
237 * Activate a secondary processor.
238 */
start_secondary(void * unused)239 static void notrace start_secondary(void *unused)
240 {
241 /*
242 * Don't put *anything* except direct CPU state initialization
243 * before cpu_init(), SMP booting is too fragile that we want to
244 * limit the things done here to the most necessary things.
245 */
246 cr4_init();
247
248 /*
249 * 32-bit specific. 64-bit reaches this code with the correct page
250 * table established. Yet another historical divergence.
251 */
252 if (IS_ENABLED(CONFIG_X86_32)) {
253 /* switch away from the initial page table */
254 load_cr3(swapper_pg_dir);
255 __flush_tlb_all();
256 }
257
258 cpu_init_exception_handling();
259
260 /*
261 * 32-bit systems load the microcode from the ASM startup code for
262 * historical reasons.
263 *
264 * On 64-bit systems load it before reaching the AP alive
265 * synchronization point below so it is not part of the full per
266 * CPU serialized bringup part when "parallel" bringup is enabled.
267 *
268 * That's even safe when hyperthreading is enabled in the CPU as
269 * the core code starts the primary threads first and leaves the
270 * secondary threads waiting for SIPI. Loading microcode on
271 * physical cores concurrently is a safe operation.
272 *
273 * This covers both the Intel specific issue that concurrent
274 * microcode loading on SMT siblings must be prohibited and the
275 * vendor independent issue`that microcode loading which changes
276 * CPUID, MSRs etc. must be strictly serialized to maintain
277 * software state correctness.
278 */
279 if (IS_ENABLED(CONFIG_X86_64))
280 load_ucode_ap();
281
282 /*
283 * Synchronization point with the hotplug core. Sets this CPUs
284 * synchronization state to ALIVE and spin-waits for the control CPU to
285 * release this CPU for further bringup.
286 */
287 cpuhp_ap_sync_alive();
288
289 cpu_init();
290 fpu__init_cpu();
291 rcu_cpu_starting(raw_smp_processor_id());
292 x86_cpuinit.early_percpu_clock_init();
293
294 ap_starting();
295
296 /* Check TSC synchronization with the control CPU. */
297 check_tsc_sync_target();
298
299 /*
300 * Calibrate the delay loop after the TSC synchronization check.
301 * This allows to skip the calibration when TSC is synchronized
302 * across sockets.
303 */
304 ap_calibrate_delay();
305
306 speculative_store_bypass_ht_init();
307
308 /*
309 * Lock vector_lock, set CPU online and bring the vector
310 * allocator online. Online must be set with vector_lock held
311 * to prevent a concurrent irq setup/teardown from seeing a
312 * half valid vector space.
313 */
314 lock_vector_lock();
315 set_cpu_online(smp_processor_id(), true);
316 lapic_online();
317 unlock_vector_lock();
318 x86_platform.nmi_init();
319
320 /* enable local interrupts */
321 local_irq_enable();
322
323 x86_cpuinit.setup_percpu_clockev();
324
325 wmb();
326 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
327 }
328
329 /**
330 * topology_phys_to_logical_pkg - Map a physical package id to a logical
331 * @phys_pkg: The physical package id to map
332 *
333 * Returns logical package id or -1 if not found
334 */
topology_phys_to_logical_pkg(unsigned int phys_pkg)335 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
336 {
337 int cpu;
338
339 for_each_possible_cpu(cpu) {
340 struct cpuinfo_x86 *c = &cpu_data(cpu);
341
342 if (c->initialized && c->phys_proc_id == phys_pkg)
343 return c->logical_proc_id;
344 }
345 return -1;
346 }
347 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
348
349 /**
350 * topology_phys_to_logical_die - Map a physical die id to logical
351 * @die_id: The physical die id to map
352 * @cur_cpu: The CPU for which the mapping is done
353 *
354 * Returns logical die id or -1 if not found
355 */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)356 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
357 {
358 int cpu, proc_id = cpu_data(cur_cpu).phys_proc_id;
359
360 for_each_possible_cpu(cpu) {
361 struct cpuinfo_x86 *c = &cpu_data(cpu);
362
363 if (c->initialized && c->cpu_die_id == die_id &&
364 c->phys_proc_id == proc_id)
365 return c->logical_die_id;
366 }
367 return -1;
368 }
369
370 /**
371 * topology_update_package_map - Update the physical to logical package map
372 * @pkg: The physical package id as retrieved via CPUID
373 * @cpu: The cpu for which this is updated
374 */
topology_update_package_map(unsigned int pkg,unsigned int cpu)375 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
376 {
377 int new;
378
379 /* Already available somewhere? */
380 new = topology_phys_to_logical_pkg(pkg);
381 if (new >= 0)
382 goto found;
383
384 new = logical_packages++;
385 if (new != pkg) {
386 pr_info("CPU %u Converting physical %u to logical package %u\n",
387 cpu, pkg, new);
388 }
389 found:
390 cpu_data(cpu).logical_proc_id = new;
391 return 0;
392 }
393 /**
394 * topology_update_die_map - Update the physical to logical die map
395 * @die: The die id as retrieved via CPUID
396 * @cpu: The cpu for which this is updated
397 */
topology_update_die_map(unsigned int die,unsigned int cpu)398 int topology_update_die_map(unsigned int die, unsigned int cpu)
399 {
400 int new;
401
402 /* Already available somewhere? */
403 new = topology_phys_to_logical_die(die, cpu);
404 if (new >= 0)
405 goto found;
406
407 new = logical_die++;
408 if (new != die) {
409 pr_info("CPU %u Converting physical %u to logical die %u\n",
410 cpu, die, new);
411 }
412 found:
413 cpu_data(cpu).logical_die_id = new;
414 return 0;
415 }
416
smp_store_boot_cpu_info(void)417 static void __init smp_store_boot_cpu_info(void)
418 {
419 int id = 0; /* CPU 0 */
420 struct cpuinfo_x86 *c = &cpu_data(id);
421
422 *c = boot_cpu_data;
423 c->cpu_index = id;
424 topology_update_package_map(c->phys_proc_id, id);
425 topology_update_die_map(c->cpu_die_id, id);
426 c->initialized = true;
427 }
428
429 /*
430 * The bootstrap kernel entry code has set these up. Save them for
431 * a given CPU
432 */
smp_store_cpu_info(int id)433 void smp_store_cpu_info(int id)
434 {
435 struct cpuinfo_x86 *c = &cpu_data(id);
436
437 /* Copy boot_cpu_data only on the first bringup */
438 if (!c->initialized)
439 *c = boot_cpu_data;
440 c->cpu_index = id;
441 /*
442 * During boot time, CPU0 has this setup already. Save the info when
443 * bringing up an AP.
444 */
445 identify_secondary_cpu(c);
446 c->initialized = true;
447 }
448
449 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)450 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
451 {
452 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
453
454 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
455 }
456
457 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)458 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
459 {
460 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
461
462 return !WARN_ONCE(!topology_same_node(c, o),
463 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
464 "[node: %d != %d]. Ignoring dependency.\n",
465 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
466 }
467
468 #define link_mask(mfunc, c1, c2) \
469 do { \
470 cpumask_set_cpu((c1), mfunc(c2)); \
471 cpumask_set_cpu((c2), mfunc(c1)); \
472 } while (0)
473
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)474 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
475 {
476 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
477 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
478
479 if (c->phys_proc_id == o->phys_proc_id &&
480 c->cpu_die_id == o->cpu_die_id &&
481 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
482 if (c->cpu_core_id == o->cpu_core_id)
483 return topology_sane(c, o, "smt");
484
485 if ((c->cu_id != 0xff) &&
486 (o->cu_id != 0xff) &&
487 (c->cu_id == o->cu_id))
488 return topology_sane(c, o, "smt");
489 }
490
491 } else if (c->phys_proc_id == o->phys_proc_id &&
492 c->cpu_die_id == o->cpu_die_id &&
493 c->cpu_core_id == o->cpu_core_id) {
494 return topology_sane(c, o, "smt");
495 }
496
497 return false;
498 }
499
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)500 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
501 {
502 if (c->phys_proc_id == o->phys_proc_id &&
503 c->cpu_die_id == o->cpu_die_id)
504 return true;
505 return false;
506 }
507
match_l2c(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)508 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
509 {
510 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
511
512 /* If the arch didn't set up l2c_id, fall back to SMT */
513 if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
514 return match_smt(c, o);
515
516 /* Do not match if L2 cache id does not match: */
517 if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
518 return false;
519
520 return topology_sane(c, o, "l2c");
521 }
522
523 /*
524 * Unlike the other levels, we do not enforce keeping a
525 * multicore group inside a NUMA node. If this happens, we will
526 * discard the MC level of the topology later.
527 */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)528 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
529 {
530 if (c->phys_proc_id == o->phys_proc_id)
531 return true;
532 return false;
533 }
534
535 /*
536 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
537 *
538 * Any Intel CPU that has multiple nodes per package and does not
539 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
540 *
541 * When in SNC mode, these CPUs enumerate an LLC that is shared
542 * by multiple NUMA nodes. The LLC is shared for off-package data
543 * access but private to the NUMA node (half of the package) for
544 * on-package access. CPUID (the source of the information about
545 * the LLC) can only enumerate the cache as shared or unshared,
546 * but not this particular configuration.
547 */
548
549 static const struct x86_cpu_id intel_cod_cpu[] = {
550 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
551 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
552 X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */
553 {}
554 };
555
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)556 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
557 {
558 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
559 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
560 bool intel_snc = id && id->driver_data;
561
562 /* Do not match if we do not have a valid APICID for cpu: */
563 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
564 return false;
565
566 /* Do not match if LLC id does not match: */
567 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
568 return false;
569
570 /*
571 * Allow the SNC topology without warning. Return of false
572 * means 'c' does not share the LLC of 'o'. This will be
573 * reflected to userspace.
574 */
575 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
576 return false;
577
578 return topology_sane(c, o, "llc");
579 }
580
581
x86_sched_itmt_flags(void)582 static inline int x86_sched_itmt_flags(void)
583 {
584 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
585 }
586
587 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)588 static int x86_core_flags(void)
589 {
590 return cpu_core_flags() | x86_sched_itmt_flags();
591 }
592 #endif
593 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)594 static int x86_smt_flags(void)
595 {
596 return cpu_smt_flags();
597 }
598 #endif
599 #ifdef CONFIG_SCHED_CLUSTER
x86_cluster_flags(void)600 static int x86_cluster_flags(void)
601 {
602 return cpu_cluster_flags() | x86_sched_itmt_flags();
603 }
604 #endif
605
x86_die_flags(void)606 static int x86_die_flags(void)
607 {
608 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
609 return x86_sched_itmt_flags();
610
611 return 0;
612 }
613
614 /*
615 * Set if a package/die has multiple NUMA nodes inside.
616 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
617 * Sub-NUMA Clustering have this.
618 */
619 static bool x86_has_numa_in_package;
620
621 static struct sched_domain_topology_level x86_topology[6];
622
build_sched_topology(void)623 static void __init build_sched_topology(void)
624 {
625 int i = 0;
626
627 #ifdef CONFIG_SCHED_SMT
628 x86_topology[i++] = (struct sched_domain_topology_level){
629 cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
630 };
631 #endif
632 #ifdef CONFIG_SCHED_CLUSTER
633 x86_topology[i++] = (struct sched_domain_topology_level){
634 cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
635 };
636 #endif
637 #ifdef CONFIG_SCHED_MC
638 x86_topology[i++] = (struct sched_domain_topology_level){
639 cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
640 };
641 #endif
642 /*
643 * When there is NUMA topology inside the package skip the DIE domain
644 * since the NUMA domains will auto-magically create the right spanning
645 * domains based on the SLIT.
646 */
647 if (!x86_has_numa_in_package) {
648 x86_topology[i++] = (struct sched_domain_topology_level){
649 cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(DIE)
650 };
651 }
652
653 /*
654 * There must be one trailing NULL entry left.
655 */
656 BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
657
658 set_sched_topology(x86_topology);
659 }
660
set_cpu_sibling_map(int cpu)661 void set_cpu_sibling_map(int cpu)
662 {
663 bool has_smt = smp_num_siblings > 1;
664 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
665 struct cpuinfo_x86 *c = &cpu_data(cpu);
666 struct cpuinfo_x86 *o;
667 int i, threads;
668
669 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
670
671 if (!has_mp) {
672 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
673 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
674 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
675 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
676 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
677 c->booted_cores = 1;
678 return;
679 }
680
681 for_each_cpu(i, cpu_sibling_setup_mask) {
682 o = &cpu_data(i);
683
684 if (match_pkg(c, o) && !topology_same_node(c, o))
685 x86_has_numa_in_package = true;
686
687 if ((i == cpu) || (has_smt && match_smt(c, o)))
688 link_mask(topology_sibling_cpumask, cpu, i);
689
690 if ((i == cpu) || (has_mp && match_llc(c, o)))
691 link_mask(cpu_llc_shared_mask, cpu, i);
692
693 if ((i == cpu) || (has_mp && match_l2c(c, o)))
694 link_mask(cpu_l2c_shared_mask, cpu, i);
695
696 if ((i == cpu) || (has_mp && match_die(c, o)))
697 link_mask(topology_die_cpumask, cpu, i);
698 }
699
700 threads = cpumask_weight(topology_sibling_cpumask(cpu));
701 if (threads > __max_smt_threads)
702 __max_smt_threads = threads;
703
704 for_each_cpu(i, topology_sibling_cpumask(cpu))
705 cpu_data(i).smt_active = threads > 1;
706
707 /*
708 * This needs a separate iteration over the cpus because we rely on all
709 * topology_sibling_cpumask links to be set-up.
710 */
711 for_each_cpu(i, cpu_sibling_setup_mask) {
712 o = &cpu_data(i);
713
714 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
715 link_mask(topology_core_cpumask, cpu, i);
716
717 /*
718 * Does this new cpu bringup a new core?
719 */
720 if (threads == 1) {
721 /*
722 * for each core in package, increment
723 * the booted_cores for this new cpu
724 */
725 if (cpumask_first(
726 topology_sibling_cpumask(i)) == i)
727 c->booted_cores++;
728 /*
729 * increment the core count for all
730 * the other cpus in this package
731 */
732 if (i != cpu)
733 cpu_data(i).booted_cores++;
734 } else if (i != cpu && !c->booted_cores)
735 c->booted_cores = cpu_data(i).booted_cores;
736 }
737 }
738 }
739
740 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)741 const struct cpumask *cpu_coregroup_mask(int cpu)
742 {
743 return cpu_llc_shared_mask(cpu);
744 }
745
cpu_clustergroup_mask(int cpu)746 const struct cpumask *cpu_clustergroup_mask(int cpu)
747 {
748 return cpu_l2c_shared_mask(cpu);
749 }
750
impress_friends(void)751 static void impress_friends(void)
752 {
753 int cpu;
754 unsigned long bogosum = 0;
755 /*
756 * Allow the user to impress friends.
757 */
758 pr_debug("Before bogomips\n");
759 for_each_online_cpu(cpu)
760 bogosum += cpu_data(cpu).loops_per_jiffy;
761
762 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
763 num_online_cpus(),
764 bogosum/(500000/HZ),
765 (bogosum/(5000/HZ))%100);
766
767 pr_debug("Before bogocount - setting activated=1\n");
768 }
769
770 /*
771 * The Multiprocessor Specification 1.4 (1997) example code suggests
772 * that there should be a 10ms delay between the BSP asserting INIT
773 * and de-asserting INIT, when starting a remote processor.
774 * But that slows boot and resume on modern processors, which include
775 * many cores and don't require that delay.
776 *
777 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
778 * Modern processor families are quirked to remove the delay entirely.
779 */
780 #define UDELAY_10MS_DEFAULT 10000
781
782 static unsigned int init_udelay = UINT_MAX;
783
cpu_init_udelay(char * str)784 static int __init cpu_init_udelay(char *str)
785 {
786 get_option(&str, &init_udelay);
787
788 return 0;
789 }
790 early_param("cpu_init_udelay", cpu_init_udelay);
791
smp_quirk_init_udelay(void)792 static void __init smp_quirk_init_udelay(void)
793 {
794 /* if cmdline changed it from default, leave it alone */
795 if (init_udelay != UINT_MAX)
796 return;
797
798 /* if modern processor, use no delay */
799 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
800 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
801 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
802 init_udelay = 0;
803 return;
804 }
805 /* else, use legacy delay */
806 init_udelay = UDELAY_10MS_DEFAULT;
807 }
808
809 /*
810 * Wake up AP by INIT, INIT, STARTUP sequence.
811 */
send_init_sequence(int phys_apicid)812 static void send_init_sequence(int phys_apicid)
813 {
814 int maxlvt = lapic_get_maxlvt();
815
816 /* Be paranoid about clearing APIC errors. */
817 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
818 /* Due to the Pentium erratum 3AP. */
819 if (maxlvt > 3)
820 apic_write(APIC_ESR, 0);
821 apic_read(APIC_ESR);
822 }
823
824 /* Assert INIT on the target CPU */
825 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
826 safe_apic_wait_icr_idle();
827
828 udelay(init_udelay);
829
830 /* Deassert INIT on the target CPU */
831 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
832 safe_apic_wait_icr_idle();
833 }
834
835 /*
836 * Wake up AP by INIT, INIT, STARTUP sequence.
837 */
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)838 static int wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
839 {
840 unsigned long send_status = 0, accept_status = 0;
841 int num_starts, j, maxlvt;
842
843 preempt_disable();
844 maxlvt = lapic_get_maxlvt();
845 send_init_sequence(phys_apicid);
846
847 mb();
848
849 /*
850 * Should we send STARTUP IPIs ?
851 *
852 * Determine this based on the APIC version.
853 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
854 */
855 if (APIC_INTEGRATED(boot_cpu_apic_version))
856 num_starts = 2;
857 else
858 num_starts = 0;
859
860 /*
861 * Run STARTUP IPI loop.
862 */
863 pr_debug("#startup loops: %d\n", num_starts);
864
865 for (j = 1; j <= num_starts; j++) {
866 pr_debug("Sending STARTUP #%d\n", j);
867 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
868 apic_write(APIC_ESR, 0);
869 apic_read(APIC_ESR);
870 pr_debug("After apic_write\n");
871
872 /*
873 * STARTUP IPI
874 */
875
876 /* Target chip */
877 /* Boot on the stack */
878 /* Kick the second */
879 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
880 phys_apicid);
881
882 /*
883 * Give the other CPU some time to accept the IPI.
884 */
885 if (init_udelay == 0)
886 udelay(10);
887 else
888 udelay(300);
889
890 pr_debug("Startup point 1\n");
891
892 pr_debug("Waiting for send to finish...\n");
893 send_status = safe_apic_wait_icr_idle();
894
895 /*
896 * Give the other CPU some time to accept the IPI.
897 */
898 if (init_udelay == 0)
899 udelay(10);
900 else
901 udelay(200);
902
903 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
904 apic_write(APIC_ESR, 0);
905 accept_status = (apic_read(APIC_ESR) & 0xEF);
906 if (send_status || accept_status)
907 break;
908 }
909 pr_debug("After Startup\n");
910
911 if (send_status)
912 pr_err("APIC never delivered???\n");
913 if (accept_status)
914 pr_err("APIC delivery error (%lx)\n", accept_status);
915
916 preempt_enable();
917 return (send_status | accept_status);
918 }
919
920 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)921 static void announce_cpu(int cpu, int apicid)
922 {
923 static int width, node_width, first = 1;
924 static int current_node = NUMA_NO_NODE;
925 int node = early_cpu_to_node(cpu);
926
927 if (!width)
928 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
929
930 if (!node_width)
931 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
932
933 if (system_state < SYSTEM_RUNNING) {
934 if (first)
935 pr_info("x86: Booting SMP configuration:\n");
936
937 if (node != current_node) {
938 if (current_node > (-1))
939 pr_cont("\n");
940 current_node = node;
941
942 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
943 node_width - num_digits(node), " ", node);
944 }
945
946 /* Add padding for the BSP */
947 if (first)
948 pr_cont("%*s", width + 1, " ");
949 first = 0;
950
951 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
952 } else
953 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
954 node, cpu, apicid);
955 }
956
common_cpu_up(unsigned int cpu,struct task_struct * idle)957 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
958 {
959 int ret;
960
961 /* Just in case we booted with a single CPU. */
962 alternatives_enable_smp();
963
964 per_cpu(pcpu_hot.current_task, cpu) = idle;
965 cpu_init_stack_canary(cpu, idle);
966
967 /* Initialize the interrupt stack(s) */
968 ret = irq_init_percpu_irqstack(cpu);
969 if (ret)
970 return ret;
971
972 #ifdef CONFIG_X86_32
973 /* Stack for startup_32 can be just as for start_secondary onwards */
974 per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
975 #endif
976 return 0;
977 }
978
979 /*
980 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
981 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
982 * Returns zero if startup was successfully sent, else error code from
983 * ->wakeup_secondary_cpu.
984 */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle)985 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
986 {
987 unsigned long start_ip = real_mode_header->trampoline_start;
988 int ret;
989
990 #ifdef CONFIG_X86_64
991 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
992 if (apic->wakeup_secondary_cpu_64)
993 start_ip = real_mode_header->trampoline_start64;
994 #endif
995 idle->thread.sp = (unsigned long)task_pt_regs(idle);
996 initial_code = (unsigned long)start_secondary;
997
998 if (IS_ENABLED(CONFIG_X86_32)) {
999 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1000 initial_stack = idle->thread.sp;
1001 } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1002 smpboot_control = cpu;
1003 }
1004
1005 /* Enable the espfix hack for this CPU */
1006 init_espfix_ap(cpu);
1007
1008 /* So we see what's up */
1009 announce_cpu(cpu, apicid);
1010
1011 /*
1012 * This grunge runs the startup process for
1013 * the targeted processor.
1014 */
1015 if (x86_platform.legacy.warm_reset) {
1016
1017 pr_debug("Setting warm reset code and vector.\n");
1018
1019 smpboot_setup_warm_reset_vector(start_ip);
1020 /*
1021 * Be paranoid about clearing APIC errors.
1022 */
1023 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1024 apic_write(APIC_ESR, 0);
1025 apic_read(APIC_ESR);
1026 }
1027 }
1028
1029 smp_mb();
1030
1031 /*
1032 * Wake up a CPU in difference cases:
1033 * - Use a method from the APIC driver if one defined, with wakeup
1034 * straight to 64-bit mode preferred over wakeup to RM.
1035 * Otherwise,
1036 * - Use an INIT boot APIC message
1037 */
1038 if (apic->wakeup_secondary_cpu_64)
1039 ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1040 else if (apic->wakeup_secondary_cpu)
1041 ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1042 else
1043 ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1044
1045 /* If the wakeup mechanism failed, cleanup the warm reset vector */
1046 if (ret)
1047 arch_cpuhp_cleanup_kick_cpu(cpu);
1048 return ret;
1049 }
1050
native_kick_ap(unsigned int cpu,struct task_struct * tidle)1051 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1052 {
1053 int apicid = apic->cpu_present_to_apicid(cpu);
1054 int err;
1055
1056 lockdep_assert_irqs_enabled();
1057
1058 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1059
1060 if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
1061 !apic_id_valid(apicid)) {
1062 pr_err("%s: bad cpu %d\n", __func__, cpu);
1063 return -EINVAL;
1064 }
1065
1066 /*
1067 * Save current MTRR state in case it was changed since early boot
1068 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1069 */
1070 mtrr_save_state();
1071
1072 /* the FPU context is blank, nobody can own it */
1073 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1074
1075 err = common_cpu_up(cpu, tidle);
1076 if (err)
1077 return err;
1078
1079 err = do_boot_cpu(apicid, cpu, tidle);
1080 if (err)
1081 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1082
1083 return err;
1084 }
1085
arch_cpuhp_kick_ap_alive(unsigned int cpu,struct task_struct * tidle)1086 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1087 {
1088 return smp_ops.kick_ap_alive(cpu, tidle);
1089 }
1090
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)1091 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1092 {
1093 /* Cleanup possible dangling ends... */
1094 if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1095 smpboot_restore_warm_reset_vector();
1096 }
1097
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)1098 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1099 {
1100 if (smp_ops.cleanup_dead_cpu)
1101 smp_ops.cleanup_dead_cpu(cpu);
1102
1103 if (system_state == SYSTEM_RUNNING)
1104 pr_info("CPU %u is now offline\n", cpu);
1105 }
1106
arch_cpuhp_sync_state_poll(void)1107 void arch_cpuhp_sync_state_poll(void)
1108 {
1109 if (smp_ops.poll_sync_state)
1110 smp_ops.poll_sync_state();
1111 }
1112
1113 /**
1114 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1115 */
arch_disable_smp_support(void)1116 void __init arch_disable_smp_support(void)
1117 {
1118 disable_ioapic_support();
1119 }
1120
1121 /*
1122 * Fall back to non SMP mode after errors.
1123 *
1124 * RED-PEN audit/test this more. I bet there is more state messed up here.
1125 */
disable_smp(void)1126 static __init void disable_smp(void)
1127 {
1128 pr_info("SMP disabled\n");
1129
1130 disable_ioapic_support();
1131
1132 init_cpu_present(cpumask_of(0));
1133 init_cpu_possible(cpumask_of(0));
1134
1135 if (smp_found_config)
1136 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1137 else
1138 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1139 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1140 cpumask_set_cpu(0, topology_core_cpumask(0));
1141 cpumask_set_cpu(0, topology_die_cpumask(0));
1142 }
1143
smp_cpu_index_default(void)1144 static void __init smp_cpu_index_default(void)
1145 {
1146 int i;
1147 struct cpuinfo_x86 *c;
1148
1149 for_each_possible_cpu(i) {
1150 c = &cpu_data(i);
1151 /* mark all to hotplug */
1152 c->cpu_index = nr_cpu_ids;
1153 }
1154 }
1155
smp_prepare_cpus_common(void)1156 void __init smp_prepare_cpus_common(void)
1157 {
1158 unsigned int i;
1159
1160 smp_cpu_index_default();
1161
1162 /*
1163 * Setup boot CPU information
1164 */
1165 smp_store_boot_cpu_info(); /* Final full version of the data */
1166 mb();
1167
1168 for_each_possible_cpu(i) {
1169 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1170 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1171 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1172 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1173 zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1174 }
1175
1176 set_cpu_sibling_map(0);
1177 }
1178
1179 #ifdef CONFIG_X86_64
1180 /* Establish whether parallel bringup can be supported. */
arch_cpuhp_init_parallel_bringup(void)1181 bool __init arch_cpuhp_init_parallel_bringup(void)
1182 {
1183 if (!x86_cpuinit.parallel_bringup) {
1184 pr_info("Parallel CPU startup disabled by the platform\n");
1185 return false;
1186 }
1187
1188 smpboot_control = STARTUP_READ_APICID;
1189 pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1190 return true;
1191 }
1192 #endif
1193
1194 /*
1195 * Prepare for SMP bootup.
1196 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1197 * for common interface support.
1198 */
native_smp_prepare_cpus(unsigned int max_cpus)1199 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1200 {
1201 smp_prepare_cpus_common();
1202
1203 switch (apic_intr_mode) {
1204 case APIC_PIC:
1205 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1206 disable_smp();
1207 return;
1208 case APIC_SYMMETRIC_IO_NO_ROUTING:
1209 disable_smp();
1210 /* Setup local timer */
1211 x86_init.timers.setup_percpu_clockev();
1212 return;
1213 case APIC_VIRTUAL_WIRE:
1214 case APIC_SYMMETRIC_IO:
1215 break;
1216 }
1217
1218 /* Setup local timer */
1219 x86_init.timers.setup_percpu_clockev();
1220
1221 pr_info("CPU0: ");
1222 print_cpu_info(&cpu_data(0));
1223
1224 uv_system_init();
1225
1226 smp_quirk_init_udelay();
1227
1228 speculative_store_bypass_ht_init();
1229
1230 snp_set_wakeup_secondary_cpu();
1231 }
1232
arch_thaw_secondary_cpus_begin(void)1233 void arch_thaw_secondary_cpus_begin(void)
1234 {
1235 set_cache_aps_delayed_init(true);
1236 }
1237
arch_thaw_secondary_cpus_end(void)1238 void arch_thaw_secondary_cpus_end(void)
1239 {
1240 cache_aps_init();
1241 }
1242
1243 /*
1244 * Early setup to make printk work.
1245 */
native_smp_prepare_boot_cpu(void)1246 void __init native_smp_prepare_boot_cpu(void)
1247 {
1248 int me = smp_processor_id();
1249
1250 /* SMP handles this from setup_per_cpu_areas() */
1251 if (!IS_ENABLED(CONFIG_SMP))
1252 switch_gdt_and_percpu_base(me);
1253
1254 native_pv_lock_init();
1255 }
1256
calculate_max_logical_packages(void)1257 void __init calculate_max_logical_packages(void)
1258 {
1259 int ncpus;
1260
1261 /*
1262 * Today neither Intel nor AMD support heterogeneous systems so
1263 * extrapolate the boot cpu's data to all packages.
1264 */
1265 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1266 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1267 pr_info("Max logical packages: %u\n", __max_logical_packages);
1268 }
1269
native_smp_cpus_done(unsigned int max_cpus)1270 void __init native_smp_cpus_done(unsigned int max_cpus)
1271 {
1272 pr_debug("Boot done\n");
1273
1274 calculate_max_logical_packages();
1275 build_sched_topology();
1276 nmi_selftest();
1277 impress_friends();
1278 cache_aps_init();
1279 }
1280
1281 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1282 static int __init _setup_possible_cpus(char *str)
1283 {
1284 get_option(&str, &setup_possible_cpus);
1285 return 0;
1286 }
1287 early_param("possible_cpus", _setup_possible_cpus);
1288
1289
1290 /*
1291 * cpu_possible_mask should be static, it cannot change as cpu's
1292 * are onlined, or offlined. The reason is per-cpu data-structures
1293 * are allocated by some modules at init time, and don't expect to
1294 * do this dynamically on cpu arrival/departure.
1295 * cpu_present_mask on the other hand can change dynamically.
1296 * In case when cpu_hotplug is not compiled, then we resort to current
1297 * behaviour, which is cpu_possible == cpu_present.
1298 * - Ashok Raj
1299 *
1300 * Three ways to find out the number of additional hotplug CPUs:
1301 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1302 * - The user can overwrite it with possible_cpus=NUM
1303 * - Otherwise don't reserve additional CPUs.
1304 * We do this because additional CPUs waste a lot of memory.
1305 * -AK
1306 */
prefill_possible_map(void)1307 __init void prefill_possible_map(void)
1308 {
1309 int i, possible;
1310
1311 i = setup_max_cpus ?: 1;
1312 if (setup_possible_cpus == -1) {
1313 possible = num_processors;
1314 #ifdef CONFIG_HOTPLUG_CPU
1315 if (setup_max_cpus)
1316 possible += disabled_cpus;
1317 #else
1318 if (possible > i)
1319 possible = i;
1320 #endif
1321 } else
1322 possible = setup_possible_cpus;
1323
1324 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1325
1326 /* nr_cpu_ids could be reduced via nr_cpus= */
1327 if (possible > nr_cpu_ids) {
1328 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1329 possible, nr_cpu_ids);
1330 possible = nr_cpu_ids;
1331 }
1332
1333 #ifdef CONFIG_HOTPLUG_CPU
1334 if (!setup_max_cpus)
1335 #endif
1336 if (possible > i) {
1337 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1338 possible, setup_max_cpus);
1339 possible = i;
1340 }
1341
1342 set_nr_cpu_ids(possible);
1343
1344 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1345 possible, max_t(int, possible - num_processors, 0));
1346
1347 reset_cpu_possible_mask();
1348
1349 for (i = 0; i < possible; i++)
1350 set_cpu_possible(i, true);
1351 }
1352
1353 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)1354 void __init setup_cpu_local_masks(void)
1355 {
1356 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1357 }
1358
1359 #ifdef CONFIG_HOTPLUG_CPU
1360
1361 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1362 static void recompute_smt_state(void)
1363 {
1364 int max_threads, cpu;
1365
1366 max_threads = 0;
1367 for_each_online_cpu (cpu) {
1368 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1369
1370 if (threads > max_threads)
1371 max_threads = threads;
1372 }
1373 __max_smt_threads = max_threads;
1374 }
1375
remove_siblinginfo(int cpu)1376 static void remove_siblinginfo(int cpu)
1377 {
1378 int sibling;
1379 struct cpuinfo_x86 *c = &cpu_data(cpu);
1380
1381 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1382 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1383 /*/
1384 * last thread sibling in this cpu core going down
1385 */
1386 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1387 cpu_data(sibling).booted_cores--;
1388 }
1389
1390 for_each_cpu(sibling, topology_die_cpumask(cpu))
1391 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1392
1393 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1394 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1395 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1396 cpu_data(sibling).smt_active = false;
1397 }
1398
1399 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1400 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1401 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1402 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1403 cpumask_clear(cpu_llc_shared_mask(cpu));
1404 cpumask_clear(cpu_l2c_shared_mask(cpu));
1405 cpumask_clear(topology_sibling_cpumask(cpu));
1406 cpumask_clear(topology_core_cpumask(cpu));
1407 cpumask_clear(topology_die_cpumask(cpu));
1408 c->cpu_core_id = 0;
1409 c->booted_cores = 0;
1410 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1411 recompute_smt_state();
1412 }
1413
remove_cpu_from_maps(int cpu)1414 static void remove_cpu_from_maps(int cpu)
1415 {
1416 set_cpu_online(cpu, false);
1417 numa_remove_cpu(cpu);
1418 }
1419
cpu_disable_common(void)1420 void cpu_disable_common(void)
1421 {
1422 int cpu = smp_processor_id();
1423
1424 remove_siblinginfo(cpu);
1425
1426 /* It's now safe to remove this processor from the online map */
1427 lock_vector_lock();
1428 remove_cpu_from_maps(cpu);
1429 unlock_vector_lock();
1430 fixup_irqs();
1431 lapic_offline();
1432 }
1433
native_cpu_disable(void)1434 int native_cpu_disable(void)
1435 {
1436 int ret;
1437
1438 ret = lapic_can_unplug_cpu();
1439 if (ret)
1440 return ret;
1441
1442 cpu_disable_common();
1443
1444 /*
1445 * Disable the local APIC. Otherwise IPI broadcasts will reach
1446 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1447 * messages.
1448 *
1449 * Disabling the APIC must happen after cpu_disable_common()
1450 * which invokes fixup_irqs().
1451 *
1452 * Disabling the APIC preserves already set bits in IRR, but
1453 * an interrupt arriving after disabling the local APIC does not
1454 * set the corresponding IRR bit.
1455 *
1456 * fixup_irqs() scans IRR for set bits so it can raise a not
1457 * yet handled interrupt on the new destination CPU via an IPI
1458 * but obviously it can't do so for IRR bits which are not set.
1459 * IOW, interrupts arriving after disabling the local APIC will
1460 * be lost.
1461 */
1462 apic_soft_disable();
1463
1464 return 0;
1465 }
1466
play_dead_common(void)1467 void play_dead_common(void)
1468 {
1469 idle_task_exit();
1470
1471 cpuhp_ap_report_dead();
1472
1473 local_irq_disable();
1474 }
1475
1476 /*
1477 * We need to flush the caches before going to sleep, lest we have
1478 * dirty data in our caches when we come back up.
1479 */
mwait_play_dead(void)1480 static inline void mwait_play_dead(void)
1481 {
1482 struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1483 unsigned int eax, ebx, ecx, edx;
1484 unsigned int highest_cstate = 0;
1485 unsigned int highest_subcstate = 0;
1486 int i;
1487
1488 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1489 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1490 return;
1491 if (!this_cpu_has(X86_FEATURE_MWAIT))
1492 return;
1493 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1494 return;
1495 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1496 return;
1497
1498 eax = CPUID_MWAIT_LEAF;
1499 ecx = 0;
1500 native_cpuid(&eax, &ebx, &ecx, &edx);
1501
1502 /*
1503 * eax will be 0 if EDX enumeration is not valid.
1504 * Initialized below to cstate, sub_cstate value when EDX is valid.
1505 */
1506 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1507 eax = 0;
1508 } else {
1509 edx >>= MWAIT_SUBSTATE_SIZE;
1510 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1511 if (edx & MWAIT_SUBSTATE_MASK) {
1512 highest_cstate = i;
1513 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1514 }
1515 }
1516 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1517 (highest_subcstate - 1);
1518 }
1519
1520 /* Set up state for the kexec() hack below */
1521 md->status = CPUDEAD_MWAIT_WAIT;
1522 md->control = CPUDEAD_MWAIT_WAIT;
1523
1524 wbinvd();
1525
1526 while (1) {
1527 /*
1528 * The CLFLUSH is a workaround for erratum AAI65 for
1529 * the Xeon 7400 series. It's not clear it is actually
1530 * needed, but it should be harmless in either case.
1531 * The WBINVD is insufficient due to the spurious-wakeup
1532 * case where we return around the loop.
1533 */
1534 mb();
1535 clflush(md);
1536 mb();
1537 __monitor(md, 0, 0);
1538 mb();
1539 __mwait(eax, 0);
1540
1541 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1542 /*
1543 * Kexec is about to happen. Don't go back into mwait() as
1544 * the kexec kernel might overwrite text and data including
1545 * page tables and stack. So mwait() would resume when the
1546 * monitor cache line is written to and then the CPU goes
1547 * south due to overwritten text, page tables and stack.
1548 *
1549 * Note: This does _NOT_ protect against a stray MCE, NMI,
1550 * SMI. They will resume execution at the instruction
1551 * following the HLT instruction and run into the problem
1552 * which this is trying to prevent.
1553 */
1554 WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1555 while(1)
1556 native_halt();
1557 }
1558 }
1559 }
1560
1561 /*
1562 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1563 * mwait_play_dead().
1564 */
smp_kick_mwait_play_dead(void)1565 void smp_kick_mwait_play_dead(void)
1566 {
1567 u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1568 struct mwait_cpu_dead *md;
1569 unsigned int cpu, i;
1570
1571 for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1572 md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1573
1574 /* Does it sit in mwait_play_dead() ? */
1575 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1576 continue;
1577
1578 /* Wait up to 5ms */
1579 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1580 /* Bring it out of mwait */
1581 WRITE_ONCE(md->control, newstate);
1582 udelay(5);
1583 }
1584
1585 if (READ_ONCE(md->status) != newstate)
1586 pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1587 }
1588 }
1589
hlt_play_dead(void)1590 void __noreturn hlt_play_dead(void)
1591 {
1592 if (__this_cpu_read(cpu_info.x86) >= 4)
1593 wbinvd();
1594
1595 while (1)
1596 native_halt();
1597 }
1598
native_play_dead(void)1599 void native_play_dead(void)
1600 {
1601 play_dead_common();
1602 tboot_shutdown(TB_SHUTDOWN_WFS);
1603
1604 mwait_play_dead();
1605 if (cpuidle_play_dead())
1606 hlt_play_dead();
1607 }
1608
1609 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1610 int native_cpu_disable(void)
1611 {
1612 return -ENOSYS;
1613 }
1614
native_play_dead(void)1615 void native_play_dead(void)
1616 {
1617 BUG();
1618 }
1619
1620 #endif
1621