1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/arch/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49/* 50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 51 * 52 * This is the only entry point used for 64-bit system calls. The 53 * hardware interface is reasonably well designed and the register to 54 * argument mapping Linux uses fits well with the registers that are 55 * available when SYSCALL is used. 56 * 57 * SYSCALL instructions can be found inlined in libc implementations as 58 * well as some other programs and libraries. There are also a handful 59 * of SYSCALL instructions in the vDSO used, for example, as a 60 * clock_gettimeofday fallback. 61 * 62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 63 * then loads new ss, cs, and rip from previously programmed MSRs. 64 * rflags gets masked by a value from another MSR (so CLD and CLAC 65 * are not needed). SYSCALL does not save anything on the stack 66 * and does not change rsp. 67 * 68 * Registers on entry: 69 * rax system call number 70 * rcx return address 71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 72 * rdi arg0 73 * rsi arg1 74 * rdx arg2 75 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 76 * r8 arg4 77 * r9 arg5 78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 79 * 80 * Only called from user space. 81 * 82 * When user can change pt_regs->foo always force IRET. That is because 83 * it deals with uncanonical addresses better. SYSRET has trouble 84 * with them due to bugs in both AMD and Intel CPUs. 85 */ 86 87SYM_CODE_START(entry_SYSCALL_64) 88 UNWIND_HINT_ENTRY 89 ENDBR 90 91 swapgs 92 /* tss.sp2 is scratch space. */ 93 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 94 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 95 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 96 97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 98 ANNOTATE_NOENDBR 99 100 /* Construct struct pt_regs on stack */ 101 pushq $__USER_DS /* pt_regs->ss */ 102 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 103 pushq %r11 /* pt_regs->flags */ 104 pushq $__USER_CS /* pt_regs->cs */ 105 pushq %rcx /* pt_regs->ip */ 106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 107 pushq %rax /* pt_regs->orig_ax */ 108 109 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 110 111 /* IRQs are off. */ 112 movq %rsp, %rdi 113 /* Sign extend the lower 32bit as syscall numbers are treated as int */ 114 movslq %eax, %rsi 115 116 /* clobbers %rax, make sure it is after saving the syscall nr */ 117 IBRS_ENTER 118 UNTRAIN_RET 119 120 call do_syscall_64 /* returns with IRQs disabled */ 121 122 /* 123 * Try to use SYSRET instead of IRET if we're returning to 124 * a completely clean 64-bit userspace context. If we're not, 125 * go to the slow exit path. 126 * In the Xen PV case we must use iret anyway. 127 */ 128 129 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \ 130 X86_FEATURE_XENPV 131 132 movq RCX(%rsp), %rcx 133 movq RIP(%rsp), %r11 134 135 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 136 jne swapgs_restore_regs_and_return_to_usermode 137 138 /* 139 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 140 * in kernel space. This essentially lets the user take over 141 * the kernel, since userspace controls RSP. 142 * 143 * If width of "canonical tail" ever becomes variable, this will need 144 * to be updated to remain correct on both old and new CPUs. 145 * 146 * Change top bits to match most significant bit (47th or 56th bit 147 * depending on paging mode) in the address. 148 */ 149#ifdef CONFIG_X86_5LEVEL 150 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 151 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 152#else 153 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 154 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 155#endif 156 157 /* If this changed %rcx, it was not canonical */ 158 cmpq %rcx, %r11 159 jne swapgs_restore_regs_and_return_to_usermode 160 161 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 162 jne swapgs_restore_regs_and_return_to_usermode 163 164 movq R11(%rsp), %r11 165 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 166 jne swapgs_restore_regs_and_return_to_usermode 167 168 /* 169 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 170 * restore RF properly. If the slowpath sets it for whatever reason, we 171 * need to restore it correctly. 172 * 173 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 174 * trap from userspace immediately after SYSRET. This would cause an 175 * infinite loop whenever #DB happens with register state that satisfies 176 * the opportunistic SYSRET conditions. For example, single-stepping 177 * this user code: 178 * 179 * movq $stuck_here, %rcx 180 * pushfq 181 * popq %r11 182 * stuck_here: 183 * 184 * would never get past 'stuck_here'. 185 */ 186 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 187 jnz swapgs_restore_regs_and_return_to_usermode 188 189 /* nothing to check for RSP */ 190 191 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 192 jne swapgs_restore_regs_and_return_to_usermode 193 194 /* 195 * We win! This label is here just for ease of understanding 196 * perf profiles. Nothing jumps here. 197 */ 198syscall_return_via_sysret: 199 IBRS_EXIT 200 POP_REGS pop_rdi=0 201 202 /* 203 * Now all regs are restored except RSP and RDI. 204 * Save old stack pointer and switch to trampoline stack. 205 */ 206 movq %rsp, %rdi 207 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 208 UNWIND_HINT_END_OF_STACK 209 210 pushq RSP-RDI(%rdi) /* RSP */ 211 pushq (%rdi) /* RDI */ 212 213 /* 214 * We are on the trampoline stack. All regs except RDI are live. 215 * We can do future final exit work right here. 216 */ 217 STACKLEAK_ERASE_NOCLOBBER 218 219 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 220 221 popq %rdi 222 popq %rsp 223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL) 224 ANNOTATE_NOENDBR 225 swapgs 226 CLEAR_CPU_BUFFERS 227 sysretq 228SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL) 229 ANNOTATE_NOENDBR 230 int3 231SYM_CODE_END(entry_SYSCALL_64) 232 233/* 234 * %rdi: prev task 235 * %rsi: next task 236 */ 237.pushsection .text, "ax" 238SYM_FUNC_START(__switch_to_asm) 239 /* 240 * Save callee-saved registers 241 * This must match the order in inactive_task_frame 242 */ 243 pushq %rbp 244 pushq %rbx 245 pushq %r12 246 pushq %r13 247 pushq %r14 248 pushq %r15 249 250 /* switch stack */ 251 movq %rsp, TASK_threadsp(%rdi) 252 movq TASK_threadsp(%rsi), %rsp 253 254#ifdef CONFIG_STACKPROTECTOR 255 movq TASK_stack_canary(%rsi), %rbx 256 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary 257#endif 258 259 /* 260 * When switching from a shallower to a deeper call stack 261 * the RSB may either underflow or use entries populated 262 * with userspace addresses. On CPUs where those concerns 263 * exist, overwrite the RSB with entries which capture 264 * speculative execution to prevent attack. 265 */ 266 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 267 268 /* restore callee-saved registers */ 269 popq %r15 270 popq %r14 271 popq %r13 272 popq %r12 273 popq %rbx 274 popq %rbp 275 276 jmp __switch_to 277SYM_FUNC_END(__switch_to_asm) 278.popsection 279 280/* 281 * A newly forked process directly context switches into this address. 282 * 283 * rax: prev task we switched from 284 * rbx: kernel thread func (NULL for user thread) 285 * r12: kernel thread arg 286 */ 287.pushsection .text, "ax" 288SYM_CODE_START(ret_from_fork_asm) 289 /* 290 * This is the start of the kernel stack; even through there's a 291 * register set at the top, the regset isn't necessarily coherent 292 * (consider kthreads) and one cannot unwind further. 293 * 294 * This ensures stack unwinds of kernel threads terminate in a known 295 * good state. 296 */ 297 UNWIND_HINT_END_OF_STACK 298 ANNOTATE_NOENDBR // copy_thread 299 CALL_DEPTH_ACCOUNT 300 301 movq %rax, %rdi /* prev */ 302 movq %rsp, %rsi /* regs */ 303 movq %rbx, %rdx /* fn */ 304 movq %r12, %rcx /* fn_arg */ 305 call ret_from_fork 306 307 /* 308 * Set the stack state to what is expected for the target function 309 * -- at this point the register set should be a valid user set 310 * and unwind should work normally. 311 */ 312 UNWIND_HINT_REGS 313 jmp swapgs_restore_regs_and_return_to_usermode 314SYM_CODE_END(ret_from_fork_asm) 315.popsection 316 317.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 318#ifdef CONFIG_DEBUG_ENTRY 319 pushq %rax 320 SAVE_FLAGS 321 testl $X86_EFLAGS_IF, %eax 322 jz .Lokay_\@ 323 ud2 324.Lokay_\@: 325 popq %rax 326#endif 327.endm 328 329SYM_CODE_START(xen_error_entry) 330 ANNOTATE_NOENDBR 331 UNWIND_HINT_FUNC 332 PUSH_AND_CLEAR_REGS save_ret=1 333 ENCODE_FRAME_POINTER 8 334 UNTRAIN_RET_FROM_CALL 335 RET 336SYM_CODE_END(xen_error_entry) 337 338/** 339 * idtentry_body - Macro to emit code calling the C function 340 * @cfunc: C function to be called 341 * @has_error_code: Hardware pushed error code on stack 342 */ 343.macro idtentry_body cfunc has_error_code:req 344 345 /* 346 * Call error_entry() and switch to the task stack if from userspace. 347 * 348 * When in XENPV, it is already in the task stack, and it can't fault 349 * for native_iret() nor native_load_gs_index() since XENPV uses its 350 * own pvops for IRET and load_gs_index(). And it doesn't need to 351 * switch the CR3. So it can skip invoking error_entry(). 352 */ 353 ALTERNATIVE "call error_entry; movq %rax, %rsp", \ 354 "call xen_error_entry", X86_FEATURE_XENPV 355 356 ENCODE_FRAME_POINTER 357 UNWIND_HINT_REGS 358 359 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 360 361 .if \has_error_code == 1 362 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 363 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 364 .endif 365 366 call \cfunc 367 368 /* For some configurations \cfunc ends up being a noreturn. */ 369 REACHABLE 370 371 jmp error_return 372.endm 373 374/** 375 * idtentry - Macro to generate entry stubs for simple IDT entries 376 * @vector: Vector number 377 * @asmsym: ASM symbol for the entry point 378 * @cfunc: C function to be called 379 * @has_error_code: Hardware pushed error code on stack 380 * 381 * The macro emits code to set up the kernel context for straight forward 382 * and simple IDT entries. No IST stack, no paranoid entry checks. 383 */ 384.macro idtentry vector asmsym cfunc has_error_code:req 385SYM_CODE_START(\asmsym) 386 387 .if \vector == X86_TRAP_BP 388 /* #BP advances %rip to the next instruction */ 389 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0 390 .else 391 UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 392 .endif 393 394 ENDBR 395 ASM_CLAC 396 cld 397 398 .if \has_error_code == 0 399 pushq $-1 /* ORIG_RAX: no syscall to restart */ 400 .endif 401 402 .if \vector == X86_TRAP_BP 403 /* 404 * If coming from kernel space, create a 6-word gap to allow the 405 * int3 handler to emulate a call instruction. 406 */ 407 testb $3, CS-ORIG_RAX(%rsp) 408 jnz .Lfrom_usermode_no_gap_\@ 409 .rept 6 410 pushq 5*8(%rsp) 411 .endr 412 UNWIND_HINT_IRET_REGS offset=8 413.Lfrom_usermode_no_gap_\@: 414 .endif 415 416 idtentry_body \cfunc \has_error_code 417 418_ASM_NOKPROBE(\asmsym) 419SYM_CODE_END(\asmsym) 420.endm 421 422/* 423 * Interrupt entry/exit. 424 * 425 + The interrupt stubs push (vector) onto the stack, which is the error_code 426 * position of idtentry exceptions, and jump to one of the two idtentry points 427 * (common/spurious). 428 * 429 * common_interrupt is a hotpath, align it to a cache line 430 */ 431.macro idtentry_irq vector cfunc 432 .p2align CONFIG_X86_L1_CACHE_SHIFT 433 idtentry \vector asm_\cfunc \cfunc has_error_code=1 434.endm 435 436/* 437 * System vectors which invoke their handlers directly and are not 438 * going through the regular common device interrupt handling code. 439 */ 440.macro idtentry_sysvec vector cfunc 441 idtentry \vector asm_\cfunc \cfunc has_error_code=0 442.endm 443 444/** 445 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 446 * @vector: Vector number 447 * @asmsym: ASM symbol for the entry point 448 * @cfunc: C function to be called 449 * 450 * The macro emits code to set up the kernel context for #MC and #DB 451 * 452 * If the entry comes from user space it uses the normal entry path 453 * including the return to user space work and preemption checks on 454 * exit. 455 * 456 * If hits in kernel mode then it needs to go through the paranoid 457 * entry as the exception can hit any random state. No preemption 458 * check on exit to keep the paranoid path simple. 459 */ 460.macro idtentry_mce_db vector asmsym cfunc 461SYM_CODE_START(\asmsym) 462 UNWIND_HINT_IRET_ENTRY 463 ENDBR 464 ASM_CLAC 465 cld 466 467 pushq $-1 /* ORIG_RAX: no syscall to restart */ 468 469 /* 470 * If the entry is from userspace, switch stacks and treat it as 471 * a normal entry. 472 */ 473 testb $3, CS-ORIG_RAX(%rsp) 474 jnz .Lfrom_usermode_switch_stack_\@ 475 476 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 477 call paranoid_entry 478 479 UNWIND_HINT_REGS 480 481 movq %rsp, %rdi /* pt_regs pointer */ 482 483 call \cfunc 484 485 jmp paranoid_exit 486 487 /* Switch to the regular task stack and use the noist entry point */ 488.Lfrom_usermode_switch_stack_\@: 489 idtentry_body noist_\cfunc, has_error_code=0 490 491_ASM_NOKPROBE(\asmsym) 492SYM_CODE_END(\asmsym) 493.endm 494 495#ifdef CONFIG_AMD_MEM_ENCRYPT 496/** 497 * idtentry_vc - Macro to generate entry stub for #VC 498 * @vector: Vector number 499 * @asmsym: ASM symbol for the entry point 500 * @cfunc: C function to be called 501 * 502 * The macro emits code to set up the kernel context for #VC. The #VC handler 503 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 504 * 505 * To make this work the #VC entry code tries its best to pretend it doesn't use 506 * an IST stack by switching to the task stack if coming from user-space (which 507 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 508 * entered from kernel-mode. 509 * 510 * If entered from kernel-mode the return stack is validated first, and if it is 511 * not safe to use (e.g. because it points to the entry stack) the #VC handler 512 * will switch to a fall-back stack (VC2) and call a special handler function. 513 * 514 * The macro is only used for one vector, but it is planned to be extended in 515 * the future for the #HV exception. 516 */ 517.macro idtentry_vc vector asmsym cfunc 518SYM_CODE_START(\asmsym) 519 UNWIND_HINT_IRET_ENTRY 520 ENDBR 521 ASM_CLAC 522 cld 523 524 /* 525 * If the entry is from userspace, switch stacks and treat it as 526 * a normal entry. 527 */ 528 testb $3, CS-ORIG_RAX(%rsp) 529 jnz .Lfrom_usermode_switch_stack_\@ 530 531 /* 532 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 533 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 534 */ 535 call paranoid_entry 536 537 UNWIND_HINT_REGS 538 539 /* 540 * Switch off the IST stack to make it free for nested exceptions. The 541 * vc_switch_off_ist() function will switch back to the interrupted 542 * stack if it is safe to do so. If not it switches to the VC fall-back 543 * stack. 544 */ 545 movq %rsp, %rdi /* pt_regs pointer */ 546 call vc_switch_off_ist 547 movq %rax, %rsp /* Switch to new stack */ 548 549 ENCODE_FRAME_POINTER 550 UNWIND_HINT_REGS 551 552 /* Update pt_regs */ 553 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 554 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 555 556 movq %rsp, %rdi /* pt_regs pointer */ 557 558 call kernel_\cfunc 559 560 /* 561 * No need to switch back to the IST stack. The current stack is either 562 * identical to the stack in the IRET frame or the VC fall-back stack, 563 * so it is definitely mapped even with PTI enabled. 564 */ 565 jmp paranoid_exit 566 567 /* Switch to the regular task stack */ 568.Lfrom_usermode_switch_stack_\@: 569 idtentry_body user_\cfunc, has_error_code=1 570 571_ASM_NOKPROBE(\asmsym) 572SYM_CODE_END(\asmsym) 573.endm 574#endif 575 576/* 577 * Double fault entry. Straight paranoid. No checks from which context 578 * this comes because for the espfix induced #DF this would do the wrong 579 * thing. 580 */ 581.macro idtentry_df vector asmsym cfunc 582SYM_CODE_START(\asmsym) 583 UNWIND_HINT_IRET_ENTRY offset=8 584 ENDBR 585 ASM_CLAC 586 cld 587 588 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 589 call paranoid_entry 590 UNWIND_HINT_REGS 591 592 movq %rsp, %rdi /* pt_regs pointer into first argument */ 593 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 594 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 595 call \cfunc 596 597 /* For some configurations \cfunc ends up being a noreturn. */ 598 REACHABLE 599 600 jmp paranoid_exit 601 602_ASM_NOKPROBE(\asmsym) 603SYM_CODE_END(\asmsym) 604.endm 605 606/* 607 * Include the defines which emit the idt entries which are shared 608 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 609 * so the stacktrace boundary checks work. 610 */ 611 __ALIGN 612 .globl __irqentry_text_start 613__irqentry_text_start: 614 615#include <asm/idtentry.h> 616 617 __ALIGN 618 .globl __irqentry_text_end 619__irqentry_text_end: 620 ANNOTATE_NOENDBR 621 622SYM_CODE_START_LOCAL(common_interrupt_return) 623SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 624 IBRS_EXIT 625#ifdef CONFIG_DEBUG_ENTRY 626 /* Assert that pt_regs indicates user mode. */ 627 testb $3, CS(%rsp) 628 jnz 1f 629 ud2 6301: 631#endif 632#ifdef CONFIG_XEN_PV 633 ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV 634#endif 635 636 POP_REGS pop_rdi=0 637 638 /* 639 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 640 * Save old stack pointer and switch to trampoline stack. 641 */ 642 movq %rsp, %rdi 643 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 644 UNWIND_HINT_END_OF_STACK 645 646 /* Copy the IRET frame to the trampoline stack. */ 647 pushq 6*8(%rdi) /* SS */ 648 pushq 5*8(%rdi) /* RSP */ 649 pushq 4*8(%rdi) /* EFLAGS */ 650 pushq 3*8(%rdi) /* CS */ 651 pushq 2*8(%rdi) /* RIP */ 652 653 /* Push user RDI on the trampoline stack. */ 654 pushq (%rdi) 655 656 /* 657 * We are on the trampoline stack. All regs except RDI are live. 658 * We can do future final exit work right here. 659 */ 660 STACKLEAK_ERASE_NOCLOBBER 661 662 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 663 664 /* Restore RDI. */ 665 popq %rdi 666 swapgs 667 CLEAR_CPU_BUFFERS 668 jmp .Lnative_iret 669 670 671SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 672#ifdef CONFIG_DEBUG_ENTRY 673 /* Assert that pt_regs indicates kernel mode. */ 674 testb $3, CS(%rsp) 675 jz 1f 676 ud2 6771: 678#endif 679 POP_REGS 680 addq $8, %rsp /* skip regs->orig_ax */ 681 /* 682 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 683 * when returning from IPI handler. 684 */ 685#ifdef CONFIG_XEN_PV 686SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL) 687 ANNOTATE_NOENDBR 688 .byte 0xe9 689 .long .Lnative_iret - (. + 4) 690#endif 691 692.Lnative_iret: 693 UNWIND_HINT_IRET_REGS 694 /* 695 * Are we returning to a stack segment from the LDT? Note: in 696 * 64-bit mode SS:RSP on the exception stack is always valid. 697 */ 698#ifdef CONFIG_X86_ESPFIX64 699 testb $4, (SS-RIP)(%rsp) 700 jnz native_irq_return_ldt 701#endif 702 703SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 704 ANNOTATE_NOENDBR // exc_double_fault 705 /* 706 * This may fault. Non-paranoid faults on return to userspace are 707 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 708 * Double-faults due to espfix64 are handled in exc_double_fault. 709 * Other faults here are fatal. 710 */ 711 iretq 712 713#ifdef CONFIG_X86_ESPFIX64 714native_irq_return_ldt: 715 /* 716 * We are running with user GSBASE. All GPRs contain their user 717 * values. We have a percpu ESPFIX stack that is eight slots 718 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 719 * of the ESPFIX stack. 720 * 721 * We clobber RAX and RDI in this code. We stash RDI on the 722 * normal stack and RAX on the ESPFIX stack. 723 * 724 * The ESPFIX stack layout we set up looks like this: 725 * 726 * --- top of ESPFIX stack --- 727 * SS 728 * RSP 729 * RFLAGS 730 * CS 731 * RIP <-- RSP points here when we're done 732 * RAX <-- espfix_waddr points here 733 * --- bottom of ESPFIX stack --- 734 */ 735 736 pushq %rdi /* Stash user RDI */ 737 swapgs /* to kernel GS */ 738 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 739 740 movq PER_CPU_VAR(espfix_waddr), %rdi 741 movq %rax, (0*8)(%rdi) /* user RAX */ 742 movq (1*8)(%rsp), %rax /* user RIP */ 743 movq %rax, (1*8)(%rdi) 744 movq (2*8)(%rsp), %rax /* user CS */ 745 movq %rax, (2*8)(%rdi) 746 movq (3*8)(%rsp), %rax /* user RFLAGS */ 747 movq %rax, (3*8)(%rdi) 748 movq (5*8)(%rsp), %rax /* user SS */ 749 movq %rax, (5*8)(%rdi) 750 movq (4*8)(%rsp), %rax /* user RSP */ 751 movq %rax, (4*8)(%rdi) 752 /* Now RAX == RSP. */ 753 754 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 755 756 /* 757 * espfix_stack[31:16] == 0. The page tables are set up such that 758 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 759 * espfix_waddr for any X. That is, there are 65536 RO aliases of 760 * the same page. Set up RSP so that RSP[31:16] contains the 761 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 762 * still points to an RO alias of the ESPFIX stack. 763 */ 764 orq PER_CPU_VAR(espfix_stack), %rax 765 766 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 767 swapgs /* to user GS */ 768 popq %rdi /* Restore user RDI */ 769 770 movq %rax, %rsp 771 UNWIND_HINT_IRET_REGS offset=8 772 773 /* 774 * At this point, we cannot write to the stack any more, but we can 775 * still read. 776 */ 777 popq %rax /* Restore user RAX */ 778 779 CLEAR_CPU_BUFFERS 780 781 /* 782 * RSP now points to an ordinary IRET frame, except that the page 783 * is read-only and RSP[31:16] are preloaded with the userspace 784 * values. We can now IRET back to userspace. 785 */ 786 jmp native_irq_return_iret 787#endif 788SYM_CODE_END(common_interrupt_return) 789_ASM_NOKPROBE(common_interrupt_return) 790 791/* 792 * Reload gs selector with exception handling 793 * di: new selector 794 * 795 * Is in entry.text as it shouldn't be instrumented. 796 */ 797SYM_FUNC_START(asm_load_gs_index) 798 FRAME_BEGIN 799 swapgs 800.Lgs_change: 801 ANNOTATE_NOENDBR // error_entry 802 movl %edi, %gs 8032: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 804 swapgs 805 FRAME_END 806 RET 807 808 /* running with kernelgs */ 809.Lbad_gs: 810 swapgs /* switch back to user gs */ 811.macro ZAP_GS 812 /* This can't be a string because the preprocessor needs to see it. */ 813 movl $__USER_DS, %eax 814 movl %eax, %gs 815.endm 816 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 817 xorl %eax, %eax 818 movl %eax, %gs 819 jmp 2b 820 821 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 822 823SYM_FUNC_END(asm_load_gs_index) 824EXPORT_SYMBOL(asm_load_gs_index) 825 826#ifdef CONFIG_XEN_PV 827/* 828 * A note on the "critical region" in our callback handler. 829 * We want to avoid stacking callback handlers due to events occurring 830 * during handling of the last event. To do this, we keep events disabled 831 * until we've done all processing. HOWEVER, we must enable events before 832 * popping the stack frame (can't be done atomically) and so it would still 833 * be possible to get enough handler activations to overflow the stack. 834 * Although unlikely, bugs of that kind are hard to track down, so we'd 835 * like to avoid the possibility. 836 * So, on entry to the handler we detect whether we interrupted an 837 * existing activation in its critical region -- if so, we pop the current 838 * activation and restart the handler using the previous one. 839 * 840 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 841 */ 842 __FUNC_ALIGN 843SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback) 844 845/* 846 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 847 * see the correct pointer to the pt_regs 848 */ 849 UNWIND_HINT_FUNC 850 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 851 UNWIND_HINT_REGS 852 853 call xen_pv_evtchn_do_upcall 854 855 jmp error_return 856SYM_CODE_END(exc_xen_hypervisor_callback) 857 858/* 859 * Hypervisor uses this for application faults while it executes. 860 * We get here for two reasons: 861 * 1. Fault while reloading DS, ES, FS or GS 862 * 2. Fault while executing IRET 863 * Category 1 we do not need to fix up as Xen has already reloaded all segment 864 * registers that could be reloaded and zeroed the others. 865 * Category 2 we fix up by killing the current process. We cannot use the 866 * normal Linux return path in this case because if we use the IRET hypercall 867 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 868 * We distinguish between categories by comparing each saved segment register 869 * with its current contents: any discrepancy means we in category 1. 870 */ 871 __FUNC_ALIGN 872SYM_CODE_START_NOALIGN(xen_failsafe_callback) 873 UNWIND_HINT_UNDEFINED 874 ENDBR 875 movl %ds, %ecx 876 cmpw %cx, 0x10(%rsp) 877 jne 1f 878 movl %es, %ecx 879 cmpw %cx, 0x18(%rsp) 880 jne 1f 881 movl %fs, %ecx 882 cmpw %cx, 0x20(%rsp) 883 jne 1f 884 movl %gs, %ecx 885 cmpw %cx, 0x28(%rsp) 886 jne 1f 887 /* All segments match their saved values => Category 2 (Bad IRET). */ 888 movq (%rsp), %rcx 889 movq 8(%rsp), %r11 890 addq $0x30, %rsp 891 pushq $0 /* RIP */ 892 UNWIND_HINT_IRET_REGS offset=8 893 jmp asm_exc_general_protection 8941: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 895 movq (%rsp), %rcx 896 movq 8(%rsp), %r11 897 addq $0x30, %rsp 898 UNWIND_HINT_IRET_REGS 899 pushq $-1 /* orig_ax = -1 => not a system call */ 900 PUSH_AND_CLEAR_REGS 901 ENCODE_FRAME_POINTER 902 jmp error_return 903SYM_CODE_END(xen_failsafe_callback) 904#endif /* CONFIG_XEN_PV */ 905 906/* 907 * Save all registers in pt_regs. Return GSBASE related information 908 * in EBX depending on the availability of the FSGSBASE instructions: 909 * 910 * FSGSBASE R/EBX 911 * N 0 -> SWAPGS on exit 912 * 1 -> no SWAPGS on exit 913 * 914 * Y GSBASE value at entry, must be restored in paranoid_exit 915 * 916 * R14 - old CR3 917 * R15 - old SPEC_CTRL 918 */ 919SYM_CODE_START(paranoid_entry) 920 ANNOTATE_NOENDBR 921 UNWIND_HINT_FUNC 922 PUSH_AND_CLEAR_REGS save_ret=1 923 ENCODE_FRAME_POINTER 8 924 925 /* 926 * Always stash CR3 in %r14. This value will be restored, 927 * verbatim, at exit. Needed if paranoid_entry interrupted 928 * another entry that already switched to the user CR3 value 929 * but has not yet returned to userspace. 930 * 931 * This is also why CS (stashed in the "iret frame" by the 932 * hardware at entry) can not be used: this may be a return 933 * to kernel code, but with a user CR3 value. 934 * 935 * Switching CR3 does not depend on kernel GSBASE so it can 936 * be done before switching to the kernel GSBASE. This is 937 * required for FSGSBASE because the kernel GSBASE has to 938 * be retrieved from a kernel internal table. 939 */ 940 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 941 942 /* 943 * Handling GSBASE depends on the availability of FSGSBASE. 944 * 945 * Without FSGSBASE the kernel enforces that negative GSBASE 946 * values indicate kernel GSBASE. With FSGSBASE no assumptions 947 * can be made about the GSBASE value when entering from user 948 * space. 949 */ 950 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 951 952 /* 953 * Read the current GSBASE and store it in %rbx unconditionally, 954 * retrieve and set the current CPUs kernel GSBASE. The stored value 955 * has to be restored in paranoid_exit unconditionally. 956 * 957 * The unconditional write to GS base below ensures that no subsequent 958 * loads based on a mispredicted GS base can happen, therefore no LFENCE 959 * is needed here. 960 */ 961 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 962 jmp .Lparanoid_gsbase_done 963 964.Lparanoid_entry_checkgs: 965 /* EBX = 1 -> kernel GSBASE active, no restore required */ 966 movl $1, %ebx 967 968 /* 969 * The kernel-enforced convention is a negative GSBASE indicates 970 * a kernel value. No SWAPGS needed on entry and exit. 971 */ 972 movl $MSR_GS_BASE, %ecx 973 rdmsr 974 testl %edx, %edx 975 js .Lparanoid_kernel_gsbase 976 977 /* EBX = 0 -> SWAPGS required on exit */ 978 xorl %ebx, %ebx 979 swapgs 980.Lparanoid_kernel_gsbase: 981 FENCE_SWAPGS_KERNEL_ENTRY 982.Lparanoid_gsbase_done: 983 984 /* 985 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like 986 * CR3 above, keep the old value in a callee saved register. 987 */ 988 IBRS_ENTER save_reg=%r15 989 UNTRAIN_RET_FROM_CALL 990 991 RET 992SYM_CODE_END(paranoid_entry) 993 994/* 995 * "Paranoid" exit path from exception stack. This is invoked 996 * only on return from non-NMI IST interrupts that came 997 * from kernel space. 998 * 999 * We may be returning to very strange contexts (e.g. very early 1000 * in syscall entry), so checking for preemption here would 1001 * be complicated. Fortunately, there's no good reason to try 1002 * to handle preemption here. 1003 * 1004 * R/EBX contains the GSBASE related information depending on the 1005 * availability of the FSGSBASE instructions: 1006 * 1007 * FSGSBASE R/EBX 1008 * N 0 -> SWAPGS on exit 1009 * 1 -> no SWAPGS on exit 1010 * 1011 * Y User space GSBASE, must be restored unconditionally 1012 * 1013 * R14 - old CR3 1014 * R15 - old SPEC_CTRL 1015 */ 1016SYM_CODE_START_LOCAL(paranoid_exit) 1017 UNWIND_HINT_REGS 1018 1019 /* 1020 * Must restore IBRS state before both CR3 and %GS since we need access 1021 * to the per-CPU x86_spec_ctrl_shadow variable. 1022 */ 1023 IBRS_EXIT save_reg=%r15 1024 1025 /* 1026 * The order of operations is important. RESTORE_CR3 requires 1027 * kernel GSBASE. 1028 * 1029 * NB to anyone to try to optimize this code: this code does 1030 * not execute at all for exceptions from user mode. Those 1031 * exceptions go through error_return instead. 1032 */ 1033 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 1034 1035 /* Handle the three GSBASE cases */ 1036 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 1037 1038 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 1039 wrgsbase %rbx 1040 jmp restore_regs_and_return_to_kernel 1041 1042.Lparanoid_exit_checkgs: 1043 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 1044 testl %ebx, %ebx 1045 jnz restore_regs_and_return_to_kernel 1046 1047 /* We are returning to a context with user GSBASE */ 1048 swapgs 1049 jmp restore_regs_and_return_to_kernel 1050SYM_CODE_END(paranoid_exit) 1051 1052/* 1053 * Switch GS and CR3 if needed. 1054 */ 1055SYM_CODE_START(error_entry) 1056 ANNOTATE_NOENDBR 1057 UNWIND_HINT_FUNC 1058 1059 PUSH_AND_CLEAR_REGS save_ret=1 1060 ENCODE_FRAME_POINTER 8 1061 1062 testb $3, CS+8(%rsp) 1063 jz .Lerror_kernelspace 1064 1065 /* 1066 * We entered from user mode or we're pretending to have entered 1067 * from user mode due to an IRET fault. 1068 */ 1069 swapgs 1070 FENCE_SWAPGS_USER_ENTRY 1071 /* We have user CR3. Change to kernel CR3. */ 1072 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1073 IBRS_ENTER 1074 UNTRAIN_RET_FROM_CALL 1075 1076 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1077 /* Put us onto the real thread stack. */ 1078 jmp sync_regs 1079 1080 /* 1081 * There are two places in the kernel that can potentially fault with 1082 * usergs. Handle them here. B stepping K8s sometimes report a 1083 * truncated RIP for IRET exceptions returning to compat mode. Check 1084 * for these here too. 1085 */ 1086.Lerror_kernelspace: 1087 leaq native_irq_return_iret(%rip), %rcx 1088 cmpq %rcx, RIP+8(%rsp) 1089 je .Lerror_bad_iret 1090 movl %ecx, %eax /* zero extend */ 1091 cmpq %rax, RIP+8(%rsp) 1092 je .Lbstep_iret 1093 cmpq $.Lgs_change, RIP+8(%rsp) 1094 jne .Lerror_entry_done_lfence 1095 1096 /* 1097 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1098 * gsbase and proceed. We'll fix up the exception and land in 1099 * .Lgs_change's error handler with kernel gsbase. 1100 */ 1101 swapgs 1102 1103 /* 1104 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a 1105 * kernel or user gsbase. 1106 */ 1107.Lerror_entry_done_lfence: 1108 FENCE_SWAPGS_KERNEL_ENTRY 1109 CALL_DEPTH_ACCOUNT 1110 leaq 8(%rsp), %rax /* return pt_regs pointer */ 1111 VALIDATE_UNRET_END 1112 RET 1113 1114.Lbstep_iret: 1115 /* Fix truncated RIP */ 1116 movq %rcx, RIP+8(%rsp) 1117 /* fall through */ 1118 1119.Lerror_bad_iret: 1120 /* 1121 * We came from an IRET to user mode, so we have user 1122 * gsbase and CR3. Switch to kernel gsbase and CR3: 1123 */ 1124 swapgs 1125 FENCE_SWAPGS_USER_ENTRY 1126 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1127 IBRS_ENTER 1128 UNTRAIN_RET_FROM_CALL 1129 1130 /* 1131 * Pretend that the exception came from user mode: set up pt_regs 1132 * as if we faulted immediately after IRET. 1133 */ 1134 leaq 8(%rsp), %rdi /* arg0 = pt_regs pointer */ 1135 call fixup_bad_iret 1136 mov %rax, %rdi 1137 jmp sync_regs 1138SYM_CODE_END(error_entry) 1139 1140SYM_CODE_START_LOCAL(error_return) 1141 UNWIND_HINT_REGS 1142 DEBUG_ENTRY_ASSERT_IRQS_OFF 1143 testb $3, CS(%rsp) 1144 jz restore_regs_and_return_to_kernel 1145 jmp swapgs_restore_regs_and_return_to_usermode 1146SYM_CODE_END(error_return) 1147 1148/* 1149 * Runs on exception stack. Xen PV does not go through this path at all, 1150 * so we can use real assembly here. 1151 * 1152 * Registers: 1153 * %r14: Used to save/restore the CR3 of the interrupted context 1154 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1155 */ 1156SYM_CODE_START(asm_exc_nmi) 1157 UNWIND_HINT_IRET_ENTRY 1158 ENDBR 1159 1160 /* 1161 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1162 * the iretq it performs will take us out of NMI context. 1163 * This means that we can have nested NMIs where the next 1164 * NMI is using the top of the stack of the previous NMI. We 1165 * can't let it execute because the nested NMI will corrupt the 1166 * stack of the previous NMI. NMI handlers are not re-entrant 1167 * anyway. 1168 * 1169 * To handle this case we do the following: 1170 * Check the a special location on the stack that contains 1171 * a variable that is set when NMIs are executing. 1172 * The interrupted task's stack is also checked to see if it 1173 * is an NMI stack. 1174 * If the variable is not set and the stack is not the NMI 1175 * stack then: 1176 * o Set the special variable on the stack 1177 * o Copy the interrupt frame into an "outermost" location on the 1178 * stack 1179 * o Copy the interrupt frame into an "iret" location on the stack 1180 * o Continue processing the NMI 1181 * If the variable is set or the previous stack is the NMI stack: 1182 * o Modify the "iret" location to jump to the repeat_nmi 1183 * o return back to the first NMI 1184 * 1185 * Now on exit of the first NMI, we first clear the stack variable 1186 * The NMI stack will tell any nested NMIs at that point that it is 1187 * nested. Then we pop the stack normally with iret, and if there was 1188 * a nested NMI that updated the copy interrupt stack frame, a 1189 * jump will be made to the repeat_nmi code that will handle the second 1190 * NMI. 1191 * 1192 * However, espfix prevents us from directly returning to userspace 1193 * with a single IRET instruction. Similarly, IRET to user mode 1194 * can fault. We therefore handle NMIs from user space like 1195 * other IST entries. 1196 */ 1197 1198 ASM_CLAC 1199 cld 1200 1201 /* Use %rdx as our temp variable throughout */ 1202 pushq %rdx 1203 1204 testb $3, CS-RIP+8(%rsp) 1205 jz .Lnmi_from_kernel 1206 1207 /* 1208 * NMI from user mode. We need to run on the thread stack, but we 1209 * can't go through the normal entry paths: NMIs are masked, and 1210 * we don't want to enable interrupts, because then we'll end 1211 * up in an awkward situation in which IRQs are on but NMIs 1212 * are off. 1213 * 1214 * We also must not push anything to the stack before switching 1215 * stacks lest we corrupt the "NMI executing" variable. 1216 */ 1217 1218 swapgs 1219 FENCE_SWAPGS_USER_ENTRY 1220 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1221 movq %rsp, %rdx 1222 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp 1223 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1224 pushq 5*8(%rdx) /* pt_regs->ss */ 1225 pushq 4*8(%rdx) /* pt_regs->rsp */ 1226 pushq 3*8(%rdx) /* pt_regs->flags */ 1227 pushq 2*8(%rdx) /* pt_regs->cs */ 1228 pushq 1*8(%rdx) /* pt_regs->rip */ 1229 UNWIND_HINT_IRET_REGS 1230 pushq $-1 /* pt_regs->orig_ax */ 1231 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1232 ENCODE_FRAME_POINTER 1233 1234 IBRS_ENTER 1235 UNTRAIN_RET 1236 1237 /* 1238 * At this point we no longer need to worry about stack damage 1239 * due to nesting -- we're on the normal thread stack and we're 1240 * done with the NMI stack. 1241 */ 1242 1243 movq %rsp, %rdi 1244 movq $-1, %rsi 1245 call exc_nmi 1246 1247 /* 1248 * Return back to user mode. We must *not* do the normal exit 1249 * work, because we don't want to enable interrupts. 1250 */ 1251 jmp swapgs_restore_regs_and_return_to_usermode 1252 1253.Lnmi_from_kernel: 1254 /* 1255 * Here's what our stack frame will look like: 1256 * +---------------------------------------------------------+ 1257 * | original SS | 1258 * | original Return RSP | 1259 * | original RFLAGS | 1260 * | original CS | 1261 * | original RIP | 1262 * +---------------------------------------------------------+ 1263 * | temp storage for rdx | 1264 * +---------------------------------------------------------+ 1265 * | "NMI executing" variable | 1266 * +---------------------------------------------------------+ 1267 * | iret SS } Copied from "outermost" frame | 1268 * | iret Return RSP } on each loop iteration; overwritten | 1269 * | iret RFLAGS } by a nested NMI to force another | 1270 * | iret CS } iteration if needed. | 1271 * | iret RIP } | 1272 * +---------------------------------------------------------+ 1273 * | outermost SS } initialized in first_nmi; | 1274 * | outermost Return RSP } will not be changed before | 1275 * | outermost RFLAGS } NMI processing is done. | 1276 * | outermost CS } Copied to "iret" frame on each | 1277 * | outermost RIP } iteration. | 1278 * +---------------------------------------------------------+ 1279 * | pt_regs | 1280 * +---------------------------------------------------------+ 1281 * 1282 * The "original" frame is used by hardware. Before re-enabling 1283 * NMIs, we need to be done with it, and we need to leave enough 1284 * space for the asm code here. 1285 * 1286 * We return by executing IRET while RSP points to the "iret" frame. 1287 * That will either return for real or it will loop back into NMI 1288 * processing. 1289 * 1290 * The "outermost" frame is copied to the "iret" frame on each 1291 * iteration of the loop, so each iteration starts with the "iret" 1292 * frame pointing to the final return target. 1293 */ 1294 1295 /* 1296 * Determine whether we're a nested NMI. 1297 * 1298 * If we interrupted kernel code between repeat_nmi and 1299 * end_repeat_nmi, then we are a nested NMI. We must not 1300 * modify the "iret" frame because it's being written by 1301 * the outer NMI. That's okay; the outer NMI handler is 1302 * about to about to call exc_nmi() anyway, so we can just 1303 * resume the outer NMI. 1304 */ 1305 1306 movq $repeat_nmi, %rdx 1307 cmpq 8(%rsp), %rdx 1308 ja 1f 1309 movq $end_repeat_nmi, %rdx 1310 cmpq 8(%rsp), %rdx 1311 ja nested_nmi_out 13121: 1313 1314 /* 1315 * Now check "NMI executing". If it's set, then we're nested. 1316 * This will not detect if we interrupted an outer NMI just 1317 * before IRET. 1318 */ 1319 cmpl $1, -8(%rsp) 1320 je nested_nmi 1321 1322 /* 1323 * Now test if the previous stack was an NMI stack. This covers 1324 * the case where we interrupt an outer NMI after it clears 1325 * "NMI executing" but before IRET. We need to be careful, though: 1326 * there is one case in which RSP could point to the NMI stack 1327 * despite there being no NMI active: naughty userspace controls 1328 * RSP at the very beginning of the SYSCALL targets. We can 1329 * pull a fast one on naughty userspace, though: we program 1330 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1331 * if it controls the kernel's RSP. We set DF before we clear 1332 * "NMI executing". 1333 */ 1334 lea 6*8(%rsp), %rdx 1335 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1336 cmpq %rdx, 4*8(%rsp) 1337 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1338 ja first_nmi 1339 1340 subq $EXCEPTION_STKSZ, %rdx 1341 cmpq %rdx, 4*8(%rsp) 1342 /* If it is below the NMI stack, it is a normal NMI */ 1343 jb first_nmi 1344 1345 /* Ah, it is within the NMI stack. */ 1346 1347 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1348 jz first_nmi /* RSP was user controlled. */ 1349 1350 /* This is a nested NMI. */ 1351 1352nested_nmi: 1353 /* 1354 * Modify the "iret" frame to point to repeat_nmi, forcing another 1355 * iteration of NMI handling. 1356 */ 1357 subq $8, %rsp 1358 leaq -10*8(%rsp), %rdx 1359 pushq $__KERNEL_DS 1360 pushq %rdx 1361 pushfq 1362 pushq $__KERNEL_CS 1363 pushq $repeat_nmi 1364 1365 /* Put stack back */ 1366 addq $(6*8), %rsp 1367 1368nested_nmi_out: 1369 popq %rdx 1370 1371 /* We are returning to kernel mode, so this cannot result in a fault. */ 1372 iretq 1373 1374first_nmi: 1375 /* Restore rdx. */ 1376 movq (%rsp), %rdx 1377 1378 /* Make room for "NMI executing". */ 1379 pushq $0 1380 1381 /* Leave room for the "iret" frame */ 1382 subq $(5*8), %rsp 1383 1384 /* Copy the "original" frame to the "outermost" frame */ 1385 .rept 5 1386 pushq 11*8(%rsp) 1387 .endr 1388 UNWIND_HINT_IRET_REGS 1389 1390 /* Everything up to here is safe from nested NMIs */ 1391 1392#ifdef CONFIG_DEBUG_ENTRY 1393 /* 1394 * For ease of testing, unmask NMIs right away. Disabled by 1395 * default because IRET is very expensive. 1396 */ 1397 pushq $0 /* SS */ 1398 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1399 addq $8, (%rsp) /* Fix up RSP */ 1400 pushfq /* RFLAGS */ 1401 pushq $__KERNEL_CS /* CS */ 1402 pushq $1f /* RIP */ 1403 iretq /* continues at repeat_nmi below */ 1404 UNWIND_HINT_IRET_REGS 14051: 1406#endif 1407 1408repeat_nmi: 1409 ANNOTATE_NOENDBR // this code 1410 /* 1411 * If there was a nested NMI, the first NMI's iret will return 1412 * here. But NMIs are still enabled and we can take another 1413 * nested NMI. The nested NMI checks the interrupted RIP to see 1414 * if it is between repeat_nmi and end_repeat_nmi, and if so 1415 * it will just return, as we are about to repeat an NMI anyway. 1416 * This makes it safe to copy to the stack frame that a nested 1417 * NMI will update. 1418 * 1419 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1420 * we're repeating an NMI, gsbase has the same value that it had on 1421 * the first iteration. paranoid_entry will load the kernel 1422 * gsbase if needed before we call exc_nmi(). "NMI executing" 1423 * is zero. 1424 */ 1425 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1426 1427 /* 1428 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1429 * here must not modify the "iret" frame while we're writing to 1430 * it or it will end up containing garbage. 1431 */ 1432 addq $(10*8), %rsp 1433 .rept 5 1434 pushq -6*8(%rsp) 1435 .endr 1436 subq $(5*8), %rsp 1437end_repeat_nmi: 1438 ANNOTATE_NOENDBR // this code 1439 1440 /* 1441 * Everything below this point can be preempted by a nested NMI. 1442 * If this happens, then the inner NMI will change the "iret" 1443 * frame to point back to repeat_nmi. 1444 */ 1445 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1446 1447 /* 1448 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1449 * as we should not be calling schedule in NMI context. 1450 * Even with normal interrupts enabled. An NMI should not be 1451 * setting NEED_RESCHED or anything that normal interrupts and 1452 * exceptions might do. 1453 */ 1454 call paranoid_entry 1455 UNWIND_HINT_REGS 1456 1457 movq %rsp, %rdi 1458 movq $-1, %rsi 1459 call exc_nmi 1460 1461 /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */ 1462 IBRS_EXIT save_reg=%r15 1463 1464 /* Always restore stashed CR3 value (see paranoid_entry) */ 1465 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1466 1467 /* 1468 * The above invocation of paranoid_entry stored the GSBASE 1469 * related information in R/EBX depending on the availability 1470 * of FSGSBASE. 1471 * 1472 * If FSGSBASE is enabled, restore the saved GSBASE value 1473 * unconditionally, otherwise take the conditional SWAPGS path. 1474 */ 1475 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1476 1477 wrgsbase %rbx 1478 jmp nmi_restore 1479 1480nmi_no_fsgsbase: 1481 /* EBX == 0 -> invoke SWAPGS */ 1482 testl %ebx, %ebx 1483 jnz nmi_restore 1484 1485nmi_swapgs: 1486 swapgs 1487 1488nmi_restore: 1489 POP_REGS 1490 1491 /* 1492 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1493 * at the "iret" frame. 1494 */ 1495 addq $6*8, %rsp 1496 1497 /* 1498 * Clear "NMI executing". Set DF first so that we can easily 1499 * distinguish the remaining code between here and IRET from 1500 * the SYSCALL entry and exit paths. 1501 * 1502 * We arguably should just inspect RIP instead, but I (Andy) wrote 1503 * this code when I had the misapprehension that Xen PV supported 1504 * NMIs, and Xen PV would break that approach. 1505 */ 1506 std 1507 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1508 1509 /* 1510 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like 1511 * NMI in kernel after user state is restored. For an unprivileged user 1512 * these conditions are hard to meet. 1513 */ 1514 1515 /* 1516 * iretq reads the "iret" frame and exits the NMI stack in a 1517 * single instruction. We are returning to kernel mode, so this 1518 * cannot result in a fault. Similarly, we don't need to worry 1519 * about espfix64 on the way back to kernel mode. 1520 */ 1521 iretq 1522SYM_CODE_END(asm_exc_nmi) 1523 1524#ifndef CONFIG_IA32_EMULATION 1525/* 1526 * This handles SYSCALL from 32-bit code. There is no way to program 1527 * MSRs to fully disable 32-bit SYSCALL. 1528 */ 1529SYM_CODE_START(ignore_sysret) 1530 UNWIND_HINT_END_OF_STACK 1531 ENDBR 1532 mov $-ENOSYS, %eax 1533 CLEAR_CPU_BUFFERS 1534 sysretl 1535SYM_CODE_END(ignore_sysret) 1536#endif 1537 1538.pushsection .text, "ax" 1539 __FUNC_ALIGN 1540SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead) 1541 UNWIND_HINT_FUNC 1542 /* Prevent any naive code from trying to unwind to our caller. */ 1543 xorl %ebp, %ebp 1544 1545 movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax 1546 leaq -PTREGS_SIZE(%rax), %rsp 1547 UNWIND_HINT_REGS 1548 1549 call make_task_dead 1550SYM_CODE_END(rewind_stack_and_make_dead) 1551.popsection 1552