1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/arch/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls.  The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries.  There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax  system call number
70 * rcx  return address
71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi  arg0
73 * rsi  arg1
74 * rdx  arg2
75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8   arg4
77 * r9   arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88	UNWIND_HINT_ENTRY
89	ENDBR
90
91	swapgs
92	/* tss.sp2 is scratch space. */
93	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
94	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
95	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
96
97SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
98	ANNOTATE_NOENDBR
99
100	/* Construct struct pt_regs on stack */
101	pushq	$__USER_DS				/* pt_regs->ss */
102	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
103	pushq	%r11					/* pt_regs->flags */
104	pushq	$__USER_CS				/* pt_regs->cs */
105	pushq	%rcx					/* pt_regs->ip */
106SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
107	pushq	%rax					/* pt_regs->orig_ax */
108
109	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
110
111	/* IRQs are off. */
112	movq	%rsp, %rdi
113	/* Sign extend the lower 32bit as syscall numbers are treated as int */
114	movslq	%eax, %rsi
115
116	/* clobbers %rax, make sure it is after saving the syscall nr */
117	IBRS_ENTER
118	UNTRAIN_RET
119
120	call	do_syscall_64		/* returns with IRQs disabled */
121
122	/*
123	 * Try to use SYSRET instead of IRET if we're returning to
124	 * a completely clean 64-bit userspace context.  If we're not,
125	 * go to the slow exit path.
126	 * In the Xen PV case we must use iret anyway.
127	 */
128
129	ALTERNATIVE "", "jmp	swapgs_restore_regs_and_return_to_usermode", \
130		X86_FEATURE_XENPV
131
132	movq	RCX(%rsp), %rcx
133	movq	RIP(%rsp), %r11
134
135	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
136	jne	swapgs_restore_regs_and_return_to_usermode
137
138	/*
139	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
140	 * in kernel space.  This essentially lets the user take over
141	 * the kernel, since userspace controls RSP.
142	 *
143	 * If width of "canonical tail" ever becomes variable, this will need
144	 * to be updated to remain correct on both old and new CPUs.
145	 *
146	 * Change top bits to match most significant bit (47th or 56th bit
147	 * depending on paging mode) in the address.
148	 */
149#ifdef CONFIG_X86_5LEVEL
150	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
151		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
152#else
153	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
154	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
155#endif
156
157	/* If this changed %rcx, it was not canonical */
158	cmpq	%rcx, %r11
159	jne	swapgs_restore_regs_and_return_to_usermode
160
161	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
162	jne	swapgs_restore_regs_and_return_to_usermode
163
164	movq	R11(%rsp), %r11
165	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
166	jne	swapgs_restore_regs_and_return_to_usermode
167
168	/*
169	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
170	 * restore RF properly. If the slowpath sets it for whatever reason, we
171	 * need to restore it correctly.
172	 *
173	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
174	 * trap from userspace immediately after SYSRET.  This would cause an
175	 * infinite loop whenever #DB happens with register state that satisfies
176	 * the opportunistic SYSRET conditions.  For example, single-stepping
177	 * this user code:
178	 *
179	 *           movq	$stuck_here, %rcx
180	 *           pushfq
181	 *           popq %r11
182	 *   stuck_here:
183	 *
184	 * would never get past 'stuck_here'.
185	 */
186	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
187	jnz	swapgs_restore_regs_and_return_to_usermode
188
189	/* nothing to check for RSP */
190
191	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
192	jne	swapgs_restore_regs_and_return_to_usermode
193
194	/*
195	 * We win! This label is here just for ease of understanding
196	 * perf profiles. Nothing jumps here.
197	 */
198syscall_return_via_sysret:
199	IBRS_EXIT
200	POP_REGS pop_rdi=0
201
202	/*
203	 * Now all regs are restored except RSP and RDI.
204	 * Save old stack pointer and switch to trampoline stack.
205	 */
206	movq	%rsp, %rdi
207	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
208	UNWIND_HINT_END_OF_STACK
209
210	pushq	RSP-RDI(%rdi)	/* RSP */
211	pushq	(%rdi)		/* RDI */
212
213	/*
214	 * We are on the trampoline stack.  All regs except RDI are live.
215	 * We can do future final exit work right here.
216	 */
217	STACKLEAK_ERASE_NOCLOBBER
218
219	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
220
221	popq	%rdi
222	popq	%rsp
223SYM_INNER_LABEL(entry_SYSRETQ_unsafe_stack, SYM_L_GLOBAL)
224	ANNOTATE_NOENDBR
225	swapgs
226	CLEAR_CPU_BUFFERS
227	sysretq
228SYM_INNER_LABEL(entry_SYSRETQ_end, SYM_L_GLOBAL)
229	ANNOTATE_NOENDBR
230	int3
231SYM_CODE_END(entry_SYSCALL_64)
232
233/*
234 * %rdi: prev task
235 * %rsi: next task
236 */
237.pushsection .text, "ax"
238SYM_FUNC_START(__switch_to_asm)
239	/*
240	 * Save callee-saved registers
241	 * This must match the order in inactive_task_frame
242	 */
243	pushq	%rbp
244	pushq	%rbx
245	pushq	%r12
246	pushq	%r13
247	pushq	%r14
248	pushq	%r15
249
250	/* switch stack */
251	movq	%rsp, TASK_threadsp(%rdi)
252	movq	TASK_threadsp(%rsi), %rsp
253
254#ifdef CONFIG_STACKPROTECTOR
255	movq	TASK_stack_canary(%rsi), %rbx
256	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + FIXED_stack_canary
257#endif
258
259	/*
260	 * When switching from a shallower to a deeper call stack
261	 * the RSB may either underflow or use entries populated
262	 * with userspace addresses. On CPUs where those concerns
263	 * exist, overwrite the RSB with entries which capture
264	 * speculative execution to prevent attack.
265	 */
266	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
267
268	/* restore callee-saved registers */
269	popq	%r15
270	popq	%r14
271	popq	%r13
272	popq	%r12
273	popq	%rbx
274	popq	%rbp
275
276	jmp	__switch_to
277SYM_FUNC_END(__switch_to_asm)
278.popsection
279
280/*
281 * A newly forked process directly context switches into this address.
282 *
283 * rax: prev task we switched from
284 * rbx: kernel thread func (NULL for user thread)
285 * r12: kernel thread arg
286 */
287.pushsection .text, "ax"
288SYM_CODE_START(ret_from_fork_asm)
289	/*
290	 * This is the start of the kernel stack; even through there's a
291	 * register set at the top, the regset isn't necessarily coherent
292	 * (consider kthreads) and one cannot unwind further.
293	 *
294	 * This ensures stack unwinds of kernel threads terminate in a known
295	 * good state.
296	 */
297	UNWIND_HINT_END_OF_STACK
298	ANNOTATE_NOENDBR // copy_thread
299	CALL_DEPTH_ACCOUNT
300
301	movq	%rax, %rdi		/* prev */
302	movq	%rsp, %rsi		/* regs */
303	movq	%rbx, %rdx		/* fn */
304	movq	%r12, %rcx		/* fn_arg */
305	call	ret_from_fork
306
307	/*
308	 * Set the stack state to what is expected for the target function
309	 * -- at this point the register set should be a valid user set
310	 * and unwind should work normally.
311	 */
312	UNWIND_HINT_REGS
313	jmp	swapgs_restore_regs_and_return_to_usermode
314SYM_CODE_END(ret_from_fork_asm)
315.popsection
316
317.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
318#ifdef CONFIG_DEBUG_ENTRY
319	pushq %rax
320	SAVE_FLAGS
321	testl $X86_EFLAGS_IF, %eax
322	jz .Lokay_\@
323	ud2
324.Lokay_\@:
325	popq %rax
326#endif
327.endm
328
329SYM_CODE_START(xen_error_entry)
330	ANNOTATE_NOENDBR
331	UNWIND_HINT_FUNC
332	PUSH_AND_CLEAR_REGS save_ret=1
333	ENCODE_FRAME_POINTER 8
334	UNTRAIN_RET_FROM_CALL
335	RET
336SYM_CODE_END(xen_error_entry)
337
338/**
339 * idtentry_body - Macro to emit code calling the C function
340 * @cfunc:		C function to be called
341 * @has_error_code:	Hardware pushed error code on stack
342 */
343.macro idtentry_body cfunc has_error_code:req
344
345	/*
346	 * Call error_entry() and switch to the task stack if from userspace.
347	 *
348	 * When in XENPV, it is already in the task stack, and it can't fault
349	 * for native_iret() nor native_load_gs_index() since XENPV uses its
350	 * own pvops for IRET and load_gs_index().  And it doesn't need to
351	 * switch the CR3.  So it can skip invoking error_entry().
352	 */
353	ALTERNATIVE "call error_entry; movq %rax, %rsp", \
354		    "call xen_error_entry", X86_FEATURE_XENPV
355
356	ENCODE_FRAME_POINTER
357	UNWIND_HINT_REGS
358
359	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
360
361	.if \has_error_code == 1
362		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
363		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
364	.endif
365
366	call	\cfunc
367
368	/* For some configurations \cfunc ends up being a noreturn. */
369	REACHABLE
370
371	jmp	error_return
372.endm
373
374/**
375 * idtentry - Macro to generate entry stubs for simple IDT entries
376 * @vector:		Vector number
377 * @asmsym:		ASM symbol for the entry point
378 * @cfunc:		C function to be called
379 * @has_error_code:	Hardware pushed error code on stack
380 *
381 * The macro emits code to set up the kernel context for straight forward
382 * and simple IDT entries. No IST stack, no paranoid entry checks.
383 */
384.macro idtentry vector asmsym cfunc has_error_code:req
385SYM_CODE_START(\asmsym)
386
387	.if \vector == X86_TRAP_BP
388		/* #BP advances %rip to the next instruction */
389		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8 signal=0
390	.else
391		UNWIND_HINT_IRET_ENTRY offset=\has_error_code*8
392	.endif
393
394	ENDBR
395	ASM_CLAC
396	cld
397
398	.if \has_error_code == 0
399		pushq	$-1			/* ORIG_RAX: no syscall to restart */
400	.endif
401
402	.if \vector == X86_TRAP_BP
403		/*
404		 * If coming from kernel space, create a 6-word gap to allow the
405		 * int3 handler to emulate a call instruction.
406		 */
407		testb	$3, CS-ORIG_RAX(%rsp)
408		jnz	.Lfrom_usermode_no_gap_\@
409		.rept	6
410		pushq	5*8(%rsp)
411		.endr
412		UNWIND_HINT_IRET_REGS offset=8
413.Lfrom_usermode_no_gap_\@:
414	.endif
415
416	idtentry_body \cfunc \has_error_code
417
418_ASM_NOKPROBE(\asmsym)
419SYM_CODE_END(\asmsym)
420.endm
421
422/*
423 * Interrupt entry/exit.
424 *
425 + The interrupt stubs push (vector) onto the stack, which is the error_code
426 * position of idtentry exceptions, and jump to one of the two idtentry points
427 * (common/spurious).
428 *
429 * common_interrupt is a hotpath, align it to a cache line
430 */
431.macro idtentry_irq vector cfunc
432	.p2align CONFIG_X86_L1_CACHE_SHIFT
433	idtentry \vector asm_\cfunc \cfunc has_error_code=1
434.endm
435
436/*
437 * System vectors which invoke their handlers directly and are not
438 * going through the regular common device interrupt handling code.
439 */
440.macro idtentry_sysvec vector cfunc
441	idtentry \vector asm_\cfunc \cfunc has_error_code=0
442.endm
443
444/**
445 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
446 * @vector:		Vector number
447 * @asmsym:		ASM symbol for the entry point
448 * @cfunc:		C function to be called
449 *
450 * The macro emits code to set up the kernel context for #MC and #DB
451 *
452 * If the entry comes from user space it uses the normal entry path
453 * including the return to user space work and preemption checks on
454 * exit.
455 *
456 * If hits in kernel mode then it needs to go through the paranoid
457 * entry as the exception can hit any random state. No preemption
458 * check on exit to keep the paranoid path simple.
459 */
460.macro idtentry_mce_db vector asmsym cfunc
461SYM_CODE_START(\asmsym)
462	UNWIND_HINT_IRET_ENTRY
463	ENDBR
464	ASM_CLAC
465	cld
466
467	pushq	$-1			/* ORIG_RAX: no syscall to restart */
468
469	/*
470	 * If the entry is from userspace, switch stacks and treat it as
471	 * a normal entry.
472	 */
473	testb	$3, CS-ORIG_RAX(%rsp)
474	jnz	.Lfrom_usermode_switch_stack_\@
475
476	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
477	call	paranoid_entry
478
479	UNWIND_HINT_REGS
480
481	movq	%rsp, %rdi		/* pt_regs pointer */
482
483	call	\cfunc
484
485	jmp	paranoid_exit
486
487	/* Switch to the regular task stack and use the noist entry point */
488.Lfrom_usermode_switch_stack_\@:
489	idtentry_body noist_\cfunc, has_error_code=0
490
491_ASM_NOKPROBE(\asmsym)
492SYM_CODE_END(\asmsym)
493.endm
494
495#ifdef CONFIG_AMD_MEM_ENCRYPT
496/**
497 * idtentry_vc - Macro to generate entry stub for #VC
498 * @vector:		Vector number
499 * @asmsym:		ASM symbol for the entry point
500 * @cfunc:		C function to be called
501 *
502 * The macro emits code to set up the kernel context for #VC. The #VC handler
503 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
504 *
505 * To make this work the #VC entry code tries its best to pretend it doesn't use
506 * an IST stack by switching to the task stack if coming from user-space (which
507 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
508 * entered from kernel-mode.
509 *
510 * If entered from kernel-mode the return stack is validated first, and if it is
511 * not safe to use (e.g. because it points to the entry stack) the #VC handler
512 * will switch to a fall-back stack (VC2) and call a special handler function.
513 *
514 * The macro is only used for one vector, but it is planned to be extended in
515 * the future for the #HV exception.
516 */
517.macro idtentry_vc vector asmsym cfunc
518SYM_CODE_START(\asmsym)
519	UNWIND_HINT_IRET_ENTRY
520	ENDBR
521	ASM_CLAC
522	cld
523
524	/*
525	 * If the entry is from userspace, switch stacks and treat it as
526	 * a normal entry.
527	 */
528	testb	$3, CS-ORIG_RAX(%rsp)
529	jnz	.Lfrom_usermode_switch_stack_\@
530
531	/*
532	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
533	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
534	 */
535	call	paranoid_entry
536
537	UNWIND_HINT_REGS
538
539	/*
540	 * Switch off the IST stack to make it free for nested exceptions. The
541	 * vc_switch_off_ist() function will switch back to the interrupted
542	 * stack if it is safe to do so. If not it switches to the VC fall-back
543	 * stack.
544	 */
545	movq	%rsp, %rdi		/* pt_regs pointer */
546	call	vc_switch_off_ist
547	movq	%rax, %rsp		/* Switch to new stack */
548
549	ENCODE_FRAME_POINTER
550	UNWIND_HINT_REGS
551
552	/* Update pt_regs */
553	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
554	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
555
556	movq	%rsp, %rdi		/* pt_regs pointer */
557
558	call	kernel_\cfunc
559
560	/*
561	 * No need to switch back to the IST stack. The current stack is either
562	 * identical to the stack in the IRET frame or the VC fall-back stack,
563	 * so it is definitely mapped even with PTI enabled.
564	 */
565	jmp	paranoid_exit
566
567	/* Switch to the regular task stack */
568.Lfrom_usermode_switch_stack_\@:
569	idtentry_body user_\cfunc, has_error_code=1
570
571_ASM_NOKPROBE(\asmsym)
572SYM_CODE_END(\asmsym)
573.endm
574#endif
575
576/*
577 * Double fault entry. Straight paranoid. No checks from which context
578 * this comes because for the espfix induced #DF this would do the wrong
579 * thing.
580 */
581.macro idtentry_df vector asmsym cfunc
582SYM_CODE_START(\asmsym)
583	UNWIND_HINT_IRET_ENTRY offset=8
584	ENDBR
585	ASM_CLAC
586	cld
587
588	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
589	call	paranoid_entry
590	UNWIND_HINT_REGS
591
592	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
593	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
594	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
595	call	\cfunc
596
597	/* For some configurations \cfunc ends up being a noreturn. */
598	REACHABLE
599
600	jmp	paranoid_exit
601
602_ASM_NOKPROBE(\asmsym)
603SYM_CODE_END(\asmsym)
604.endm
605
606/*
607 * Include the defines which emit the idt entries which are shared
608 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
609 * so the stacktrace boundary checks work.
610 */
611	__ALIGN
612	.globl __irqentry_text_start
613__irqentry_text_start:
614
615#include <asm/idtentry.h>
616
617	__ALIGN
618	.globl __irqentry_text_end
619__irqentry_text_end:
620	ANNOTATE_NOENDBR
621
622SYM_CODE_START_LOCAL(common_interrupt_return)
623SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
624	IBRS_EXIT
625#ifdef CONFIG_DEBUG_ENTRY
626	/* Assert that pt_regs indicates user mode. */
627	testb	$3, CS(%rsp)
628	jnz	1f
629	ud2
6301:
631#endif
632#ifdef CONFIG_XEN_PV
633	ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
634#endif
635
636	POP_REGS pop_rdi=0
637
638	/*
639	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
640	 * Save old stack pointer and switch to trampoline stack.
641	 */
642	movq	%rsp, %rdi
643	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
644	UNWIND_HINT_END_OF_STACK
645
646	/* Copy the IRET frame to the trampoline stack. */
647	pushq	6*8(%rdi)	/* SS */
648	pushq	5*8(%rdi)	/* RSP */
649	pushq	4*8(%rdi)	/* EFLAGS */
650	pushq	3*8(%rdi)	/* CS */
651	pushq	2*8(%rdi)	/* RIP */
652
653	/* Push user RDI on the trampoline stack. */
654	pushq	(%rdi)
655
656	/*
657	 * We are on the trampoline stack.  All regs except RDI are live.
658	 * We can do future final exit work right here.
659	 */
660	STACKLEAK_ERASE_NOCLOBBER
661
662	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
663
664	/* Restore RDI. */
665	popq	%rdi
666	swapgs
667	CLEAR_CPU_BUFFERS
668	jmp	.Lnative_iret
669
670
671SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
672#ifdef CONFIG_DEBUG_ENTRY
673	/* Assert that pt_regs indicates kernel mode. */
674	testb	$3, CS(%rsp)
675	jz	1f
676	ud2
6771:
678#endif
679	POP_REGS
680	addq	$8, %rsp	/* skip regs->orig_ax */
681	/*
682	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
683	 * when returning from IPI handler.
684	 */
685#ifdef CONFIG_XEN_PV
686SYM_INNER_LABEL(early_xen_iret_patch, SYM_L_GLOBAL)
687	ANNOTATE_NOENDBR
688	.byte 0xe9
689	.long .Lnative_iret - (. + 4)
690#endif
691
692.Lnative_iret:
693	UNWIND_HINT_IRET_REGS
694	/*
695	 * Are we returning to a stack segment from the LDT?  Note: in
696	 * 64-bit mode SS:RSP on the exception stack is always valid.
697	 */
698#ifdef CONFIG_X86_ESPFIX64
699	testb	$4, (SS-RIP)(%rsp)
700	jnz	native_irq_return_ldt
701#endif
702
703SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
704	ANNOTATE_NOENDBR // exc_double_fault
705	/*
706	 * This may fault.  Non-paranoid faults on return to userspace are
707	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
708	 * Double-faults due to espfix64 are handled in exc_double_fault.
709	 * Other faults here are fatal.
710	 */
711	iretq
712
713#ifdef CONFIG_X86_ESPFIX64
714native_irq_return_ldt:
715	/*
716	 * We are running with user GSBASE.  All GPRs contain their user
717	 * values.  We have a percpu ESPFIX stack that is eight slots
718	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
719	 * of the ESPFIX stack.
720	 *
721	 * We clobber RAX and RDI in this code.  We stash RDI on the
722	 * normal stack and RAX on the ESPFIX stack.
723	 *
724	 * The ESPFIX stack layout we set up looks like this:
725	 *
726	 * --- top of ESPFIX stack ---
727	 * SS
728	 * RSP
729	 * RFLAGS
730	 * CS
731	 * RIP  <-- RSP points here when we're done
732	 * RAX  <-- espfix_waddr points here
733	 * --- bottom of ESPFIX stack ---
734	 */
735
736	pushq	%rdi				/* Stash user RDI */
737	swapgs					/* to kernel GS */
738	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
739
740	movq	PER_CPU_VAR(espfix_waddr), %rdi
741	movq	%rax, (0*8)(%rdi)		/* user RAX */
742	movq	(1*8)(%rsp), %rax		/* user RIP */
743	movq	%rax, (1*8)(%rdi)
744	movq	(2*8)(%rsp), %rax		/* user CS */
745	movq	%rax, (2*8)(%rdi)
746	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
747	movq	%rax, (3*8)(%rdi)
748	movq	(5*8)(%rsp), %rax		/* user SS */
749	movq	%rax, (5*8)(%rdi)
750	movq	(4*8)(%rsp), %rax		/* user RSP */
751	movq	%rax, (4*8)(%rdi)
752	/* Now RAX == RSP. */
753
754	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
755
756	/*
757	 * espfix_stack[31:16] == 0.  The page tables are set up such that
758	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
759	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
760	 * the same page.  Set up RSP so that RSP[31:16] contains the
761	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
762	 * still points to an RO alias of the ESPFIX stack.
763	 */
764	orq	PER_CPU_VAR(espfix_stack), %rax
765
766	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
767	swapgs					/* to user GS */
768	popq	%rdi				/* Restore user RDI */
769
770	movq	%rax, %rsp
771	UNWIND_HINT_IRET_REGS offset=8
772
773	/*
774	 * At this point, we cannot write to the stack any more, but we can
775	 * still read.
776	 */
777	popq	%rax				/* Restore user RAX */
778
779	CLEAR_CPU_BUFFERS
780
781	/*
782	 * RSP now points to an ordinary IRET frame, except that the page
783	 * is read-only and RSP[31:16] are preloaded with the userspace
784	 * values.  We can now IRET back to userspace.
785	 */
786	jmp	native_irq_return_iret
787#endif
788SYM_CODE_END(common_interrupt_return)
789_ASM_NOKPROBE(common_interrupt_return)
790
791/*
792 * Reload gs selector with exception handling
793 *  di:  new selector
794 *
795 * Is in entry.text as it shouldn't be instrumented.
796 */
797SYM_FUNC_START(asm_load_gs_index)
798	FRAME_BEGIN
799	swapgs
800.Lgs_change:
801	ANNOTATE_NOENDBR // error_entry
802	movl	%edi, %gs
8032:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
804	swapgs
805	FRAME_END
806	RET
807
808	/* running with kernelgs */
809.Lbad_gs:
810	swapgs					/* switch back to user gs */
811.macro ZAP_GS
812	/* This can't be a string because the preprocessor needs to see it. */
813	movl $__USER_DS, %eax
814	movl %eax, %gs
815.endm
816	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
817	xorl	%eax, %eax
818	movl	%eax, %gs
819	jmp	2b
820
821	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
822
823SYM_FUNC_END(asm_load_gs_index)
824EXPORT_SYMBOL(asm_load_gs_index)
825
826#ifdef CONFIG_XEN_PV
827/*
828 * A note on the "critical region" in our callback handler.
829 * We want to avoid stacking callback handlers due to events occurring
830 * during handling of the last event. To do this, we keep events disabled
831 * until we've done all processing. HOWEVER, we must enable events before
832 * popping the stack frame (can't be done atomically) and so it would still
833 * be possible to get enough handler activations to overflow the stack.
834 * Although unlikely, bugs of that kind are hard to track down, so we'd
835 * like to avoid the possibility.
836 * So, on entry to the handler we detect whether we interrupted an
837 * existing activation in its critical region -- if so, we pop the current
838 * activation and restart the handler using the previous one.
839 *
840 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
841 */
842	__FUNC_ALIGN
843SYM_CODE_START_LOCAL_NOALIGN(exc_xen_hypervisor_callback)
844
845/*
846 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
847 * see the correct pointer to the pt_regs
848 */
849	UNWIND_HINT_FUNC
850	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
851	UNWIND_HINT_REGS
852
853	call	xen_pv_evtchn_do_upcall
854
855	jmp	error_return
856SYM_CODE_END(exc_xen_hypervisor_callback)
857
858/*
859 * Hypervisor uses this for application faults while it executes.
860 * We get here for two reasons:
861 *  1. Fault while reloading DS, ES, FS or GS
862 *  2. Fault while executing IRET
863 * Category 1 we do not need to fix up as Xen has already reloaded all segment
864 * registers that could be reloaded and zeroed the others.
865 * Category 2 we fix up by killing the current process. We cannot use the
866 * normal Linux return path in this case because if we use the IRET hypercall
867 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
868 * We distinguish between categories by comparing each saved segment register
869 * with its current contents: any discrepancy means we in category 1.
870 */
871	__FUNC_ALIGN
872SYM_CODE_START_NOALIGN(xen_failsafe_callback)
873	UNWIND_HINT_UNDEFINED
874	ENDBR
875	movl	%ds, %ecx
876	cmpw	%cx, 0x10(%rsp)
877	jne	1f
878	movl	%es, %ecx
879	cmpw	%cx, 0x18(%rsp)
880	jne	1f
881	movl	%fs, %ecx
882	cmpw	%cx, 0x20(%rsp)
883	jne	1f
884	movl	%gs, %ecx
885	cmpw	%cx, 0x28(%rsp)
886	jne	1f
887	/* All segments match their saved values => Category 2 (Bad IRET). */
888	movq	(%rsp), %rcx
889	movq	8(%rsp), %r11
890	addq	$0x30, %rsp
891	pushq	$0				/* RIP */
892	UNWIND_HINT_IRET_REGS offset=8
893	jmp	asm_exc_general_protection
8941:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
895	movq	(%rsp), %rcx
896	movq	8(%rsp), %r11
897	addq	$0x30, %rsp
898	UNWIND_HINT_IRET_REGS
899	pushq	$-1 /* orig_ax = -1 => not a system call */
900	PUSH_AND_CLEAR_REGS
901	ENCODE_FRAME_POINTER
902	jmp	error_return
903SYM_CODE_END(xen_failsafe_callback)
904#endif /* CONFIG_XEN_PV */
905
906/*
907 * Save all registers in pt_regs. Return GSBASE related information
908 * in EBX depending on the availability of the FSGSBASE instructions:
909 *
910 * FSGSBASE	R/EBX
911 *     N        0 -> SWAPGS on exit
912 *              1 -> no SWAPGS on exit
913 *
914 *     Y        GSBASE value at entry, must be restored in paranoid_exit
915 *
916 * R14 - old CR3
917 * R15 - old SPEC_CTRL
918 */
919SYM_CODE_START(paranoid_entry)
920	ANNOTATE_NOENDBR
921	UNWIND_HINT_FUNC
922	PUSH_AND_CLEAR_REGS save_ret=1
923	ENCODE_FRAME_POINTER 8
924
925	/*
926	 * Always stash CR3 in %r14.  This value will be restored,
927	 * verbatim, at exit.  Needed if paranoid_entry interrupted
928	 * another entry that already switched to the user CR3 value
929	 * but has not yet returned to userspace.
930	 *
931	 * This is also why CS (stashed in the "iret frame" by the
932	 * hardware at entry) can not be used: this may be a return
933	 * to kernel code, but with a user CR3 value.
934	 *
935	 * Switching CR3 does not depend on kernel GSBASE so it can
936	 * be done before switching to the kernel GSBASE. This is
937	 * required for FSGSBASE because the kernel GSBASE has to
938	 * be retrieved from a kernel internal table.
939	 */
940	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
941
942	/*
943	 * Handling GSBASE depends on the availability of FSGSBASE.
944	 *
945	 * Without FSGSBASE the kernel enforces that negative GSBASE
946	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
947	 * can be made about the GSBASE value when entering from user
948	 * space.
949	 */
950	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
951
952	/*
953	 * Read the current GSBASE and store it in %rbx unconditionally,
954	 * retrieve and set the current CPUs kernel GSBASE. The stored value
955	 * has to be restored in paranoid_exit unconditionally.
956	 *
957	 * The unconditional write to GS base below ensures that no subsequent
958	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
959	 * is needed here.
960	 */
961	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
962	jmp .Lparanoid_gsbase_done
963
964.Lparanoid_entry_checkgs:
965	/* EBX = 1 -> kernel GSBASE active, no restore required */
966	movl	$1, %ebx
967
968	/*
969	 * The kernel-enforced convention is a negative GSBASE indicates
970	 * a kernel value. No SWAPGS needed on entry and exit.
971	 */
972	movl	$MSR_GS_BASE, %ecx
973	rdmsr
974	testl	%edx, %edx
975	js	.Lparanoid_kernel_gsbase
976
977	/* EBX = 0 -> SWAPGS required on exit */
978	xorl	%ebx, %ebx
979	swapgs
980.Lparanoid_kernel_gsbase:
981	FENCE_SWAPGS_KERNEL_ENTRY
982.Lparanoid_gsbase_done:
983
984	/*
985	 * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
986	 * CR3 above, keep the old value in a callee saved register.
987	 */
988	IBRS_ENTER save_reg=%r15
989	UNTRAIN_RET_FROM_CALL
990
991	RET
992SYM_CODE_END(paranoid_entry)
993
994/*
995 * "Paranoid" exit path from exception stack.  This is invoked
996 * only on return from non-NMI IST interrupts that came
997 * from kernel space.
998 *
999 * We may be returning to very strange contexts (e.g. very early
1000 * in syscall entry), so checking for preemption here would
1001 * be complicated.  Fortunately, there's no good reason to try
1002 * to handle preemption here.
1003 *
1004 * R/EBX contains the GSBASE related information depending on the
1005 * availability of the FSGSBASE instructions:
1006 *
1007 * FSGSBASE	R/EBX
1008 *     N        0 -> SWAPGS on exit
1009 *              1 -> no SWAPGS on exit
1010 *
1011 *     Y        User space GSBASE, must be restored unconditionally
1012 *
1013 * R14 - old CR3
1014 * R15 - old SPEC_CTRL
1015 */
1016SYM_CODE_START_LOCAL(paranoid_exit)
1017	UNWIND_HINT_REGS
1018
1019	/*
1020	 * Must restore IBRS state before both CR3 and %GS since we need access
1021	 * to the per-CPU x86_spec_ctrl_shadow variable.
1022	 */
1023	IBRS_EXIT save_reg=%r15
1024
1025	/*
1026	 * The order of operations is important. RESTORE_CR3 requires
1027	 * kernel GSBASE.
1028	 *
1029	 * NB to anyone to try to optimize this code: this code does
1030	 * not execute at all for exceptions from user mode. Those
1031	 * exceptions go through error_return instead.
1032	 */
1033	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
1034
1035	/* Handle the three GSBASE cases */
1036	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
1037
1038	/* With FSGSBASE enabled, unconditionally restore GSBASE */
1039	wrgsbase	%rbx
1040	jmp		restore_regs_and_return_to_kernel
1041
1042.Lparanoid_exit_checkgs:
1043	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1044	testl		%ebx, %ebx
1045	jnz		restore_regs_and_return_to_kernel
1046
1047	/* We are returning to a context with user GSBASE */
1048	swapgs
1049	jmp		restore_regs_and_return_to_kernel
1050SYM_CODE_END(paranoid_exit)
1051
1052/*
1053 * Switch GS and CR3 if needed.
1054 */
1055SYM_CODE_START(error_entry)
1056	ANNOTATE_NOENDBR
1057	UNWIND_HINT_FUNC
1058
1059	PUSH_AND_CLEAR_REGS save_ret=1
1060	ENCODE_FRAME_POINTER 8
1061
1062	testb	$3, CS+8(%rsp)
1063	jz	.Lerror_kernelspace
1064
1065	/*
1066	 * We entered from user mode or we're pretending to have entered
1067	 * from user mode due to an IRET fault.
1068	 */
1069	swapgs
1070	FENCE_SWAPGS_USER_ENTRY
1071	/* We have user CR3.  Change to kernel CR3. */
1072	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1073	IBRS_ENTER
1074	UNTRAIN_RET_FROM_CALL
1075
1076	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1077	/* Put us onto the real thread stack. */
1078	jmp	sync_regs
1079
1080	/*
1081	 * There are two places in the kernel that can potentially fault with
1082	 * usergs. Handle them here.  B stepping K8s sometimes report a
1083	 * truncated RIP for IRET exceptions returning to compat mode. Check
1084	 * for these here too.
1085	 */
1086.Lerror_kernelspace:
1087	leaq	native_irq_return_iret(%rip), %rcx
1088	cmpq	%rcx, RIP+8(%rsp)
1089	je	.Lerror_bad_iret
1090	movl	%ecx, %eax			/* zero extend */
1091	cmpq	%rax, RIP+8(%rsp)
1092	je	.Lbstep_iret
1093	cmpq	$.Lgs_change, RIP+8(%rsp)
1094	jne	.Lerror_entry_done_lfence
1095
1096	/*
1097	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1098	 * gsbase and proceed.  We'll fix up the exception and land in
1099	 * .Lgs_change's error handler with kernel gsbase.
1100	 */
1101	swapgs
1102
1103	/*
1104	 * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
1105	 * kernel or user gsbase.
1106	 */
1107.Lerror_entry_done_lfence:
1108	FENCE_SWAPGS_KERNEL_ENTRY
1109	CALL_DEPTH_ACCOUNT
1110	leaq	8(%rsp), %rax			/* return pt_regs pointer */
1111	VALIDATE_UNRET_END
1112	RET
1113
1114.Lbstep_iret:
1115	/* Fix truncated RIP */
1116	movq	%rcx, RIP+8(%rsp)
1117	/* fall through */
1118
1119.Lerror_bad_iret:
1120	/*
1121	 * We came from an IRET to user mode, so we have user
1122	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1123	 */
1124	swapgs
1125	FENCE_SWAPGS_USER_ENTRY
1126	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1127	IBRS_ENTER
1128	UNTRAIN_RET_FROM_CALL
1129
1130	/*
1131	 * Pretend that the exception came from user mode: set up pt_regs
1132	 * as if we faulted immediately after IRET.
1133	 */
1134	leaq	8(%rsp), %rdi			/* arg0 = pt_regs pointer */
1135	call	fixup_bad_iret
1136	mov	%rax, %rdi
1137	jmp	sync_regs
1138SYM_CODE_END(error_entry)
1139
1140SYM_CODE_START_LOCAL(error_return)
1141	UNWIND_HINT_REGS
1142	DEBUG_ENTRY_ASSERT_IRQS_OFF
1143	testb	$3, CS(%rsp)
1144	jz	restore_regs_and_return_to_kernel
1145	jmp	swapgs_restore_regs_and_return_to_usermode
1146SYM_CODE_END(error_return)
1147
1148/*
1149 * Runs on exception stack.  Xen PV does not go through this path at all,
1150 * so we can use real assembly here.
1151 *
1152 * Registers:
1153 *	%r14: Used to save/restore the CR3 of the interrupted context
1154 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1155 */
1156SYM_CODE_START(asm_exc_nmi)
1157	UNWIND_HINT_IRET_ENTRY
1158	ENDBR
1159
1160	/*
1161	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1162	 * the iretq it performs will take us out of NMI context.
1163	 * This means that we can have nested NMIs where the next
1164	 * NMI is using the top of the stack of the previous NMI. We
1165	 * can't let it execute because the nested NMI will corrupt the
1166	 * stack of the previous NMI. NMI handlers are not re-entrant
1167	 * anyway.
1168	 *
1169	 * To handle this case we do the following:
1170	 *  Check the a special location on the stack that contains
1171	 *  a variable that is set when NMIs are executing.
1172	 *  The interrupted task's stack is also checked to see if it
1173	 *  is an NMI stack.
1174	 *  If the variable is not set and the stack is not the NMI
1175	 *  stack then:
1176	 *    o Set the special variable on the stack
1177	 *    o Copy the interrupt frame into an "outermost" location on the
1178	 *      stack
1179	 *    o Copy the interrupt frame into an "iret" location on the stack
1180	 *    o Continue processing the NMI
1181	 *  If the variable is set or the previous stack is the NMI stack:
1182	 *    o Modify the "iret" location to jump to the repeat_nmi
1183	 *    o return back to the first NMI
1184	 *
1185	 * Now on exit of the first NMI, we first clear the stack variable
1186	 * The NMI stack will tell any nested NMIs at that point that it is
1187	 * nested. Then we pop the stack normally with iret, and if there was
1188	 * a nested NMI that updated the copy interrupt stack frame, a
1189	 * jump will be made to the repeat_nmi code that will handle the second
1190	 * NMI.
1191	 *
1192	 * However, espfix prevents us from directly returning to userspace
1193	 * with a single IRET instruction.  Similarly, IRET to user mode
1194	 * can fault.  We therefore handle NMIs from user space like
1195	 * other IST entries.
1196	 */
1197
1198	ASM_CLAC
1199	cld
1200
1201	/* Use %rdx as our temp variable throughout */
1202	pushq	%rdx
1203
1204	testb	$3, CS-RIP+8(%rsp)
1205	jz	.Lnmi_from_kernel
1206
1207	/*
1208	 * NMI from user mode.  We need to run on the thread stack, but we
1209	 * can't go through the normal entry paths: NMIs are masked, and
1210	 * we don't want to enable interrupts, because then we'll end
1211	 * up in an awkward situation in which IRQs are on but NMIs
1212	 * are off.
1213	 *
1214	 * We also must not push anything to the stack before switching
1215	 * stacks lest we corrupt the "NMI executing" variable.
1216	 */
1217
1218	swapgs
1219	FENCE_SWAPGS_USER_ENTRY
1220	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1221	movq	%rsp, %rdx
1222	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
1223	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1224	pushq	5*8(%rdx)	/* pt_regs->ss */
1225	pushq	4*8(%rdx)	/* pt_regs->rsp */
1226	pushq	3*8(%rdx)	/* pt_regs->flags */
1227	pushq	2*8(%rdx)	/* pt_regs->cs */
1228	pushq	1*8(%rdx)	/* pt_regs->rip */
1229	UNWIND_HINT_IRET_REGS
1230	pushq   $-1		/* pt_regs->orig_ax */
1231	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1232	ENCODE_FRAME_POINTER
1233
1234	IBRS_ENTER
1235	UNTRAIN_RET
1236
1237	/*
1238	 * At this point we no longer need to worry about stack damage
1239	 * due to nesting -- we're on the normal thread stack and we're
1240	 * done with the NMI stack.
1241	 */
1242
1243	movq	%rsp, %rdi
1244	movq	$-1, %rsi
1245	call	exc_nmi
1246
1247	/*
1248	 * Return back to user mode.  We must *not* do the normal exit
1249	 * work, because we don't want to enable interrupts.
1250	 */
1251	jmp	swapgs_restore_regs_and_return_to_usermode
1252
1253.Lnmi_from_kernel:
1254	/*
1255	 * Here's what our stack frame will look like:
1256	 * +---------------------------------------------------------+
1257	 * | original SS                                             |
1258	 * | original Return RSP                                     |
1259	 * | original RFLAGS                                         |
1260	 * | original CS                                             |
1261	 * | original RIP                                            |
1262	 * +---------------------------------------------------------+
1263	 * | temp storage for rdx                                    |
1264	 * +---------------------------------------------------------+
1265	 * | "NMI executing" variable                                |
1266	 * +---------------------------------------------------------+
1267	 * | iret SS          } Copied from "outermost" frame        |
1268	 * | iret Return RSP  } on each loop iteration; overwritten  |
1269	 * | iret RFLAGS      } by a nested NMI to force another     |
1270	 * | iret CS          } iteration if needed.                 |
1271	 * | iret RIP         }                                      |
1272	 * +---------------------------------------------------------+
1273	 * | outermost SS          } initialized in first_nmi;       |
1274	 * | outermost Return RSP  } will not be changed before      |
1275	 * | outermost RFLAGS      } NMI processing is done.         |
1276	 * | outermost CS          } Copied to "iret" frame on each  |
1277	 * | outermost RIP         } iteration.                      |
1278	 * +---------------------------------------------------------+
1279	 * | pt_regs                                                 |
1280	 * +---------------------------------------------------------+
1281	 *
1282	 * The "original" frame is used by hardware.  Before re-enabling
1283	 * NMIs, we need to be done with it, and we need to leave enough
1284	 * space for the asm code here.
1285	 *
1286	 * We return by executing IRET while RSP points to the "iret" frame.
1287	 * That will either return for real or it will loop back into NMI
1288	 * processing.
1289	 *
1290	 * The "outermost" frame is copied to the "iret" frame on each
1291	 * iteration of the loop, so each iteration starts with the "iret"
1292	 * frame pointing to the final return target.
1293	 */
1294
1295	/*
1296	 * Determine whether we're a nested NMI.
1297	 *
1298	 * If we interrupted kernel code between repeat_nmi and
1299	 * end_repeat_nmi, then we are a nested NMI.  We must not
1300	 * modify the "iret" frame because it's being written by
1301	 * the outer NMI.  That's okay; the outer NMI handler is
1302	 * about to about to call exc_nmi() anyway, so we can just
1303	 * resume the outer NMI.
1304	 */
1305
1306	movq	$repeat_nmi, %rdx
1307	cmpq	8(%rsp), %rdx
1308	ja	1f
1309	movq	$end_repeat_nmi, %rdx
1310	cmpq	8(%rsp), %rdx
1311	ja	nested_nmi_out
13121:
1313
1314	/*
1315	 * Now check "NMI executing".  If it's set, then we're nested.
1316	 * This will not detect if we interrupted an outer NMI just
1317	 * before IRET.
1318	 */
1319	cmpl	$1, -8(%rsp)
1320	je	nested_nmi
1321
1322	/*
1323	 * Now test if the previous stack was an NMI stack.  This covers
1324	 * the case where we interrupt an outer NMI after it clears
1325	 * "NMI executing" but before IRET.  We need to be careful, though:
1326	 * there is one case in which RSP could point to the NMI stack
1327	 * despite there being no NMI active: naughty userspace controls
1328	 * RSP at the very beginning of the SYSCALL targets.  We can
1329	 * pull a fast one on naughty userspace, though: we program
1330	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1331	 * if it controls the kernel's RSP.  We set DF before we clear
1332	 * "NMI executing".
1333	 */
1334	lea	6*8(%rsp), %rdx
1335	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1336	cmpq	%rdx, 4*8(%rsp)
1337	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1338	ja	first_nmi
1339
1340	subq	$EXCEPTION_STKSZ, %rdx
1341	cmpq	%rdx, 4*8(%rsp)
1342	/* If it is below the NMI stack, it is a normal NMI */
1343	jb	first_nmi
1344
1345	/* Ah, it is within the NMI stack. */
1346
1347	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1348	jz	first_nmi	/* RSP was user controlled. */
1349
1350	/* This is a nested NMI. */
1351
1352nested_nmi:
1353	/*
1354	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1355	 * iteration of NMI handling.
1356	 */
1357	subq	$8, %rsp
1358	leaq	-10*8(%rsp), %rdx
1359	pushq	$__KERNEL_DS
1360	pushq	%rdx
1361	pushfq
1362	pushq	$__KERNEL_CS
1363	pushq	$repeat_nmi
1364
1365	/* Put stack back */
1366	addq	$(6*8), %rsp
1367
1368nested_nmi_out:
1369	popq	%rdx
1370
1371	/* We are returning to kernel mode, so this cannot result in a fault. */
1372	iretq
1373
1374first_nmi:
1375	/* Restore rdx. */
1376	movq	(%rsp), %rdx
1377
1378	/* Make room for "NMI executing". */
1379	pushq	$0
1380
1381	/* Leave room for the "iret" frame */
1382	subq	$(5*8), %rsp
1383
1384	/* Copy the "original" frame to the "outermost" frame */
1385	.rept 5
1386	pushq	11*8(%rsp)
1387	.endr
1388	UNWIND_HINT_IRET_REGS
1389
1390	/* Everything up to here is safe from nested NMIs */
1391
1392#ifdef CONFIG_DEBUG_ENTRY
1393	/*
1394	 * For ease of testing, unmask NMIs right away.  Disabled by
1395	 * default because IRET is very expensive.
1396	 */
1397	pushq	$0		/* SS */
1398	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1399	addq	$8, (%rsp)	/* Fix up RSP */
1400	pushfq			/* RFLAGS */
1401	pushq	$__KERNEL_CS	/* CS */
1402	pushq	$1f		/* RIP */
1403	iretq			/* continues at repeat_nmi below */
1404	UNWIND_HINT_IRET_REGS
14051:
1406#endif
1407
1408repeat_nmi:
1409	ANNOTATE_NOENDBR // this code
1410	/*
1411	 * If there was a nested NMI, the first NMI's iret will return
1412	 * here. But NMIs are still enabled and we can take another
1413	 * nested NMI. The nested NMI checks the interrupted RIP to see
1414	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1415	 * it will just return, as we are about to repeat an NMI anyway.
1416	 * This makes it safe to copy to the stack frame that a nested
1417	 * NMI will update.
1418	 *
1419	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1420	 * we're repeating an NMI, gsbase has the same value that it had on
1421	 * the first iteration.  paranoid_entry will load the kernel
1422	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1423	 * is zero.
1424	 */
1425	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1426
1427	/*
1428	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1429	 * here must not modify the "iret" frame while we're writing to
1430	 * it or it will end up containing garbage.
1431	 */
1432	addq	$(10*8), %rsp
1433	.rept 5
1434	pushq	-6*8(%rsp)
1435	.endr
1436	subq	$(5*8), %rsp
1437end_repeat_nmi:
1438	ANNOTATE_NOENDBR // this code
1439
1440	/*
1441	 * Everything below this point can be preempted by a nested NMI.
1442	 * If this happens, then the inner NMI will change the "iret"
1443	 * frame to point back to repeat_nmi.
1444	 */
1445	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1446
1447	/*
1448	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1449	 * as we should not be calling schedule in NMI context.
1450	 * Even with normal interrupts enabled. An NMI should not be
1451	 * setting NEED_RESCHED or anything that normal interrupts and
1452	 * exceptions might do.
1453	 */
1454	call	paranoid_entry
1455	UNWIND_HINT_REGS
1456
1457	movq	%rsp, %rdi
1458	movq	$-1, %rsi
1459	call	exc_nmi
1460
1461	/* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
1462	IBRS_EXIT save_reg=%r15
1463
1464	/* Always restore stashed CR3 value (see paranoid_entry) */
1465	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1466
1467	/*
1468	 * The above invocation of paranoid_entry stored the GSBASE
1469	 * related information in R/EBX depending on the availability
1470	 * of FSGSBASE.
1471	 *
1472	 * If FSGSBASE is enabled, restore the saved GSBASE value
1473	 * unconditionally, otherwise take the conditional SWAPGS path.
1474	 */
1475	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1476
1477	wrgsbase	%rbx
1478	jmp	nmi_restore
1479
1480nmi_no_fsgsbase:
1481	/* EBX == 0 -> invoke SWAPGS */
1482	testl	%ebx, %ebx
1483	jnz	nmi_restore
1484
1485nmi_swapgs:
1486	swapgs
1487
1488nmi_restore:
1489	POP_REGS
1490
1491	/*
1492	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1493	 * at the "iret" frame.
1494	 */
1495	addq	$6*8, %rsp
1496
1497	/*
1498	 * Clear "NMI executing".  Set DF first so that we can easily
1499	 * distinguish the remaining code between here and IRET from
1500	 * the SYSCALL entry and exit paths.
1501	 *
1502	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1503	 * this code when I had the misapprehension that Xen PV supported
1504	 * NMIs, and Xen PV would break that approach.
1505	 */
1506	std
1507	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1508
1509	/*
1510	 * Skip CLEAR_CPU_BUFFERS here, since it only helps in rare cases like
1511	 * NMI in kernel after user state is restored. For an unprivileged user
1512	 * these conditions are hard to meet.
1513	 */
1514
1515	/*
1516	 * iretq reads the "iret" frame and exits the NMI stack in a
1517	 * single instruction.  We are returning to kernel mode, so this
1518	 * cannot result in a fault.  Similarly, we don't need to worry
1519	 * about espfix64 on the way back to kernel mode.
1520	 */
1521	iretq
1522SYM_CODE_END(asm_exc_nmi)
1523
1524#ifndef CONFIG_IA32_EMULATION
1525/*
1526 * This handles SYSCALL from 32-bit code.  There is no way to program
1527 * MSRs to fully disable 32-bit SYSCALL.
1528 */
1529SYM_CODE_START(ignore_sysret)
1530	UNWIND_HINT_END_OF_STACK
1531	ENDBR
1532	mov	$-ENOSYS, %eax
1533	CLEAR_CPU_BUFFERS
1534	sysretl
1535SYM_CODE_END(ignore_sysret)
1536#endif
1537
1538.pushsection .text, "ax"
1539	__FUNC_ALIGN
1540SYM_CODE_START_NOALIGN(rewind_stack_and_make_dead)
1541	UNWIND_HINT_FUNC
1542	/* Prevent any naive code from trying to unwind to our caller. */
1543	xorl	%ebp, %ebp
1544
1545	movq	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rax
1546	leaq	-PTREGS_SIZE(%rax), %rsp
1547	UNWIND_HINT_REGS
1548
1549	call	make_task_dead
1550SYM_CODE_END(rewind_stack_and_make_dead)
1551.popsection
1552