1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7 * James Leu (jleu@mindspring.net).
8 * Copyright (C) 2001 by various other people who didn't put their name here.
9 */
10
11 #include <linux/memblock.h>
12 #include <linux/etherdevice.h>
13 #include <linux/ethtool.h>
14 #include <linux/inetdevice.h>
15 #include <linux/init.h>
16 #include <linux/list.h>
17 #include <linux/netdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/slab.h>
22 #include <linux/interrupt.h>
23 #include <linux/firmware.h>
24 #include <linux/fs.h>
25 #include <uapi/linux/filter.h>
26 #include <init.h>
27 #include <irq_kern.h>
28 #include <irq_user.h>
29 #include <net_kern.h>
30 #include <os.h>
31 #include "mconsole_kern.h"
32 #include "vector_user.h"
33 #include "vector_kern.h"
34
35 /*
36 * Adapted from network devices with the following major changes:
37 * All transports are static - simplifies the code significantly
38 * Multiple FDs/IRQs per device
39 * Vector IO optionally used for read/write, falling back to legacy
40 * based on configuration and/or availability
41 * Configuration is no longer positional - L2TPv3 and GRE require up to
42 * 10 parameters, passing this as positional is not fit for purpose.
43 * Only socket transports are supported
44 */
45
46
47 #define DRIVER_NAME "uml-vector"
48 struct vector_cmd_line_arg {
49 struct list_head list;
50 int unit;
51 char *arguments;
52 };
53
54 struct vector_device {
55 struct list_head list;
56 struct net_device *dev;
57 struct platform_device pdev;
58 int unit;
59 int opened;
60 };
61
62 static LIST_HEAD(vec_cmd_line);
63
64 static DEFINE_SPINLOCK(vector_devices_lock);
65 static LIST_HEAD(vector_devices);
66
67 static int driver_registered;
68
69 static void vector_eth_configure(int n, struct arglist *def);
70 static int vector_mmsg_rx(struct vector_private *vp, int budget);
71
72 /* Argument accessors to set variables (and/or set default values)
73 * mtu, buffer sizing, default headroom, etc
74 */
75
76 #define DEFAULT_HEADROOM 2
77 #define SAFETY_MARGIN 32
78 #define DEFAULT_VECTOR_SIZE 64
79 #define TX_SMALL_PACKET 128
80 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
81
82 static const struct {
83 const char string[ETH_GSTRING_LEN];
84 } ethtool_stats_keys[] = {
85 { "rx_queue_max" },
86 { "rx_queue_running_average" },
87 { "tx_queue_max" },
88 { "tx_queue_running_average" },
89 { "rx_encaps_errors" },
90 { "tx_timeout_count" },
91 { "tx_restart_queue" },
92 { "tx_kicks" },
93 { "tx_flow_control_xon" },
94 { "tx_flow_control_xoff" },
95 { "rx_csum_offload_good" },
96 { "rx_csum_offload_errors"},
97 { "sg_ok"},
98 { "sg_linearized"},
99 };
100
101 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
102
vector_reset_stats(struct vector_private * vp)103 static void vector_reset_stats(struct vector_private *vp)
104 {
105 vp->estats.rx_queue_max = 0;
106 vp->estats.rx_queue_running_average = 0;
107 vp->estats.tx_queue_max = 0;
108 vp->estats.tx_queue_running_average = 0;
109 vp->estats.rx_encaps_errors = 0;
110 vp->estats.tx_timeout_count = 0;
111 vp->estats.tx_restart_queue = 0;
112 vp->estats.tx_kicks = 0;
113 vp->estats.tx_flow_control_xon = 0;
114 vp->estats.tx_flow_control_xoff = 0;
115 vp->estats.sg_ok = 0;
116 vp->estats.sg_linearized = 0;
117 }
118
get_mtu(struct arglist * def)119 static int get_mtu(struct arglist *def)
120 {
121 char *mtu = uml_vector_fetch_arg(def, "mtu");
122 long result;
123
124 if (mtu != NULL) {
125 if (kstrtoul(mtu, 10, &result) == 0)
126 if ((result < (1 << 16) - 1) && (result >= 576))
127 return result;
128 }
129 return ETH_MAX_PACKET;
130 }
131
get_bpf_file(struct arglist * def)132 static char *get_bpf_file(struct arglist *def)
133 {
134 return uml_vector_fetch_arg(def, "bpffile");
135 }
136
get_bpf_flash(struct arglist * def)137 static bool get_bpf_flash(struct arglist *def)
138 {
139 char *allow = uml_vector_fetch_arg(def, "bpfflash");
140 long result;
141
142 if (allow != NULL) {
143 if (kstrtoul(allow, 10, &result) == 0)
144 return (allow > 0);
145 }
146 return false;
147 }
148
get_depth(struct arglist * def)149 static int get_depth(struct arglist *def)
150 {
151 char *mtu = uml_vector_fetch_arg(def, "depth");
152 long result;
153
154 if (mtu != NULL) {
155 if (kstrtoul(mtu, 10, &result) == 0)
156 return result;
157 }
158 return DEFAULT_VECTOR_SIZE;
159 }
160
get_headroom(struct arglist * def)161 static int get_headroom(struct arglist *def)
162 {
163 char *mtu = uml_vector_fetch_arg(def, "headroom");
164 long result;
165
166 if (mtu != NULL) {
167 if (kstrtoul(mtu, 10, &result) == 0)
168 return result;
169 }
170 return DEFAULT_HEADROOM;
171 }
172
get_req_size(struct arglist * def)173 static int get_req_size(struct arglist *def)
174 {
175 char *gro = uml_vector_fetch_arg(def, "gro");
176 long result;
177
178 if (gro != NULL) {
179 if (kstrtoul(gro, 10, &result) == 0) {
180 if (result > 0)
181 return 65536;
182 }
183 }
184 return get_mtu(def) + ETH_HEADER_OTHER +
185 get_headroom(def) + SAFETY_MARGIN;
186 }
187
188
get_transport_options(struct arglist * def)189 static int get_transport_options(struct arglist *def)
190 {
191 char *transport = uml_vector_fetch_arg(def, "transport");
192 char *vector = uml_vector_fetch_arg(def, "vec");
193
194 int vec_rx = VECTOR_RX;
195 int vec_tx = VECTOR_TX;
196 long parsed;
197 int result = 0;
198
199 if (transport == NULL)
200 return -EINVAL;
201
202 if (vector != NULL) {
203 if (kstrtoul(vector, 10, &parsed) == 0) {
204 if (parsed == 0) {
205 vec_rx = 0;
206 vec_tx = 0;
207 }
208 }
209 }
210
211 if (get_bpf_flash(def))
212 result = VECTOR_BPF_FLASH;
213
214 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
215 return result;
216 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
217 return (result | vec_rx | VECTOR_BPF);
218 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
219 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
220 return (result | vec_rx | vec_tx);
221 }
222
223
224 /* A mini-buffer for packet drop read
225 * All of our supported transports are datagram oriented and we always
226 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
227 * than the packet size it still counts as full packet read and will
228 * clean the incoming stream to keep sigio/epoll happy
229 */
230
231 #define DROP_BUFFER_SIZE 32
232
233 static char *drop_buffer;
234
235 /* Array backed queues optimized for bulk enqueue/dequeue and
236 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
237 * For more details and full design rationale see
238 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
239 */
240
241
242 /*
243 * Advance the mmsg queue head by n = advance. Resets the queue to
244 * maximum enqueue/dequeue-at-once capacity if possible. Called by
245 * dequeuers. Caller must hold the head_lock!
246 */
247
vector_advancehead(struct vector_queue * qi,int advance)248 static int vector_advancehead(struct vector_queue *qi, int advance)
249 {
250 int queue_depth;
251
252 qi->head =
253 (qi->head + advance)
254 % qi->max_depth;
255
256
257 spin_lock(&qi->tail_lock);
258 qi->queue_depth -= advance;
259
260 /* we are at 0, use this to
261 * reset head and tail so we can use max size vectors
262 */
263
264 if (qi->queue_depth == 0) {
265 qi->head = 0;
266 qi->tail = 0;
267 }
268 queue_depth = qi->queue_depth;
269 spin_unlock(&qi->tail_lock);
270 return queue_depth;
271 }
272
273 /* Advance the queue tail by n = advance.
274 * This is called by enqueuers which should hold the
275 * head lock already
276 */
277
vector_advancetail(struct vector_queue * qi,int advance)278 static int vector_advancetail(struct vector_queue *qi, int advance)
279 {
280 int queue_depth;
281
282 qi->tail =
283 (qi->tail + advance)
284 % qi->max_depth;
285 spin_lock(&qi->head_lock);
286 qi->queue_depth += advance;
287 queue_depth = qi->queue_depth;
288 spin_unlock(&qi->head_lock);
289 return queue_depth;
290 }
291
prep_msg(struct vector_private * vp,struct sk_buff * skb,struct iovec * iov)292 static int prep_msg(struct vector_private *vp,
293 struct sk_buff *skb,
294 struct iovec *iov)
295 {
296 int iov_index = 0;
297 int nr_frags, frag;
298 skb_frag_t *skb_frag;
299
300 nr_frags = skb_shinfo(skb)->nr_frags;
301 if (nr_frags > MAX_IOV_SIZE) {
302 if (skb_linearize(skb) != 0)
303 goto drop;
304 }
305 if (vp->header_size > 0) {
306 iov[iov_index].iov_len = vp->header_size;
307 vp->form_header(iov[iov_index].iov_base, skb, vp);
308 iov_index++;
309 }
310 iov[iov_index].iov_base = skb->data;
311 if (nr_frags > 0) {
312 iov[iov_index].iov_len = skb->len - skb->data_len;
313 vp->estats.sg_ok++;
314 } else
315 iov[iov_index].iov_len = skb->len;
316 iov_index++;
317 for (frag = 0; frag < nr_frags; frag++) {
318 skb_frag = &skb_shinfo(skb)->frags[frag];
319 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
320 iov[iov_index].iov_len = skb_frag_size(skb_frag);
321 iov_index++;
322 }
323 return iov_index;
324 drop:
325 return -1;
326 }
327 /*
328 * Generic vector enqueue with support for forming headers using transport
329 * specific callback. Allows GRE, L2TPv3, RAW and other transports
330 * to use a common enqueue procedure in vector mode
331 */
332
vector_enqueue(struct vector_queue * qi,struct sk_buff * skb)333 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
334 {
335 struct vector_private *vp = netdev_priv(qi->dev);
336 int queue_depth;
337 int packet_len;
338 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
339 int iov_count;
340
341 spin_lock(&qi->tail_lock);
342 spin_lock(&qi->head_lock);
343 queue_depth = qi->queue_depth;
344 spin_unlock(&qi->head_lock);
345
346 if (skb)
347 packet_len = skb->len;
348
349 if (queue_depth < qi->max_depth) {
350
351 *(qi->skbuff_vector + qi->tail) = skb;
352 mmsg_vector += qi->tail;
353 iov_count = prep_msg(
354 vp,
355 skb,
356 mmsg_vector->msg_hdr.msg_iov
357 );
358 if (iov_count < 1)
359 goto drop;
360 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
361 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
362 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
363 queue_depth = vector_advancetail(qi, 1);
364 } else
365 goto drop;
366 spin_unlock(&qi->tail_lock);
367 return queue_depth;
368 drop:
369 qi->dev->stats.tx_dropped++;
370 if (skb != NULL) {
371 packet_len = skb->len;
372 dev_consume_skb_any(skb);
373 netdev_completed_queue(qi->dev, 1, packet_len);
374 }
375 spin_unlock(&qi->tail_lock);
376 return queue_depth;
377 }
378
consume_vector_skbs(struct vector_queue * qi,int count)379 static int consume_vector_skbs(struct vector_queue *qi, int count)
380 {
381 struct sk_buff *skb;
382 int skb_index;
383 int bytes_compl = 0;
384
385 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
386 skb = *(qi->skbuff_vector + skb_index);
387 /* mark as empty to ensure correct destruction if
388 * needed
389 */
390 bytes_compl += skb->len;
391 *(qi->skbuff_vector + skb_index) = NULL;
392 dev_consume_skb_any(skb);
393 }
394 qi->dev->stats.tx_bytes += bytes_compl;
395 qi->dev->stats.tx_packets += count;
396 netdev_completed_queue(qi->dev, count, bytes_compl);
397 return vector_advancehead(qi, count);
398 }
399
400 /*
401 * Generic vector deque via sendmmsg with support for forming headers
402 * using transport specific callback. Allows GRE, L2TPv3, RAW and
403 * other transports to use a common dequeue procedure in vector mode
404 */
405
406
vector_send(struct vector_queue * qi)407 static int vector_send(struct vector_queue *qi)
408 {
409 struct vector_private *vp = netdev_priv(qi->dev);
410 struct mmsghdr *send_from;
411 int result = 0, send_len, queue_depth = qi->max_depth;
412
413 if (spin_trylock(&qi->head_lock)) {
414 if (spin_trylock(&qi->tail_lock)) {
415 /* update queue_depth to current value */
416 queue_depth = qi->queue_depth;
417 spin_unlock(&qi->tail_lock);
418 while (queue_depth > 0) {
419 /* Calculate the start of the vector */
420 send_len = queue_depth;
421 send_from = qi->mmsg_vector;
422 send_from += qi->head;
423 /* Adjust vector size if wraparound */
424 if (send_len + qi->head > qi->max_depth)
425 send_len = qi->max_depth - qi->head;
426 /* Try to TX as many packets as possible */
427 if (send_len > 0) {
428 result = uml_vector_sendmmsg(
429 vp->fds->tx_fd,
430 send_from,
431 send_len,
432 0
433 );
434 vp->in_write_poll =
435 (result != send_len);
436 }
437 /* For some of the sendmmsg error scenarios
438 * we may end being unsure in the TX success
439 * for all packets. It is safer to declare
440 * them all TX-ed and blame the network.
441 */
442 if (result < 0) {
443 if (net_ratelimit())
444 netdev_err(vp->dev, "sendmmsg err=%i\n",
445 result);
446 vp->in_error = true;
447 result = send_len;
448 }
449 if (result > 0) {
450 queue_depth =
451 consume_vector_skbs(qi, result);
452 /* This is equivalent to an TX IRQ.
453 * Restart the upper layers to feed us
454 * more packets.
455 */
456 if (result > vp->estats.tx_queue_max)
457 vp->estats.tx_queue_max = result;
458 vp->estats.tx_queue_running_average =
459 (vp->estats.tx_queue_running_average + result) >> 1;
460 }
461 netif_wake_queue(qi->dev);
462 /* if TX is busy, break out of the send loop,
463 * poll write IRQ will reschedule xmit for us
464 */
465 if (result != send_len) {
466 vp->estats.tx_restart_queue++;
467 break;
468 }
469 }
470 }
471 spin_unlock(&qi->head_lock);
472 }
473 return queue_depth;
474 }
475
476 /* Queue destructor. Deliberately stateless so we can use
477 * it in queue cleanup if initialization fails.
478 */
479
destroy_queue(struct vector_queue * qi)480 static void destroy_queue(struct vector_queue *qi)
481 {
482 int i;
483 struct iovec *iov;
484 struct vector_private *vp = netdev_priv(qi->dev);
485 struct mmsghdr *mmsg_vector;
486
487 if (qi == NULL)
488 return;
489 /* deallocate any skbuffs - we rely on any unused to be
490 * set to NULL.
491 */
492 if (qi->skbuff_vector != NULL) {
493 for (i = 0; i < qi->max_depth; i++) {
494 if (*(qi->skbuff_vector + i) != NULL)
495 dev_kfree_skb_any(*(qi->skbuff_vector + i));
496 }
497 kfree(qi->skbuff_vector);
498 }
499 /* deallocate matching IOV structures including header buffs */
500 if (qi->mmsg_vector != NULL) {
501 mmsg_vector = qi->mmsg_vector;
502 for (i = 0; i < qi->max_depth; i++) {
503 iov = mmsg_vector->msg_hdr.msg_iov;
504 if (iov != NULL) {
505 if ((vp->header_size > 0) &&
506 (iov->iov_base != NULL))
507 kfree(iov->iov_base);
508 kfree(iov);
509 }
510 mmsg_vector++;
511 }
512 kfree(qi->mmsg_vector);
513 }
514 kfree(qi);
515 }
516
517 /*
518 * Queue constructor. Create a queue with a given side.
519 */
create_queue(struct vector_private * vp,int max_size,int header_size,int num_extra_frags)520 static struct vector_queue *create_queue(
521 struct vector_private *vp,
522 int max_size,
523 int header_size,
524 int num_extra_frags)
525 {
526 struct vector_queue *result;
527 int i;
528 struct iovec *iov;
529 struct mmsghdr *mmsg_vector;
530
531 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
532 if (result == NULL)
533 return NULL;
534 result->max_depth = max_size;
535 result->dev = vp->dev;
536 result->mmsg_vector = kmalloc(
537 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
538 if (result->mmsg_vector == NULL)
539 goto out_mmsg_fail;
540 result->skbuff_vector = kmalloc(
541 (sizeof(void *) * max_size), GFP_KERNEL);
542 if (result->skbuff_vector == NULL)
543 goto out_skb_fail;
544
545 /* further failures can be handled safely by destroy_queue*/
546
547 mmsg_vector = result->mmsg_vector;
548 for (i = 0; i < max_size; i++) {
549 /* Clear all pointers - we use non-NULL as marking on
550 * what to free on destruction
551 */
552 *(result->skbuff_vector + i) = NULL;
553 mmsg_vector->msg_hdr.msg_iov = NULL;
554 mmsg_vector++;
555 }
556 mmsg_vector = result->mmsg_vector;
557 result->max_iov_frags = num_extra_frags;
558 for (i = 0; i < max_size; i++) {
559 if (vp->header_size > 0)
560 iov = kmalloc_array(3 + num_extra_frags,
561 sizeof(struct iovec),
562 GFP_KERNEL
563 );
564 else
565 iov = kmalloc_array(2 + num_extra_frags,
566 sizeof(struct iovec),
567 GFP_KERNEL
568 );
569 if (iov == NULL)
570 goto out_fail;
571 mmsg_vector->msg_hdr.msg_iov = iov;
572 mmsg_vector->msg_hdr.msg_iovlen = 1;
573 mmsg_vector->msg_hdr.msg_control = NULL;
574 mmsg_vector->msg_hdr.msg_controllen = 0;
575 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
576 mmsg_vector->msg_hdr.msg_name = NULL;
577 mmsg_vector->msg_hdr.msg_namelen = 0;
578 if (vp->header_size > 0) {
579 iov->iov_base = kmalloc(header_size, GFP_KERNEL);
580 if (iov->iov_base == NULL)
581 goto out_fail;
582 iov->iov_len = header_size;
583 mmsg_vector->msg_hdr.msg_iovlen = 2;
584 iov++;
585 }
586 iov->iov_base = NULL;
587 iov->iov_len = 0;
588 mmsg_vector++;
589 }
590 spin_lock_init(&result->head_lock);
591 spin_lock_init(&result->tail_lock);
592 result->queue_depth = 0;
593 result->head = 0;
594 result->tail = 0;
595 return result;
596 out_skb_fail:
597 kfree(result->mmsg_vector);
598 out_mmsg_fail:
599 kfree(result);
600 return NULL;
601 out_fail:
602 destroy_queue(result);
603 return NULL;
604 }
605
606 /*
607 * We do not use the RX queue as a proper wraparound queue for now
608 * This is not necessary because the consumption via napi_gro_receive()
609 * happens in-line. While we can try using the return code of
610 * netif_rx() for flow control there are no drivers doing this today.
611 * For this RX specific use we ignore the tail/head locks and
612 * just read into a prepared queue filled with skbuffs.
613 */
614
prep_skb(struct vector_private * vp,struct user_msghdr * msg)615 static struct sk_buff *prep_skb(
616 struct vector_private *vp,
617 struct user_msghdr *msg)
618 {
619 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
620 struct sk_buff *result;
621 int iov_index = 0, len;
622 struct iovec *iov = msg->msg_iov;
623 int err, nr_frags, frag;
624 skb_frag_t *skb_frag;
625
626 if (vp->req_size <= linear)
627 len = linear;
628 else
629 len = vp->req_size;
630 result = alloc_skb_with_frags(
631 linear,
632 len - vp->max_packet,
633 3,
634 &err,
635 GFP_ATOMIC
636 );
637 if (vp->header_size > 0)
638 iov_index++;
639 if (result == NULL) {
640 iov[iov_index].iov_base = NULL;
641 iov[iov_index].iov_len = 0;
642 goto done;
643 }
644 skb_reserve(result, vp->headroom);
645 result->dev = vp->dev;
646 skb_put(result, vp->max_packet);
647 result->data_len = len - vp->max_packet;
648 result->len += len - vp->max_packet;
649 skb_reset_mac_header(result);
650 result->ip_summed = CHECKSUM_NONE;
651 iov[iov_index].iov_base = result->data;
652 iov[iov_index].iov_len = vp->max_packet;
653 iov_index++;
654
655 nr_frags = skb_shinfo(result)->nr_frags;
656 for (frag = 0; frag < nr_frags; frag++) {
657 skb_frag = &skb_shinfo(result)->frags[frag];
658 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
659 if (iov[iov_index].iov_base != NULL)
660 iov[iov_index].iov_len = skb_frag_size(skb_frag);
661 else
662 iov[iov_index].iov_len = 0;
663 iov_index++;
664 }
665 done:
666 msg->msg_iovlen = iov_index;
667 return result;
668 }
669
670
671 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
672
prep_queue_for_rx(struct vector_queue * qi)673 static void prep_queue_for_rx(struct vector_queue *qi)
674 {
675 struct vector_private *vp = netdev_priv(qi->dev);
676 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
677 void **skbuff_vector = qi->skbuff_vector;
678 int i;
679
680 if (qi->queue_depth == 0)
681 return;
682 for (i = 0; i < qi->queue_depth; i++) {
683 /* it is OK if allocation fails - recvmmsg with NULL data in
684 * iov argument still performs an RX, just drops the packet
685 * This allows us stop faffing around with a "drop buffer"
686 */
687
688 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
689 skbuff_vector++;
690 mmsg_vector++;
691 }
692 qi->queue_depth = 0;
693 }
694
find_device(int n)695 static struct vector_device *find_device(int n)
696 {
697 struct vector_device *device;
698 struct list_head *ele;
699
700 spin_lock(&vector_devices_lock);
701 list_for_each(ele, &vector_devices) {
702 device = list_entry(ele, struct vector_device, list);
703 if (device->unit == n)
704 goto out;
705 }
706 device = NULL;
707 out:
708 spin_unlock(&vector_devices_lock);
709 return device;
710 }
711
vector_parse(char * str,int * index_out,char ** str_out,char ** error_out)712 static int vector_parse(char *str, int *index_out, char **str_out,
713 char **error_out)
714 {
715 int n, len, err;
716 char *start = str;
717
718 len = strlen(str);
719
720 while ((*str != ':') && (strlen(str) > 1))
721 str++;
722 if (*str != ':') {
723 *error_out = "Expected ':' after device number";
724 return -EINVAL;
725 }
726 *str = '\0';
727
728 err = kstrtouint(start, 0, &n);
729 if (err < 0) {
730 *error_out = "Bad device number";
731 return err;
732 }
733
734 str++;
735 if (find_device(n)) {
736 *error_out = "Device already configured";
737 return -EINVAL;
738 }
739
740 *index_out = n;
741 *str_out = str;
742 return 0;
743 }
744
vector_config(char * str,char ** error_out)745 static int vector_config(char *str, char **error_out)
746 {
747 int err, n;
748 char *params;
749 struct arglist *parsed;
750
751 err = vector_parse(str, &n, ¶ms, error_out);
752 if (err != 0)
753 return err;
754
755 /* This string is broken up and the pieces used by the underlying
756 * driver. We should copy it to make sure things do not go wrong
757 * later.
758 */
759
760 params = kstrdup(params, GFP_KERNEL);
761 if (params == NULL) {
762 *error_out = "vector_config failed to strdup string";
763 return -ENOMEM;
764 }
765
766 parsed = uml_parse_vector_ifspec(params);
767
768 if (parsed == NULL) {
769 *error_out = "vector_config failed to parse parameters";
770 kfree(params);
771 return -EINVAL;
772 }
773
774 vector_eth_configure(n, parsed);
775 return 0;
776 }
777
vector_id(char ** str,int * start_out,int * end_out)778 static int vector_id(char **str, int *start_out, int *end_out)
779 {
780 char *end;
781 int n;
782
783 n = simple_strtoul(*str, &end, 0);
784 if ((*end != '\0') || (end == *str))
785 return -1;
786
787 *start_out = n;
788 *end_out = n;
789 *str = end;
790 return n;
791 }
792
vector_remove(int n,char ** error_out)793 static int vector_remove(int n, char **error_out)
794 {
795 struct vector_device *vec_d;
796 struct net_device *dev;
797 struct vector_private *vp;
798
799 vec_d = find_device(n);
800 if (vec_d == NULL)
801 return -ENODEV;
802 dev = vec_d->dev;
803 vp = netdev_priv(dev);
804 if (vp->fds != NULL)
805 return -EBUSY;
806 unregister_netdev(dev);
807 platform_device_unregister(&vec_d->pdev);
808 return 0;
809 }
810
811 /*
812 * There is no shared per-transport initialization code, so
813 * we will just initialize each interface one by one and
814 * add them to a list
815 */
816
817 static struct platform_driver uml_net_driver = {
818 .driver = {
819 .name = DRIVER_NAME,
820 },
821 };
822
823
vector_device_release(struct device * dev)824 static void vector_device_release(struct device *dev)
825 {
826 struct vector_device *device = dev_get_drvdata(dev);
827 struct net_device *netdev = device->dev;
828
829 list_del(&device->list);
830 kfree(device);
831 free_netdev(netdev);
832 }
833
834 /* Bog standard recv using recvmsg - not used normally unless the user
835 * explicitly specifies not to use recvmmsg vector RX.
836 */
837
vector_legacy_rx(struct vector_private * vp)838 static int vector_legacy_rx(struct vector_private *vp)
839 {
840 int pkt_len;
841 struct user_msghdr hdr;
842 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
843 int iovpos = 0;
844 struct sk_buff *skb;
845 int header_check;
846
847 hdr.msg_name = NULL;
848 hdr.msg_namelen = 0;
849 hdr.msg_iov = (struct iovec *) &iov;
850 hdr.msg_control = NULL;
851 hdr.msg_controllen = 0;
852 hdr.msg_flags = 0;
853
854 if (vp->header_size > 0) {
855 iov[0].iov_base = vp->header_rxbuffer;
856 iov[0].iov_len = vp->header_size;
857 }
858
859 skb = prep_skb(vp, &hdr);
860
861 if (skb == NULL) {
862 /* Read a packet into drop_buffer and don't do
863 * anything with it.
864 */
865 iov[iovpos].iov_base = drop_buffer;
866 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
867 hdr.msg_iovlen = 1;
868 vp->dev->stats.rx_dropped++;
869 }
870
871 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
872 if (pkt_len < 0) {
873 vp->in_error = true;
874 return pkt_len;
875 }
876
877 if (skb != NULL) {
878 if (pkt_len > vp->header_size) {
879 if (vp->header_size > 0) {
880 header_check = vp->verify_header(
881 vp->header_rxbuffer, skb, vp);
882 if (header_check < 0) {
883 dev_kfree_skb_irq(skb);
884 vp->dev->stats.rx_dropped++;
885 vp->estats.rx_encaps_errors++;
886 return 0;
887 }
888 if (header_check > 0) {
889 vp->estats.rx_csum_offload_good++;
890 skb->ip_summed = CHECKSUM_UNNECESSARY;
891 }
892 }
893 pskb_trim(skb, pkt_len - vp->rx_header_size);
894 skb->protocol = eth_type_trans(skb, skb->dev);
895 vp->dev->stats.rx_bytes += skb->len;
896 vp->dev->stats.rx_packets++;
897 napi_gro_receive(&vp->napi, skb);
898 } else {
899 dev_kfree_skb_irq(skb);
900 }
901 }
902 return pkt_len;
903 }
904
905 /*
906 * Packet at a time TX which falls back to vector TX if the
907 * underlying transport is busy.
908 */
909
910
911
writev_tx(struct vector_private * vp,struct sk_buff * skb)912 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
913 {
914 struct iovec iov[3 + MAX_IOV_SIZE];
915 int iov_count, pkt_len = 0;
916
917 iov[0].iov_base = vp->header_txbuffer;
918 iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
919
920 if (iov_count < 1)
921 goto drop;
922
923 pkt_len = uml_vector_writev(
924 vp->fds->tx_fd,
925 (struct iovec *) &iov,
926 iov_count
927 );
928
929 if (pkt_len < 0)
930 goto drop;
931
932 netif_trans_update(vp->dev);
933 netif_wake_queue(vp->dev);
934
935 if (pkt_len > 0) {
936 vp->dev->stats.tx_bytes += skb->len;
937 vp->dev->stats.tx_packets++;
938 } else {
939 vp->dev->stats.tx_dropped++;
940 }
941 consume_skb(skb);
942 return pkt_len;
943 drop:
944 vp->dev->stats.tx_dropped++;
945 consume_skb(skb);
946 if (pkt_len < 0)
947 vp->in_error = true;
948 return pkt_len;
949 }
950
951 /*
952 * Receive as many messages as we can in one call using the special
953 * mmsg vector matched to an skb vector which we prepared earlier.
954 */
955
vector_mmsg_rx(struct vector_private * vp,int budget)956 static int vector_mmsg_rx(struct vector_private *vp, int budget)
957 {
958 int packet_count, i;
959 struct vector_queue *qi = vp->rx_queue;
960 struct sk_buff *skb;
961 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
962 void **skbuff_vector = qi->skbuff_vector;
963 int header_check;
964
965 /* Refresh the vector and make sure it is with new skbs and the
966 * iovs are updated to point to them.
967 */
968
969 prep_queue_for_rx(qi);
970
971 /* Fire the Lazy Gun - get as many packets as we can in one go. */
972
973 if (budget > qi->max_depth)
974 budget = qi->max_depth;
975
976 packet_count = uml_vector_recvmmsg(
977 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
978
979 if (packet_count < 0)
980 vp->in_error = true;
981
982 if (packet_count <= 0)
983 return packet_count;
984
985 /* We treat packet processing as enqueue, buffer refresh as dequeue
986 * The queue_depth tells us how many buffers have been used and how
987 * many do we need to prep the next time prep_queue_for_rx() is called.
988 */
989
990 qi->queue_depth = packet_count;
991
992 for (i = 0; i < packet_count; i++) {
993 skb = (*skbuff_vector);
994 if (mmsg_vector->msg_len > vp->header_size) {
995 if (vp->header_size > 0) {
996 header_check = vp->verify_header(
997 mmsg_vector->msg_hdr.msg_iov->iov_base,
998 skb,
999 vp
1000 );
1001 if (header_check < 0) {
1002 /* Overlay header failed to verify - discard.
1003 * We can actually keep this skb and reuse it,
1004 * but that will make the prep logic too
1005 * complex.
1006 */
1007 dev_kfree_skb_irq(skb);
1008 vp->estats.rx_encaps_errors++;
1009 continue;
1010 }
1011 if (header_check > 0) {
1012 vp->estats.rx_csum_offload_good++;
1013 skb->ip_summed = CHECKSUM_UNNECESSARY;
1014 }
1015 }
1016 pskb_trim(skb,
1017 mmsg_vector->msg_len - vp->rx_header_size);
1018 skb->protocol = eth_type_trans(skb, skb->dev);
1019 /*
1020 * We do not need to lock on updating stats here
1021 * The interrupt loop is non-reentrant.
1022 */
1023 vp->dev->stats.rx_bytes += skb->len;
1024 vp->dev->stats.rx_packets++;
1025 napi_gro_receive(&vp->napi, skb);
1026 } else {
1027 /* Overlay header too short to do anything - discard.
1028 * We can actually keep this skb and reuse it,
1029 * but that will make the prep logic too complex.
1030 */
1031 if (skb != NULL)
1032 dev_kfree_skb_irq(skb);
1033 }
1034 (*skbuff_vector) = NULL;
1035 /* Move to the next buffer element */
1036 mmsg_vector++;
1037 skbuff_vector++;
1038 }
1039 if (packet_count > 0) {
1040 if (vp->estats.rx_queue_max < packet_count)
1041 vp->estats.rx_queue_max = packet_count;
1042 vp->estats.rx_queue_running_average =
1043 (vp->estats.rx_queue_running_average + packet_count) >> 1;
1044 }
1045 return packet_count;
1046 }
1047
vector_net_start_xmit(struct sk_buff * skb,struct net_device * dev)1048 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1049 {
1050 struct vector_private *vp = netdev_priv(dev);
1051 int queue_depth = 0;
1052
1053 if (vp->in_error) {
1054 deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1055 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1056 deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1057 return NETDEV_TX_BUSY;
1058 }
1059
1060 if ((vp->options & VECTOR_TX) == 0) {
1061 writev_tx(vp, skb);
1062 return NETDEV_TX_OK;
1063 }
1064
1065 /* We do BQL only in the vector path, no point doing it in
1066 * packet at a time mode as there is no device queue
1067 */
1068
1069 netdev_sent_queue(vp->dev, skb->len);
1070 queue_depth = vector_enqueue(vp->tx_queue, skb);
1071
1072 if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1073 mod_timer(&vp->tl, vp->coalesce);
1074 return NETDEV_TX_OK;
1075 } else {
1076 queue_depth = vector_send(vp->tx_queue);
1077 if (queue_depth > 0)
1078 napi_schedule(&vp->napi);
1079 }
1080
1081 return NETDEV_TX_OK;
1082 }
1083
vector_rx_interrupt(int irq,void * dev_id)1084 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1085 {
1086 struct net_device *dev = dev_id;
1087 struct vector_private *vp = netdev_priv(dev);
1088
1089 if (!netif_running(dev))
1090 return IRQ_NONE;
1091 napi_schedule(&vp->napi);
1092 return IRQ_HANDLED;
1093
1094 }
1095
vector_tx_interrupt(int irq,void * dev_id)1096 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1097 {
1098 struct net_device *dev = dev_id;
1099 struct vector_private *vp = netdev_priv(dev);
1100
1101 if (!netif_running(dev))
1102 return IRQ_NONE;
1103 /* We need to pay attention to it only if we got
1104 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1105 * we ignore it. In the future, it may be worth
1106 * it to improve the IRQ controller a bit to make
1107 * tweaking the IRQ mask less costly
1108 */
1109
1110 napi_schedule(&vp->napi);
1111 return IRQ_HANDLED;
1112
1113 }
1114
1115 static int irq_rr;
1116
vector_net_close(struct net_device * dev)1117 static int vector_net_close(struct net_device *dev)
1118 {
1119 struct vector_private *vp = netdev_priv(dev);
1120 unsigned long flags;
1121
1122 netif_stop_queue(dev);
1123 del_timer(&vp->tl);
1124
1125 if (vp->fds == NULL)
1126 return 0;
1127
1128 /* Disable and free all IRQS */
1129 if (vp->rx_irq > 0) {
1130 um_free_irq(vp->rx_irq, dev);
1131 vp->rx_irq = 0;
1132 }
1133 if (vp->tx_irq > 0) {
1134 um_free_irq(vp->tx_irq, dev);
1135 vp->tx_irq = 0;
1136 }
1137 napi_disable(&vp->napi);
1138 netif_napi_del(&vp->napi);
1139 if (vp->fds->rx_fd > 0) {
1140 if (vp->bpf)
1141 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1142 os_close_file(vp->fds->rx_fd);
1143 vp->fds->rx_fd = -1;
1144 }
1145 if (vp->fds->tx_fd > 0) {
1146 os_close_file(vp->fds->tx_fd);
1147 vp->fds->tx_fd = -1;
1148 }
1149 if (vp->bpf != NULL)
1150 kfree(vp->bpf->filter);
1151 kfree(vp->bpf);
1152 vp->bpf = NULL;
1153 kfree(vp->fds->remote_addr);
1154 kfree(vp->transport_data);
1155 kfree(vp->header_rxbuffer);
1156 kfree(vp->header_txbuffer);
1157 if (vp->rx_queue != NULL)
1158 destroy_queue(vp->rx_queue);
1159 if (vp->tx_queue != NULL)
1160 destroy_queue(vp->tx_queue);
1161 kfree(vp->fds);
1162 vp->fds = NULL;
1163 spin_lock_irqsave(&vp->lock, flags);
1164 vp->opened = false;
1165 vp->in_error = false;
1166 spin_unlock_irqrestore(&vp->lock, flags);
1167 return 0;
1168 }
1169
vector_poll(struct napi_struct * napi,int budget)1170 static int vector_poll(struct napi_struct *napi, int budget)
1171 {
1172 struct vector_private *vp = container_of(napi, struct vector_private, napi);
1173 int work_done = 0;
1174 int err;
1175 bool tx_enqueued = false;
1176
1177 if ((vp->options & VECTOR_TX) != 0)
1178 tx_enqueued = (vector_send(vp->tx_queue) > 0);
1179 if ((vp->options & VECTOR_RX) > 0)
1180 err = vector_mmsg_rx(vp, budget);
1181 else {
1182 err = vector_legacy_rx(vp);
1183 if (err > 0)
1184 err = 1;
1185 }
1186 if (err > 0)
1187 work_done += err;
1188
1189 if (tx_enqueued || err > 0)
1190 napi_schedule(napi);
1191 if (work_done < budget)
1192 napi_complete_done(napi, work_done);
1193 return work_done;
1194 }
1195
vector_reset_tx(struct work_struct * work)1196 static void vector_reset_tx(struct work_struct *work)
1197 {
1198 struct vector_private *vp =
1199 container_of(work, struct vector_private, reset_tx);
1200 netdev_reset_queue(vp->dev);
1201 netif_start_queue(vp->dev);
1202 netif_wake_queue(vp->dev);
1203 }
1204
vector_net_open(struct net_device * dev)1205 static int vector_net_open(struct net_device *dev)
1206 {
1207 struct vector_private *vp = netdev_priv(dev);
1208 unsigned long flags;
1209 int err = -EINVAL;
1210 struct vector_device *vdevice;
1211
1212 spin_lock_irqsave(&vp->lock, flags);
1213 if (vp->opened) {
1214 spin_unlock_irqrestore(&vp->lock, flags);
1215 return -ENXIO;
1216 }
1217 vp->opened = true;
1218 spin_unlock_irqrestore(&vp->lock, flags);
1219
1220 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1221
1222 vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1223
1224 if (vp->fds == NULL)
1225 goto out_close;
1226
1227 if (build_transport_data(vp) < 0)
1228 goto out_close;
1229
1230 if ((vp->options & VECTOR_RX) > 0) {
1231 vp->rx_queue = create_queue(
1232 vp,
1233 get_depth(vp->parsed),
1234 vp->rx_header_size,
1235 MAX_IOV_SIZE
1236 );
1237 vp->rx_queue->queue_depth = get_depth(vp->parsed);
1238 } else {
1239 vp->header_rxbuffer = kmalloc(
1240 vp->rx_header_size,
1241 GFP_KERNEL
1242 );
1243 if (vp->header_rxbuffer == NULL)
1244 goto out_close;
1245 }
1246 if ((vp->options & VECTOR_TX) > 0) {
1247 vp->tx_queue = create_queue(
1248 vp,
1249 get_depth(vp->parsed),
1250 vp->header_size,
1251 MAX_IOV_SIZE
1252 );
1253 } else {
1254 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1255 if (vp->header_txbuffer == NULL)
1256 goto out_close;
1257 }
1258
1259 netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1260 get_depth(vp->parsed));
1261 napi_enable(&vp->napi);
1262
1263 /* READ IRQ */
1264 err = um_request_irq(
1265 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1266 IRQ_READ, vector_rx_interrupt,
1267 IRQF_SHARED, dev->name, dev);
1268 if (err < 0) {
1269 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1270 err = -ENETUNREACH;
1271 goto out_close;
1272 }
1273 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1274 dev->irq = irq_rr + VECTOR_BASE_IRQ;
1275 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1276
1277 /* WRITE IRQ - we need it only if we have vector TX */
1278 if ((vp->options & VECTOR_TX) > 0) {
1279 err = um_request_irq(
1280 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1281 IRQ_WRITE, vector_tx_interrupt,
1282 IRQF_SHARED, dev->name, dev);
1283 if (err < 0) {
1284 netdev_err(dev,
1285 "vector_open: failed to get tx irq(%d)\n", err);
1286 err = -ENETUNREACH;
1287 goto out_close;
1288 }
1289 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1290 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1291 }
1292
1293 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1294 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1295 vp->options |= VECTOR_BPF;
1296 }
1297 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1298 vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1299
1300 if (vp->bpf != NULL)
1301 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1302
1303 netif_start_queue(dev);
1304 vector_reset_stats(vp);
1305
1306 /* clear buffer - it can happen that the host side of the interface
1307 * is full when we get here. In this case, new data is never queued,
1308 * SIGIOs never arrive, and the net never works.
1309 */
1310
1311 napi_schedule(&vp->napi);
1312
1313 vdevice = find_device(vp->unit);
1314 vdevice->opened = 1;
1315
1316 if ((vp->options & VECTOR_TX) != 0)
1317 add_timer(&vp->tl);
1318 return 0;
1319 out_close:
1320 vector_net_close(dev);
1321 return err;
1322 }
1323
1324
vector_net_set_multicast_list(struct net_device * dev)1325 static void vector_net_set_multicast_list(struct net_device *dev)
1326 {
1327 /* TODO: - we can do some BPF games here */
1328 return;
1329 }
1330
vector_net_tx_timeout(struct net_device * dev,unsigned int txqueue)1331 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1332 {
1333 struct vector_private *vp = netdev_priv(dev);
1334
1335 vp->estats.tx_timeout_count++;
1336 netif_trans_update(dev);
1337 schedule_work(&vp->reset_tx);
1338 }
1339
vector_fix_features(struct net_device * dev,netdev_features_t features)1340 static netdev_features_t vector_fix_features(struct net_device *dev,
1341 netdev_features_t features)
1342 {
1343 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1344 return features;
1345 }
1346
vector_set_features(struct net_device * dev,netdev_features_t features)1347 static int vector_set_features(struct net_device *dev,
1348 netdev_features_t features)
1349 {
1350 struct vector_private *vp = netdev_priv(dev);
1351 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1352 * no way to negotiate it on raw sockets, so we can change
1353 * only our side.
1354 */
1355 if (features & NETIF_F_GRO)
1356 /* All new frame buffers will be GRO-sized */
1357 vp->req_size = 65536;
1358 else
1359 /* All new frame buffers will be normal sized */
1360 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1361 return 0;
1362 }
1363
1364 #ifdef CONFIG_NET_POLL_CONTROLLER
vector_net_poll_controller(struct net_device * dev)1365 static void vector_net_poll_controller(struct net_device *dev)
1366 {
1367 disable_irq(dev->irq);
1368 vector_rx_interrupt(dev->irq, dev);
1369 enable_irq(dev->irq);
1370 }
1371 #endif
1372
vector_net_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1373 static void vector_net_get_drvinfo(struct net_device *dev,
1374 struct ethtool_drvinfo *info)
1375 {
1376 strscpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1377 }
1378
vector_net_load_bpf_flash(struct net_device * dev,struct ethtool_flash * efl)1379 static int vector_net_load_bpf_flash(struct net_device *dev,
1380 struct ethtool_flash *efl)
1381 {
1382 struct vector_private *vp = netdev_priv(dev);
1383 struct vector_device *vdevice;
1384 const struct firmware *fw;
1385 int result = 0;
1386
1387 if (!(vp->options & VECTOR_BPF_FLASH)) {
1388 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1389 return -1;
1390 }
1391
1392 spin_lock(&vp->lock);
1393
1394 if (vp->bpf != NULL) {
1395 if (vp->opened)
1396 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1397 kfree(vp->bpf->filter);
1398 vp->bpf->filter = NULL;
1399 } else {
1400 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1401 if (vp->bpf == NULL) {
1402 netdev_err(dev, "failed to allocate memory for firmware\n");
1403 goto flash_fail;
1404 }
1405 }
1406
1407 vdevice = find_device(vp->unit);
1408
1409 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1410 goto flash_fail;
1411
1412 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1413 if (!vp->bpf->filter)
1414 goto free_buffer;
1415
1416 vp->bpf->len = fw->size / sizeof(struct sock_filter);
1417 release_firmware(fw);
1418
1419 if (vp->opened)
1420 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1421
1422 spin_unlock(&vp->lock);
1423
1424 return result;
1425
1426 free_buffer:
1427 release_firmware(fw);
1428
1429 flash_fail:
1430 spin_unlock(&vp->lock);
1431 if (vp->bpf != NULL)
1432 kfree(vp->bpf->filter);
1433 kfree(vp->bpf);
1434 vp->bpf = NULL;
1435 return -1;
1436 }
1437
vector_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1438 static void vector_get_ringparam(struct net_device *netdev,
1439 struct ethtool_ringparam *ring,
1440 struct kernel_ethtool_ringparam *kernel_ring,
1441 struct netlink_ext_ack *extack)
1442 {
1443 struct vector_private *vp = netdev_priv(netdev);
1444
1445 ring->rx_max_pending = vp->rx_queue->max_depth;
1446 ring->tx_max_pending = vp->tx_queue->max_depth;
1447 ring->rx_pending = vp->rx_queue->max_depth;
1448 ring->tx_pending = vp->tx_queue->max_depth;
1449 }
1450
vector_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1451 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1452 {
1453 switch (stringset) {
1454 case ETH_SS_TEST:
1455 *buf = '\0';
1456 break;
1457 case ETH_SS_STATS:
1458 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1459 break;
1460 default:
1461 WARN_ON(1);
1462 break;
1463 }
1464 }
1465
vector_get_sset_count(struct net_device * dev,int sset)1466 static int vector_get_sset_count(struct net_device *dev, int sset)
1467 {
1468 switch (sset) {
1469 case ETH_SS_TEST:
1470 return 0;
1471 case ETH_SS_STATS:
1472 return VECTOR_NUM_STATS;
1473 default:
1474 return -EOPNOTSUPP;
1475 }
1476 }
1477
vector_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1478 static void vector_get_ethtool_stats(struct net_device *dev,
1479 struct ethtool_stats *estats,
1480 u64 *tmp_stats)
1481 {
1482 struct vector_private *vp = netdev_priv(dev);
1483
1484 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1485 }
1486
vector_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1487 static int vector_get_coalesce(struct net_device *netdev,
1488 struct ethtool_coalesce *ec,
1489 struct kernel_ethtool_coalesce *kernel_coal,
1490 struct netlink_ext_ack *extack)
1491 {
1492 struct vector_private *vp = netdev_priv(netdev);
1493
1494 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1495 return 0;
1496 }
1497
vector_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1498 static int vector_set_coalesce(struct net_device *netdev,
1499 struct ethtool_coalesce *ec,
1500 struct kernel_ethtool_coalesce *kernel_coal,
1501 struct netlink_ext_ack *extack)
1502 {
1503 struct vector_private *vp = netdev_priv(netdev);
1504
1505 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1506 if (vp->coalesce == 0)
1507 vp->coalesce = 1;
1508 return 0;
1509 }
1510
1511 static const struct ethtool_ops vector_net_ethtool_ops = {
1512 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1513 .get_drvinfo = vector_net_get_drvinfo,
1514 .get_link = ethtool_op_get_link,
1515 .get_ts_info = ethtool_op_get_ts_info,
1516 .get_ringparam = vector_get_ringparam,
1517 .get_strings = vector_get_strings,
1518 .get_sset_count = vector_get_sset_count,
1519 .get_ethtool_stats = vector_get_ethtool_stats,
1520 .get_coalesce = vector_get_coalesce,
1521 .set_coalesce = vector_set_coalesce,
1522 .flash_device = vector_net_load_bpf_flash,
1523 };
1524
1525
1526 static const struct net_device_ops vector_netdev_ops = {
1527 .ndo_open = vector_net_open,
1528 .ndo_stop = vector_net_close,
1529 .ndo_start_xmit = vector_net_start_xmit,
1530 .ndo_set_rx_mode = vector_net_set_multicast_list,
1531 .ndo_tx_timeout = vector_net_tx_timeout,
1532 .ndo_set_mac_address = eth_mac_addr,
1533 .ndo_validate_addr = eth_validate_addr,
1534 .ndo_fix_features = vector_fix_features,
1535 .ndo_set_features = vector_set_features,
1536 #ifdef CONFIG_NET_POLL_CONTROLLER
1537 .ndo_poll_controller = vector_net_poll_controller,
1538 #endif
1539 };
1540
vector_timer_expire(struct timer_list * t)1541 static void vector_timer_expire(struct timer_list *t)
1542 {
1543 struct vector_private *vp = from_timer(vp, t, tl);
1544
1545 vp->estats.tx_kicks++;
1546 napi_schedule(&vp->napi);
1547 }
1548
1549
1550
vector_eth_configure(int n,struct arglist * def)1551 static void vector_eth_configure(
1552 int n,
1553 struct arglist *def
1554 )
1555 {
1556 struct vector_device *device;
1557 struct net_device *dev;
1558 struct vector_private *vp;
1559 int err;
1560
1561 device = kzalloc(sizeof(*device), GFP_KERNEL);
1562 if (device == NULL) {
1563 printk(KERN_ERR "eth_configure failed to allocate struct "
1564 "vector_device\n");
1565 return;
1566 }
1567 dev = alloc_etherdev(sizeof(struct vector_private));
1568 if (dev == NULL) {
1569 printk(KERN_ERR "eth_configure: failed to allocate struct "
1570 "net_device for vec%d\n", n);
1571 goto out_free_device;
1572 }
1573
1574 dev->mtu = get_mtu(def);
1575
1576 INIT_LIST_HEAD(&device->list);
1577 device->unit = n;
1578
1579 /* If this name ends up conflicting with an existing registered
1580 * netdevice, that is OK, register_netdev{,ice}() will notice this
1581 * and fail.
1582 */
1583 snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1584 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1585 vp = netdev_priv(dev);
1586
1587 /* sysfs register */
1588 if (!driver_registered) {
1589 platform_driver_register(¨_net_driver);
1590 driver_registered = 1;
1591 }
1592 device->pdev.id = n;
1593 device->pdev.name = DRIVER_NAME;
1594 device->pdev.dev.release = vector_device_release;
1595 dev_set_drvdata(&device->pdev.dev, device);
1596 if (platform_device_register(&device->pdev))
1597 goto out_free_netdev;
1598 SET_NETDEV_DEV(dev, &device->pdev.dev);
1599
1600 device->dev = dev;
1601
1602 *vp = ((struct vector_private)
1603 {
1604 .list = LIST_HEAD_INIT(vp->list),
1605 .dev = dev,
1606 .unit = n,
1607 .options = get_transport_options(def),
1608 .rx_irq = 0,
1609 .tx_irq = 0,
1610 .parsed = def,
1611 .max_packet = get_mtu(def) + ETH_HEADER_OTHER,
1612 /* TODO - we need to calculate headroom so that ip header
1613 * is 16 byte aligned all the time
1614 */
1615 .headroom = get_headroom(def),
1616 .form_header = NULL,
1617 .verify_header = NULL,
1618 .header_rxbuffer = NULL,
1619 .header_txbuffer = NULL,
1620 .header_size = 0,
1621 .rx_header_size = 0,
1622 .rexmit_scheduled = false,
1623 .opened = false,
1624 .transport_data = NULL,
1625 .in_write_poll = false,
1626 .coalesce = 2,
1627 .req_size = get_req_size(def),
1628 .in_error = false,
1629 .bpf = NULL
1630 });
1631
1632 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1633 INIT_WORK(&vp->reset_tx, vector_reset_tx);
1634
1635 timer_setup(&vp->tl, vector_timer_expire, 0);
1636 spin_lock_init(&vp->lock);
1637
1638 /* FIXME */
1639 dev->netdev_ops = &vector_netdev_ops;
1640 dev->ethtool_ops = &vector_net_ethtool_ops;
1641 dev->watchdog_timeo = (HZ >> 1);
1642 /* primary IRQ - fixme */
1643 dev->irq = 0; /* we will adjust this once opened */
1644
1645 rtnl_lock();
1646 err = register_netdevice(dev);
1647 rtnl_unlock();
1648 if (err)
1649 goto out_undo_user_init;
1650
1651 spin_lock(&vector_devices_lock);
1652 list_add(&device->list, &vector_devices);
1653 spin_unlock(&vector_devices_lock);
1654
1655 return;
1656
1657 out_undo_user_init:
1658 return;
1659 out_free_netdev:
1660 free_netdev(dev);
1661 out_free_device:
1662 kfree(device);
1663 }
1664
1665
1666
1667
1668 /*
1669 * Invoked late in the init
1670 */
1671
vector_init(void)1672 static int __init vector_init(void)
1673 {
1674 struct list_head *ele;
1675 struct vector_cmd_line_arg *def;
1676 struct arglist *parsed;
1677
1678 list_for_each(ele, &vec_cmd_line) {
1679 def = list_entry(ele, struct vector_cmd_line_arg, list);
1680 parsed = uml_parse_vector_ifspec(def->arguments);
1681 if (parsed != NULL)
1682 vector_eth_configure(def->unit, parsed);
1683 }
1684 return 0;
1685 }
1686
1687
1688 /* Invoked at initial argument parsing, only stores
1689 * arguments until a proper vector_init is called
1690 * later
1691 */
1692
vector_setup(char * str)1693 static int __init vector_setup(char *str)
1694 {
1695 char *error;
1696 int n, err;
1697 struct vector_cmd_line_arg *new;
1698
1699 err = vector_parse(str, &n, &str, &error);
1700 if (err) {
1701 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1702 str, error);
1703 return 1;
1704 }
1705 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1706 if (!new)
1707 panic("%s: Failed to allocate %zu bytes\n", __func__,
1708 sizeof(*new));
1709 INIT_LIST_HEAD(&new->list);
1710 new->unit = n;
1711 new->arguments = str;
1712 list_add_tail(&new->list, &vec_cmd_line);
1713 return 1;
1714 }
1715
1716 __setup("vec", vector_setup);
1717 __uml_help(vector_setup,
1718 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1719 " Configure a vector io network device.\n\n"
1720 );
1721
1722 late_initcall(vector_init);
1723
1724 static struct mc_device vector_mc = {
1725 .list = LIST_HEAD_INIT(vector_mc.list),
1726 .name = "vec",
1727 .config = vector_config,
1728 .get_config = NULL,
1729 .id = vector_id,
1730 .remove = vector_remove,
1731 };
1732
1733 #ifdef CONFIG_INET
vector_inetaddr_event(struct notifier_block * this,unsigned long event,void * ptr)1734 static int vector_inetaddr_event(
1735 struct notifier_block *this,
1736 unsigned long event,
1737 void *ptr)
1738 {
1739 return NOTIFY_DONE;
1740 }
1741
1742 static struct notifier_block vector_inetaddr_notifier = {
1743 .notifier_call = vector_inetaddr_event,
1744 };
1745
inet_register(void)1746 static void inet_register(void)
1747 {
1748 register_inetaddr_notifier(&vector_inetaddr_notifier);
1749 }
1750 #else
inet_register(void)1751 static inline void inet_register(void)
1752 {
1753 }
1754 #endif
1755
vector_net_init(void)1756 static int vector_net_init(void)
1757 {
1758 mconsole_register_dev(&vector_mc);
1759 inet_register();
1760 return 0;
1761 }
1762
1763 __initcall(vector_net_init);
1764
1765
1766
1767