1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Page table allocation functions
4 *
5 * Copyright IBM Corp. 2016
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 */
8
9 #include <linux/sysctl.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgalloc.h>
14 #include <asm/gmap.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17
18 #ifdef CONFIG_PGSTE
19
20 int page_table_allocate_pgste = 0;
21 EXPORT_SYMBOL(page_table_allocate_pgste);
22
23 static struct ctl_table page_table_sysctl[] = {
24 {
25 .procname = "allocate_pgste",
26 .data = &page_table_allocate_pgste,
27 .maxlen = sizeof(int),
28 .mode = S_IRUGO | S_IWUSR,
29 .proc_handler = proc_dointvec_minmax,
30 .extra1 = SYSCTL_ZERO,
31 .extra2 = SYSCTL_ONE,
32 },
33 { }
34 };
35
page_table_register_sysctl(void)36 static int __init page_table_register_sysctl(void)
37 {
38 return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM;
39 }
40 __initcall(page_table_register_sysctl);
41
42 #endif /* CONFIG_PGSTE */
43
crst_table_alloc(struct mm_struct * mm)44 unsigned long *crst_table_alloc(struct mm_struct *mm)
45 {
46 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, CRST_ALLOC_ORDER);
47
48 if (!ptdesc)
49 return NULL;
50 arch_set_page_dat(ptdesc_page(ptdesc), CRST_ALLOC_ORDER);
51 return (unsigned long *) ptdesc_to_virt(ptdesc);
52 }
53
crst_table_free(struct mm_struct * mm,unsigned long * table)54 void crst_table_free(struct mm_struct *mm, unsigned long *table)
55 {
56 pagetable_free(virt_to_ptdesc(table));
57 }
58
__crst_table_upgrade(void * arg)59 static void __crst_table_upgrade(void *arg)
60 {
61 struct mm_struct *mm = arg;
62
63 /* change all active ASCEs to avoid the creation of new TLBs */
64 if (current->active_mm == mm) {
65 S390_lowcore.user_asce = mm->context.asce;
66 __ctl_load(S390_lowcore.user_asce, 7, 7);
67 }
68 __tlb_flush_local();
69 }
70
crst_table_upgrade(struct mm_struct * mm,unsigned long end)71 int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
72 {
73 unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
74 unsigned long asce_limit = mm->context.asce_limit;
75
76 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
77 VM_BUG_ON(asce_limit < _REGION2_SIZE);
78
79 if (end <= asce_limit)
80 return 0;
81
82 if (asce_limit == _REGION2_SIZE) {
83 p4d = crst_table_alloc(mm);
84 if (unlikely(!p4d))
85 goto err_p4d;
86 crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
87 }
88 if (end > _REGION1_SIZE) {
89 pgd = crst_table_alloc(mm);
90 if (unlikely(!pgd))
91 goto err_pgd;
92 crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
93 }
94
95 spin_lock_bh(&mm->page_table_lock);
96
97 /*
98 * This routine gets called with mmap_lock lock held and there is
99 * no reason to optimize for the case of otherwise. However, if
100 * that would ever change, the below check will let us know.
101 */
102 VM_BUG_ON(asce_limit != mm->context.asce_limit);
103
104 if (p4d) {
105 __pgd = (unsigned long *) mm->pgd;
106 p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
107 mm->pgd = (pgd_t *) p4d;
108 mm->context.asce_limit = _REGION1_SIZE;
109 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
110 _ASCE_USER_BITS | _ASCE_TYPE_REGION2;
111 mm_inc_nr_puds(mm);
112 }
113 if (pgd) {
114 __pgd = (unsigned long *) mm->pgd;
115 pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
116 mm->pgd = (pgd_t *) pgd;
117 mm->context.asce_limit = TASK_SIZE_MAX;
118 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
119 _ASCE_USER_BITS | _ASCE_TYPE_REGION1;
120 }
121
122 spin_unlock_bh(&mm->page_table_lock);
123
124 on_each_cpu(__crst_table_upgrade, mm, 0);
125
126 return 0;
127
128 err_pgd:
129 crst_table_free(mm, p4d);
130 err_p4d:
131 return -ENOMEM;
132 }
133
atomic_xor_bits(atomic_t * v,unsigned int bits)134 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
135 {
136 return atomic_fetch_xor(bits, v) ^ bits;
137 }
138
139 #ifdef CONFIG_PGSTE
140
page_table_alloc_pgste(struct mm_struct * mm)141 struct page *page_table_alloc_pgste(struct mm_struct *mm)
142 {
143 struct ptdesc *ptdesc;
144 u64 *table;
145
146 ptdesc = pagetable_alloc(GFP_KERNEL, 0);
147 if (ptdesc) {
148 table = (u64 *)ptdesc_to_virt(ptdesc);
149 arch_set_page_dat(virt_to_page(table), 0);
150 memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
151 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
152 }
153 return ptdesc_page(ptdesc);
154 }
155
page_table_free_pgste(struct page * page)156 void page_table_free_pgste(struct page *page)
157 {
158 pagetable_free(page_ptdesc(page));
159 }
160
161 #endif /* CONFIG_PGSTE */
162
163 /*
164 * A 2KB-pgtable is either upper or lower half of a normal page.
165 * The second half of the page may be unused or used as another
166 * 2KB-pgtable.
167 *
168 * Whenever possible the parent page for a new 2KB-pgtable is picked
169 * from the list of partially allocated pages mm_context_t::pgtable_list.
170 * In case the list is empty a new parent page is allocated and added to
171 * the list.
172 *
173 * When a parent page gets fully allocated it contains 2KB-pgtables in both
174 * upper and lower halves and is removed from mm_context_t::pgtable_list.
175 *
176 * When 2KB-pgtable is freed from to fully allocated parent page that
177 * page turns partially allocated and added to mm_context_t::pgtable_list.
178 *
179 * If 2KB-pgtable is freed from the partially allocated parent page that
180 * page turns unused and gets removed from mm_context_t::pgtable_list.
181 * Furthermore, the unused parent page is released.
182 *
183 * As follows from the above, no unallocated or fully allocated parent
184 * pages are contained in mm_context_t::pgtable_list.
185 *
186 * The upper byte (bits 24-31) of the parent page _refcount is used
187 * for tracking contained 2KB-pgtables and has the following format:
188 *
189 * PP AA
190 * 01234567 upper byte (bits 24-31) of struct page::_refcount
191 * || ||
192 * || |+--- upper 2KB-pgtable is allocated
193 * || +---- lower 2KB-pgtable is allocated
194 * |+------- upper 2KB-pgtable is pending for removal
195 * +-------- lower 2KB-pgtable is pending for removal
196 *
197 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why
198 * using _refcount is possible).
199 *
200 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1.
201 * The parent page is either:
202 * - added to mm_context_t::pgtable_list in case the second half of the
203 * parent page is still unallocated;
204 * - removed from mm_context_t::pgtable_list in case both hales of the
205 * parent page are allocated;
206 * These operations are protected with mm_context_t::lock.
207 *
208 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0
209 * and the corresponding PP bit is set to 1 in a single atomic operation.
210 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually
211 * exclusive and may never be both set to 1!
212 * The parent page is either:
213 * - added to mm_context_t::pgtable_list in case the second half of the
214 * parent page is still allocated;
215 * - removed from mm_context_t::pgtable_list in case the second half of
216 * the parent page is unallocated;
217 * These operations are protected with mm_context_t::lock.
218 *
219 * It is important to understand that mm_context_t::lock only protects
220 * mm_context_t::pgtable_list and AA bits, but not the parent page itself
221 * and PP bits.
222 *
223 * Releasing the parent page happens whenever the PP bit turns from 1 to 0,
224 * while both AA bits and the second PP bit are already unset. Then the
225 * parent page does not contain any 2KB-pgtable fragment anymore, and it has
226 * also been removed from mm_context_t::pgtable_list. It is safe to release
227 * the page therefore.
228 *
229 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the
230 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable
231 * while the PP bits are never used, nor such a page is added to or removed
232 * from mm_context_t::pgtable_list.
233 *
234 * pte_free_defer() overrides those rules: it takes the page off pgtable_list,
235 * and prevents both 2K fragments from being reused. pte_free_defer() has to
236 * guarantee that its pgtable cannot be reused before the RCU grace period
237 * has elapsed (which page_table_free_rcu() does not actually guarantee).
238 * But for simplicity, because page->rcu_head overlays page->lru, and because
239 * the RCU callback might not be called before the mm_context_t has been freed,
240 * pte_free_defer() in this implementation prevents both fragments from being
241 * reused, and delays making the call to RCU until both fragments are freed.
242 */
page_table_alloc(struct mm_struct * mm)243 unsigned long *page_table_alloc(struct mm_struct *mm)
244 {
245 unsigned long *table;
246 struct ptdesc *ptdesc;
247 unsigned int mask, bit;
248
249 /* Try to get a fragment of a 4K page as a 2K page table */
250 if (!mm_alloc_pgste(mm)) {
251 table = NULL;
252 spin_lock_bh(&mm->context.lock);
253 if (!list_empty(&mm->context.pgtable_list)) {
254 ptdesc = list_first_entry(&mm->context.pgtable_list,
255 struct ptdesc, pt_list);
256 mask = atomic_read(&ptdesc->_refcount) >> 24;
257 /*
258 * The pending removal bits must also be checked.
259 * Failure to do so might lead to an impossible
260 * value of (i.e 0x13 or 0x23) written to _refcount.
261 * Such values violate the assumption that pending and
262 * allocation bits are mutually exclusive, and the rest
263 * of the code unrails as result. That could lead to
264 * a whole bunch of races and corruptions.
265 */
266 mask = (mask | (mask >> 4)) & 0x03U;
267 if (mask != 0x03U) {
268 table = (unsigned long *) ptdesc_to_virt(ptdesc);
269 bit = mask & 1; /* =1 -> second 2K */
270 if (bit)
271 table += PTRS_PER_PTE;
272 atomic_xor_bits(&ptdesc->_refcount,
273 0x01U << (bit + 24));
274 list_del_init(&ptdesc->pt_list);
275 }
276 }
277 spin_unlock_bh(&mm->context.lock);
278 if (table)
279 return table;
280 }
281 /* Allocate a fresh page */
282 ptdesc = pagetable_alloc(GFP_KERNEL, 0);
283 if (!ptdesc)
284 return NULL;
285 if (!pagetable_pte_ctor(ptdesc)) {
286 pagetable_free(ptdesc);
287 return NULL;
288 }
289 arch_set_page_dat(ptdesc_page(ptdesc), 0);
290 /* Initialize page table */
291 table = (unsigned long *) ptdesc_to_virt(ptdesc);
292 if (mm_alloc_pgste(mm)) {
293 /* Return 4K page table with PGSTEs */
294 INIT_LIST_HEAD(&ptdesc->pt_list);
295 atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
296 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
297 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
298 } else {
299 /* Return the first 2K fragment of the page */
300 atomic_xor_bits(&ptdesc->_refcount, 0x01U << 24);
301 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
302 spin_lock_bh(&mm->context.lock);
303 list_add(&ptdesc->pt_list, &mm->context.pgtable_list);
304 spin_unlock_bh(&mm->context.lock);
305 }
306 return table;
307 }
308
page_table_release_check(struct page * page,void * table,unsigned int half,unsigned int mask)309 static void page_table_release_check(struct page *page, void *table,
310 unsigned int half, unsigned int mask)
311 {
312 char msg[128];
313
314 if (!IS_ENABLED(CONFIG_DEBUG_VM))
315 return;
316 if (!mask && list_empty(&page->lru))
317 return;
318 snprintf(msg, sizeof(msg),
319 "Invalid pgtable %p release half 0x%02x mask 0x%02x",
320 table, half, mask);
321 dump_page(page, msg);
322 }
323
pte_free_now(struct rcu_head * head)324 static void pte_free_now(struct rcu_head *head)
325 {
326 struct ptdesc *ptdesc;
327
328 ptdesc = container_of(head, struct ptdesc, pt_rcu_head);
329 pagetable_pte_dtor(ptdesc);
330 pagetable_free(ptdesc);
331 }
332
page_table_free(struct mm_struct * mm,unsigned long * table)333 void page_table_free(struct mm_struct *mm, unsigned long *table)
334 {
335 unsigned int mask, bit, half;
336 struct ptdesc *ptdesc = virt_to_ptdesc(table);
337
338 if (!mm_alloc_pgste(mm)) {
339 /* Free 2K page table fragment of a 4K page */
340 bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
341 spin_lock_bh(&mm->context.lock);
342 /*
343 * Mark the page for delayed release. The actual release
344 * will happen outside of the critical section from this
345 * function or from __tlb_remove_table()
346 */
347 mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24));
348 mask >>= 24;
349 if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) {
350 /*
351 * Other half is allocated, and neither half has had
352 * its free deferred: add page to head of list, to make
353 * this freed half available for immediate reuse.
354 */
355 list_add(&ptdesc->pt_list, &mm->context.pgtable_list);
356 } else {
357 /* If page is on list, now remove it. */
358 list_del_init(&ptdesc->pt_list);
359 }
360 spin_unlock_bh(&mm->context.lock);
361 mask = atomic_xor_bits(&ptdesc->_refcount, 0x10U << (bit + 24));
362 mask >>= 24;
363 if (mask != 0x00U)
364 return;
365 half = 0x01U << bit;
366 } else {
367 half = 0x03U;
368 mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
369 mask >>= 24;
370 }
371
372 page_table_release_check(ptdesc_page(ptdesc), table, half, mask);
373 if (folio_test_clear_active(ptdesc_folio(ptdesc)))
374 call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
375 else
376 pte_free_now(&ptdesc->pt_rcu_head);
377 }
378
page_table_free_rcu(struct mmu_gather * tlb,unsigned long * table,unsigned long vmaddr)379 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
380 unsigned long vmaddr)
381 {
382 struct mm_struct *mm;
383 unsigned int bit, mask;
384 struct ptdesc *ptdesc = virt_to_ptdesc(table);
385
386 mm = tlb->mm;
387 if (mm_alloc_pgste(mm)) {
388 gmap_unlink(mm, table, vmaddr);
389 table = (unsigned long *) ((unsigned long)table | 0x03U);
390 tlb_remove_ptdesc(tlb, table);
391 return;
392 }
393 bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
394 spin_lock_bh(&mm->context.lock);
395 /*
396 * Mark the page for delayed release. The actual release will happen
397 * outside of the critical section from __tlb_remove_table() or from
398 * page_table_free()
399 */
400 mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24));
401 mask >>= 24;
402 if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) {
403 /*
404 * Other half is allocated, and neither half has had
405 * its free deferred: add page to end of list, to make
406 * this freed half available for reuse once its pending
407 * bit has been cleared by __tlb_remove_table().
408 */
409 list_add_tail(&ptdesc->pt_list, &mm->context.pgtable_list);
410 } else {
411 /* If page is on list, now remove it. */
412 list_del_init(&ptdesc->pt_list);
413 }
414 spin_unlock_bh(&mm->context.lock);
415 table = (unsigned long *) ((unsigned long) table | (0x01U << bit));
416 tlb_remove_table(tlb, table);
417 }
418
__tlb_remove_table(void * _table)419 void __tlb_remove_table(void *_table)
420 {
421 unsigned int mask = (unsigned long) _table & 0x03U, half = mask;
422 void *table = (void *)((unsigned long) _table ^ mask);
423 struct ptdesc *ptdesc = virt_to_ptdesc(table);
424
425 switch (half) {
426 case 0x00U: /* pmd, pud, or p4d */
427 pagetable_free(ptdesc);
428 return;
429 case 0x01U: /* lower 2K of a 4K page table */
430 case 0x02U: /* higher 2K of a 4K page table */
431 mask = atomic_xor_bits(&ptdesc->_refcount, mask << (4 + 24));
432 mask >>= 24;
433 if (mask != 0x00U)
434 return;
435 break;
436 case 0x03U: /* 4K page table with pgstes */
437 mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
438 mask >>= 24;
439 break;
440 }
441
442 page_table_release_check(ptdesc_page(ptdesc), table, half, mask);
443 if (folio_test_clear_active(ptdesc_folio(ptdesc)))
444 call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
445 else
446 pte_free_now(&ptdesc->pt_rcu_head);
447 }
448
449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pte_free_defer(struct mm_struct * mm,pgtable_t pgtable)450 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
451 {
452 struct page *page;
453
454 page = virt_to_page(pgtable);
455 SetPageActive(page);
456 page_table_free(mm, (unsigned long *)pgtable);
457 /*
458 * page_table_free() does not do the pgste gmap_unlink() which
459 * page_table_free_rcu() does: warn us if pgste ever reaches here.
460 */
461 WARN_ON_ONCE(mm_has_pgste(mm));
462 }
463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
464
465 /*
466 * Base infrastructure required to generate basic asces, region, segment,
467 * and page tables that do not make use of enhanced features like EDAT1.
468 */
469
470 static struct kmem_cache *base_pgt_cache;
471
base_pgt_alloc(void)472 static unsigned long *base_pgt_alloc(void)
473 {
474 unsigned long *table;
475
476 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
477 if (table)
478 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
479 return table;
480 }
481
base_pgt_free(unsigned long * table)482 static void base_pgt_free(unsigned long *table)
483 {
484 kmem_cache_free(base_pgt_cache, table);
485 }
486
base_crst_alloc(unsigned long val)487 static unsigned long *base_crst_alloc(unsigned long val)
488 {
489 unsigned long *table;
490 struct ptdesc *ptdesc;
491
492 ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, CRST_ALLOC_ORDER);
493 if (!ptdesc)
494 return NULL;
495 table = ptdesc_address(ptdesc);
496
497 crst_table_init(table, val);
498 return table;
499 }
500
base_crst_free(unsigned long * table)501 static void base_crst_free(unsigned long *table)
502 {
503 pagetable_free(virt_to_ptdesc(table));
504 }
505
506 #define BASE_ADDR_END_FUNC(NAME, SIZE) \
507 static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \
508 unsigned long end) \
509 { \
510 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \
511 \
512 return (next - 1) < (end - 1) ? next : end; \
513 }
514
BASE_ADDR_END_FUNC(page,_PAGE_SIZE)515 BASE_ADDR_END_FUNC(page, _PAGE_SIZE)
516 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
517 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
518 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
519 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
520
521 static inline unsigned long base_lra(unsigned long address)
522 {
523 unsigned long real;
524
525 asm volatile(
526 " lra %0,0(%1)\n"
527 : "=d" (real) : "a" (address) : "cc");
528 return real;
529 }
530
base_page_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)531 static int base_page_walk(unsigned long *origin, unsigned long addr,
532 unsigned long end, int alloc)
533 {
534 unsigned long *pte, next;
535
536 if (!alloc)
537 return 0;
538 pte = origin;
539 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
540 do {
541 next = base_page_addr_end(addr, end);
542 *pte = base_lra(addr);
543 } while (pte++, addr = next, addr < end);
544 return 0;
545 }
546
base_segment_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)547 static int base_segment_walk(unsigned long *origin, unsigned long addr,
548 unsigned long end, int alloc)
549 {
550 unsigned long *ste, next, *table;
551 int rc;
552
553 ste = origin;
554 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
555 do {
556 next = base_segment_addr_end(addr, end);
557 if (*ste & _SEGMENT_ENTRY_INVALID) {
558 if (!alloc)
559 continue;
560 table = base_pgt_alloc();
561 if (!table)
562 return -ENOMEM;
563 *ste = __pa(table) | _SEGMENT_ENTRY;
564 }
565 table = __va(*ste & _SEGMENT_ENTRY_ORIGIN);
566 rc = base_page_walk(table, addr, next, alloc);
567 if (rc)
568 return rc;
569 if (!alloc)
570 base_pgt_free(table);
571 cond_resched();
572 } while (ste++, addr = next, addr < end);
573 return 0;
574 }
575
base_region3_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)576 static int base_region3_walk(unsigned long *origin, unsigned long addr,
577 unsigned long end, int alloc)
578 {
579 unsigned long *rtte, next, *table;
580 int rc;
581
582 rtte = origin;
583 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
584 do {
585 next = base_region3_addr_end(addr, end);
586 if (*rtte & _REGION_ENTRY_INVALID) {
587 if (!alloc)
588 continue;
589 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
590 if (!table)
591 return -ENOMEM;
592 *rtte = __pa(table) | _REGION3_ENTRY;
593 }
594 table = __va(*rtte & _REGION_ENTRY_ORIGIN);
595 rc = base_segment_walk(table, addr, next, alloc);
596 if (rc)
597 return rc;
598 if (!alloc)
599 base_crst_free(table);
600 } while (rtte++, addr = next, addr < end);
601 return 0;
602 }
603
base_region2_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)604 static int base_region2_walk(unsigned long *origin, unsigned long addr,
605 unsigned long end, int alloc)
606 {
607 unsigned long *rste, next, *table;
608 int rc;
609
610 rste = origin;
611 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
612 do {
613 next = base_region2_addr_end(addr, end);
614 if (*rste & _REGION_ENTRY_INVALID) {
615 if (!alloc)
616 continue;
617 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
618 if (!table)
619 return -ENOMEM;
620 *rste = __pa(table) | _REGION2_ENTRY;
621 }
622 table = __va(*rste & _REGION_ENTRY_ORIGIN);
623 rc = base_region3_walk(table, addr, next, alloc);
624 if (rc)
625 return rc;
626 if (!alloc)
627 base_crst_free(table);
628 } while (rste++, addr = next, addr < end);
629 return 0;
630 }
631
base_region1_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)632 static int base_region1_walk(unsigned long *origin, unsigned long addr,
633 unsigned long end, int alloc)
634 {
635 unsigned long *rfte, next, *table;
636 int rc;
637
638 rfte = origin;
639 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
640 do {
641 next = base_region1_addr_end(addr, end);
642 if (*rfte & _REGION_ENTRY_INVALID) {
643 if (!alloc)
644 continue;
645 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
646 if (!table)
647 return -ENOMEM;
648 *rfte = __pa(table) | _REGION1_ENTRY;
649 }
650 table = __va(*rfte & _REGION_ENTRY_ORIGIN);
651 rc = base_region2_walk(table, addr, next, alloc);
652 if (rc)
653 return rc;
654 if (!alloc)
655 base_crst_free(table);
656 } while (rfte++, addr = next, addr < end);
657 return 0;
658 }
659
660 /**
661 * base_asce_free - free asce and tables returned from base_asce_alloc()
662 * @asce: asce to be freed
663 *
664 * Frees all region, segment, and page tables that were allocated with a
665 * corresponding base_asce_alloc() call.
666 */
base_asce_free(unsigned long asce)667 void base_asce_free(unsigned long asce)
668 {
669 unsigned long *table = __va(asce & _ASCE_ORIGIN);
670
671 if (!asce)
672 return;
673 switch (asce & _ASCE_TYPE_MASK) {
674 case _ASCE_TYPE_SEGMENT:
675 base_segment_walk(table, 0, _REGION3_SIZE, 0);
676 break;
677 case _ASCE_TYPE_REGION3:
678 base_region3_walk(table, 0, _REGION2_SIZE, 0);
679 break;
680 case _ASCE_TYPE_REGION2:
681 base_region2_walk(table, 0, _REGION1_SIZE, 0);
682 break;
683 case _ASCE_TYPE_REGION1:
684 base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
685 break;
686 }
687 base_crst_free(table);
688 }
689
base_pgt_cache_init(void)690 static int base_pgt_cache_init(void)
691 {
692 static DEFINE_MUTEX(base_pgt_cache_mutex);
693 unsigned long sz = _PAGE_TABLE_SIZE;
694
695 if (base_pgt_cache)
696 return 0;
697 mutex_lock(&base_pgt_cache_mutex);
698 if (!base_pgt_cache)
699 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
700 mutex_unlock(&base_pgt_cache_mutex);
701 return base_pgt_cache ? 0 : -ENOMEM;
702 }
703
704 /**
705 * base_asce_alloc - create kernel mapping without enhanced DAT features
706 * @addr: virtual start address of kernel mapping
707 * @num_pages: number of consecutive pages
708 *
709 * Generate an asce, including all required region, segment and page tables,
710 * that can be used to access the virtual kernel mapping. The difference is
711 * that the returned asce does not make use of any enhanced DAT features like
712 * e.g. large pages. This is required for some I/O functions that pass an
713 * asce, like e.g. some service call requests.
714 *
715 * Note: the returned asce may NEVER be attached to any cpu. It may only be
716 * used for I/O requests. tlb entries that might result because the
717 * asce was attached to a cpu won't be cleared.
718 */
base_asce_alloc(unsigned long addr,unsigned long num_pages)719 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
720 {
721 unsigned long asce, *table, end;
722 int rc;
723
724 if (base_pgt_cache_init())
725 return 0;
726 end = addr + num_pages * PAGE_SIZE;
727 if (end <= _REGION3_SIZE) {
728 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
729 if (!table)
730 return 0;
731 rc = base_segment_walk(table, addr, end, 1);
732 asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
733 } else if (end <= _REGION2_SIZE) {
734 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
735 if (!table)
736 return 0;
737 rc = base_region3_walk(table, addr, end, 1);
738 asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
739 } else if (end <= _REGION1_SIZE) {
740 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
741 if (!table)
742 return 0;
743 rc = base_region2_walk(table, addr, end, 1);
744 asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
745 } else {
746 table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
747 if (!table)
748 return 0;
749 rc = base_region1_walk(table, addr, end, 1);
750 asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
751 }
752 if (rc) {
753 base_asce_free(asce);
754 asce = 0;
755 }
756 return asce;
757 }
758