1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Cell Broadband Engine Performance Monitor
4 *
5 * (C) Copyright IBM Corporation 2001,2006
6 *
7 * Author:
8 * David Erb (djerb@us.ibm.com)
9 * Kevin Corry (kevcorry@us.ibm.com)
10 */
11
12 #include <linux/interrupt.h>
13 #include <linux/irqdomain.h>
14 #include <linux/types.h>
15 #include <linux/export.h>
16 #include <asm/io.h>
17 #include <asm/irq_regs.h>
18 #include <asm/machdep.h>
19 #include <asm/pmc.h>
20 #include <asm/reg.h>
21 #include <asm/spu.h>
22 #include <asm/cell-regs.h>
23
24 #include "interrupt.h"
25
26 /*
27 * When writing to write-only mmio addresses, save a shadow copy. All of the
28 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
29 * pmd_regs.
30 */
31
32 #define WRITE_WO_MMIO(reg, x) \
33 do { \
34 u32 _x = (x); \
35 struct cbe_pmd_regs __iomem *pmd_regs; \
36 struct cbe_pmd_shadow_regs *shadow_regs; \
37 pmd_regs = cbe_get_cpu_pmd_regs(cpu); \
38 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
39 out_be64(&(pmd_regs->reg), (((u64)_x) << 32)); \
40 shadow_regs->reg = _x; \
41 } while (0)
42
43 #define READ_SHADOW_REG(val, reg) \
44 do { \
45 struct cbe_pmd_shadow_regs *shadow_regs; \
46 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
47 (val) = shadow_regs->reg; \
48 } while (0)
49
50 #define READ_MMIO_UPPER32(val, reg) \
51 do { \
52 struct cbe_pmd_regs __iomem *pmd_regs; \
53 pmd_regs = cbe_get_cpu_pmd_regs(cpu); \
54 (val) = (u32)(in_be64(&pmd_regs->reg) >> 32); \
55 } while (0)
56
57 /*
58 * Physical counter registers.
59 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
60 */
61
cbe_read_phys_ctr(u32 cpu,u32 phys_ctr)62 u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
63 {
64 u32 val_in_latch, val = 0;
65
66 if (phys_ctr < NR_PHYS_CTRS) {
67 READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
68
69 /* Read the latch or the actual counter, whichever is newer. */
70 if (val_in_latch & (1 << phys_ctr)) {
71 READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
72 } else {
73 READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
74 }
75 }
76
77 return val;
78 }
79 EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
80
cbe_write_phys_ctr(u32 cpu,u32 phys_ctr,u32 val)81 void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
82 {
83 struct cbe_pmd_shadow_regs *shadow_regs;
84 u32 pm_ctrl;
85
86 if (phys_ctr < NR_PHYS_CTRS) {
87 /* Writing to a counter only writes to a hardware latch.
88 * The new value is not propagated to the actual counter
89 * until the performance monitor is enabled.
90 */
91 WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
92
93 pm_ctrl = cbe_read_pm(cpu, pm_control);
94 if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
95 /* The counters are already active, so we need to
96 * rewrite the pm_control register to "re-enable"
97 * the PMU.
98 */
99 cbe_write_pm(cpu, pm_control, pm_ctrl);
100 } else {
101 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
102 shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
103 }
104 }
105 }
106 EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
107
108 /*
109 * "Logical" counter registers.
110 * These will read/write 16-bits or 32-bits depending on the
111 * current size of the counter. Counters 4 - 7 are always 16-bit.
112 */
113
cbe_read_ctr(u32 cpu,u32 ctr)114 u32 cbe_read_ctr(u32 cpu, u32 ctr)
115 {
116 u32 val;
117 u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
118
119 val = cbe_read_phys_ctr(cpu, phys_ctr);
120
121 if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
122 val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
123
124 return val;
125 }
126 EXPORT_SYMBOL_GPL(cbe_read_ctr);
127
cbe_write_ctr(u32 cpu,u32 ctr,u32 val)128 void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
129 {
130 u32 phys_ctr;
131 u32 phys_val;
132
133 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
134
135 if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
136 phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
137
138 if (ctr < NR_PHYS_CTRS)
139 val = (val << 16) | (phys_val & 0xffff);
140 else
141 val = (val & 0xffff) | (phys_val & 0xffff0000);
142 }
143
144 cbe_write_phys_ctr(cpu, phys_ctr, val);
145 }
146 EXPORT_SYMBOL_GPL(cbe_write_ctr);
147
148 /*
149 * Counter-control registers.
150 * Each "logical" counter has a corresponding control register.
151 */
152
cbe_read_pm07_control(u32 cpu,u32 ctr)153 u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
154 {
155 u32 pm07_control = 0;
156
157 if (ctr < NR_CTRS)
158 READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
159
160 return pm07_control;
161 }
162 EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
163
cbe_write_pm07_control(u32 cpu,u32 ctr,u32 val)164 void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
165 {
166 if (ctr < NR_CTRS)
167 WRITE_WO_MMIO(pm07_control[ctr], val);
168 }
169 EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
170
171 /*
172 * Other PMU control registers. Most of these are write-only.
173 */
174
cbe_read_pm(u32 cpu,enum pm_reg_name reg)175 u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
176 {
177 u32 val = 0;
178
179 switch (reg) {
180 case group_control:
181 READ_SHADOW_REG(val, group_control);
182 break;
183
184 case debug_bus_control:
185 READ_SHADOW_REG(val, debug_bus_control);
186 break;
187
188 case trace_address:
189 READ_MMIO_UPPER32(val, trace_address);
190 break;
191
192 case ext_tr_timer:
193 READ_SHADOW_REG(val, ext_tr_timer);
194 break;
195
196 case pm_status:
197 READ_MMIO_UPPER32(val, pm_status);
198 break;
199
200 case pm_control:
201 READ_SHADOW_REG(val, pm_control);
202 break;
203
204 case pm_interval:
205 READ_MMIO_UPPER32(val, pm_interval);
206 break;
207
208 case pm_start_stop:
209 READ_SHADOW_REG(val, pm_start_stop);
210 break;
211 }
212
213 return val;
214 }
215 EXPORT_SYMBOL_GPL(cbe_read_pm);
216
cbe_write_pm(u32 cpu,enum pm_reg_name reg,u32 val)217 void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
218 {
219 switch (reg) {
220 case group_control:
221 WRITE_WO_MMIO(group_control, val);
222 break;
223
224 case debug_bus_control:
225 WRITE_WO_MMIO(debug_bus_control, val);
226 break;
227
228 case trace_address:
229 WRITE_WO_MMIO(trace_address, val);
230 break;
231
232 case ext_tr_timer:
233 WRITE_WO_MMIO(ext_tr_timer, val);
234 break;
235
236 case pm_status:
237 WRITE_WO_MMIO(pm_status, val);
238 break;
239
240 case pm_control:
241 WRITE_WO_MMIO(pm_control, val);
242 break;
243
244 case pm_interval:
245 WRITE_WO_MMIO(pm_interval, val);
246 break;
247
248 case pm_start_stop:
249 WRITE_WO_MMIO(pm_start_stop, val);
250 break;
251 }
252 }
253 EXPORT_SYMBOL_GPL(cbe_write_pm);
254
255 /*
256 * Get/set the size of a physical counter to either 16 or 32 bits.
257 */
258
cbe_get_ctr_size(u32 cpu,u32 phys_ctr)259 u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
260 {
261 u32 pm_ctrl, size = 0;
262
263 if (phys_ctr < NR_PHYS_CTRS) {
264 pm_ctrl = cbe_read_pm(cpu, pm_control);
265 size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
266 }
267
268 return size;
269 }
270 EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
271
cbe_set_ctr_size(u32 cpu,u32 phys_ctr,u32 ctr_size)272 void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
273 {
274 u32 pm_ctrl;
275
276 if (phys_ctr < NR_PHYS_CTRS) {
277 pm_ctrl = cbe_read_pm(cpu, pm_control);
278 switch (ctr_size) {
279 case 16:
280 pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
281 break;
282
283 case 32:
284 pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
285 break;
286 }
287 cbe_write_pm(cpu, pm_control, pm_ctrl);
288 }
289 }
290 EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
291
292 /*
293 * Enable/disable the entire performance monitoring unit.
294 * When we enable the PMU, all pending writes to counters get committed.
295 */
296
cbe_enable_pm(u32 cpu)297 void cbe_enable_pm(u32 cpu)
298 {
299 struct cbe_pmd_shadow_regs *shadow_regs;
300 u32 pm_ctrl;
301
302 shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
303 shadow_regs->counter_value_in_latch = 0;
304
305 pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
306 cbe_write_pm(cpu, pm_control, pm_ctrl);
307 }
308 EXPORT_SYMBOL_GPL(cbe_enable_pm);
309
cbe_disable_pm(u32 cpu)310 void cbe_disable_pm(u32 cpu)
311 {
312 u32 pm_ctrl;
313 pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
314 cbe_write_pm(cpu, pm_control, pm_ctrl);
315 }
316 EXPORT_SYMBOL_GPL(cbe_disable_pm);
317
318 /*
319 * Reading from the trace_buffer.
320 * The trace buffer is two 64-bit registers. Reading from
321 * the second half automatically increments the trace_address.
322 */
323
cbe_read_trace_buffer(u32 cpu,u64 * buf)324 void cbe_read_trace_buffer(u32 cpu, u64 *buf)
325 {
326 struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
327
328 *buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
329 *buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
330 }
331 EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
332
333 /*
334 * Enabling/disabling interrupts for the entire performance monitoring unit.
335 */
336
cbe_get_and_clear_pm_interrupts(u32 cpu)337 u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
338 {
339 /* Reading pm_status clears the interrupt bits. */
340 return cbe_read_pm(cpu, pm_status);
341 }
342 EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
343
cbe_enable_pm_interrupts(u32 cpu,u32 thread,u32 mask)344 void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
345 {
346 /* Set which node and thread will handle the next interrupt. */
347 iic_set_interrupt_routing(cpu, thread, 0);
348
349 /* Enable the interrupt bits in the pm_status register. */
350 if (mask)
351 cbe_write_pm(cpu, pm_status, mask);
352 }
353 EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
354
cbe_disable_pm_interrupts(u32 cpu)355 void cbe_disable_pm_interrupts(u32 cpu)
356 {
357 cbe_get_and_clear_pm_interrupts(cpu);
358 cbe_write_pm(cpu, pm_status, 0);
359 }
360 EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
361
cbe_pm_irq(int irq,void * dev_id)362 static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
363 {
364 perf_irq(get_irq_regs());
365 return IRQ_HANDLED;
366 }
367
cbe_init_pm_irq(void)368 static int __init cbe_init_pm_irq(void)
369 {
370 unsigned int irq;
371 int rc, node;
372
373 for_each_online_node(node) {
374 irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
375 (node << IIC_IRQ_NODE_SHIFT));
376 if (!irq) {
377 printk("ERROR: Unable to allocate irq for node %d\n",
378 node);
379 return -EINVAL;
380 }
381
382 rc = request_irq(irq, cbe_pm_irq,
383 0, "cbe-pmu-0", NULL);
384 if (rc) {
385 printk("ERROR: Request for irq on node %d failed\n",
386 node);
387 return rc;
388 }
389 }
390
391 return 0;
392 }
393 machine_arch_initcall(cell, cbe_init_pm_irq);
394
cbe_sync_irq(int node)395 void cbe_sync_irq(int node)
396 {
397 unsigned int irq;
398
399 irq = irq_find_mapping(NULL,
400 IIC_IRQ_IOEX_PMI
401 | (node << IIC_IRQ_NODE_SHIFT));
402
403 if (!irq) {
404 printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
405 "for node %d\n", irq, node);
406 return;
407 }
408
409 synchronize_irq(irq);
410 }
411 EXPORT_SYMBOL_GPL(cbe_sync_irq);
412
413