1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 */
5
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17
18 #include <asm/cputable.h>
19 #include <asm/interrupt.h>
20 #include <asm/kvm_ppc.h>
21 #include <asm/kvm_book3s.h>
22 #include <asm/machdep.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/dbell.h>
26 #include <asm/cputhreads.h>
27 #include <asm/io.h>
28 #include <asm/opal.h>
29 #include <asm/smp.h>
30
31 #define KVM_CMA_CHUNK_ORDER 18
32
33 #include "book3s_xics.h"
34 #include "book3s_xive.h"
35 #include "book3s_hv.h"
36
37 /*
38 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
39 * should be power of 2.
40 */
41 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
42 /*
43 * By default we reserve 5% of memory for hash pagetable allocation.
44 */
45 static unsigned long kvm_cma_resv_ratio = 5;
46
47 static struct cma *kvm_cma;
48
early_parse_kvm_cma_resv(char * p)49 static int __init early_parse_kvm_cma_resv(char *p)
50 {
51 pr_debug("%s(%s)\n", __func__, p);
52 if (!p)
53 return -EINVAL;
54 return kstrtoul(p, 0, &kvm_cma_resv_ratio);
55 }
56 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
57
kvm_alloc_hpt_cma(unsigned long nr_pages)58 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
59 {
60 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
61
62 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
63 false);
64 }
65 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
66
kvm_free_hpt_cma(struct page * page,unsigned long nr_pages)67 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
68 {
69 cma_release(kvm_cma, page, nr_pages);
70 }
71 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
72
73 /**
74 * kvm_cma_reserve() - reserve area for kvm hash pagetable
75 *
76 * This function reserves memory from early allocator. It should be
77 * called by arch specific code once the memblock allocator
78 * has been activated and all other subsystems have already allocated/reserved
79 * memory.
80 */
kvm_cma_reserve(void)81 void __init kvm_cma_reserve(void)
82 {
83 unsigned long align_size;
84 phys_addr_t selected_size;
85
86 /*
87 * We need CMA reservation only when we are in HV mode
88 */
89 if (!cpu_has_feature(CPU_FTR_HVMODE))
90 return;
91
92 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
93 if (selected_size) {
94 pr_info("%s: reserving %ld MiB for global area\n", __func__,
95 (unsigned long)selected_size / SZ_1M);
96 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
97 cma_declare_contiguous(0, selected_size, 0, align_size,
98 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
99 &kvm_cma);
100 }
101 }
102
103 /*
104 * Real-mode H_CONFER implementation.
105 * We check if we are the only vcpu out of this virtual core
106 * still running in the guest and not ceded. If so, we pop up
107 * to the virtual-mode implementation; if not, just return to
108 * the guest.
109 */
kvmppc_rm_h_confer(struct kvm_vcpu * vcpu,int target,unsigned int yield_count)110 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
111 unsigned int yield_count)
112 {
113 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
114 int ptid = local_paca->kvm_hstate.ptid;
115 int threads_running;
116 int threads_ceded;
117 int threads_conferring;
118 u64 stop = get_tb() + 10 * tb_ticks_per_usec;
119 int rv = H_SUCCESS; /* => don't yield */
120
121 set_bit(ptid, &vc->conferring_threads);
122 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
123 threads_running = VCORE_ENTRY_MAP(vc);
124 threads_ceded = vc->napping_threads;
125 threads_conferring = vc->conferring_threads;
126 if ((threads_ceded | threads_conferring) == threads_running) {
127 rv = H_TOO_HARD; /* => do yield */
128 break;
129 }
130 }
131 clear_bit(ptid, &vc->conferring_threads);
132 return rv;
133 }
134
135 /*
136 * When running HV mode KVM we need to block certain operations while KVM VMs
137 * exist in the system. We use a counter of VMs to track this.
138 *
139 * One of the operations we need to block is onlining of secondaries, so we
140 * protect hv_vm_count with cpus_read_lock/unlock().
141 */
142 static atomic_t hv_vm_count;
143
kvm_hv_vm_activated(void)144 void kvm_hv_vm_activated(void)
145 {
146 cpus_read_lock();
147 atomic_inc(&hv_vm_count);
148 cpus_read_unlock();
149 }
150 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
151
kvm_hv_vm_deactivated(void)152 void kvm_hv_vm_deactivated(void)
153 {
154 cpus_read_lock();
155 atomic_dec(&hv_vm_count);
156 cpus_read_unlock();
157 }
158 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
159
kvm_hv_mode_active(void)160 bool kvm_hv_mode_active(void)
161 {
162 return atomic_read(&hv_vm_count) != 0;
163 }
164
165 extern int hcall_real_table[], hcall_real_table_end[];
166
kvmppc_hcall_impl_hv_realmode(unsigned long cmd)167 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
168 {
169 cmd /= 4;
170 if (cmd < hcall_real_table_end - hcall_real_table &&
171 hcall_real_table[cmd])
172 return 1;
173
174 return 0;
175 }
176 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
177
kvmppc_hwrng_present(void)178 int kvmppc_hwrng_present(void)
179 {
180 return ppc_md.get_random_seed != NULL;
181 }
182 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
183
kvmppc_rm_h_random(struct kvm_vcpu * vcpu)184 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
185 {
186 if (ppc_md.get_random_seed &&
187 ppc_md.get_random_seed(&vcpu->arch.regs.gpr[4]))
188 return H_SUCCESS;
189
190 return H_HARDWARE;
191 }
192
193 /*
194 * Send an interrupt or message to another CPU.
195 * The caller needs to include any barrier needed to order writes
196 * to memory vs. the IPI/message.
197 */
kvmhv_rm_send_ipi(int cpu)198 void kvmhv_rm_send_ipi(int cpu)
199 {
200 void __iomem *xics_phys;
201 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
202
203 /* On POWER9 we can use msgsnd for any destination cpu. */
204 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
205 msg |= get_hard_smp_processor_id(cpu);
206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207 return;
208 }
209
210 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
211 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
212 cpu_first_thread_sibling(cpu) ==
213 cpu_first_thread_sibling(raw_smp_processor_id())) {
214 msg |= cpu_thread_in_core(cpu);
215 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
216 return;
217 }
218
219 /* We should never reach this */
220 if (WARN_ON_ONCE(xics_on_xive()))
221 return;
222
223 /* Else poke the target with an IPI */
224 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
225 if (xics_phys)
226 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
227 else
228 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
229 }
230
231 /*
232 * The following functions are called from the assembly code
233 * in book3s_hv_rmhandlers.S.
234 */
kvmhv_interrupt_vcore(struct kvmppc_vcore * vc,int active)235 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
236 {
237 int cpu = vc->pcpu;
238
239 /* Order setting of exit map vs. msgsnd/IPI */
240 smp_mb();
241 for (; active; active >>= 1, ++cpu)
242 if (active & 1)
243 kvmhv_rm_send_ipi(cpu);
244 }
245
kvmhv_commence_exit(int trap)246 void kvmhv_commence_exit(int trap)
247 {
248 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
249 int ptid = local_paca->kvm_hstate.ptid;
250 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
251 int me, ee, i;
252
253 /* Set our bit in the threads-exiting-guest map in the 0xff00
254 bits of vcore->entry_exit_map */
255 me = 0x100 << ptid;
256 do {
257 ee = vc->entry_exit_map;
258 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
259
260 /* Are we the first here? */
261 if ((ee >> 8) != 0)
262 return;
263
264 /*
265 * Trigger the other threads in this vcore to exit the guest.
266 * If this is a hypervisor decrementer interrupt then they
267 * will be already on their way out of the guest.
268 */
269 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
270 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
271
272 /*
273 * If we are doing dynamic micro-threading, interrupt the other
274 * subcores to pull them out of their guests too.
275 */
276 if (!sip)
277 return;
278
279 for (i = 0; i < MAX_SUBCORES; ++i) {
280 vc = sip->vc[i];
281 if (!vc)
282 break;
283 do {
284 ee = vc->entry_exit_map;
285 /* Already asked to exit? */
286 if ((ee >> 8) != 0)
287 break;
288 } while (cmpxchg(&vc->entry_exit_map, ee,
289 ee | VCORE_EXIT_REQ) != ee);
290 if ((ee >> 8) == 0)
291 kvmhv_interrupt_vcore(vc, ee);
292 }
293 }
294
295 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
296 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
297
298 #ifdef CONFIG_KVM_XICS
get_irqmap(struct kvmppc_passthru_irqmap * pimap,u32 xisr)299 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
300 u32 xisr)
301 {
302 int i;
303
304 /*
305 * We access the mapped array here without a lock. That
306 * is safe because we never reduce the number of entries
307 * in the array and we never change the v_hwirq field of
308 * an entry once it is set.
309 *
310 * We have also carefully ordered the stores in the writer
311 * and the loads here in the reader, so that if we find a matching
312 * hwirq here, the associated GSI and irq_desc fields are valid.
313 */
314 for (i = 0; i < pimap->n_mapped; i++) {
315 if (xisr == pimap->mapped[i].r_hwirq) {
316 /*
317 * Order subsequent reads in the caller to serialize
318 * with the writer.
319 */
320 smp_rmb();
321 return &pimap->mapped[i];
322 }
323 }
324 return NULL;
325 }
326
327 /*
328 * If we have an interrupt that's not an IPI, check if we have a
329 * passthrough adapter and if so, check if this external interrupt
330 * is for the adapter.
331 * We will attempt to deliver the IRQ directly to the target VCPU's
332 * ICP, the virtual ICP (based on affinity - the xive value in ICS).
333 *
334 * If the delivery fails or if this is not for a passthrough adapter,
335 * return to the host to handle this interrupt. We earlier
336 * saved a copy of the XIRR in the PACA, it will be picked up by
337 * the host ICP driver.
338 */
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)339 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
340 {
341 struct kvmppc_passthru_irqmap *pimap;
342 struct kvmppc_irq_map *irq_map;
343 struct kvm_vcpu *vcpu;
344
345 vcpu = local_paca->kvm_hstate.kvm_vcpu;
346 if (!vcpu)
347 return 1;
348 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
349 if (!pimap)
350 return 1;
351 irq_map = get_irqmap(pimap, xisr);
352 if (!irq_map)
353 return 1;
354
355 /* We're handling this interrupt, generic code doesn't need to */
356 local_paca->kvm_hstate.saved_xirr = 0;
357
358 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
359 }
360
361 #else
kvmppc_check_passthru(u32 xisr,__be32 xirr,bool * again)362 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
363 {
364 return 1;
365 }
366 #endif
367
368 /*
369 * Determine what sort of external interrupt is pending (if any).
370 * Returns:
371 * 0 if no interrupt is pending
372 * 1 if an interrupt is pending that needs to be handled by the host
373 * 2 Passthrough that needs completion in the host
374 * -1 if there was a guest wakeup IPI (which has now been cleared)
375 * -2 if there is PCI passthrough external interrupt that was handled
376 */
377 static long kvmppc_read_one_intr(bool *again);
378
kvmppc_read_intr(void)379 long kvmppc_read_intr(void)
380 {
381 long ret = 0;
382 long rc;
383 bool again;
384
385 if (xive_enabled())
386 return 1;
387
388 do {
389 again = false;
390 rc = kvmppc_read_one_intr(&again);
391 if (rc && (ret == 0 || rc > ret))
392 ret = rc;
393 } while (again);
394 return ret;
395 }
396
kvmppc_read_one_intr(bool * again)397 static long kvmppc_read_one_intr(bool *again)
398 {
399 void __iomem *xics_phys;
400 u32 h_xirr;
401 __be32 xirr;
402 u32 xisr;
403 u8 host_ipi;
404 int64_t rc;
405
406 if (xive_enabled())
407 return 1;
408
409 /* see if a host IPI is pending */
410 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
411 if (host_ipi)
412 return 1;
413
414 /* Now read the interrupt from the ICP */
415 xics_phys = local_paca->kvm_hstate.xics_phys;
416 rc = 0;
417 if (!xics_phys)
418 rc = opal_int_get_xirr(&xirr, false);
419 else
420 xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
421 if (rc < 0)
422 return 1;
423
424 /*
425 * Save XIRR for later. Since we get control in reverse endian
426 * on LE systems, save it byte reversed and fetch it back in
427 * host endian. Note that xirr is the value read from the
428 * XIRR register, while h_xirr is the host endian version.
429 */
430 h_xirr = be32_to_cpu(xirr);
431 local_paca->kvm_hstate.saved_xirr = h_xirr;
432 xisr = h_xirr & 0xffffff;
433 /*
434 * Ensure that the store/load complete to guarantee all side
435 * effects of loading from XIRR has completed
436 */
437 smp_mb();
438
439 /* if nothing pending in the ICP */
440 if (!xisr)
441 return 0;
442
443 /* We found something in the ICP...
444 *
445 * If it is an IPI, clear the MFRR and EOI it.
446 */
447 if (xisr == XICS_IPI) {
448 rc = 0;
449 if (xics_phys) {
450 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
451 __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
452 } else {
453 opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
454 rc = opal_int_eoi(h_xirr);
455 }
456 /* If rc > 0, there is another interrupt pending */
457 *again = rc > 0;
458
459 /*
460 * Need to ensure side effects of above stores
461 * complete before proceeding.
462 */
463 smp_mb();
464
465 /*
466 * We need to re-check host IPI now in case it got set in the
467 * meantime. If it's clear, we bounce the interrupt to the
468 * guest
469 */
470 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
471 if (unlikely(host_ipi != 0)) {
472 /* We raced with the host,
473 * we need to resend that IPI, bummer
474 */
475 if (xics_phys)
476 __raw_rm_writeb(IPI_PRIORITY,
477 xics_phys + XICS_MFRR);
478 else
479 opal_int_set_mfrr(hard_smp_processor_id(),
480 IPI_PRIORITY);
481 /* Let side effects complete */
482 smp_mb();
483 return 1;
484 }
485
486 /* OK, it's an IPI for us */
487 local_paca->kvm_hstate.saved_xirr = 0;
488 return -1;
489 }
490
491 return kvmppc_check_passthru(xisr, xirr, again);
492 }
493
kvmppc_end_cede(struct kvm_vcpu * vcpu)494 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
495 {
496 vcpu->arch.ceded = 0;
497 if (vcpu->arch.timer_running) {
498 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
499 vcpu->arch.timer_running = 0;
500 }
501 }
502
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)503 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
504 {
505 /* Guest must always run with ME enabled, HV disabled. */
506 msr = (msr | MSR_ME) & ~MSR_HV;
507
508 /*
509 * Check for illegal transactional state bit combination
510 * and if we find it, force the TS field to a safe state.
511 */
512 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
513 msr &= ~MSR_TS_MASK;
514 __kvmppc_set_msr_hv(vcpu, msr);
515 kvmppc_end_cede(vcpu);
516 }
517 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
518
inject_interrupt(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)519 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
520 {
521 unsigned long msr, pc, new_msr, new_pc;
522
523 msr = kvmppc_get_msr(vcpu);
524 pc = kvmppc_get_pc(vcpu);
525 new_msr = vcpu->arch.intr_msr;
526 new_pc = vec;
527
528 /* If transactional, change to suspend mode on IRQ delivery */
529 if (MSR_TM_TRANSACTIONAL(msr))
530 new_msr |= MSR_TS_S;
531 else
532 new_msr |= msr & MSR_TS_MASK;
533
534 /*
535 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
536 * applicable. AIL=2 is not supported.
537 *
538 * AIL does not apply to SRESET, MCE, or HMI (which is never
539 * delivered to the guest), and does not apply if IR=0 or DR=0.
540 */
541 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
542 vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
543 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
544 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
545 new_msr |= MSR_IR | MSR_DR;
546 new_pc += 0xC000000000004000ULL;
547 }
548
549 kvmppc_set_srr0(vcpu, pc);
550 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
551 kvmppc_set_pc(vcpu, new_pc);
552 __kvmppc_set_msr_hv(vcpu, new_msr);
553 }
554
kvmppc_inject_interrupt_hv(struct kvm_vcpu * vcpu,int vec,u64 srr1_flags)555 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
556 {
557 inject_interrupt(vcpu, vec, srr1_flags);
558 kvmppc_end_cede(vcpu);
559 }
560 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
561
562 /*
563 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
564 * Can we inject a Decrementer or a External interrupt?
565 */
kvmppc_guest_entry_inject_int(struct kvm_vcpu * vcpu)566 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
567 {
568 int ext;
569 unsigned long lpcr;
570
571 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
572
573 /* Insert EXTERNAL bit into LPCR at the MER bit position */
574 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
575 lpcr = mfspr(SPRN_LPCR);
576 lpcr |= ext << LPCR_MER_SH;
577 mtspr(SPRN_LPCR, lpcr);
578 isync();
579
580 if (vcpu->arch.shregs.msr & MSR_EE) {
581 if (ext) {
582 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
583 } else {
584 long int dec = mfspr(SPRN_DEC);
585 if (!(lpcr & LPCR_LD))
586 dec = (int) dec;
587 if (dec < 0)
588 inject_interrupt(vcpu,
589 BOOK3S_INTERRUPT_DECREMENTER, 0);
590 }
591 }
592
593 if (vcpu->arch.doorbell_request) {
594 mtspr(SPRN_DPDES, 1);
595 vcpu->arch.vcore->dpdes = 1;
596 smp_wmb();
597 vcpu->arch.doorbell_request = 0;
598 }
599 }
600
flush_guest_tlb(struct kvm * kvm)601 static void flush_guest_tlb(struct kvm *kvm)
602 {
603 unsigned long rb, set;
604
605 rb = PPC_BIT(52); /* IS = 2 */
606 for (set = 0; set < kvm->arch.tlb_sets; ++set) {
607 /* R=0 PRS=0 RIC=0 */
608 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
609 : : "r" (rb), "i" (0), "i" (0), "i" (0),
610 "r" (0) : "memory");
611 rb += PPC_BIT(51); /* increment set number */
612 }
613 asm volatile("ptesync": : :"memory");
614 }
615
kvmppc_check_need_tlb_flush(struct kvm * kvm,int pcpu)616 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
617 {
618 if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
619 flush_guest_tlb(kvm);
620
621 /* Clear the bit after the TLB flush */
622 cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
623 }
624 }
625 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
626