1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/arch/parisc/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright 1999 SuSE GmbH
7 * changed by Philipp Rumpf
8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9 * Copyright 2004 Randolph Chung (tausq@debian.org)
10 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
11 *
12 */
13
14
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages */
26 #include <linux/compat.h>
27
28 #include <asm/pgalloc.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 #include <asm/msgbuf.h>
34 #include <asm/sparsemem.h>
35 #include <asm/asm-offsets.h>
36
37 extern int data_start;
38 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
39
40 #if CONFIG_PGTABLE_LEVELS == 3
41 pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
42 #endif
43
44 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
45 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
46
47 static struct resource data_resource = {
48 .name = "Kernel data",
49 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
50 };
51
52 static struct resource code_resource = {
53 .name = "Kernel code",
54 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
55 };
56
57 static struct resource pdcdata_resource = {
58 .name = "PDC data (Page Zero)",
59 .start = 0,
60 .end = 0x9ff,
61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
62 };
63
64 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
65
66 /* The following array is initialized from the firmware specific
67 * information retrieved in kernel/inventory.c.
68 */
69
70 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
71 int npmem_ranges __initdata;
72
73 #ifdef CONFIG_64BIT
74 #define MAX_MEM (1UL << MAX_PHYSMEM_BITS)
75 #else /* !CONFIG_64BIT */
76 #define MAX_MEM (3584U*1024U*1024U)
77 #endif /* !CONFIG_64BIT */
78
79 static unsigned long mem_limit __read_mostly = MAX_MEM;
80
mem_limit_func(void)81 static void __init mem_limit_func(void)
82 {
83 char *cp, *end;
84 unsigned long limit;
85
86 /* We need this before __setup() functions are called */
87
88 limit = MAX_MEM;
89 for (cp = boot_command_line; *cp; ) {
90 if (memcmp(cp, "mem=", 4) == 0) {
91 cp += 4;
92 limit = memparse(cp, &end);
93 if (end != cp)
94 break;
95 cp = end;
96 } else {
97 while (*cp != ' ' && *cp)
98 ++cp;
99 while (*cp == ' ')
100 ++cp;
101 }
102 }
103
104 if (limit < mem_limit)
105 mem_limit = limit;
106 }
107
108 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
109
setup_bootmem(void)110 static void __init setup_bootmem(void)
111 {
112 unsigned long mem_max;
113 #ifndef CONFIG_SPARSEMEM
114 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115 int npmem_holes;
116 #endif
117 int i, sysram_resource_count;
118
119 disable_sr_hashing(); /* Turn off space register hashing */
120
121 /*
122 * Sort the ranges. Since the number of ranges is typically
123 * small, and performance is not an issue here, just do
124 * a simple insertion sort.
125 */
126
127 for (i = 1; i < npmem_ranges; i++) {
128 int j;
129
130 for (j = i; j > 0; j--) {
131 if (pmem_ranges[j-1].start_pfn <
132 pmem_ranges[j].start_pfn) {
133
134 break;
135 }
136 swap(pmem_ranges[j-1], pmem_ranges[j]);
137 }
138 }
139
140 #ifndef CONFIG_SPARSEMEM
141 /*
142 * Throw out ranges that are too far apart (controlled by
143 * MAX_GAP).
144 */
145
146 for (i = 1; i < npmem_ranges; i++) {
147 if (pmem_ranges[i].start_pfn -
148 (pmem_ranges[i-1].start_pfn +
149 pmem_ranges[i-1].pages) > MAX_GAP) {
150 npmem_ranges = i;
151 printk("Large gap in memory detected (%ld pages). "
152 "Consider turning on CONFIG_SPARSEMEM\n",
153 pmem_ranges[i].start_pfn -
154 (pmem_ranges[i-1].start_pfn +
155 pmem_ranges[i-1].pages));
156 break;
157 }
158 }
159 #endif
160
161 /* Print the memory ranges */
162 pr_info("Memory Ranges:\n");
163
164 for (i = 0; i < npmem_ranges; i++) {
165 struct resource *res = &sysram_resources[i];
166 unsigned long start;
167 unsigned long size;
168
169 size = (pmem_ranges[i].pages << PAGE_SHIFT);
170 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
171 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
172 i, start, start + (size - 1), size >> 20);
173
174 /* request memory resource */
175 res->name = "System RAM";
176 res->start = start;
177 res->end = start + size - 1;
178 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
179 request_resource(&iomem_resource, res);
180 }
181
182 sysram_resource_count = npmem_ranges;
183
184 /*
185 * For 32 bit kernels we limit the amount of memory we can
186 * support, in order to preserve enough kernel address space
187 * for other purposes. For 64 bit kernels we don't normally
188 * limit the memory, but this mechanism can be used to
189 * artificially limit the amount of memory (and it is written
190 * to work with multiple memory ranges).
191 */
192
193 mem_limit_func(); /* check for "mem=" argument */
194
195 mem_max = 0;
196 for (i = 0; i < npmem_ranges; i++) {
197 unsigned long rsize;
198
199 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
200 if ((mem_max + rsize) > mem_limit) {
201 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
202 if (mem_max == mem_limit)
203 npmem_ranges = i;
204 else {
205 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
206 - (mem_max >> PAGE_SHIFT);
207 npmem_ranges = i + 1;
208 mem_max = mem_limit;
209 }
210 break;
211 }
212 mem_max += rsize;
213 }
214
215 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
216
217 #ifndef CONFIG_SPARSEMEM
218 /* Merge the ranges, keeping track of the holes */
219 {
220 unsigned long end_pfn;
221 unsigned long hole_pages;
222
223 npmem_holes = 0;
224 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
225 for (i = 1; i < npmem_ranges; i++) {
226
227 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
228 if (hole_pages) {
229 pmem_holes[npmem_holes].start_pfn = end_pfn;
230 pmem_holes[npmem_holes++].pages = hole_pages;
231 end_pfn += hole_pages;
232 }
233 end_pfn += pmem_ranges[i].pages;
234 }
235
236 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
237 npmem_ranges = 1;
238 }
239 #endif
240
241 /*
242 * Initialize and free the full range of memory in each range.
243 */
244
245 max_pfn = 0;
246 for (i = 0; i < npmem_ranges; i++) {
247 unsigned long start_pfn;
248 unsigned long npages;
249 unsigned long start;
250 unsigned long size;
251
252 start_pfn = pmem_ranges[i].start_pfn;
253 npages = pmem_ranges[i].pages;
254
255 start = start_pfn << PAGE_SHIFT;
256 size = npages << PAGE_SHIFT;
257
258 /* add system RAM memblock */
259 memblock_add(start, size);
260
261 if ((start_pfn + npages) > max_pfn)
262 max_pfn = start_pfn + npages;
263 }
264
265 /*
266 * We can't use memblock top-down allocations because we only
267 * created the initial mapping up to KERNEL_INITIAL_SIZE in
268 * the assembly bootup code.
269 */
270 memblock_set_bottom_up(true);
271
272 /* IOMMU is always used to access "high mem" on those boxes
273 * that can support enough mem that a PCI device couldn't
274 * directly DMA to any physical addresses.
275 * ISA DMA support will need to revisit this.
276 */
277 max_low_pfn = max_pfn;
278
279 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
280
281 #define PDC_CONSOLE_IO_IODC_SIZE 32768
282
283 memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
284 PDC_CONSOLE_IO_IODC_SIZE));
285 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
286 (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
287
288 #ifndef CONFIG_SPARSEMEM
289
290 /* reserve the holes */
291
292 for (i = 0; i < npmem_holes; i++) {
293 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
294 (pmem_holes[i].pages << PAGE_SHIFT));
295 }
296 #endif
297
298 #ifdef CONFIG_BLK_DEV_INITRD
299 if (initrd_start) {
300 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
301 if (__pa(initrd_start) < mem_max) {
302 unsigned long initrd_reserve;
303
304 if (__pa(initrd_end) > mem_max) {
305 initrd_reserve = mem_max - __pa(initrd_start);
306 } else {
307 initrd_reserve = initrd_end - initrd_start;
308 }
309 initrd_below_start_ok = 1;
310 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
311
312 memblock_reserve(__pa(initrd_start), initrd_reserve);
313 }
314 }
315 #endif
316
317 data_resource.start = virt_to_phys(&data_start);
318 data_resource.end = virt_to_phys(_end) - 1;
319 code_resource.start = virt_to_phys(_text);
320 code_resource.end = virt_to_phys(&data_start)-1;
321
322 /* We don't know which region the kernel will be in, so try
323 * all of them.
324 */
325 for (i = 0; i < sysram_resource_count; i++) {
326 struct resource *res = &sysram_resources[i];
327 request_resource(res, &code_resource);
328 request_resource(res, &data_resource);
329 }
330 request_resource(&sysram_resources[0], &pdcdata_resource);
331
332 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
333 pdc_pdt_init();
334
335 memblock_allow_resize();
336 memblock_dump_all();
337 }
338
339 static bool kernel_set_to_readonly;
340
map_pages(unsigned long start_vaddr,unsigned long start_paddr,unsigned long size,pgprot_t pgprot,int force)341 static void __ref map_pages(unsigned long start_vaddr,
342 unsigned long start_paddr, unsigned long size,
343 pgprot_t pgprot, int force)
344 {
345 pmd_t *pmd;
346 pte_t *pg_table;
347 unsigned long end_paddr;
348 unsigned long start_pmd;
349 unsigned long start_pte;
350 unsigned long tmp1;
351 unsigned long tmp2;
352 unsigned long address;
353 unsigned long vaddr;
354 unsigned long ro_start;
355 unsigned long ro_end;
356 unsigned long kernel_start, kernel_end;
357
358 ro_start = __pa((unsigned long)_text);
359 ro_end = __pa((unsigned long)&data_start);
360 kernel_start = __pa((unsigned long)&__init_begin);
361 kernel_end = __pa((unsigned long)&_end);
362
363 end_paddr = start_paddr + size;
364
365 /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
366 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
367 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
368
369 address = start_paddr;
370 vaddr = start_vaddr;
371 while (address < end_paddr) {
372 pgd_t *pgd = pgd_offset_k(vaddr);
373 p4d_t *p4d = p4d_offset(pgd, vaddr);
374 pud_t *pud = pud_offset(p4d, vaddr);
375
376 #if CONFIG_PGTABLE_LEVELS == 3
377 if (pud_none(*pud)) {
378 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
379 PAGE_SIZE << PMD_TABLE_ORDER);
380 if (!pmd)
381 panic("pmd allocation failed.\n");
382 pud_populate(NULL, pud, pmd);
383 }
384 #endif
385
386 pmd = pmd_offset(pud, vaddr);
387 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
388 if (pmd_none(*pmd)) {
389 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
390 if (!pg_table)
391 panic("page table allocation failed\n");
392 pmd_populate_kernel(NULL, pmd, pg_table);
393 }
394
395 pg_table = pte_offset_kernel(pmd, vaddr);
396 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
397 pte_t pte;
398 pgprot_t prot;
399 bool huge = false;
400
401 if (force) {
402 prot = pgprot;
403 } else if (address < kernel_start || address >= kernel_end) {
404 /* outside kernel memory */
405 prot = PAGE_KERNEL;
406 } else if (!kernel_set_to_readonly) {
407 /* still initializing, allow writing to RO memory */
408 prot = PAGE_KERNEL_RWX;
409 huge = true;
410 } else if (address >= ro_start) {
411 /* Code (ro) and Data areas */
412 prot = (address < ro_end) ?
413 PAGE_KERNEL_EXEC : PAGE_KERNEL;
414 huge = true;
415 } else {
416 prot = PAGE_KERNEL;
417 }
418
419 pte = __mk_pte(address, prot);
420 if (huge)
421 pte = pte_mkhuge(pte);
422
423 if (address >= end_paddr)
424 break;
425
426 set_pte(pg_table, pte);
427
428 address += PAGE_SIZE;
429 vaddr += PAGE_SIZE;
430 }
431 start_pte = 0;
432
433 if (address >= end_paddr)
434 break;
435 }
436 start_pmd = 0;
437 }
438 }
439
set_kernel_text_rw(int enable_read_write)440 void __init set_kernel_text_rw(int enable_read_write)
441 {
442 unsigned long start = (unsigned long) __init_begin;
443 unsigned long end = (unsigned long) &data_start;
444
445 map_pages(start, __pa(start), end-start,
446 PAGE_KERNEL_RWX, enable_read_write ? 1:0);
447
448 /* force the kernel to see the new page table entries */
449 flush_cache_all();
450 flush_tlb_all();
451 }
452
free_initmem(void)453 void free_initmem(void)
454 {
455 unsigned long init_begin = (unsigned long)__init_begin;
456 unsigned long init_end = (unsigned long)__init_end;
457 unsigned long kernel_end = (unsigned long)&_end;
458
459 /* Remap kernel text and data, but do not touch init section yet. */
460 kernel_set_to_readonly = true;
461 map_pages(init_end, __pa(init_end), kernel_end - init_end,
462 PAGE_KERNEL, 0);
463
464 /* The init text pages are marked R-X. We have to
465 * flush the icache and mark them RW-
466 *
467 * Do a dummy remap of the data section first (the data
468 * section is already PAGE_KERNEL) to pull in the TLB entries
469 * for map_kernel */
470 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
471 PAGE_KERNEL_RWX, 1);
472 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
473 * map_pages */
474 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
475 PAGE_KERNEL, 1);
476
477 /* force the kernel to see the new TLB entries */
478 __flush_tlb_range(0, init_begin, kernel_end);
479
480 /* finally dump all the instructions which were cached, since the
481 * pages are no-longer executable */
482 flush_icache_range(init_begin, init_end);
483
484 free_initmem_default(POISON_FREE_INITMEM);
485
486 /* set up a new led state on systems shipped LED State panel */
487 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
488 }
489
490
491 #ifdef CONFIG_STRICT_KERNEL_RWX
mark_rodata_ro(void)492 void mark_rodata_ro(void)
493 {
494 /* rodata memory was already mapped with KERNEL_RO access rights by
495 pagetable_init() and map_pages(). No need to do additional stuff here */
496 unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
497
498 pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
499 }
500 #endif
501
502
503 /*
504 * Just an arbitrary offset to serve as a "hole" between mapping areas
505 * (between top of physical memory and a potential pcxl dma mapping
506 * area, and below the vmalloc mapping area).
507 *
508 * The current 32K value just means that there will be a 32K "hole"
509 * between mapping areas. That means that any out-of-bounds memory
510 * accesses will hopefully be caught. The vmalloc() routines leaves
511 * a hole of 4kB between each vmalloced area for the same reason.
512 */
513
514 /* Leave room for gateway page expansion */
515 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
516 #error KERNEL_MAP_START is in gateway reserved region
517 #endif
518 #define MAP_START (KERNEL_MAP_START)
519
520 #define VM_MAP_OFFSET (32*1024)
521 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
522 & ~(VM_MAP_OFFSET-1)))
523
524 void *parisc_vmalloc_start __ro_after_init;
525 EXPORT_SYMBOL(parisc_vmalloc_start);
526
mem_init(void)527 void __init mem_init(void)
528 {
529 /* Do sanity checks on IPC (compat) structures */
530 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
531 #ifndef CONFIG_64BIT
532 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
533 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
534 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
535 #endif
536 #ifdef CONFIG_COMPAT
537 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
538 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
539 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
540 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
541 #endif
542
543 /* Do sanity checks on page table constants */
544 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
545 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
546 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
547 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
548 > BITS_PER_LONG);
549 #if CONFIG_PGTABLE_LEVELS == 3
550 BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
551 #else
552 BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
553 #endif
554
555 #ifdef CONFIG_64BIT
556 /* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
557 BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000);
558 BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000);
559 #endif
560
561 high_memory = __va((max_pfn << PAGE_SHIFT));
562 set_max_mapnr(max_low_pfn);
563 memblock_free_all();
564
565 #ifdef CONFIG_PA11
566 if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
567 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
568 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
569 + PCXL_DMA_MAP_SIZE);
570 } else
571 #endif
572 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
573
574 #if 0
575 /*
576 * Do not expose the virtual kernel memory layout to userspace.
577 * But keep code for debugging purposes.
578 */
579 printk("virtual kernel memory layout:\n"
580 " vmalloc : 0x%px - 0x%px (%4ld MB)\n"
581 " fixmap : 0x%px - 0x%px (%4ld kB)\n"
582 " memory : 0x%px - 0x%px (%4ld MB)\n"
583 " .init : 0x%px - 0x%px (%4ld kB)\n"
584 " .data : 0x%px - 0x%px (%4ld kB)\n"
585 " .text : 0x%px - 0x%px (%4ld kB)\n",
586
587 (void*)VMALLOC_START, (void*)VMALLOC_END,
588 (VMALLOC_END - VMALLOC_START) >> 20,
589
590 (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
591 (unsigned long)(FIXMAP_SIZE / 1024),
592
593 __va(0), high_memory,
594 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
595
596 __init_begin, __init_end,
597 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
598
599 _etext, _edata,
600 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
601
602 _text, _etext,
603 ((unsigned long)_etext - (unsigned long)_text) >> 10);
604 #endif
605 }
606
607 unsigned long *empty_zero_page __ro_after_init;
608 EXPORT_SYMBOL(empty_zero_page);
609
610 /*
611 * pagetable_init() sets up the page tables
612 *
613 * Note that gateway_init() places the Linux gateway page at page 0.
614 * Since gateway pages cannot be dereferenced this has the desirable
615 * side effect of trapping those pesky NULL-reference errors in the
616 * kernel.
617 */
pagetable_init(void)618 static void __init pagetable_init(void)
619 {
620 int range;
621
622 /* Map each physical memory range to its kernel vaddr */
623
624 for (range = 0; range < npmem_ranges; range++) {
625 unsigned long start_paddr;
626 unsigned long size;
627
628 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
629 size = pmem_ranges[range].pages << PAGE_SHIFT;
630
631 map_pages((unsigned long)__va(start_paddr), start_paddr,
632 size, PAGE_KERNEL, 0);
633 }
634
635 #ifdef CONFIG_BLK_DEV_INITRD
636 if (initrd_end && initrd_end > mem_limit) {
637 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
638 map_pages(initrd_start, __pa(initrd_start),
639 initrd_end - initrd_start, PAGE_KERNEL, 0);
640 }
641 #endif
642
643 empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
644 if (!empty_zero_page)
645 panic("zero page allocation failed.\n");
646
647 }
648
gateway_init(void)649 static void __init gateway_init(void)
650 {
651 unsigned long linux_gateway_page_addr;
652 /* FIXME: This is 'const' in order to trick the compiler
653 into not treating it as DP-relative data. */
654 extern void * const linux_gateway_page;
655
656 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
657
658 /*
659 * Setup Linux Gateway page.
660 *
661 * The Linux gateway page will reside in kernel space (on virtual
662 * page 0), so it doesn't need to be aliased into user space.
663 */
664
665 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
666 PAGE_SIZE, PAGE_GATEWAY, 1);
667 }
668
fixmap_init(void)669 static void __init fixmap_init(void)
670 {
671 unsigned long addr = FIXMAP_START;
672 unsigned long end = FIXMAP_START + FIXMAP_SIZE;
673 pgd_t *pgd = pgd_offset_k(addr);
674 p4d_t *p4d = p4d_offset(pgd, addr);
675 pud_t *pud = pud_offset(p4d, addr);
676 pmd_t *pmd;
677
678 BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE);
679
680 #if CONFIG_PGTABLE_LEVELS == 3
681 if (pud_none(*pud)) {
682 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
683 PAGE_SIZE << PMD_TABLE_ORDER);
684 if (!pmd)
685 panic("fixmap: pmd allocation failed.\n");
686 pud_populate(NULL, pud, pmd);
687 }
688 #endif
689
690 pmd = pmd_offset(pud, addr);
691 do {
692 pte_t *pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
693 if (!pte)
694 panic("fixmap: pte allocation failed.\n");
695
696 pmd_populate_kernel(&init_mm, pmd, pte);
697
698 addr += PAGE_SIZE;
699 } while (addr < end);
700 }
701
parisc_bootmem_free(void)702 static void __init parisc_bootmem_free(void)
703 {
704 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
705
706 max_zone_pfn[0] = memblock_end_of_DRAM();
707
708 free_area_init(max_zone_pfn);
709 }
710
paging_init(void)711 void __init paging_init(void)
712 {
713 setup_bootmem();
714 pagetable_init();
715 gateway_init();
716 fixmap_init();
717 flush_cache_all_local(); /* start with known state */
718 flush_tlb_all_local(NULL);
719
720 sparse_init();
721 parisc_bootmem_free();
722 }
723
alloc_btlb(unsigned long start,unsigned long end,int * slot,unsigned long entry_info)724 static void alloc_btlb(unsigned long start, unsigned long end, int *slot,
725 unsigned long entry_info)
726 {
727 const int slot_max = btlb_info.fixed_range_info.num_comb;
728 int min_num_pages = btlb_info.min_size;
729 unsigned long size;
730
731 /* map at minimum 4 pages */
732 if (min_num_pages < 4)
733 min_num_pages = 4;
734
735 size = HUGEPAGE_SIZE;
736 while (start < end && *slot < slot_max && size >= PAGE_SIZE) {
737 /* starting address must have same alignment as size! */
738 /* if correctly aligned and fits in double size, increase */
739 if (((start & (2 * size - 1)) == 0) &&
740 (end - start) >= (2 * size)) {
741 size <<= 1;
742 continue;
743 }
744 /* if current size alignment is too big, try smaller size */
745 if ((start & (size - 1)) != 0) {
746 size >>= 1;
747 continue;
748 }
749 if ((end - start) >= size) {
750 if ((size >> PAGE_SHIFT) >= min_num_pages)
751 pdc_btlb_insert(start >> PAGE_SHIFT, __pa(start) >> PAGE_SHIFT,
752 size >> PAGE_SHIFT, entry_info, *slot);
753 (*slot)++;
754 start += size;
755 continue;
756 }
757 size /= 2;
758 continue;
759 }
760 }
761
btlb_init_per_cpu(void)762 void btlb_init_per_cpu(void)
763 {
764 unsigned long s, t, e;
765 int slot;
766
767 /* BTLBs are not available on 64-bit CPUs */
768 if (IS_ENABLED(CONFIG_PA20))
769 return;
770 else if (pdc_btlb_info(&btlb_info) < 0) {
771 memset(&btlb_info, 0, sizeof btlb_info);
772 }
773
774 /* insert BLTLBs for code and data segments */
775 s = (uintptr_t) dereference_function_descriptor(&_stext);
776 e = (uintptr_t) dereference_function_descriptor(&_etext);
777 t = (uintptr_t) dereference_function_descriptor(&_sdata);
778 BUG_ON(t != e);
779
780 /* code segments */
781 slot = 0;
782 alloc_btlb(s, e, &slot, 0x13800000);
783
784 /* sanity check */
785 t = (uintptr_t) dereference_function_descriptor(&_edata);
786 e = (uintptr_t) dereference_function_descriptor(&__bss_start);
787 BUG_ON(t != e);
788
789 /* data segments */
790 s = (uintptr_t) dereference_function_descriptor(&_sdata);
791 e = (uintptr_t) dereference_function_descriptor(&__bss_stop);
792 alloc_btlb(s, e, &slot, 0x11800000);
793 }
794
795 #ifdef CONFIG_PA20
796
797 /*
798 * Currently, all PA20 chips have 18 bit protection IDs, which is the
799 * limiting factor (space ids are 32 bits).
800 */
801
802 #define NR_SPACE_IDS 262144
803
804 #else
805
806 /*
807 * Currently we have a one-to-one relationship between space IDs and
808 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
809 * support 15 bit protection IDs, so that is the limiting factor.
810 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
811 * probably not worth the effort for a special case here.
812 */
813
814 #define NR_SPACE_IDS 32768
815
816 #endif /* !CONFIG_PA20 */
817
818 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
819 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
820
821 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
822 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
823 static unsigned long space_id_index;
824 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
825 static unsigned long dirty_space_ids;
826
827 static DEFINE_SPINLOCK(sid_lock);
828
alloc_sid(void)829 unsigned long alloc_sid(void)
830 {
831 unsigned long index;
832
833 spin_lock(&sid_lock);
834
835 if (free_space_ids == 0) {
836 if (dirty_space_ids != 0) {
837 spin_unlock(&sid_lock);
838 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
839 spin_lock(&sid_lock);
840 }
841 BUG_ON(free_space_ids == 0);
842 }
843
844 free_space_ids--;
845
846 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
847 space_id[BIT_WORD(index)] |= BIT_MASK(index);
848 space_id_index = index;
849
850 spin_unlock(&sid_lock);
851
852 return index << SPACEID_SHIFT;
853 }
854
free_sid(unsigned long spaceid)855 void free_sid(unsigned long spaceid)
856 {
857 unsigned long index = spaceid >> SPACEID_SHIFT;
858 unsigned long *dirty_space_offset, mask;
859
860 dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
861 mask = BIT_MASK(index);
862
863 spin_lock(&sid_lock);
864
865 BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
866
867 *dirty_space_offset |= mask;
868 dirty_space_ids++;
869
870 spin_unlock(&sid_lock);
871 }
872
873
874 #ifdef CONFIG_SMP
get_dirty_sids(unsigned long * ndirtyptr,unsigned long * dirty_array)875 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
876 {
877 int i;
878
879 /* NOTE: sid_lock must be held upon entry */
880
881 *ndirtyptr = dirty_space_ids;
882 if (dirty_space_ids != 0) {
883 for (i = 0; i < SID_ARRAY_SIZE; i++) {
884 dirty_array[i] = dirty_space_id[i];
885 dirty_space_id[i] = 0;
886 }
887 dirty_space_ids = 0;
888 }
889
890 return;
891 }
892
recycle_sids(unsigned long ndirty,unsigned long * dirty_array)893 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
894 {
895 int i;
896
897 /* NOTE: sid_lock must be held upon entry */
898
899 if (ndirty != 0) {
900 for (i = 0; i < SID_ARRAY_SIZE; i++) {
901 space_id[i] ^= dirty_array[i];
902 }
903
904 free_space_ids += ndirty;
905 space_id_index = 0;
906 }
907 }
908
909 #else /* CONFIG_SMP */
910
recycle_sids(void)911 static void recycle_sids(void)
912 {
913 int i;
914
915 /* NOTE: sid_lock must be held upon entry */
916
917 if (dirty_space_ids != 0) {
918 for (i = 0; i < SID_ARRAY_SIZE; i++) {
919 space_id[i] ^= dirty_space_id[i];
920 dirty_space_id[i] = 0;
921 }
922
923 free_space_ids += dirty_space_ids;
924 dirty_space_ids = 0;
925 space_id_index = 0;
926 }
927 }
928 #endif
929
930 /*
931 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
932 * purged, we can safely reuse the space ids that were released but
933 * not flushed from the tlb.
934 */
935
936 #ifdef CONFIG_SMP
937
938 static unsigned long recycle_ndirty;
939 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
940 static unsigned int recycle_inuse;
941
flush_tlb_all(void)942 void flush_tlb_all(void)
943 {
944 int do_recycle;
945
946 do_recycle = 0;
947 spin_lock(&sid_lock);
948 __inc_irq_stat(irq_tlb_count);
949 if (dirty_space_ids > RECYCLE_THRESHOLD) {
950 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
951 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
952 recycle_inuse++;
953 do_recycle++;
954 }
955 spin_unlock(&sid_lock);
956 on_each_cpu(flush_tlb_all_local, NULL, 1);
957 if (do_recycle) {
958 spin_lock(&sid_lock);
959 recycle_sids(recycle_ndirty,recycle_dirty_array);
960 recycle_inuse = 0;
961 spin_unlock(&sid_lock);
962 }
963 }
964 #else
flush_tlb_all(void)965 void flush_tlb_all(void)
966 {
967 spin_lock(&sid_lock);
968 __inc_irq_stat(irq_tlb_count);
969 flush_tlb_all_local(NULL);
970 recycle_sids();
971 spin_unlock(&sid_lock);
972 }
973 #endif
974
975 static const pgprot_t protection_map[16] = {
976 [VM_NONE] = PAGE_NONE,
977 [VM_READ] = PAGE_READONLY,
978 [VM_WRITE] = PAGE_NONE,
979 [VM_WRITE | VM_READ] = PAGE_READONLY,
980 [VM_EXEC] = PAGE_EXECREAD,
981 [VM_EXEC | VM_READ] = PAGE_EXECREAD,
982 [VM_EXEC | VM_WRITE] = PAGE_EXECREAD,
983 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_EXECREAD,
984 [VM_SHARED] = PAGE_NONE,
985 [VM_SHARED | VM_READ] = PAGE_READONLY,
986 [VM_SHARED | VM_WRITE] = PAGE_WRITEONLY,
987 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
988 [VM_SHARED | VM_EXEC] = PAGE_EXECREAD,
989 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_EXECREAD,
990 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_RWX,
991 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_RWX
992 };
993 DECLARE_VM_GET_PAGE_PROT
994