1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2010, 2011, 2012, Lemote, Inc.
4 * Author: Chen Huacai, chenhc@lemote.com
5 */
6
7 #include <irq.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/sched.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/smp.h>
14 #include <linux/cpufreq.h>
15 #include <linux/kexec.h>
16 #include <asm/processor.h>
17 #include <asm/smp.h>
18 #include <asm/time.h>
19 #include <asm/tlbflush.h>
20 #include <asm/cacheflush.h>
21 #include <loongson.h>
22 #include <loongson_regs.h>
23 #include <workarounds.h>
24
25 #include "smp.h"
26
27 DEFINE_PER_CPU(int, cpu_state);
28
29 #define LS_IPI_IRQ (MIPS_CPU_IRQ_BASE + 6)
30
31 static void __iomem *ipi_set0_regs[16];
32 static void __iomem *ipi_clear0_regs[16];
33 static void __iomem *ipi_status0_regs[16];
34 static void __iomem *ipi_en0_regs[16];
35 static void __iomem *ipi_mailbox_buf[16];
36 static uint32_t core0_c0count[NR_CPUS];
37
38 static u32 (*ipi_read_clear)(int cpu);
39 static void (*ipi_write_action)(int cpu, u32 action);
40 static void (*ipi_write_enable)(int cpu);
41 static void (*ipi_clear_buf)(int cpu);
42 static void (*ipi_write_buf)(int cpu, struct task_struct *idle);
43
44 /* send mail via Mail_Send register for 3A4000+ CPU */
csr_mail_send(uint64_t data,int cpu,int mailbox)45 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
46 {
47 uint64_t val;
48
49 /* send high 32 bits */
50 val = CSR_MAIL_SEND_BLOCK;
51 val |= (CSR_MAIL_SEND_BOX_HIGH(mailbox) << CSR_MAIL_SEND_BOX_SHIFT);
52 val |= (cpu << CSR_MAIL_SEND_CPU_SHIFT);
53 val |= (data & CSR_MAIL_SEND_H32_MASK);
54 csr_writeq(val, LOONGSON_CSR_MAIL_SEND);
55
56 /* send low 32 bits */
57 val = CSR_MAIL_SEND_BLOCK;
58 val |= (CSR_MAIL_SEND_BOX_LOW(mailbox) << CSR_MAIL_SEND_BOX_SHIFT);
59 val |= (cpu << CSR_MAIL_SEND_CPU_SHIFT);
60 val |= (data << CSR_MAIL_SEND_BUF_SHIFT);
61 csr_writeq(val, LOONGSON_CSR_MAIL_SEND);
62 };
63
csr_ipi_read_clear(int cpu)64 static u32 csr_ipi_read_clear(int cpu)
65 {
66 u32 action;
67
68 /* Load the ipi register to figure out what we're supposed to do */
69 action = csr_readl(LOONGSON_CSR_IPI_STATUS);
70 /* Clear the ipi register to clear the interrupt */
71 csr_writel(action, LOONGSON_CSR_IPI_CLEAR);
72
73 return action;
74 }
75
csr_ipi_write_action(int cpu,u32 action)76 static void csr_ipi_write_action(int cpu, u32 action)
77 {
78 unsigned int irq = 0;
79
80 while ((irq = ffs(action))) {
81 uint32_t val = CSR_IPI_SEND_BLOCK;
82 val |= (irq - 1);
83 val |= (cpu << CSR_IPI_SEND_CPU_SHIFT);
84 csr_writel(val, LOONGSON_CSR_IPI_SEND);
85 action &= ~BIT(irq - 1);
86 }
87 }
88
csr_ipi_write_enable(int cpu)89 static void csr_ipi_write_enable(int cpu)
90 {
91 csr_writel(0xffffffff, LOONGSON_CSR_IPI_EN);
92 }
93
csr_ipi_clear_buf(int cpu)94 static void csr_ipi_clear_buf(int cpu)
95 {
96 csr_writeq(0, LOONGSON_CSR_MAIL_BUF0);
97 }
98
csr_ipi_write_buf(int cpu,struct task_struct * idle)99 static void csr_ipi_write_buf(int cpu, struct task_struct *idle)
100 {
101 unsigned long startargs[4];
102
103 /* startargs[] are initial PC, SP and GP for secondary CPU */
104 startargs[0] = (unsigned long)&smp_bootstrap;
105 startargs[1] = (unsigned long)__KSTK_TOS(idle);
106 startargs[2] = (unsigned long)task_thread_info(idle);
107 startargs[3] = 0;
108
109 pr_debug("CPU#%d, func_pc=%lx, sp=%lx, gp=%lx\n",
110 cpu, startargs[0], startargs[1], startargs[2]);
111
112 csr_mail_send(startargs[3], cpu_logical_map(cpu), 3);
113 csr_mail_send(startargs[2], cpu_logical_map(cpu), 2);
114 csr_mail_send(startargs[1], cpu_logical_map(cpu), 1);
115 csr_mail_send(startargs[0], cpu_logical_map(cpu), 0);
116 }
117
legacy_ipi_read_clear(int cpu)118 static u32 legacy_ipi_read_clear(int cpu)
119 {
120 u32 action;
121
122 /* Load the ipi register to figure out what we're supposed to do */
123 action = readl_relaxed(ipi_status0_regs[cpu_logical_map(cpu)]);
124 /* Clear the ipi register to clear the interrupt */
125 writel_relaxed(action, ipi_clear0_regs[cpu_logical_map(cpu)]);
126 nudge_writes();
127
128 return action;
129 }
130
legacy_ipi_write_action(int cpu,u32 action)131 static void legacy_ipi_write_action(int cpu, u32 action)
132 {
133 writel_relaxed((u32)action, ipi_set0_regs[cpu]);
134 nudge_writes();
135 }
136
legacy_ipi_write_enable(int cpu)137 static void legacy_ipi_write_enable(int cpu)
138 {
139 writel_relaxed(0xffffffff, ipi_en0_regs[cpu_logical_map(cpu)]);
140 }
141
legacy_ipi_clear_buf(int cpu)142 static void legacy_ipi_clear_buf(int cpu)
143 {
144 writeq_relaxed(0, ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x0);
145 }
146
legacy_ipi_write_buf(int cpu,struct task_struct * idle)147 static void legacy_ipi_write_buf(int cpu, struct task_struct *idle)
148 {
149 unsigned long startargs[4];
150
151 /* startargs[] are initial PC, SP and GP for secondary CPU */
152 startargs[0] = (unsigned long)&smp_bootstrap;
153 startargs[1] = (unsigned long)__KSTK_TOS(idle);
154 startargs[2] = (unsigned long)task_thread_info(idle);
155 startargs[3] = 0;
156
157 pr_debug("CPU#%d, func_pc=%lx, sp=%lx, gp=%lx\n",
158 cpu, startargs[0], startargs[1], startargs[2]);
159
160 writeq_relaxed(startargs[3],
161 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x18);
162 writeq_relaxed(startargs[2],
163 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x10);
164 writeq_relaxed(startargs[1],
165 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x8);
166 writeq_relaxed(startargs[0],
167 ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x0);
168 nudge_writes();
169 }
170
csr_ipi_probe(void)171 static void csr_ipi_probe(void)
172 {
173 if (cpu_has_csr() && csr_readl(LOONGSON_CSR_FEATURES) & LOONGSON_CSRF_IPI) {
174 ipi_read_clear = csr_ipi_read_clear;
175 ipi_write_action = csr_ipi_write_action;
176 ipi_write_enable = csr_ipi_write_enable;
177 ipi_clear_buf = csr_ipi_clear_buf;
178 ipi_write_buf = csr_ipi_write_buf;
179 } else {
180 ipi_read_clear = legacy_ipi_read_clear;
181 ipi_write_action = legacy_ipi_write_action;
182 ipi_write_enable = legacy_ipi_write_enable;
183 ipi_clear_buf = legacy_ipi_clear_buf;
184 ipi_write_buf = legacy_ipi_write_buf;
185 }
186 }
187
ipi_set0_regs_init(void)188 static void ipi_set0_regs_init(void)
189 {
190 ipi_set0_regs[0] = (void __iomem *)
191 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + SET0);
192 ipi_set0_regs[1] = (void __iomem *)
193 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + SET0);
194 ipi_set0_regs[2] = (void __iomem *)
195 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + SET0);
196 ipi_set0_regs[3] = (void __iomem *)
197 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + SET0);
198 ipi_set0_regs[4] = (void __iomem *)
199 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + SET0);
200 ipi_set0_regs[5] = (void __iomem *)
201 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + SET0);
202 ipi_set0_regs[6] = (void __iomem *)
203 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + SET0);
204 ipi_set0_regs[7] = (void __iomem *)
205 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + SET0);
206 ipi_set0_regs[8] = (void __iomem *)
207 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + SET0);
208 ipi_set0_regs[9] = (void __iomem *)
209 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + SET0);
210 ipi_set0_regs[10] = (void __iomem *)
211 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + SET0);
212 ipi_set0_regs[11] = (void __iomem *)
213 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + SET0);
214 ipi_set0_regs[12] = (void __iomem *)
215 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + SET0);
216 ipi_set0_regs[13] = (void __iomem *)
217 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + SET0);
218 ipi_set0_regs[14] = (void __iomem *)
219 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + SET0);
220 ipi_set0_regs[15] = (void __iomem *)
221 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + SET0);
222 }
223
ipi_clear0_regs_init(void)224 static void ipi_clear0_regs_init(void)
225 {
226 ipi_clear0_regs[0] = (void __iomem *)
227 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + CLEAR0);
228 ipi_clear0_regs[1] = (void __iomem *)
229 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + CLEAR0);
230 ipi_clear0_regs[2] = (void __iomem *)
231 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + CLEAR0);
232 ipi_clear0_regs[3] = (void __iomem *)
233 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + CLEAR0);
234 ipi_clear0_regs[4] = (void __iomem *)
235 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + CLEAR0);
236 ipi_clear0_regs[5] = (void __iomem *)
237 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + CLEAR0);
238 ipi_clear0_regs[6] = (void __iomem *)
239 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + CLEAR0);
240 ipi_clear0_regs[7] = (void __iomem *)
241 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + CLEAR0);
242 ipi_clear0_regs[8] = (void __iomem *)
243 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + CLEAR0);
244 ipi_clear0_regs[9] = (void __iomem *)
245 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + CLEAR0);
246 ipi_clear0_regs[10] = (void __iomem *)
247 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + CLEAR0);
248 ipi_clear0_regs[11] = (void __iomem *)
249 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + CLEAR0);
250 ipi_clear0_regs[12] = (void __iomem *)
251 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + CLEAR0);
252 ipi_clear0_regs[13] = (void __iomem *)
253 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + CLEAR0);
254 ipi_clear0_regs[14] = (void __iomem *)
255 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + CLEAR0);
256 ipi_clear0_regs[15] = (void __iomem *)
257 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + CLEAR0);
258 }
259
ipi_status0_regs_init(void)260 static void ipi_status0_regs_init(void)
261 {
262 ipi_status0_regs[0] = (void __iomem *)
263 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + STATUS0);
264 ipi_status0_regs[1] = (void __iomem *)
265 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + STATUS0);
266 ipi_status0_regs[2] = (void __iomem *)
267 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + STATUS0);
268 ipi_status0_regs[3] = (void __iomem *)
269 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + STATUS0);
270 ipi_status0_regs[4] = (void __iomem *)
271 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + STATUS0);
272 ipi_status0_regs[5] = (void __iomem *)
273 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + STATUS0);
274 ipi_status0_regs[6] = (void __iomem *)
275 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + STATUS0);
276 ipi_status0_regs[7] = (void __iomem *)
277 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + STATUS0);
278 ipi_status0_regs[8] = (void __iomem *)
279 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + STATUS0);
280 ipi_status0_regs[9] = (void __iomem *)
281 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + STATUS0);
282 ipi_status0_regs[10] = (void __iomem *)
283 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + STATUS0);
284 ipi_status0_regs[11] = (void __iomem *)
285 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + STATUS0);
286 ipi_status0_regs[12] = (void __iomem *)
287 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + STATUS0);
288 ipi_status0_regs[13] = (void __iomem *)
289 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + STATUS0);
290 ipi_status0_regs[14] = (void __iomem *)
291 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + STATUS0);
292 ipi_status0_regs[15] = (void __iomem *)
293 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + STATUS0);
294 }
295
ipi_en0_regs_init(void)296 static void ipi_en0_regs_init(void)
297 {
298 ipi_en0_regs[0] = (void __iomem *)
299 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + EN0);
300 ipi_en0_regs[1] = (void __iomem *)
301 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + EN0);
302 ipi_en0_regs[2] = (void __iomem *)
303 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + EN0);
304 ipi_en0_regs[3] = (void __iomem *)
305 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + EN0);
306 ipi_en0_regs[4] = (void __iomem *)
307 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + EN0);
308 ipi_en0_regs[5] = (void __iomem *)
309 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + EN0);
310 ipi_en0_regs[6] = (void __iomem *)
311 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + EN0);
312 ipi_en0_regs[7] = (void __iomem *)
313 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + EN0);
314 ipi_en0_regs[8] = (void __iomem *)
315 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + EN0);
316 ipi_en0_regs[9] = (void __iomem *)
317 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + EN0);
318 ipi_en0_regs[10] = (void __iomem *)
319 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + EN0);
320 ipi_en0_regs[11] = (void __iomem *)
321 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + EN0);
322 ipi_en0_regs[12] = (void __iomem *)
323 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + EN0);
324 ipi_en0_regs[13] = (void __iomem *)
325 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + EN0);
326 ipi_en0_regs[14] = (void __iomem *)
327 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + EN0);
328 ipi_en0_regs[15] = (void __iomem *)
329 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + EN0);
330 }
331
ipi_mailbox_buf_init(void)332 static void ipi_mailbox_buf_init(void)
333 {
334 ipi_mailbox_buf[0] = (void __iomem *)
335 (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + BUF);
336 ipi_mailbox_buf[1] = (void __iomem *)
337 (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + BUF);
338 ipi_mailbox_buf[2] = (void __iomem *)
339 (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + BUF);
340 ipi_mailbox_buf[3] = (void __iomem *)
341 (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + BUF);
342 ipi_mailbox_buf[4] = (void __iomem *)
343 (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + BUF);
344 ipi_mailbox_buf[5] = (void __iomem *)
345 (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + BUF);
346 ipi_mailbox_buf[6] = (void __iomem *)
347 (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + BUF);
348 ipi_mailbox_buf[7] = (void __iomem *)
349 (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + BUF);
350 ipi_mailbox_buf[8] = (void __iomem *)
351 (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + BUF);
352 ipi_mailbox_buf[9] = (void __iomem *)
353 (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + BUF);
354 ipi_mailbox_buf[10] = (void __iomem *)
355 (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + BUF);
356 ipi_mailbox_buf[11] = (void __iomem *)
357 (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + BUF);
358 ipi_mailbox_buf[12] = (void __iomem *)
359 (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + BUF);
360 ipi_mailbox_buf[13] = (void __iomem *)
361 (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + BUF);
362 ipi_mailbox_buf[14] = (void __iomem *)
363 (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + BUF);
364 ipi_mailbox_buf[15] = (void __iomem *)
365 (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + BUF);
366 }
367
368 /*
369 * Simple enough, just poke the appropriate ipi register
370 */
loongson3_send_ipi_single(int cpu,unsigned int action)371 static void loongson3_send_ipi_single(int cpu, unsigned int action)
372 {
373 ipi_write_action(cpu_logical_map(cpu), (u32)action);
374 }
375
376 static void
loongson3_send_ipi_mask(const struct cpumask * mask,unsigned int action)377 loongson3_send_ipi_mask(const struct cpumask *mask, unsigned int action)
378 {
379 unsigned int i;
380
381 for_each_cpu(i, mask)
382 ipi_write_action(cpu_logical_map(i), (u32)action);
383 }
384
385
loongson3_ipi_interrupt(int irq,void * dev_id)386 static irqreturn_t loongson3_ipi_interrupt(int irq, void *dev_id)
387 {
388 int i, cpu = smp_processor_id();
389 unsigned int action, c0count;
390
391 action = ipi_read_clear(cpu);
392
393 if (action & SMP_RESCHEDULE_YOURSELF)
394 scheduler_ipi();
395
396 if (action & SMP_CALL_FUNCTION) {
397 irq_enter();
398 generic_smp_call_function_interrupt();
399 irq_exit();
400 }
401
402 if (action & SMP_ASK_C0COUNT) {
403 BUG_ON(cpu != 0);
404 c0count = read_c0_count();
405 c0count = c0count ? c0count : 1;
406 for (i = 1; i < nr_cpu_ids; i++)
407 core0_c0count[i] = c0count;
408 nudge_writes(); /* Let others see the result ASAP */
409 }
410
411 return IRQ_HANDLED;
412 }
413
414 #define MAX_LOOPS 800
415 /*
416 * SMP init and finish on secondary CPUs
417 */
loongson3_init_secondary(void)418 static void loongson3_init_secondary(void)
419 {
420 int i;
421 uint32_t initcount;
422 unsigned int cpu = smp_processor_id();
423 unsigned int imask = STATUSF_IP7 | STATUSF_IP6 |
424 STATUSF_IP3 | STATUSF_IP2;
425
426 /* Set interrupt mask, but don't enable */
427 change_c0_status(ST0_IM, imask);
428 ipi_write_enable(cpu);
429
430 per_cpu(cpu_state, cpu) = CPU_ONLINE;
431 cpu_set_core(&cpu_data[cpu],
432 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package);
433 cpu_data[cpu].package =
434 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
435
436 i = 0;
437 core0_c0count[cpu] = 0;
438 loongson3_send_ipi_single(0, SMP_ASK_C0COUNT);
439 while (!core0_c0count[cpu]) {
440 i++;
441 cpu_relax();
442 }
443
444 if (i > MAX_LOOPS)
445 i = MAX_LOOPS;
446 if (cpu_data[cpu].package)
447 initcount = core0_c0count[cpu] + i;
448 else /* Local access is faster for loops */
449 initcount = core0_c0count[cpu] + i/2;
450
451 write_c0_count(initcount);
452 }
453
loongson3_smp_finish(void)454 static void loongson3_smp_finish(void)
455 {
456 int cpu = smp_processor_id();
457
458 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
459 local_irq_enable();
460 ipi_clear_buf(cpu);
461
462 pr_info("CPU#%d finished, CP0_ST=%x\n",
463 smp_processor_id(), read_c0_status());
464 }
465
loongson3_smp_setup(void)466 static void __init loongson3_smp_setup(void)
467 {
468 int i = 0, num = 0; /* i: physical id, num: logical id */
469
470 init_cpu_possible(cpu_none_mask);
471
472 /* For unified kernel, NR_CPUS is the maximum possible value,
473 * loongson_sysconf.nr_cpus is the really present value
474 */
475 while (i < loongson_sysconf.nr_cpus) {
476 if (loongson_sysconf.reserved_cpus_mask & (1<<i)) {
477 /* Reserved physical CPU cores */
478 __cpu_number_map[i] = -1;
479 } else {
480 __cpu_number_map[i] = num;
481 __cpu_logical_map[num] = i;
482 set_cpu_possible(num, true);
483 /* Loongson processors are always grouped by 4 */
484 cpu_set_cluster(&cpu_data[num], i / 4);
485 num++;
486 }
487 i++;
488 }
489 pr_info("Detected %i available CPU(s)\n", num);
490
491 while (num < loongson_sysconf.nr_cpus) {
492 __cpu_logical_map[num] = -1;
493 num++;
494 }
495
496 csr_ipi_probe();
497 ipi_set0_regs_init();
498 ipi_clear0_regs_init();
499 ipi_status0_regs_init();
500 ipi_en0_regs_init();
501 ipi_mailbox_buf_init();
502 ipi_write_enable(0);
503
504 cpu_set_core(&cpu_data[0],
505 cpu_logical_map(0) % loongson_sysconf.cores_per_package);
506 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
507 }
508
loongson3_prepare_cpus(unsigned int max_cpus)509 static void __init loongson3_prepare_cpus(unsigned int max_cpus)
510 {
511 if (request_irq(LS_IPI_IRQ, loongson3_ipi_interrupt,
512 IRQF_PERCPU | IRQF_NO_SUSPEND, "SMP_IPI", NULL))
513 pr_err("Failed to request IPI IRQ\n");
514 init_cpu_present(cpu_possible_mask);
515 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
516 }
517
518 /*
519 * Setup the PC, SP, and GP of a secondary processor and start it runing!
520 */
loongson3_boot_secondary(int cpu,struct task_struct * idle)521 static int loongson3_boot_secondary(int cpu, struct task_struct *idle)
522 {
523 pr_info("Booting CPU#%d...\n", cpu);
524
525 ipi_write_buf(cpu, idle);
526
527 return 0;
528 }
529
530 #ifdef CONFIG_HOTPLUG_CPU
531
loongson3_cpu_disable(void)532 static int loongson3_cpu_disable(void)
533 {
534 unsigned long flags;
535 unsigned int cpu = smp_processor_id();
536
537 set_cpu_online(cpu, false);
538 calculate_cpu_foreign_map();
539 local_irq_save(flags);
540 clear_c0_status(ST0_IM);
541 local_irq_restore(flags);
542 local_flush_tlb_all();
543
544 return 0;
545 }
546
547
loongson3_cpu_die(unsigned int cpu)548 static void loongson3_cpu_die(unsigned int cpu)
549 {
550 while (per_cpu(cpu_state, cpu) != CPU_DEAD)
551 cpu_relax();
552
553 mb();
554 }
555
556 /* To shutdown a core in Loongson 3, the target core should go to CKSEG1 and
557 * flush all L1 entries at first. Then, another core (usually Core 0) can
558 * safely disable the clock of the target core. loongson3_play_dead() is
559 * called via CKSEG1 (uncached and unmmaped)
560 */
loongson3_type1_play_dead(int * state_addr)561 static void loongson3_type1_play_dead(int *state_addr)
562 {
563 register int val;
564 register long cpuid, core, node, count;
565 register void *addr, *base, *initfunc;
566
567 __asm__ __volatile__(
568 " .set push \n"
569 " .set noreorder \n"
570 " li %[addr], 0x80000000 \n" /* KSEG0 */
571 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
572 " cache 0, 1(%[addr]) \n"
573 " cache 0, 2(%[addr]) \n"
574 " cache 0, 3(%[addr]) \n"
575 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
576 " cache 1, 1(%[addr]) \n"
577 " cache 1, 2(%[addr]) \n"
578 " cache 1, 3(%[addr]) \n"
579 " addiu %[sets], %[sets], -1 \n"
580 " bnez %[sets], 1b \n"
581 " addiu %[addr], %[addr], 0x20 \n"
582 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
583 " sw %[val], (%[state_addr]) \n"
584 " sync \n"
585 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
586 " .set pop \n"
587 : [addr] "=&r" (addr), [val] "=&r" (val)
588 : [state_addr] "r" (state_addr),
589 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets));
590
591 __asm__ __volatile__(
592 " .set push \n"
593 " .set noreorder \n"
594 " .set mips64 \n"
595 " mfc0 %[cpuid], $15, 1 \n"
596 " andi %[cpuid], 0x3ff \n"
597 " dli %[base], 0x900000003ff01000 \n"
598 " andi %[core], %[cpuid], 0x3 \n"
599 " sll %[core], 8 \n" /* get core id */
600 " or %[base], %[base], %[core] \n"
601 " andi %[node], %[cpuid], 0xc \n"
602 " dsll %[node], 42 \n" /* get node id */
603 " or %[base], %[base], %[node] \n"
604 "1: li %[count], 0x100 \n" /* wait for init loop */
605 "2: bnez %[count], 2b \n" /* limit mailbox access */
606 " addiu %[count], -1 \n"
607 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
608 " beqz %[initfunc], 1b \n"
609 " nop \n"
610 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
611 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
612 " ld $a1, 0x38(%[base]) \n"
613 " jr %[initfunc] \n" /* jump to initial PC */
614 " nop \n"
615 " .set pop \n"
616 : [core] "=&r" (core), [node] "=&r" (node),
617 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
618 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
619 : /* No Input */
620 : "a1");
621 }
622
loongson3_type2_play_dead(int * state_addr)623 static void loongson3_type2_play_dead(int *state_addr)
624 {
625 register int val;
626 register long cpuid, core, node, count;
627 register void *addr, *base, *initfunc;
628
629 __asm__ __volatile__(
630 " .set push \n"
631 " .set noreorder \n"
632 " li %[addr], 0x80000000 \n" /* KSEG0 */
633 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
634 " cache 0, 1(%[addr]) \n"
635 " cache 0, 2(%[addr]) \n"
636 " cache 0, 3(%[addr]) \n"
637 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
638 " cache 1, 1(%[addr]) \n"
639 " cache 1, 2(%[addr]) \n"
640 " cache 1, 3(%[addr]) \n"
641 " addiu %[sets], %[sets], -1 \n"
642 " bnez %[sets], 1b \n"
643 " addiu %[addr], %[addr], 0x20 \n"
644 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
645 " sw %[val], (%[state_addr]) \n"
646 " sync \n"
647 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
648 " .set pop \n"
649 : [addr] "=&r" (addr), [val] "=&r" (val)
650 : [state_addr] "r" (state_addr),
651 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets));
652
653 __asm__ __volatile__(
654 " .set push \n"
655 " .set noreorder \n"
656 " .set mips64 \n"
657 " mfc0 %[cpuid], $15, 1 \n"
658 " andi %[cpuid], 0x3ff \n"
659 " dli %[base], 0x900000003ff01000 \n"
660 " andi %[core], %[cpuid], 0x3 \n"
661 " sll %[core], 8 \n" /* get core id */
662 " or %[base], %[base], %[core] \n"
663 " andi %[node], %[cpuid], 0xc \n"
664 " dsll %[node], 42 \n" /* get node id */
665 " or %[base], %[base], %[node] \n"
666 " dsrl %[node], 30 \n" /* 15:14 */
667 " or %[base], %[base], %[node] \n"
668 "1: li %[count], 0x100 \n" /* wait for init loop */
669 "2: bnez %[count], 2b \n" /* limit mailbox access */
670 " addiu %[count], -1 \n"
671 " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */
672 " beqz %[initfunc], 1b \n"
673 " nop \n"
674 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
675 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
676 " ld $a1, 0x38(%[base]) \n"
677 " jr %[initfunc] \n" /* jump to initial PC */
678 " nop \n"
679 " .set pop \n"
680 : [core] "=&r" (core), [node] "=&r" (node),
681 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
682 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
683 : /* No Input */
684 : "a1");
685 }
686
loongson3_type3_play_dead(int * state_addr)687 static void loongson3_type3_play_dead(int *state_addr)
688 {
689 register int val;
690 register long cpuid, core, node, count;
691 register void *addr, *base, *initfunc;
692
693 __asm__ __volatile__(
694 " .set push \n"
695 " .set noreorder \n"
696 " li %[addr], 0x80000000 \n" /* KSEG0 */
697 "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */
698 " cache 0, 1(%[addr]) \n"
699 " cache 0, 2(%[addr]) \n"
700 " cache 0, 3(%[addr]) \n"
701 " cache 1, 0(%[addr]) \n" /* flush L1 DCache */
702 " cache 1, 1(%[addr]) \n"
703 " cache 1, 2(%[addr]) \n"
704 " cache 1, 3(%[addr]) \n"
705 " addiu %[sets], %[sets], -1 \n"
706 " bnez %[sets], 1b \n"
707 " addiu %[addr], %[addr], 0x40 \n"
708 " li %[addr], 0x80000000 \n" /* KSEG0 */
709 "2: cache 2, 0(%[addr]) \n" /* flush L1 VCache */
710 " cache 2, 1(%[addr]) \n"
711 " cache 2, 2(%[addr]) \n"
712 " cache 2, 3(%[addr]) \n"
713 " cache 2, 4(%[addr]) \n"
714 " cache 2, 5(%[addr]) \n"
715 " cache 2, 6(%[addr]) \n"
716 " cache 2, 7(%[addr]) \n"
717 " cache 2, 8(%[addr]) \n"
718 " cache 2, 9(%[addr]) \n"
719 " cache 2, 10(%[addr]) \n"
720 " cache 2, 11(%[addr]) \n"
721 " cache 2, 12(%[addr]) \n"
722 " cache 2, 13(%[addr]) \n"
723 " cache 2, 14(%[addr]) \n"
724 " cache 2, 15(%[addr]) \n"
725 " addiu %[vsets], %[vsets], -1 \n"
726 " bnez %[vsets], 2b \n"
727 " addiu %[addr], %[addr], 0x40 \n"
728 " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */
729 " sw %[val], (%[state_addr]) \n"
730 " sync \n"
731 " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */
732 " .set pop \n"
733 : [addr] "=&r" (addr), [val] "=&r" (val)
734 : [state_addr] "r" (state_addr),
735 [sets] "r" (cpu_data[smp_processor_id()].dcache.sets),
736 [vsets] "r" (cpu_data[smp_processor_id()].vcache.sets));
737
738 __asm__ __volatile__(
739 " .set push \n"
740 " .set noreorder \n"
741 " .set mips64 \n"
742 " mfc0 %[cpuid], $15, 1 \n"
743 " andi %[cpuid], 0x3ff \n"
744 " dli %[base], 0x900000003ff01000 \n"
745 " andi %[core], %[cpuid], 0x3 \n"
746 " sll %[core], 8 \n" /* get core id */
747 " or %[base], %[base], %[core] \n"
748 " andi %[node], %[cpuid], 0xc \n"
749 " dsll %[node], 42 \n" /* get node id */
750 " or %[base], %[base], %[node] \n"
751 "1: li %[count], 0x100 \n" /* wait for init loop */
752 "2: bnez %[count], 2b \n" /* limit mailbox access */
753 " addiu %[count], -1 \n"
754 " lw %[initfunc], 0x20(%[base]) \n" /* check lower 32-bit as jump indicator */
755 " beqz %[initfunc], 1b \n"
756 " nop \n"
757 " ld %[initfunc], 0x20(%[base]) \n" /* get PC (whole 64-bit) via mailbox */
758 " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */
759 " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */
760 " ld $a1, 0x38(%[base]) \n"
761 " jr %[initfunc] \n" /* jump to initial PC */
762 " nop \n"
763 " .set pop \n"
764 : [core] "=&r" (core), [node] "=&r" (node),
765 [base] "=&r" (base), [cpuid] "=&r" (cpuid),
766 [count] "=&r" (count), [initfunc] "=&r" (initfunc)
767 : /* No Input */
768 : "a1");
769 }
770
play_dead(void)771 void play_dead(void)
772 {
773 int prid_imp, prid_rev, *state_addr;
774 unsigned int cpu = smp_processor_id();
775 void (*play_dead_at_ckseg1)(int *);
776
777 idle_task_exit();
778 cpuhp_ap_report_dead();
779
780 prid_imp = read_c0_prid() & PRID_IMP_MASK;
781 prid_rev = read_c0_prid() & PRID_REV_MASK;
782
783 if (prid_imp == PRID_IMP_LOONGSON_64G) {
784 play_dead_at_ckseg1 =
785 (void *)CKSEG1ADDR((unsigned long)loongson3_type3_play_dead);
786 goto out;
787 }
788
789 switch (prid_rev) {
790 case PRID_REV_LOONGSON3A_R1:
791 default:
792 play_dead_at_ckseg1 =
793 (void *)CKSEG1ADDR((unsigned long)loongson3_type1_play_dead);
794 break;
795 case PRID_REV_LOONGSON3B_R1:
796 case PRID_REV_LOONGSON3B_R2:
797 play_dead_at_ckseg1 =
798 (void *)CKSEG1ADDR((unsigned long)loongson3_type2_play_dead);
799 break;
800 case PRID_REV_LOONGSON3A_R2_0:
801 case PRID_REV_LOONGSON3A_R2_1:
802 case PRID_REV_LOONGSON3A_R3_0:
803 case PRID_REV_LOONGSON3A_R3_1:
804 play_dead_at_ckseg1 =
805 (void *)CKSEG1ADDR((unsigned long)loongson3_type3_play_dead);
806 break;
807 }
808
809 out:
810 state_addr = &per_cpu(cpu_state, cpu);
811 mb();
812 play_dead_at_ckseg1(state_addr);
813 BUG();
814 }
815
loongson3_disable_clock(unsigned int cpu)816 static int loongson3_disable_clock(unsigned int cpu)
817 {
818 uint64_t core_id = cpu_core(&cpu_data[cpu]);
819 uint64_t package_id = cpu_data[cpu].package;
820
821 if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) {
822 LOONGSON_CHIPCFG(package_id) &= ~(1 << (12 + core_id));
823 } else {
824 if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG))
825 LOONGSON_FREQCTRL(package_id) &= ~(1 << (core_id * 4 + 3));
826 }
827 return 0;
828 }
829
loongson3_enable_clock(unsigned int cpu)830 static int loongson3_enable_clock(unsigned int cpu)
831 {
832 uint64_t core_id = cpu_core(&cpu_data[cpu]);
833 uint64_t package_id = cpu_data[cpu].package;
834
835 if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) {
836 LOONGSON_CHIPCFG(package_id) |= 1 << (12 + core_id);
837 } else {
838 if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG))
839 LOONGSON_FREQCTRL(package_id) |= 1 << (core_id * 4 + 3);
840 }
841 return 0;
842 }
843
register_loongson3_notifier(void)844 static int register_loongson3_notifier(void)
845 {
846 return cpuhp_setup_state_nocalls(CPUHP_MIPS_SOC_PREPARE,
847 "mips/loongson:prepare",
848 loongson3_enable_clock,
849 loongson3_disable_clock);
850 }
851 early_initcall(register_loongson3_notifier);
852
853 #endif
854
855 const struct plat_smp_ops loongson3_smp_ops = {
856 .send_ipi_single = loongson3_send_ipi_single,
857 .send_ipi_mask = loongson3_send_ipi_mask,
858 .init_secondary = loongson3_init_secondary,
859 .smp_finish = loongson3_smp_finish,
860 .boot_secondary = loongson3_boot_secondary,
861 .smp_setup = loongson3_smp_setup,
862 .prepare_cpus = loongson3_prepare_cpus,
863 #ifdef CONFIG_HOTPLUG_CPU
864 .cpu_disable = loongson3_cpu_disable,
865 .cpu_die = loongson3_cpu_die,
866 #endif
867 #ifdef CONFIG_KEXEC
868 .kexec_nonboot_cpu = kexec_nonboot_cpu_jump,
869 #endif
870 };
871