1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4 *
5 * Derived from MIPS:
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/acpi.h>
15 #include <linux/cpu.h>
16 #include <linux/dmi.h>
17 #include <linux/efi.h>
18 #include <linux/export.h>
19 #include <linux/screen_info.h>
20 #include <linux/memblock.h>
21 #include <linux/initrd.h>
22 #include <linux/ioport.h>
23 #include <linux/kexec.h>
24 #include <linux/crash_dump.h>
25 #include <linux/root_dev.h>
26 #include <linux/console.h>
27 #include <linux/pfn.h>
28 #include <linux/platform_device.h>
29 #include <linux/sizes.h>
30 #include <linux/device.h>
31 #include <linux/dma-map-ops.h>
32 #include <linux/libfdt.h>
33 #include <linux/of_fdt.h>
34 #include <linux/of_address.h>
35 #include <linux/suspend.h>
36 #include <linux/swiotlb.h>
37
38 #include <asm/addrspace.h>
39 #include <asm/alternative.h>
40 #include <asm/bootinfo.h>
41 #include <asm/cache.h>
42 #include <asm/cpu.h>
43 #include <asm/dma.h>
44 #include <asm/efi.h>
45 #include <asm/loongson.h>
46 #include <asm/numa.h>
47 #include <asm/pgalloc.h>
48 #include <asm/sections.h>
49 #include <asm/setup.h>
50 #include <asm/time.h>
51
52 #define SMBIOS_BIOSSIZE_OFFSET 0x09
53 #define SMBIOS_BIOSEXTERN_OFFSET 0x13
54 #define SMBIOS_FREQLOW_OFFSET 0x16
55 #define SMBIOS_FREQHIGH_OFFSET 0x17
56 #define SMBIOS_FREQLOW_MASK 0xFF
57 #define SMBIOS_CORE_PACKAGE_OFFSET 0x23
58 #define LOONGSON_EFI_ENABLE (1 << 3)
59
60 struct screen_info screen_info __section(".data");
61
62 unsigned long fw_arg0, fw_arg1, fw_arg2;
63 DEFINE_PER_CPU(unsigned long, kernelsp);
64 struct cpuinfo_loongarch cpu_data[NR_CPUS] __read_mostly;
65
66 EXPORT_SYMBOL(cpu_data);
67
68 struct loongson_board_info b_info;
69 static const char dmi_empty_string[] = " ";
70
71 /*
72 * Setup information
73 *
74 * These are initialized so they are in the .data section
75 */
76 char init_command_line[COMMAND_LINE_SIZE] __initdata;
77
78 static int num_standard_resources;
79 static struct resource *standard_resources;
80
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83 static struct resource bss_resource = { .name = "Kernel bss", };
84
get_system_type(void)85 const char *get_system_type(void)
86 {
87 return "generic-loongson-machine";
88 }
89
arch_cpu_finalize_init(void)90 void __init arch_cpu_finalize_init(void)
91 {
92 alternative_instructions();
93 }
94
dmi_string_parse(const struct dmi_header * dm,u8 s)95 static const char *dmi_string_parse(const struct dmi_header *dm, u8 s)
96 {
97 const u8 *bp = ((u8 *) dm) + dm->length;
98
99 if (s) {
100 s--;
101 while (s > 0 && *bp) {
102 bp += strlen(bp) + 1;
103 s--;
104 }
105
106 if (*bp != 0) {
107 size_t len = strlen(bp)+1;
108 size_t cmp_len = len > 8 ? 8 : len;
109
110 if (!memcmp(bp, dmi_empty_string, cmp_len))
111 return dmi_empty_string;
112
113 return bp;
114 }
115 }
116
117 return "";
118 }
119
parse_cpu_table(const struct dmi_header * dm)120 static void __init parse_cpu_table(const struct dmi_header *dm)
121 {
122 long freq_temp = 0;
123 char *dmi_data = (char *)dm;
124
125 freq_temp = ((*(dmi_data + SMBIOS_FREQHIGH_OFFSET) << 8) +
126 ((*(dmi_data + SMBIOS_FREQLOW_OFFSET)) & SMBIOS_FREQLOW_MASK));
127 cpu_clock_freq = freq_temp * 1000000;
128
129 loongson_sysconf.cpuname = (void *)dmi_string_parse(dm, dmi_data[16]);
130 loongson_sysconf.cores_per_package = *(dmi_data + SMBIOS_CORE_PACKAGE_OFFSET);
131
132 pr_info("CpuClock = %llu\n", cpu_clock_freq);
133 }
134
parse_bios_table(const struct dmi_header * dm)135 static void __init parse_bios_table(const struct dmi_header *dm)
136 {
137 char *dmi_data = (char *)dm;
138
139 b_info.bios_size = (*(dmi_data + SMBIOS_BIOSSIZE_OFFSET) + 1) << 6;
140 }
141
find_tokens(const struct dmi_header * dm,void * dummy)142 static void __init find_tokens(const struct dmi_header *dm, void *dummy)
143 {
144 switch (dm->type) {
145 case 0x0: /* Extern BIOS */
146 parse_bios_table(dm);
147 break;
148 case 0x4: /* Calling interface */
149 parse_cpu_table(dm);
150 break;
151 }
152 }
smbios_parse(void)153 static void __init smbios_parse(void)
154 {
155 b_info.bios_vendor = (void *)dmi_get_system_info(DMI_BIOS_VENDOR);
156 b_info.bios_version = (void *)dmi_get_system_info(DMI_BIOS_VERSION);
157 b_info.bios_release_date = (void *)dmi_get_system_info(DMI_BIOS_DATE);
158 b_info.board_vendor = (void *)dmi_get_system_info(DMI_BOARD_VENDOR);
159 b_info.board_name = (void *)dmi_get_system_info(DMI_BOARD_NAME);
160 dmi_walk(find_tokens, NULL);
161 }
162
163 #ifdef CONFIG_ARCH_WRITECOMBINE
164 bool wc_enabled = true;
165 #else
166 bool wc_enabled = false;
167 #endif
168
169 EXPORT_SYMBOL(wc_enabled);
170
setup_writecombine(char * p)171 static int __init setup_writecombine(char *p)
172 {
173 if (!strcmp(p, "on"))
174 wc_enabled = true;
175 else if (!strcmp(p, "off"))
176 wc_enabled = false;
177 else
178 pr_warn("Unknown writecombine setting \"%s\".\n", p);
179
180 return 0;
181 }
182 early_param("writecombine", setup_writecombine);
183
184 static int usermem __initdata;
185
early_parse_mem(char * p)186 static int __init early_parse_mem(char *p)
187 {
188 phys_addr_t start, size;
189
190 if (!p) {
191 pr_err("mem parameter is empty, do nothing\n");
192 return -EINVAL;
193 }
194
195 /*
196 * If a user specifies memory size, we
197 * blow away any automatically generated
198 * size.
199 */
200 if (usermem == 0) {
201 usermem = 1;
202 memblock_remove(memblock_start_of_DRAM(),
203 memblock_end_of_DRAM() - memblock_start_of_DRAM());
204 }
205 start = 0;
206 size = memparse(p, &p);
207 if (*p == '@')
208 start = memparse(p + 1, &p);
209 else {
210 pr_err("Invalid format!\n");
211 return -EINVAL;
212 }
213
214 if (!IS_ENABLED(CONFIG_NUMA))
215 memblock_add(start, size);
216 else
217 memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
218
219 return 0;
220 }
221 early_param("mem", early_parse_mem);
222
arch_reserve_vmcore(void)223 static void __init arch_reserve_vmcore(void)
224 {
225 #ifdef CONFIG_PROC_VMCORE
226 u64 i;
227 phys_addr_t start, end;
228
229 if (!is_kdump_kernel())
230 return;
231
232 if (!elfcorehdr_size) {
233 for_each_mem_range(i, &start, &end) {
234 if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
235 /*
236 * Reserve from the elf core header to the end of
237 * the memory segment, that should all be kdump
238 * reserved memory.
239 */
240 elfcorehdr_size = end - elfcorehdr_addr;
241 break;
242 }
243 }
244 }
245
246 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
247 pr_warn("elfcorehdr is overlapped\n");
248 return;
249 }
250
251 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
252
253 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
254 elfcorehdr_size >> 10, elfcorehdr_addr);
255 #endif
256 }
257
258 /* 2MB alignment for crash kernel regions */
259 #define CRASH_ALIGN SZ_2M
260 #define CRASH_ADDR_MAX SZ_4G
261
arch_parse_crashkernel(void)262 static void __init arch_parse_crashkernel(void)
263 {
264 #ifdef CONFIG_KEXEC
265 int ret;
266 unsigned long long total_mem;
267 unsigned long long crash_base, crash_size;
268
269 total_mem = memblock_phys_mem_size();
270 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
271 if (ret < 0 || crash_size <= 0)
272 return;
273
274 if (crash_base <= 0) {
275 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, CRASH_ALIGN, CRASH_ADDR_MAX);
276 if (!crash_base) {
277 pr_warn("crashkernel reservation failed - No suitable area found.\n");
278 return;
279 }
280 } else if (!memblock_phys_alloc_range(crash_size, CRASH_ALIGN, crash_base, crash_base + crash_size)) {
281 pr_warn("Invalid memory region reserved for crash kernel\n");
282 return;
283 }
284
285 crashk_res.start = crash_base;
286 crashk_res.end = crash_base + crash_size - 1;
287 #endif
288 }
289
fdt_setup(void)290 static void __init fdt_setup(void)
291 {
292 #ifdef CONFIG_OF_EARLY_FLATTREE
293 void *fdt_pointer;
294
295 /* ACPI-based systems do not require parsing fdt */
296 if (acpi_os_get_root_pointer())
297 return;
298
299 /* Look for a device tree configuration table entry */
300 fdt_pointer = efi_fdt_pointer();
301 if (!fdt_pointer || fdt_check_header(fdt_pointer))
302 return;
303
304 early_init_dt_scan(fdt_pointer);
305 early_init_fdt_reserve_self();
306
307 max_low_pfn = PFN_PHYS(memblock_end_of_DRAM());
308 #endif
309 }
310
bootcmdline_init(char ** cmdline_p)311 static void __init bootcmdline_init(char **cmdline_p)
312 {
313 /*
314 * If CONFIG_CMDLINE_FORCE is enabled then initializing the command line
315 * is trivial - we simply use the built-in command line unconditionally &
316 * unmodified.
317 */
318 if (IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
319 strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
320 goto out;
321 }
322
323 #ifdef CONFIG_OF_FLATTREE
324 /*
325 * If CONFIG_CMDLINE_BOOTLOADER is enabled and we are in FDT-based system,
326 * the boot_command_line will be overwritten by early_init_dt_scan_chosen().
327 * So we need to append init_command_line (the original copy of boot_command_line)
328 * to boot_command_line.
329 */
330 if (initial_boot_params) {
331 if (boot_command_line[0])
332 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
333
334 strlcat(boot_command_line, init_command_line, COMMAND_LINE_SIZE);
335 goto out;
336 }
337 #endif
338
339 /*
340 * Append built-in command line to the bootloader command line if
341 * CONFIG_CMDLINE_EXTEND is enabled.
342 */
343 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) && CONFIG_CMDLINE[0]) {
344 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
345 strlcat(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
346 }
347
348 /*
349 * Use built-in command line if the bootloader command line is empty.
350 */
351 if (IS_ENABLED(CONFIG_CMDLINE_BOOTLOADER) && !boot_command_line[0])
352 strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
353
354 out:
355 *cmdline_p = boot_command_line;
356 }
357
platform_init(void)358 void __init platform_init(void)
359 {
360 arch_reserve_vmcore();
361 arch_parse_crashkernel();
362
363 #ifdef CONFIG_ACPI_TABLE_UPGRADE
364 acpi_table_upgrade();
365 #endif
366 #ifdef CONFIG_ACPI
367 acpi_gbl_use_default_register_widths = false;
368 acpi_boot_table_init();
369 #endif
370
371 early_init_fdt_scan_reserved_mem();
372 unflatten_and_copy_device_tree();
373
374 #ifdef CONFIG_NUMA
375 init_numa_memory();
376 #endif
377 dmi_setup();
378 smbios_parse();
379 pr_info("The BIOS Version: %s\n", b_info.bios_version);
380
381 efi_runtime_init();
382 }
383
check_kernel_sections_mem(void)384 static void __init check_kernel_sections_mem(void)
385 {
386 phys_addr_t start = __pa_symbol(&_text);
387 phys_addr_t size = __pa_symbol(&_end) - start;
388
389 if (!memblock_is_region_memory(start, size)) {
390 pr_info("Kernel sections are not in the memory maps\n");
391 memblock_add(start, size);
392 }
393 }
394
395 /*
396 * arch_mem_init - initialize memory management subsystem
397 */
arch_mem_init(char ** cmdline_p)398 static void __init arch_mem_init(char **cmdline_p)
399 {
400 if (usermem)
401 pr_info("User-defined physical RAM map overwrite\n");
402
403 check_kernel_sections_mem();
404
405 /*
406 * In order to reduce the possibility of kernel panic when failed to
407 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
408 * low memory as small as possible before swiotlb_init(), so make
409 * sparse_init() using top-down allocation.
410 */
411 memblock_set_bottom_up(false);
412 sparse_init();
413 memblock_set_bottom_up(true);
414
415 swiotlb_init(true, SWIOTLB_VERBOSE);
416
417 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
418
419 /* Reserve for hibernation. */
420 register_nosave_region(PFN_DOWN(__pa_symbol(&__nosave_begin)),
421 PFN_UP(__pa_symbol(&__nosave_end)));
422
423 memblock_dump_all();
424
425 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
426 }
427
resource_init(void)428 static void __init resource_init(void)
429 {
430 long i = 0;
431 size_t res_size;
432 struct resource *res;
433 struct memblock_region *region;
434
435 code_resource.start = __pa_symbol(&_text);
436 code_resource.end = __pa_symbol(&_etext) - 1;
437 data_resource.start = __pa_symbol(&_etext);
438 data_resource.end = __pa_symbol(&_edata) - 1;
439 bss_resource.start = __pa_symbol(&__bss_start);
440 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
441
442 num_standard_resources = memblock.memory.cnt;
443 res_size = num_standard_resources * sizeof(*standard_resources);
444 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
445
446 for_each_mem_region(region) {
447 res = &standard_resources[i++];
448 if (!memblock_is_nomap(region)) {
449 res->name = "System RAM";
450 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
451 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
452 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
453 } else {
454 res->name = "Reserved";
455 res->flags = IORESOURCE_MEM;
456 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
457 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
458 }
459
460 request_resource(&iomem_resource, res);
461
462 /*
463 * We don't know which RAM region contains kernel data,
464 * so we try it repeatedly and let the resource manager
465 * test it.
466 */
467 request_resource(res, &code_resource);
468 request_resource(res, &data_resource);
469 request_resource(res, &bss_resource);
470 }
471
472 #ifdef CONFIG_KEXEC
473 if (crashk_res.start < crashk_res.end) {
474 insert_resource(&iomem_resource, &crashk_res);
475 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
476 (unsigned long)((crashk_res.end - crashk_res.start + 1) >> 20),
477 (unsigned long)(crashk_res.start >> 20));
478 }
479 #endif
480 }
481
add_legacy_isa_io(struct fwnode_handle * fwnode,resource_size_t hw_start,resource_size_t size)482 static int __init add_legacy_isa_io(struct fwnode_handle *fwnode,
483 resource_size_t hw_start, resource_size_t size)
484 {
485 int ret = 0;
486 unsigned long vaddr;
487 struct logic_pio_hwaddr *range;
488
489 range = kzalloc(sizeof(*range), GFP_ATOMIC);
490 if (!range)
491 return -ENOMEM;
492
493 range->fwnode = fwnode;
494 range->size = size = round_up(size, PAGE_SIZE);
495 range->hw_start = hw_start;
496 range->flags = LOGIC_PIO_CPU_MMIO;
497
498 ret = logic_pio_register_range(range);
499 if (ret) {
500 kfree(range);
501 return ret;
502 }
503
504 /* Legacy ISA must placed at the start of PCI_IOBASE */
505 if (range->io_start != 0) {
506 logic_pio_unregister_range(range);
507 kfree(range);
508 return -EINVAL;
509 }
510
511 vaddr = (unsigned long)(PCI_IOBASE + range->io_start);
512 ioremap_page_range(vaddr, vaddr + size, hw_start, pgprot_device(PAGE_KERNEL));
513
514 return 0;
515 }
516
arch_reserve_pio_range(void)517 static __init int arch_reserve_pio_range(void)
518 {
519 struct device_node *np;
520
521 for_each_node_by_name(np, "isa") {
522 struct of_range range;
523 struct of_range_parser parser;
524
525 pr_info("ISA Bridge: %pOF\n", np);
526
527 if (of_range_parser_init(&parser, np)) {
528 pr_info("Failed to parse resources.\n");
529 of_node_put(np);
530 break;
531 }
532
533 for_each_of_range(&parser, &range) {
534 switch (range.flags & IORESOURCE_TYPE_BITS) {
535 case IORESOURCE_IO:
536 pr_info(" IO 0x%016llx..0x%016llx -> 0x%016llx\n",
537 range.cpu_addr,
538 range.cpu_addr + range.size - 1,
539 range.bus_addr);
540 if (add_legacy_isa_io(&np->fwnode, range.cpu_addr, range.size))
541 pr_warn("Failed to reserve legacy IO in Logic PIO\n");
542 break;
543 case IORESOURCE_MEM:
544 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx\n",
545 range.cpu_addr,
546 range.cpu_addr + range.size - 1,
547 range.bus_addr);
548 break;
549 }
550 }
551 }
552
553 return 0;
554 }
555 arch_initcall(arch_reserve_pio_range);
556
reserve_memblock_reserved_regions(void)557 static int __init reserve_memblock_reserved_regions(void)
558 {
559 u64 i, j;
560
561 for (i = 0; i < num_standard_resources; ++i) {
562 struct resource *mem = &standard_resources[i];
563 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
564
565 if (!memblock_is_region_reserved(mem->start, mem_size))
566 continue;
567
568 for_each_reserved_mem_range(j, &r_start, &r_end) {
569 resource_size_t start, end;
570
571 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
572 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
573
574 if (start > mem->end || end < mem->start)
575 continue;
576
577 reserve_region_with_split(mem, start, end, "Reserved");
578 }
579 }
580
581 return 0;
582 }
583 arch_initcall(reserve_memblock_reserved_regions);
584
585 #ifdef CONFIG_SMP
prefill_possible_map(void)586 static void __init prefill_possible_map(void)
587 {
588 int i, possible;
589
590 possible = num_processors + disabled_cpus;
591 if (possible > nr_cpu_ids)
592 possible = nr_cpu_ids;
593
594 pr_info("SMP: Allowing %d CPUs, %d hotplug CPUs\n",
595 possible, max((possible - num_processors), 0));
596
597 for (i = 0; i < possible; i++)
598 set_cpu_possible(i, true);
599 for (; i < NR_CPUS; i++)
600 set_cpu_possible(i, false);
601
602 set_nr_cpu_ids(possible);
603 }
604 #endif
605
setup_arch(char ** cmdline_p)606 void __init setup_arch(char **cmdline_p)
607 {
608 cpu_probe();
609
610 init_environ();
611 efi_init();
612 fdt_setup();
613 memblock_init();
614 pagetable_init();
615 bootcmdline_init(cmdline_p);
616 parse_early_param();
617 reserve_initrd_mem();
618
619 platform_init();
620 arch_mem_init(cmdline_p);
621
622 resource_init();
623 #ifdef CONFIG_SMP
624 plat_smp_setup();
625 prefill_possible_map();
626 #endif
627
628 paging_init();
629
630 #ifdef CONFIG_KASAN
631 kasan_init();
632 #endif
633 }
634