1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_EFI_H
3 #define _ASM_EFI_H
4 
5 #include <asm/boot.h>
6 #include <asm/cpufeature.h>
7 #include <asm/fpsimd.h>
8 #include <asm/io.h>
9 #include <asm/memory.h>
10 #include <asm/mmu_context.h>
11 #include <asm/neon.h>
12 #include <asm/ptrace.h>
13 #include <asm/tlbflush.h>
14 
15 #ifdef CONFIG_EFI
16 extern void efi_init(void);
17 
18 bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg);
19 #else
20 #define efi_init()
21 
22 static inline
efi_runtime_fixup_exception(struct pt_regs * regs,const char * msg)23 bool efi_runtime_fixup_exception(struct pt_regs *regs, const char *msg)
24 {
25 	return false;
26 }
27 #endif
28 
29 int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
30 int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md,
31 				bool has_bti);
32 
33 #undef arch_efi_call_virt
34 #define arch_efi_call_virt(p, f, args...)				\
35 	__efi_rt_asm_wrapper((p)->f, #f, args)
36 
37 extern u64 *efi_rt_stack_top;
38 efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);
39 
40 void arch_efi_call_virt_setup(void);
41 void arch_efi_call_virt_teardown(void);
42 
43 /*
44  * efi_rt_stack_top[-1] contains the value the stack pointer had before
45  * switching to the EFI runtime stack.
46  */
47 #define current_in_efi()						\
48 	(!preemptible() && efi_rt_stack_top != NULL &&			\
49 	 on_task_stack(current, READ_ONCE(efi_rt_stack_top[-1]), 1))
50 
51 #define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT)
52 
53 /*
54  * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not.
55  * And EFI shouldn't really play around with priority masking as it is not aware
56  * which priorities the OS has assigned to its interrupts.
57  */
58 #define arch_efi_save_flags(state_flags)		\
59 	((void)((state_flags) = read_sysreg(daif)))
60 
61 #define arch_efi_restore_flags(state_flags)	write_sysreg(state_flags, daif)
62 
63 
64 /* arch specific definitions used by the stub code */
65 
66 /*
67  * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the
68  * kernel need greater alignment than we require the segments to be padded to.
69  */
70 #define EFI_KIMG_ALIGN	\
71 	(SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)
72 
73 /*
74  * On arm64, we have to ensure that the initrd ends up in the linear region,
75  * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is
76  * guaranteed to cover the kernel Image.
77  *
78  * Since the EFI stub is part of the kernel Image, we can relax the
79  * usual requirements in Documentation/arch/arm64/booting.rst, which still
80  * apply to other bootloaders, and are required for some kernel
81  * configurations.
82  */
efi_get_max_initrd_addr(unsigned long image_addr)83 static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
84 {
85 	return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1));
86 }
87 
efi_get_kimg_min_align(void)88 static inline unsigned long efi_get_kimg_min_align(void)
89 {
90 	extern bool efi_nokaslr;
91 
92 	/*
93 	 * Although relocatable kernels can fix up the misalignment with
94 	 * respect to MIN_KIMG_ALIGN, the resulting virtual text addresses are
95 	 * subtly out of sync with those recorded in the vmlinux when kaslr is
96 	 * disabled but the image required relocation anyway. Therefore retain
97 	 * 2M alignment if KASLR was explicitly disabled, even if it was not
98 	 * going to be activated to begin with.
99 	 */
100 	return efi_nokaslr ? MIN_KIMG_ALIGN : EFI_KIMG_ALIGN;
101 }
102 
103 #define EFI_ALLOC_ALIGN		SZ_64K
104 #define EFI_ALLOC_LIMIT		((1UL << 48) - 1)
105 
106 extern unsigned long primary_entry_offset(void);
107 
108 /*
109  * On ARM systems, virtually remapped UEFI runtime services are set up in two
110  * distinct stages:
111  * - The stub retrieves the final version of the memory map from UEFI, populates
112  *   the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime
113  *   service to communicate the new mapping to the firmware (Note that the new
114  *   mapping is not live at this time)
115  * - During an early initcall(), the EFI system table is permanently remapped
116  *   and the virtual remapping of the UEFI Runtime Services regions is loaded
117  *   into a private set of page tables. If this all succeeds, the Runtime
118  *   Services are enabled and the EFI_RUNTIME_SERVICES bit set.
119  */
120 
efi_set_pgd(struct mm_struct * mm)121 static inline void efi_set_pgd(struct mm_struct *mm)
122 {
123 	__switch_mm(mm);
124 
125 	if (system_uses_ttbr0_pan()) {
126 		if (mm != current->active_mm) {
127 			/*
128 			 * Update the current thread's saved ttbr0 since it is
129 			 * restored as part of a return from exception. Enable
130 			 * access to the valid TTBR0_EL1 and invoke the errata
131 			 * workaround directly since there is no return from
132 			 * exception when invoking the EFI run-time services.
133 			 */
134 			update_saved_ttbr0(current, mm);
135 			uaccess_ttbr0_enable();
136 			post_ttbr_update_workaround();
137 		} else {
138 			/*
139 			 * Defer the switch to the current thread's TTBR0_EL1
140 			 * until uaccess_enable(). Restore the current
141 			 * thread's saved ttbr0 corresponding to its active_mm
142 			 */
143 			uaccess_ttbr0_disable();
144 			update_saved_ttbr0(current, current->active_mm);
145 		}
146 	}
147 }
148 
149 void efi_virtmap_load(void);
150 void efi_virtmap_unload(void);
151 
efi_capsule_flush_cache_range(void * addr,int size)152 static inline void efi_capsule_flush_cache_range(void *addr, int size)
153 {
154 	dcache_clean_inval_poc((unsigned long)addr, (unsigned long)addr + size);
155 }
156 
157 efi_status_t efi_handle_corrupted_x18(efi_status_t s, const char *f);
158 
159 void efi_icache_sync(unsigned long start, unsigned long end);
160 
161 #endif /* _ASM_EFI_H */
162