1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30 
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50 
51 #include <trace/events/ipi.h>
52 
53 /*
54  * as from 2.5, kernels no longer have an init_tasks structure
55  * so we need some other way of telling a new secondary core
56  * where to place its SVC stack
57  */
58 struct secondary_data secondary_data;
59 
60 enum ipi_msg_type {
61 	IPI_WAKEUP,
62 	IPI_TIMER,
63 	IPI_RESCHEDULE,
64 	IPI_CALL_FUNC,
65 	IPI_CPU_STOP,
66 	IPI_IRQ_WORK,
67 	IPI_COMPLETION,
68 	NR_IPI,
69 	/*
70 	 * CPU_BACKTRACE is special and not included in NR_IPI
71 	 * or tracable with trace_ipi_*
72 	 */
73 	IPI_CPU_BACKTRACE = NR_IPI,
74 	/*
75 	 * SGI8-15 can be reserved by secure firmware, and thus may
76 	 * not be usable by the kernel. Please keep the above limited
77 	 * to at most 8 entries.
78 	 */
79 	MAX_IPI
80 };
81 
82 static int ipi_irq_base __read_mostly;
83 static int nr_ipi __read_mostly = NR_IPI;
84 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
85 
86 static void ipi_setup(int cpu);
87 
88 static DECLARE_COMPLETION(cpu_running);
89 
90 static struct smp_operations smp_ops __ro_after_init;
91 
smp_set_ops(const struct smp_operations * ops)92 void __init smp_set_ops(const struct smp_operations *ops)
93 {
94 	if (ops)
95 		smp_ops = *ops;
96 };
97 
get_arch_pgd(pgd_t * pgd)98 static unsigned long get_arch_pgd(pgd_t *pgd)
99 {
100 #ifdef CONFIG_ARM_LPAE
101 	return __phys_to_pfn(virt_to_phys(pgd));
102 #else
103 	return virt_to_phys(pgd);
104 #endif
105 }
106 
107 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)108 static int secondary_biglittle_prepare(unsigned int cpu)
109 {
110 	if (!cpu_vtable[cpu])
111 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
112 
113 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
114 }
115 
secondary_biglittle_init(void)116 static void secondary_biglittle_init(void)
117 {
118 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
119 }
120 #else
secondary_biglittle_prepare(unsigned int cpu)121 static int secondary_biglittle_prepare(unsigned int cpu)
122 {
123 	return 0;
124 }
125 
secondary_biglittle_init(void)126 static void secondary_biglittle_init(void)
127 {
128 }
129 #endif
130 
__cpu_up(unsigned int cpu,struct task_struct * idle)131 int __cpu_up(unsigned int cpu, struct task_struct *idle)
132 {
133 	int ret;
134 
135 	if (!smp_ops.smp_boot_secondary)
136 		return -ENOSYS;
137 
138 	ret = secondary_biglittle_prepare(cpu);
139 	if (ret)
140 		return ret;
141 
142 	/*
143 	 * We need to tell the secondary core where to find
144 	 * its stack and the page tables.
145 	 */
146 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
147 #ifdef CONFIG_ARM_MPU
148 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
149 #endif
150 
151 #ifdef CONFIG_MMU
152 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
153 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
154 #endif
155 	secondary_data.task = idle;
156 	sync_cache_w(&secondary_data);
157 
158 	/*
159 	 * Now bring the CPU into our world.
160 	 */
161 	ret = smp_ops.smp_boot_secondary(cpu, idle);
162 	if (ret == 0) {
163 		/*
164 		 * CPU was successfully started, wait for it
165 		 * to come online or time out.
166 		 */
167 		wait_for_completion_timeout(&cpu_running,
168 						 msecs_to_jiffies(1000));
169 
170 		if (!cpu_online(cpu)) {
171 			pr_crit("CPU%u: failed to come online\n", cpu);
172 			ret = -EIO;
173 		}
174 	} else {
175 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
176 	}
177 
178 
179 	memset(&secondary_data, 0, sizeof(secondary_data));
180 	return ret;
181 }
182 
183 /* platform specific SMP operations */
smp_init_cpus(void)184 void __init smp_init_cpus(void)
185 {
186 	if (smp_ops.smp_init_cpus)
187 		smp_ops.smp_init_cpus();
188 }
189 
platform_can_secondary_boot(void)190 int platform_can_secondary_boot(void)
191 {
192 	return !!smp_ops.smp_boot_secondary;
193 }
194 
platform_can_cpu_hotplug(void)195 int platform_can_cpu_hotplug(void)
196 {
197 #ifdef CONFIG_HOTPLUG_CPU
198 	if (smp_ops.cpu_kill)
199 		return 1;
200 #endif
201 
202 	return 0;
203 }
204 
205 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)206 static int platform_cpu_kill(unsigned int cpu)
207 {
208 	if (smp_ops.cpu_kill)
209 		return smp_ops.cpu_kill(cpu);
210 	return 1;
211 }
212 
platform_cpu_disable(unsigned int cpu)213 static int platform_cpu_disable(unsigned int cpu)
214 {
215 	if (smp_ops.cpu_disable)
216 		return smp_ops.cpu_disable(cpu);
217 
218 	return 0;
219 }
220 
platform_can_hotplug_cpu(unsigned int cpu)221 int platform_can_hotplug_cpu(unsigned int cpu)
222 {
223 	/* cpu_die must be specified to support hotplug */
224 	if (!smp_ops.cpu_die)
225 		return 0;
226 
227 	if (smp_ops.cpu_can_disable)
228 		return smp_ops.cpu_can_disable(cpu);
229 
230 	/*
231 	 * By default, allow disabling all CPUs except the first one,
232 	 * since this is special on a lot of platforms, e.g. because
233 	 * of clock tick interrupts.
234 	 */
235 	return cpu != 0;
236 }
237 
ipi_teardown(int cpu)238 static void ipi_teardown(int cpu)
239 {
240 	int i;
241 
242 	if (WARN_ON_ONCE(!ipi_irq_base))
243 		return;
244 
245 	for (i = 0; i < nr_ipi; i++)
246 		disable_percpu_irq(ipi_irq_base + i);
247 }
248 
249 /*
250  * __cpu_disable runs on the processor to be shutdown.
251  */
__cpu_disable(void)252 int __cpu_disable(void)
253 {
254 	unsigned int cpu = smp_processor_id();
255 	int ret;
256 
257 	ret = platform_cpu_disable(cpu);
258 	if (ret)
259 		return ret;
260 
261 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
262 	remove_cpu_topology(cpu);
263 #endif
264 
265 	/*
266 	 * Take this CPU offline.  Once we clear this, we can't return,
267 	 * and we must not schedule until we're ready to give up the cpu.
268 	 */
269 	set_cpu_online(cpu, false);
270 	ipi_teardown(cpu);
271 
272 	/*
273 	 * OK - migrate IRQs away from this CPU
274 	 */
275 	irq_migrate_all_off_this_cpu();
276 
277 	/*
278 	 * Flush user cache and TLB mappings, and then remove this CPU
279 	 * from the vm mask set of all processes.
280 	 *
281 	 * Caches are flushed to the Level of Unification Inner Shareable
282 	 * to write-back dirty lines to unified caches shared by all CPUs.
283 	 */
284 	flush_cache_louis();
285 	local_flush_tlb_all();
286 
287 	return 0;
288 }
289 
290 /*
291  * called on the thread which is asking for a CPU to be shutdown after the
292  * shutdown completed.
293  */
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)294 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
295 {
296 	pr_debug("CPU%u: shutdown\n", cpu);
297 
298 	clear_tasks_mm_cpumask(cpu);
299 	/*
300 	 * platform_cpu_kill() is generally expected to do the powering off
301 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
302 	 * be done by the CPU which is dying in preference to supporting
303 	 * this call, but that means there is _no_ synchronisation between
304 	 * the requesting CPU and the dying CPU actually losing power.
305 	 */
306 	if (!platform_cpu_kill(cpu))
307 		pr_err("CPU%u: unable to kill\n", cpu);
308 }
309 
310 /*
311  * Called from the idle thread for the CPU which has been shutdown.
312  *
313  * Note that we disable IRQs here, but do not re-enable them
314  * before returning to the caller. This is also the behaviour
315  * of the other hotplug-cpu capable cores, so presumably coming
316  * out of idle fixes this.
317  */
arch_cpu_idle_dead(void)318 void __noreturn arch_cpu_idle_dead(void)
319 {
320 	unsigned int cpu = smp_processor_id();
321 
322 	idle_task_exit();
323 
324 	local_irq_disable();
325 
326 	/*
327 	 * Flush the data out of the L1 cache for this CPU.  This must be
328 	 * before the completion to ensure that data is safely written out
329 	 * before platform_cpu_kill() gets called - which may disable
330 	 * *this* CPU and power down its cache.
331 	 */
332 	flush_cache_louis();
333 
334 	/*
335 	 * Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose
336 	 * of. Once this returns, power and/or clocks can be removed at
337 	 * any point from this CPU and its cache by platform_cpu_kill().
338 	 */
339 	cpuhp_ap_report_dead();
340 
341 	/*
342 	 * Ensure that the cache lines associated with that completion are
343 	 * written out.  This covers the case where _this_ CPU is doing the
344 	 * powering down, to ensure that the completion is visible to the
345 	 * CPU waiting for this one.
346 	 */
347 	flush_cache_louis();
348 
349 	/*
350 	 * The actual CPU shutdown procedure is at least platform (if not
351 	 * CPU) specific.  This may remove power, or it may simply spin.
352 	 *
353 	 * Platforms are generally expected *NOT* to return from this call,
354 	 * although there are some which do because they have no way to
355 	 * power down the CPU.  These platforms are the _only_ reason we
356 	 * have a return path which uses the fragment of assembly below.
357 	 *
358 	 * The return path should not be used for platforms which can
359 	 * power off the CPU.
360 	 */
361 	if (smp_ops.cpu_die)
362 		smp_ops.cpu_die(cpu);
363 
364 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
365 		cpu);
366 
367 	/*
368 	 * Do not return to the idle loop - jump back to the secondary
369 	 * cpu initialisation.  There's some initialisation which needs
370 	 * to be repeated to undo the effects of taking the CPU offline.
371 	 */
372 	__asm__("mov	sp, %0\n"
373 	"	mov	fp, #0\n"
374 	"	mov	r0, %1\n"
375 	"	b	secondary_start_kernel"
376 		:
377 		: "r" (task_stack_page(current) + THREAD_SIZE - 8),
378 		  "r" (current)
379 		: "r0");
380 
381 	unreachable();
382 }
383 #endif /* CONFIG_HOTPLUG_CPU */
384 
385 /*
386  * Called by both boot and secondaries to move global data into
387  * per-processor storage.
388  */
smp_store_cpu_info(unsigned int cpuid)389 static void smp_store_cpu_info(unsigned int cpuid)
390 {
391 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
392 
393 	cpu_info->loops_per_jiffy = loops_per_jiffy;
394 	cpu_info->cpuid = read_cpuid_id();
395 
396 	store_cpu_topology(cpuid);
397 	check_cpu_icache_size(cpuid);
398 }
399 
set_current(struct task_struct * cur)400 static void set_current(struct task_struct *cur)
401 {
402 	/* Set TPIDRURO */
403 	asm("mcr p15, 0, %0, c13, c0, 3" :: "r"(cur) : "memory");
404 }
405 
406 /*
407  * This is the secondary CPU boot entry.  We're using this CPUs
408  * idle thread stack, but a set of temporary page tables.
409  */
secondary_start_kernel(struct task_struct * task)410 asmlinkage void secondary_start_kernel(struct task_struct *task)
411 {
412 	struct mm_struct *mm = &init_mm;
413 	unsigned int cpu;
414 
415 	set_current(task);
416 
417 	secondary_biglittle_init();
418 
419 	/*
420 	 * The identity mapping is uncached (strongly ordered), so
421 	 * switch away from it before attempting any exclusive accesses.
422 	 */
423 	cpu_switch_mm(mm->pgd, mm);
424 	local_flush_bp_all();
425 	enter_lazy_tlb(mm, current);
426 	local_flush_tlb_all();
427 
428 	/*
429 	 * All kernel threads share the same mm context; grab a
430 	 * reference and switch to it.
431 	 */
432 	cpu = smp_processor_id();
433 	mmgrab(mm);
434 	current->active_mm = mm;
435 	cpumask_set_cpu(cpu, mm_cpumask(mm));
436 
437 	cpu_init();
438 
439 #ifndef CONFIG_MMU
440 	setup_vectors_base();
441 #endif
442 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
443 
444 	trace_hardirqs_off();
445 
446 	/*
447 	 * Give the platform a chance to do its own initialisation.
448 	 */
449 	if (smp_ops.smp_secondary_init)
450 		smp_ops.smp_secondary_init(cpu);
451 
452 	notify_cpu_starting(cpu);
453 
454 	ipi_setup(cpu);
455 
456 	calibrate_delay();
457 
458 	smp_store_cpu_info(cpu);
459 
460 	/*
461 	 * OK, now it's safe to let the boot CPU continue.  Wait for
462 	 * the CPU migration code to notice that the CPU is online
463 	 * before we continue - which happens after __cpu_up returns.
464 	 */
465 	set_cpu_online(cpu, true);
466 
467 	check_other_bugs();
468 
469 	complete(&cpu_running);
470 
471 	local_irq_enable();
472 	local_fiq_enable();
473 	local_abt_enable();
474 
475 	/*
476 	 * OK, it's off to the idle thread for us
477 	 */
478 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
479 }
480 
smp_cpus_done(unsigned int max_cpus)481 void __init smp_cpus_done(unsigned int max_cpus)
482 {
483 	int cpu;
484 	unsigned long bogosum = 0;
485 
486 	for_each_online_cpu(cpu)
487 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
488 
489 	printk(KERN_INFO "SMP: Total of %d processors activated "
490 	       "(%lu.%02lu BogoMIPS).\n",
491 	       num_online_cpus(),
492 	       bogosum / (500000/HZ),
493 	       (bogosum / (5000/HZ)) % 100);
494 
495 	hyp_mode_check();
496 }
497 
smp_prepare_boot_cpu(void)498 void __init smp_prepare_boot_cpu(void)
499 {
500 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
501 }
502 
smp_prepare_cpus(unsigned int max_cpus)503 void __init smp_prepare_cpus(unsigned int max_cpus)
504 {
505 	unsigned int ncores = num_possible_cpus();
506 
507 	init_cpu_topology();
508 
509 	smp_store_cpu_info(smp_processor_id());
510 
511 	/*
512 	 * are we trying to boot more cores than exist?
513 	 */
514 	if (max_cpus > ncores)
515 		max_cpus = ncores;
516 	if (ncores > 1 && max_cpus) {
517 		/*
518 		 * Initialise the present map, which describes the set of CPUs
519 		 * actually populated at the present time. A platform should
520 		 * re-initialize the map in the platforms smp_prepare_cpus()
521 		 * if present != possible (e.g. physical hotplug).
522 		 */
523 		init_cpu_present(cpu_possible_mask);
524 
525 		/*
526 		 * Initialise the SCU if there are more than one CPU
527 		 * and let them know where to start.
528 		 */
529 		if (smp_ops.smp_prepare_cpus)
530 			smp_ops.smp_prepare_cpus(max_cpus);
531 	}
532 }
533 
534 static const char *ipi_types[NR_IPI] __tracepoint_string = {
535 	[IPI_WAKEUP]		= "CPU wakeup interrupts",
536 	[IPI_TIMER]		= "Timer broadcast interrupts",
537 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
538 	[IPI_CALL_FUNC]		= "Function call interrupts",
539 	[IPI_CPU_STOP]		= "CPU stop interrupts",
540 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
541 	[IPI_COMPLETION]	= "completion interrupts",
542 };
543 
544 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
545 
show_ipi_list(struct seq_file * p,int prec)546 void show_ipi_list(struct seq_file *p, int prec)
547 {
548 	unsigned int cpu, i;
549 
550 	for (i = 0; i < NR_IPI; i++) {
551 		if (!ipi_desc[i])
552 			continue;
553 
554 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
555 
556 		for_each_online_cpu(cpu)
557 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
558 
559 		seq_printf(p, " %s\n", ipi_types[i]);
560 	}
561 }
562 
arch_send_call_function_ipi_mask(const struct cpumask * mask)563 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
564 {
565 	smp_cross_call(mask, IPI_CALL_FUNC);
566 }
567 
arch_send_wakeup_ipi_mask(const struct cpumask * mask)568 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
569 {
570 	smp_cross_call(mask, IPI_WAKEUP);
571 }
572 
arch_send_call_function_single_ipi(int cpu)573 void arch_send_call_function_single_ipi(int cpu)
574 {
575 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
576 }
577 
578 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)579 void arch_irq_work_raise(void)
580 {
581 	if (arch_irq_work_has_interrupt())
582 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
583 }
584 #endif
585 
586 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)587 void tick_broadcast(const struct cpumask *mask)
588 {
589 	smp_cross_call(mask, IPI_TIMER);
590 }
591 #endif
592 
593 static DEFINE_RAW_SPINLOCK(stop_lock);
594 
595 /*
596  * ipi_cpu_stop - handle IPI from smp_send_stop()
597  */
ipi_cpu_stop(unsigned int cpu)598 static void ipi_cpu_stop(unsigned int cpu)
599 {
600 	local_fiq_disable();
601 
602 	if (system_state <= SYSTEM_RUNNING) {
603 		raw_spin_lock(&stop_lock);
604 		pr_crit("CPU%u: stopping\n", cpu);
605 		dump_stack();
606 		raw_spin_unlock(&stop_lock);
607 	}
608 
609 	set_cpu_online(cpu, false);
610 
611 	while (1) {
612 		cpu_relax();
613 		wfe();
614 	}
615 }
616 
617 static DEFINE_PER_CPU(struct completion *, cpu_completion);
618 
register_ipi_completion(struct completion * completion,int cpu)619 int register_ipi_completion(struct completion *completion, int cpu)
620 {
621 	per_cpu(cpu_completion, cpu) = completion;
622 	return IPI_COMPLETION;
623 }
624 
ipi_complete(unsigned int cpu)625 static void ipi_complete(unsigned int cpu)
626 {
627 	complete(per_cpu(cpu_completion, cpu));
628 }
629 
630 /*
631  * Main handler for inter-processor interrupts
632  */
do_handle_IPI(int ipinr)633 static void do_handle_IPI(int ipinr)
634 {
635 	unsigned int cpu = smp_processor_id();
636 
637 	if ((unsigned)ipinr < NR_IPI)
638 		trace_ipi_entry(ipi_types[ipinr]);
639 
640 	switch (ipinr) {
641 	case IPI_WAKEUP:
642 		break;
643 
644 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
645 	case IPI_TIMER:
646 		tick_receive_broadcast();
647 		break;
648 #endif
649 
650 	case IPI_RESCHEDULE:
651 		scheduler_ipi();
652 		break;
653 
654 	case IPI_CALL_FUNC:
655 		generic_smp_call_function_interrupt();
656 		break;
657 
658 	case IPI_CPU_STOP:
659 		ipi_cpu_stop(cpu);
660 		break;
661 
662 #ifdef CONFIG_IRQ_WORK
663 	case IPI_IRQ_WORK:
664 		irq_work_run();
665 		break;
666 #endif
667 
668 	case IPI_COMPLETION:
669 		ipi_complete(cpu);
670 		break;
671 
672 	case IPI_CPU_BACKTRACE:
673 		printk_deferred_enter();
674 		nmi_cpu_backtrace(get_irq_regs());
675 		printk_deferred_exit();
676 		break;
677 
678 	default:
679 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
680 		        cpu, ipinr);
681 		break;
682 	}
683 
684 	if ((unsigned)ipinr < NR_IPI)
685 		trace_ipi_exit(ipi_types[ipinr]);
686 }
687 
688 /* Legacy version, should go away once all irqchips have been converted */
handle_IPI(int ipinr,struct pt_regs * regs)689 void handle_IPI(int ipinr, struct pt_regs *regs)
690 {
691 	struct pt_regs *old_regs = set_irq_regs(regs);
692 
693 	irq_enter();
694 	do_handle_IPI(ipinr);
695 	irq_exit();
696 
697 	set_irq_regs(old_regs);
698 }
699 
ipi_handler(int irq,void * data)700 static irqreturn_t ipi_handler(int irq, void *data)
701 {
702 	do_handle_IPI(irq - ipi_irq_base);
703 	return IRQ_HANDLED;
704 }
705 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)706 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
707 {
708 	trace_ipi_raise(target, ipi_types[ipinr]);
709 	__ipi_send_mask(ipi_desc[ipinr], target);
710 }
711 
ipi_setup(int cpu)712 static void ipi_setup(int cpu)
713 {
714 	int i;
715 
716 	if (WARN_ON_ONCE(!ipi_irq_base))
717 		return;
718 
719 	for (i = 0; i < nr_ipi; i++)
720 		enable_percpu_irq(ipi_irq_base + i, 0);
721 }
722 
set_smp_ipi_range(int ipi_base,int n)723 void __init set_smp_ipi_range(int ipi_base, int n)
724 {
725 	int i;
726 
727 	WARN_ON(n < MAX_IPI);
728 	nr_ipi = min(n, MAX_IPI);
729 
730 	for (i = 0; i < nr_ipi; i++) {
731 		int err;
732 
733 		err = request_percpu_irq(ipi_base + i, ipi_handler,
734 					 "IPI", &irq_stat);
735 		WARN_ON(err);
736 
737 		ipi_desc[i] = irq_to_desc(ipi_base + i);
738 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
739 	}
740 
741 	ipi_irq_base = ipi_base;
742 
743 	/* Setup the boot CPU immediately */
744 	ipi_setup(smp_processor_id());
745 }
746 
arch_smp_send_reschedule(int cpu)747 void arch_smp_send_reschedule(int cpu)
748 {
749 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
750 }
751 
smp_send_stop(void)752 void smp_send_stop(void)
753 {
754 	unsigned long timeout;
755 	struct cpumask mask;
756 
757 	cpumask_copy(&mask, cpu_online_mask);
758 	cpumask_clear_cpu(smp_processor_id(), &mask);
759 	if (!cpumask_empty(&mask))
760 		smp_cross_call(&mask, IPI_CPU_STOP);
761 
762 	/* Wait up to one second for other CPUs to stop */
763 	timeout = USEC_PER_SEC;
764 	while (num_online_cpus() > 1 && timeout--)
765 		udelay(1);
766 
767 	if (num_online_cpus() > 1)
768 		pr_warn("SMP: failed to stop secondary CPUs\n");
769 }
770 
771 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
772  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
773  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
774  * kdump fails. So split out the panic_smp_self_stop() and add
775  * set_cpu_online(smp_processor_id(), false).
776  */
panic_smp_self_stop(void)777 void __noreturn panic_smp_self_stop(void)
778 {
779 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
780 	         smp_processor_id());
781 	set_cpu_online(smp_processor_id(), false);
782 	while (1)
783 		cpu_relax();
784 }
785 
786 #ifdef CONFIG_CPU_FREQ
787 
788 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
789 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
790 static unsigned long global_l_p_j_ref;
791 static unsigned long global_l_p_j_ref_freq;
792 
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)793 static int cpufreq_callback(struct notifier_block *nb,
794 					unsigned long val, void *data)
795 {
796 	struct cpufreq_freqs *freq = data;
797 	struct cpumask *cpus = freq->policy->cpus;
798 	int cpu, first = cpumask_first(cpus);
799 	unsigned int lpj;
800 
801 	if (freq->flags & CPUFREQ_CONST_LOOPS)
802 		return NOTIFY_OK;
803 
804 	if (!per_cpu(l_p_j_ref, first)) {
805 		for_each_cpu(cpu, cpus) {
806 			per_cpu(l_p_j_ref, cpu) =
807 				per_cpu(cpu_data, cpu).loops_per_jiffy;
808 			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
809 		}
810 
811 		if (!global_l_p_j_ref) {
812 			global_l_p_j_ref = loops_per_jiffy;
813 			global_l_p_j_ref_freq = freq->old;
814 		}
815 	}
816 
817 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
818 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
819 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
820 						global_l_p_j_ref_freq,
821 						freq->new);
822 
823 		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
824 				    per_cpu(l_p_j_ref_freq, first), freq->new);
825 		for_each_cpu(cpu, cpus)
826 			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
827 	}
828 	return NOTIFY_OK;
829 }
830 
831 static struct notifier_block cpufreq_notifier = {
832 	.notifier_call  = cpufreq_callback,
833 };
834 
register_cpufreq_notifier(void)835 static int __init register_cpufreq_notifier(void)
836 {
837 	return cpufreq_register_notifier(&cpufreq_notifier,
838 						CPUFREQ_TRANSITION_NOTIFIER);
839 }
840 core_initcall(register_cpufreq_notifier);
841 
842 #endif
843 
raise_nmi(cpumask_t * mask)844 static void raise_nmi(cpumask_t *mask)
845 {
846 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
847 }
848 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,int exclude_cpu)849 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
850 {
851 	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, raise_nmi);
852 }
853