1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright 1995, Russell King.
4 * Various bits and pieces copyrights include:
5 * Linus Torvalds (test_bit).
6 * Big endian support: Copyright 2001, Nicolas Pitre
7 * reworked by rmk.
8 *
9 * bit 0 is the LSB of an "unsigned long" quantity.
10 *
11 * Please note that the code in this file should never be included
12 * from user space. Many of these are not implemented in assembler
13 * since they would be too costly. Also, they require privileged
14 * instructions (which are not available from user mode) to ensure
15 * that they are atomic.
16 */
17
18 #ifndef __ASM_ARM_BITOPS_H
19 #define __ASM_ARM_BITOPS_H
20
21 #ifdef __KERNEL__
22
23 #ifndef _LINUX_BITOPS_H
24 #error only <linux/bitops.h> can be included directly
25 #endif
26
27 #include <linux/compiler.h>
28 #include <linux/irqflags.h>
29 #include <asm/barrier.h>
30
31 /*
32 * These functions are the basis of our bit ops.
33 *
34 * First, the atomic bitops. These use native endian.
35 */
____atomic_set_bit(unsigned int bit,volatile unsigned long * p)36 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
37 {
38 unsigned long flags;
39 unsigned long mask = BIT_MASK(bit);
40
41 p += BIT_WORD(bit);
42
43 raw_local_irq_save(flags);
44 *p |= mask;
45 raw_local_irq_restore(flags);
46 }
47
____atomic_clear_bit(unsigned int bit,volatile unsigned long * p)48 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
49 {
50 unsigned long flags;
51 unsigned long mask = BIT_MASK(bit);
52
53 p += BIT_WORD(bit);
54
55 raw_local_irq_save(flags);
56 *p &= ~mask;
57 raw_local_irq_restore(flags);
58 }
59
____atomic_change_bit(unsigned int bit,volatile unsigned long * p)60 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
61 {
62 unsigned long flags;
63 unsigned long mask = BIT_MASK(bit);
64
65 p += BIT_WORD(bit);
66
67 raw_local_irq_save(flags);
68 *p ^= mask;
69 raw_local_irq_restore(flags);
70 }
71
72 static inline int
____atomic_test_and_set_bit(unsigned int bit,volatile unsigned long * p)73 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
74 {
75 unsigned long flags;
76 unsigned int res;
77 unsigned long mask = BIT_MASK(bit);
78
79 p += BIT_WORD(bit);
80
81 raw_local_irq_save(flags);
82 res = *p;
83 *p = res | mask;
84 raw_local_irq_restore(flags);
85
86 return (res & mask) != 0;
87 }
88
89 static inline int
____atomic_test_and_clear_bit(unsigned int bit,volatile unsigned long * p)90 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
91 {
92 unsigned long flags;
93 unsigned int res;
94 unsigned long mask = BIT_MASK(bit);
95
96 p += BIT_WORD(bit);
97
98 raw_local_irq_save(flags);
99 res = *p;
100 *p = res & ~mask;
101 raw_local_irq_restore(flags);
102
103 return (res & mask) != 0;
104 }
105
106 static inline int
____atomic_test_and_change_bit(unsigned int bit,volatile unsigned long * p)107 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
108 {
109 unsigned long flags;
110 unsigned int res;
111 unsigned long mask = BIT_MASK(bit);
112
113 p += BIT_WORD(bit);
114
115 raw_local_irq_save(flags);
116 res = *p;
117 *p = res ^ mask;
118 raw_local_irq_restore(flags);
119
120 return (res & mask) != 0;
121 }
122
123 #include <asm-generic/bitops/non-atomic.h>
124
125 /*
126 * A note about Endian-ness.
127 * -------------------------
128 *
129 * When the ARM is put into big endian mode via CR15, the processor
130 * merely swaps the order of bytes within words, thus:
131 *
132 * ------------ physical data bus bits -----------
133 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
134 * little byte 3 byte 2 byte 1 byte 0
135 * big byte 0 byte 1 byte 2 byte 3
136 *
137 * This means that reading a 32-bit word at address 0 returns the same
138 * value irrespective of the endian mode bit.
139 *
140 * Peripheral devices should be connected with the data bus reversed in
141 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
142 * available from http://www.arm.com/.
143 *
144 * The following assumes that the data bus connectivity for big endian
145 * mode has been followed.
146 *
147 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
148 */
149
150 /*
151 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
152 */
153 extern void _set_bit(int nr, volatile unsigned long * p);
154 extern void _clear_bit(int nr, volatile unsigned long * p);
155 extern void _change_bit(int nr, volatile unsigned long * p);
156 extern int _test_and_set_bit(int nr, volatile unsigned long * p);
157 extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
158 extern int _test_and_change_bit(int nr, volatile unsigned long * p);
159
160 /*
161 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
162 */
163 unsigned long _find_first_zero_bit_le(const unsigned long *p, unsigned long size);
164 unsigned long _find_next_zero_bit_le(const unsigned long *p,
165 unsigned long size, unsigned long offset);
166 unsigned long _find_first_bit_le(const unsigned long *p, unsigned long size);
167 unsigned long _find_next_bit_le(const unsigned long *p, unsigned long size, unsigned long offset);
168
169 /*
170 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
171 */
172 unsigned long _find_first_zero_bit_be(const unsigned long *p, unsigned long size);
173 unsigned long _find_next_zero_bit_be(const unsigned long *p,
174 unsigned long size, unsigned long offset);
175 unsigned long _find_first_bit_be(const unsigned long *p, unsigned long size);
176 unsigned long _find_next_bit_be(const unsigned long *p, unsigned long size, unsigned long offset);
177
178 #ifndef CONFIG_SMP
179 /*
180 * The __* form of bitops are non-atomic and may be reordered.
181 */
182 #define ATOMIC_BITOP(name,nr,p) \
183 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
184 #else
185 #define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
186 #endif
187
188 /*
189 * Native endian atomic definitions.
190 */
191 #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
192 #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
193 #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
194 #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
195 #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
196 #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
197
198 #ifndef __ARMEB__
199 /*
200 * These are the little endian, atomic definitions.
201 */
202 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
203 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
204 #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
205 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
206
207 #else
208 /*
209 * These are the big endian, atomic definitions.
210 */
211 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
212 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
213 #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
214 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
215
216 #endif
217
218 #if __LINUX_ARM_ARCH__ < 5
219
220 #include <asm-generic/bitops/__fls.h>
221 #include <asm-generic/bitops/__ffs.h>
222 #include <asm-generic/bitops/fls.h>
223 #include <asm-generic/bitops/ffs.h>
224
225 #else
226
227 /*
228 * On ARMv5 and above, the gcc built-ins may rely on the clz instruction
229 * and produce optimal inlined code in all cases. On ARMv7 it is even
230 * better by also using the rbit instruction.
231 */
232 #include <asm-generic/bitops/builtin-__fls.h>
233 #include <asm-generic/bitops/builtin-__ffs.h>
234 #include <asm-generic/bitops/builtin-fls.h>
235 #include <asm-generic/bitops/builtin-ffs.h>
236
237 #endif
238
239 #include <asm-generic/bitops/ffz.h>
240
241 #include <asm-generic/bitops/fls64.h>
242
243 #include <asm-generic/bitops/sched.h>
244 #include <asm-generic/bitops/hweight.h>
245 #include <asm-generic/bitops/lock.h>
246
247 #ifdef __ARMEB__
248
find_first_zero_bit_le(const void * p,unsigned size)249 static inline int find_first_zero_bit_le(const void *p, unsigned size)
250 {
251 return _find_first_zero_bit_le(p, size);
252 }
253 #define find_first_zero_bit_le find_first_zero_bit_le
254
find_next_zero_bit_le(const void * p,int size,int offset)255 static inline int find_next_zero_bit_le(const void *p, int size, int offset)
256 {
257 return _find_next_zero_bit_le(p, size, offset);
258 }
259 #define find_next_zero_bit_le find_next_zero_bit_le
260
find_next_bit_le(const void * p,int size,int offset)261 static inline int find_next_bit_le(const void *p, int size, int offset)
262 {
263 return _find_next_bit_le(p, size, offset);
264 }
265 #define find_next_bit_le find_next_bit_le
266
267 #endif
268
269 #include <asm-generic/bitops/le.h>
270
271 /*
272 * Ext2 is defined to use little-endian byte ordering.
273 */
274 #include <asm-generic/bitops/ext2-atomic-setbit.h>
275
276 #endif /* __KERNEL__ */
277
278 #endif /* _ARM_BITOPS_H */
279