1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42
43 #include <linux/hash.h>
44
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62
63 /*
64 * Make a group from 'leader' to 'last', requiring that the events were not
65 * already grouped to a different leader.
66 */
evlist__regroup(struct evlist * evlist,struct evsel * leader,struct evsel * last)67 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
68 {
69 struct evsel *evsel;
70 bool grp;
71
72 if (!evsel__is_group_leader(leader))
73 return -EINVAL;
74
75 grp = false;
76 evlist__for_each_entry(evlist, evsel) {
77 if (grp) {
78 if (!(evsel__leader(evsel) == leader ||
79 (evsel__leader(evsel) == evsel &&
80 evsel->core.nr_members <= 1)))
81 return -EINVAL;
82 } else if (evsel == leader) {
83 grp = true;
84 }
85 if (evsel == last)
86 break;
87 }
88
89 grp = false;
90 evlist__for_each_entry(evlist, evsel) {
91 if (grp) {
92 if (!evsel__has_leader(evsel, leader)) {
93 evsel__set_leader(evsel, leader);
94 if (leader->core.nr_members < 1)
95 leader->core.nr_members = 1;
96 leader->core.nr_members += 1;
97 }
98 } else if (evsel == leader) {
99 grp = true;
100 }
101 if (evsel == last)
102 break;
103 }
104
105 return 0;
106 }
107
auxtrace__dont_decode(struct perf_session * session)108 static bool auxtrace__dont_decode(struct perf_session *session)
109 {
110 return !session->itrace_synth_opts ||
111 session->itrace_synth_opts->dont_decode;
112 }
113
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)114 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
115 struct auxtrace_mmap_params *mp,
116 void *userpg, int fd)
117 {
118 struct perf_event_mmap_page *pc = userpg;
119
120 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
121
122 mm->userpg = userpg;
123 mm->mask = mp->mask;
124 mm->len = mp->len;
125 mm->prev = 0;
126 mm->idx = mp->idx;
127 mm->tid = mp->tid;
128 mm->cpu = mp->cpu.cpu;
129
130 if (!mp->len || !mp->mmap_needed) {
131 mm->base = NULL;
132 return 0;
133 }
134
135 pc->aux_offset = mp->offset;
136 pc->aux_size = mp->len;
137
138 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
139 if (mm->base == MAP_FAILED) {
140 pr_debug2("failed to mmap AUX area\n");
141 mm->base = NULL;
142 return -1;
143 }
144
145 return 0;
146 }
147
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)148 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
149 {
150 if (mm->base) {
151 munmap(mm->base, mm->len);
152 mm->base = NULL;
153 }
154 }
155
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)156 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
157 off_t auxtrace_offset,
158 unsigned int auxtrace_pages,
159 bool auxtrace_overwrite)
160 {
161 if (auxtrace_pages) {
162 mp->offset = auxtrace_offset;
163 mp->len = auxtrace_pages * (size_t)page_size;
164 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
165 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
166 pr_debug2("AUX area mmap length %zu\n", mp->len);
167 } else {
168 mp->len = 0;
169 }
170 }
171
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,struct evsel * evsel,int idx)172 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
173 struct evlist *evlist,
174 struct evsel *evsel, int idx)
175 {
176 bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
177
178 mp->mmap_needed = evsel->needs_auxtrace_mmap;
179
180 if (!mp->mmap_needed)
181 return;
182
183 mp->idx = idx;
184
185 if (per_cpu) {
186 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
187 if (evlist->core.threads)
188 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
189 else
190 mp->tid = -1;
191 } else {
192 mp->cpu.cpu = -1;
193 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
194 }
195 }
196
197 #define AUXTRACE_INIT_NR_QUEUES 32
198
auxtrace_alloc_queue_array(unsigned int nr_queues)199 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
200 {
201 struct auxtrace_queue *queue_array;
202 unsigned int max_nr_queues, i;
203
204 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
205 if (nr_queues > max_nr_queues)
206 return NULL;
207
208 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
209 if (!queue_array)
210 return NULL;
211
212 for (i = 0; i < nr_queues; i++) {
213 INIT_LIST_HEAD(&queue_array[i].head);
214 queue_array[i].priv = NULL;
215 }
216
217 return queue_array;
218 }
219
auxtrace_queues__init(struct auxtrace_queues * queues)220 int auxtrace_queues__init(struct auxtrace_queues *queues)
221 {
222 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
223 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
224 if (!queues->queue_array)
225 return -ENOMEM;
226 return 0;
227 }
228
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)229 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
230 unsigned int new_nr_queues)
231 {
232 unsigned int nr_queues = queues->nr_queues;
233 struct auxtrace_queue *queue_array;
234 unsigned int i;
235
236 if (!nr_queues)
237 nr_queues = AUXTRACE_INIT_NR_QUEUES;
238
239 while (nr_queues && nr_queues < new_nr_queues)
240 nr_queues <<= 1;
241
242 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
243 return -EINVAL;
244
245 queue_array = auxtrace_alloc_queue_array(nr_queues);
246 if (!queue_array)
247 return -ENOMEM;
248
249 for (i = 0; i < queues->nr_queues; i++) {
250 list_splice_tail(&queues->queue_array[i].head,
251 &queue_array[i].head);
252 queue_array[i].tid = queues->queue_array[i].tid;
253 queue_array[i].cpu = queues->queue_array[i].cpu;
254 queue_array[i].set = queues->queue_array[i].set;
255 queue_array[i].priv = queues->queue_array[i].priv;
256 }
257
258 queues->nr_queues = nr_queues;
259 queues->queue_array = queue_array;
260
261 return 0;
262 }
263
auxtrace_copy_data(u64 size,struct perf_session * session)264 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
265 {
266 int fd = perf_data__fd(session->data);
267 void *p;
268 ssize_t ret;
269
270 if (size > SSIZE_MAX)
271 return NULL;
272
273 p = malloc(size);
274 if (!p)
275 return NULL;
276
277 ret = readn(fd, p, size);
278 if (ret != (ssize_t)size) {
279 free(p);
280 return NULL;
281 }
282
283 return p;
284 }
285
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)286 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
287 unsigned int idx,
288 struct auxtrace_buffer *buffer)
289 {
290 struct auxtrace_queue *queue;
291 int err;
292
293 if (idx >= queues->nr_queues) {
294 err = auxtrace_queues__grow(queues, idx + 1);
295 if (err)
296 return err;
297 }
298
299 queue = &queues->queue_array[idx];
300
301 if (!queue->set) {
302 queue->set = true;
303 queue->tid = buffer->tid;
304 queue->cpu = buffer->cpu.cpu;
305 }
306
307 buffer->buffer_nr = queues->next_buffer_nr++;
308
309 list_add_tail(&buffer->list, &queue->head);
310
311 queues->new_data = true;
312 queues->populated = true;
313
314 return 0;
315 }
316
317 /* Limit buffers to 32MiB on 32-bit */
318 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
319
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)320 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
321 unsigned int idx,
322 struct auxtrace_buffer *buffer)
323 {
324 u64 sz = buffer->size;
325 bool consecutive = false;
326 struct auxtrace_buffer *b;
327 int err;
328
329 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
330 b = memdup(buffer, sizeof(struct auxtrace_buffer));
331 if (!b)
332 return -ENOMEM;
333 b->size = BUFFER_LIMIT_FOR_32_BIT;
334 b->consecutive = consecutive;
335 err = auxtrace_queues__queue_buffer(queues, idx, b);
336 if (err) {
337 auxtrace_buffer__free(b);
338 return err;
339 }
340 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
341 sz -= BUFFER_LIMIT_FOR_32_BIT;
342 consecutive = true;
343 }
344
345 buffer->size = sz;
346 buffer->consecutive = consecutive;
347
348 return 0;
349 }
350
filter_cpu(struct perf_session * session,struct perf_cpu cpu)351 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
352 {
353 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
354
355 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
356 }
357
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)358 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
359 struct perf_session *session,
360 unsigned int idx,
361 struct auxtrace_buffer *buffer,
362 struct auxtrace_buffer **buffer_ptr)
363 {
364 int err = -ENOMEM;
365
366 if (filter_cpu(session, buffer->cpu))
367 return 0;
368
369 buffer = memdup(buffer, sizeof(*buffer));
370 if (!buffer)
371 return -ENOMEM;
372
373 if (session->one_mmap) {
374 buffer->data = buffer->data_offset - session->one_mmap_offset +
375 session->one_mmap_addr;
376 } else if (perf_data__is_pipe(session->data)) {
377 buffer->data = auxtrace_copy_data(buffer->size, session);
378 if (!buffer->data)
379 goto out_free;
380 buffer->data_needs_freeing = true;
381 } else if (BITS_PER_LONG == 32 &&
382 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
383 err = auxtrace_queues__split_buffer(queues, idx, buffer);
384 if (err)
385 goto out_free;
386 }
387
388 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
389 if (err)
390 goto out_free;
391
392 /* FIXME: Doesn't work for split buffer */
393 if (buffer_ptr)
394 *buffer_ptr = buffer;
395
396 return 0;
397
398 out_free:
399 auxtrace_buffer__free(buffer);
400 return err;
401 }
402
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)403 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
404 struct perf_session *session,
405 union perf_event *event, off_t data_offset,
406 struct auxtrace_buffer **buffer_ptr)
407 {
408 struct auxtrace_buffer buffer = {
409 .pid = -1,
410 .tid = event->auxtrace.tid,
411 .cpu = { event->auxtrace.cpu },
412 .data_offset = data_offset,
413 .offset = event->auxtrace.offset,
414 .reference = event->auxtrace.reference,
415 .size = event->auxtrace.size,
416 };
417 unsigned int idx = event->auxtrace.idx;
418
419 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
420 buffer_ptr);
421 }
422
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)423 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
424 struct perf_session *session,
425 off_t file_offset, size_t sz)
426 {
427 union perf_event *event;
428 int err;
429 char buf[PERF_SAMPLE_MAX_SIZE];
430
431 err = perf_session__peek_event(session, file_offset, buf,
432 PERF_SAMPLE_MAX_SIZE, &event, NULL);
433 if (err)
434 return err;
435
436 if (event->header.type == PERF_RECORD_AUXTRACE) {
437 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
438 event->header.size != sz) {
439 err = -EINVAL;
440 goto out;
441 }
442 file_offset += event->header.size;
443 err = auxtrace_queues__add_event(queues, session, event,
444 file_offset, NULL);
445 }
446 out:
447 return err;
448 }
449
auxtrace_queues__free(struct auxtrace_queues * queues)450 void auxtrace_queues__free(struct auxtrace_queues *queues)
451 {
452 unsigned int i;
453
454 for (i = 0; i < queues->nr_queues; i++) {
455 while (!list_empty(&queues->queue_array[i].head)) {
456 struct auxtrace_buffer *buffer;
457
458 buffer = list_entry(queues->queue_array[i].head.next,
459 struct auxtrace_buffer, list);
460 list_del_init(&buffer->list);
461 auxtrace_buffer__free(buffer);
462 }
463 }
464
465 zfree(&queues->queue_array);
466 queues->nr_queues = 0;
467 }
468
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)469 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
470 unsigned int pos, unsigned int queue_nr,
471 u64 ordinal)
472 {
473 unsigned int parent;
474
475 while (pos) {
476 parent = (pos - 1) >> 1;
477 if (heap_array[parent].ordinal <= ordinal)
478 break;
479 heap_array[pos] = heap_array[parent];
480 pos = parent;
481 }
482 heap_array[pos].queue_nr = queue_nr;
483 heap_array[pos].ordinal = ordinal;
484 }
485
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)486 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
487 u64 ordinal)
488 {
489 struct auxtrace_heap_item *heap_array;
490
491 if (queue_nr >= heap->heap_sz) {
492 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
493
494 while (heap_sz <= queue_nr)
495 heap_sz <<= 1;
496 heap_array = realloc(heap->heap_array,
497 heap_sz * sizeof(struct auxtrace_heap_item));
498 if (!heap_array)
499 return -ENOMEM;
500 heap->heap_array = heap_array;
501 heap->heap_sz = heap_sz;
502 }
503
504 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
505
506 return 0;
507 }
508
auxtrace_heap__free(struct auxtrace_heap * heap)509 void auxtrace_heap__free(struct auxtrace_heap *heap)
510 {
511 zfree(&heap->heap_array);
512 heap->heap_cnt = 0;
513 heap->heap_sz = 0;
514 }
515
auxtrace_heap__pop(struct auxtrace_heap * heap)516 void auxtrace_heap__pop(struct auxtrace_heap *heap)
517 {
518 unsigned int pos, last, heap_cnt = heap->heap_cnt;
519 struct auxtrace_heap_item *heap_array;
520
521 if (!heap_cnt)
522 return;
523
524 heap->heap_cnt -= 1;
525
526 heap_array = heap->heap_array;
527
528 pos = 0;
529 while (1) {
530 unsigned int left, right;
531
532 left = (pos << 1) + 1;
533 if (left >= heap_cnt)
534 break;
535 right = left + 1;
536 if (right >= heap_cnt) {
537 heap_array[pos] = heap_array[left];
538 return;
539 }
540 if (heap_array[left].ordinal < heap_array[right].ordinal) {
541 heap_array[pos] = heap_array[left];
542 pos = left;
543 } else {
544 heap_array[pos] = heap_array[right];
545 pos = right;
546 }
547 }
548
549 last = heap_cnt - 1;
550 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
551 heap_array[last].ordinal);
552 }
553
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)554 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
555 struct evlist *evlist)
556 {
557 if (itr)
558 return itr->info_priv_size(itr, evlist);
559 return 0;
560 }
561
auxtrace_not_supported(void)562 static int auxtrace_not_supported(void)
563 {
564 pr_err("AUX area tracing is not supported on this architecture\n");
565 return -EINVAL;
566 }
567
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)568 int auxtrace_record__info_fill(struct auxtrace_record *itr,
569 struct perf_session *session,
570 struct perf_record_auxtrace_info *auxtrace_info,
571 size_t priv_size)
572 {
573 if (itr)
574 return itr->info_fill(itr, session, auxtrace_info, priv_size);
575 return auxtrace_not_supported();
576 }
577
auxtrace_record__free(struct auxtrace_record * itr)578 void auxtrace_record__free(struct auxtrace_record *itr)
579 {
580 if (itr)
581 itr->free(itr);
582 }
583
auxtrace_record__snapshot_start(struct auxtrace_record * itr)584 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
585 {
586 if (itr && itr->snapshot_start)
587 return itr->snapshot_start(itr);
588 return 0;
589 }
590
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)591 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
592 {
593 if (!on_exit && itr && itr->snapshot_finish)
594 return itr->snapshot_finish(itr);
595 return 0;
596 }
597
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)598 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
599 struct auxtrace_mmap *mm,
600 unsigned char *data, u64 *head, u64 *old)
601 {
602 if (itr && itr->find_snapshot)
603 return itr->find_snapshot(itr, idx, mm, data, head, old);
604 return 0;
605 }
606
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)607 int auxtrace_record__options(struct auxtrace_record *itr,
608 struct evlist *evlist,
609 struct record_opts *opts)
610 {
611 if (itr) {
612 itr->evlist = evlist;
613 return itr->recording_options(itr, evlist, opts);
614 }
615 return 0;
616 }
617
auxtrace_record__reference(struct auxtrace_record * itr)618 u64 auxtrace_record__reference(struct auxtrace_record *itr)
619 {
620 if (itr)
621 return itr->reference(itr);
622 return 0;
623 }
624
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)625 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
626 struct record_opts *opts, const char *str)
627 {
628 if (!str)
629 return 0;
630
631 /* PMU-agnostic options */
632 switch (*str) {
633 case 'e':
634 opts->auxtrace_snapshot_on_exit = true;
635 str++;
636 break;
637 default:
638 break;
639 }
640
641 if (itr && itr->parse_snapshot_options)
642 return itr->parse_snapshot_options(itr, opts, str);
643
644 pr_err("No AUX area tracing to snapshot\n");
645 return -EINVAL;
646 }
647
evlist__enable_event_idx(struct evlist * evlist,struct evsel * evsel,int idx)648 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
649 {
650 bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
651
652 if (per_cpu_mmaps) {
653 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
654 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
655
656 if (cpu_map_idx == -1)
657 return -EINVAL;
658 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
659 }
660
661 return perf_evsel__enable_thread(&evsel->core, idx);
662 }
663
auxtrace_record__read_finish(struct auxtrace_record * itr,int idx)664 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
665 {
666 struct evsel *evsel;
667
668 if (!itr->evlist || !itr->pmu)
669 return -EINVAL;
670
671 evlist__for_each_entry(itr->evlist, evsel) {
672 if (evsel->core.attr.type == itr->pmu->type) {
673 if (evsel->disabled)
674 return 0;
675 return evlist__enable_event_idx(itr->evlist, evsel, idx);
676 }
677 }
678 return -EINVAL;
679 }
680
681 /*
682 * Event record size is 16-bit which results in a maximum size of about 64KiB.
683 * Allow about 4KiB for the rest of the sample record, to give a maximum
684 * AUX area sample size of 60KiB.
685 */
686 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
687
688 /* Arbitrary default size if no other default provided */
689 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
690
auxtrace_validate_aux_sample_size(struct evlist * evlist,struct record_opts * opts)691 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
692 struct record_opts *opts)
693 {
694 struct evsel *evsel;
695 bool has_aux_leader = false;
696 u32 sz;
697
698 evlist__for_each_entry(evlist, evsel) {
699 sz = evsel->core.attr.aux_sample_size;
700 if (evsel__is_group_leader(evsel)) {
701 has_aux_leader = evsel__is_aux_event(evsel);
702 if (sz) {
703 if (has_aux_leader)
704 pr_err("Cannot add AUX area sampling to an AUX area event\n");
705 else
706 pr_err("Cannot add AUX area sampling to a group leader\n");
707 return -EINVAL;
708 }
709 }
710 if (sz > MAX_AUX_SAMPLE_SIZE) {
711 pr_err("AUX area sample size %u too big, max. %d\n",
712 sz, MAX_AUX_SAMPLE_SIZE);
713 return -EINVAL;
714 }
715 if (sz) {
716 if (!has_aux_leader) {
717 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
718 return -EINVAL;
719 }
720 evsel__set_sample_bit(evsel, AUX);
721 opts->auxtrace_sample_mode = true;
722 } else {
723 evsel__reset_sample_bit(evsel, AUX);
724 }
725 }
726
727 if (!opts->auxtrace_sample_mode) {
728 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
729 return -EINVAL;
730 }
731
732 if (!perf_can_aux_sample()) {
733 pr_err("AUX area sampling is not supported by kernel\n");
734 return -EINVAL;
735 }
736
737 return 0;
738 }
739
auxtrace_parse_sample_options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts,const char * str)740 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
741 struct evlist *evlist,
742 struct record_opts *opts, const char *str)
743 {
744 struct evsel_config_term *term;
745 struct evsel *aux_evsel;
746 bool has_aux_sample_size = false;
747 bool has_aux_leader = false;
748 struct evsel *evsel;
749 char *endptr;
750 unsigned long sz;
751
752 if (!str)
753 goto no_opt;
754
755 if (!itr) {
756 pr_err("No AUX area event to sample\n");
757 return -EINVAL;
758 }
759
760 sz = strtoul(str, &endptr, 0);
761 if (*endptr || sz > UINT_MAX) {
762 pr_err("Bad AUX area sampling option: '%s'\n", str);
763 return -EINVAL;
764 }
765
766 if (!sz)
767 sz = itr->default_aux_sample_size;
768
769 if (!sz)
770 sz = DEFAULT_AUX_SAMPLE_SIZE;
771
772 /* Set aux_sample_size based on --aux-sample option */
773 evlist__for_each_entry(evlist, evsel) {
774 if (evsel__is_group_leader(evsel)) {
775 has_aux_leader = evsel__is_aux_event(evsel);
776 } else if (has_aux_leader) {
777 evsel->core.attr.aux_sample_size = sz;
778 }
779 }
780 no_opt:
781 aux_evsel = NULL;
782 /* Override with aux_sample_size from config term */
783 evlist__for_each_entry(evlist, evsel) {
784 if (evsel__is_aux_event(evsel))
785 aux_evsel = evsel;
786 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
787 if (term) {
788 has_aux_sample_size = true;
789 evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
790 /* If possible, group with the AUX event */
791 if (aux_evsel && evsel->core.attr.aux_sample_size)
792 evlist__regroup(evlist, aux_evsel, evsel);
793 }
794 }
795
796 if (!str && !has_aux_sample_size)
797 return 0;
798
799 if (!itr) {
800 pr_err("No AUX area event to sample\n");
801 return -EINVAL;
802 }
803
804 return auxtrace_validate_aux_sample_size(evlist, opts);
805 }
806
auxtrace_regroup_aux_output(struct evlist * evlist)807 void auxtrace_regroup_aux_output(struct evlist *evlist)
808 {
809 struct evsel *evsel, *aux_evsel = NULL;
810 struct evsel_config_term *term;
811
812 evlist__for_each_entry(evlist, evsel) {
813 if (evsel__is_aux_event(evsel))
814 aux_evsel = evsel;
815 term = evsel__get_config_term(evsel, AUX_OUTPUT);
816 /* If possible, group with the AUX event */
817 if (term && aux_evsel)
818 evlist__regroup(evlist, aux_evsel, evsel);
819 }
820 }
821
822 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)823 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
824 {
825 *err = 0;
826 return NULL;
827 }
828
auxtrace_index__alloc(struct list_head * head)829 static int auxtrace_index__alloc(struct list_head *head)
830 {
831 struct auxtrace_index *auxtrace_index;
832
833 auxtrace_index = malloc(sizeof(struct auxtrace_index));
834 if (!auxtrace_index)
835 return -ENOMEM;
836
837 auxtrace_index->nr = 0;
838 INIT_LIST_HEAD(&auxtrace_index->list);
839
840 list_add_tail(&auxtrace_index->list, head);
841
842 return 0;
843 }
844
auxtrace_index__free(struct list_head * head)845 void auxtrace_index__free(struct list_head *head)
846 {
847 struct auxtrace_index *auxtrace_index, *n;
848
849 list_for_each_entry_safe(auxtrace_index, n, head, list) {
850 list_del_init(&auxtrace_index->list);
851 free(auxtrace_index);
852 }
853 }
854
auxtrace_index__last(struct list_head * head)855 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
856 {
857 struct auxtrace_index *auxtrace_index;
858 int err;
859
860 if (list_empty(head)) {
861 err = auxtrace_index__alloc(head);
862 if (err)
863 return NULL;
864 }
865
866 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
867
868 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
869 err = auxtrace_index__alloc(head);
870 if (err)
871 return NULL;
872 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
873 list);
874 }
875
876 return auxtrace_index;
877 }
878
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)879 int auxtrace_index__auxtrace_event(struct list_head *head,
880 union perf_event *event, off_t file_offset)
881 {
882 struct auxtrace_index *auxtrace_index;
883 size_t nr;
884
885 auxtrace_index = auxtrace_index__last(head);
886 if (!auxtrace_index)
887 return -ENOMEM;
888
889 nr = auxtrace_index->nr;
890 auxtrace_index->entries[nr].file_offset = file_offset;
891 auxtrace_index->entries[nr].sz = event->header.size;
892 auxtrace_index->nr += 1;
893
894 return 0;
895 }
896
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)897 static int auxtrace_index__do_write(int fd,
898 struct auxtrace_index *auxtrace_index)
899 {
900 struct auxtrace_index_entry ent;
901 size_t i;
902
903 for (i = 0; i < auxtrace_index->nr; i++) {
904 ent.file_offset = auxtrace_index->entries[i].file_offset;
905 ent.sz = auxtrace_index->entries[i].sz;
906 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
907 return -errno;
908 }
909 return 0;
910 }
911
auxtrace_index__write(int fd,struct list_head * head)912 int auxtrace_index__write(int fd, struct list_head *head)
913 {
914 struct auxtrace_index *auxtrace_index;
915 u64 total = 0;
916 int err;
917
918 list_for_each_entry(auxtrace_index, head, list)
919 total += auxtrace_index->nr;
920
921 if (writen(fd, &total, sizeof(total)) != sizeof(total))
922 return -errno;
923
924 list_for_each_entry(auxtrace_index, head, list) {
925 err = auxtrace_index__do_write(fd, auxtrace_index);
926 if (err)
927 return err;
928 }
929
930 return 0;
931 }
932
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)933 static int auxtrace_index__process_entry(int fd, struct list_head *head,
934 bool needs_swap)
935 {
936 struct auxtrace_index *auxtrace_index;
937 struct auxtrace_index_entry ent;
938 size_t nr;
939
940 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
941 return -1;
942
943 auxtrace_index = auxtrace_index__last(head);
944 if (!auxtrace_index)
945 return -1;
946
947 nr = auxtrace_index->nr;
948 if (needs_swap) {
949 auxtrace_index->entries[nr].file_offset =
950 bswap_64(ent.file_offset);
951 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
952 } else {
953 auxtrace_index->entries[nr].file_offset = ent.file_offset;
954 auxtrace_index->entries[nr].sz = ent.sz;
955 }
956
957 auxtrace_index->nr = nr + 1;
958
959 return 0;
960 }
961
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)962 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
963 bool needs_swap)
964 {
965 struct list_head *head = &session->auxtrace_index;
966 u64 nr;
967
968 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
969 return -1;
970
971 if (needs_swap)
972 nr = bswap_64(nr);
973
974 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
975 return -1;
976
977 while (nr--) {
978 int err;
979
980 err = auxtrace_index__process_entry(fd, head, needs_swap);
981 if (err)
982 return -1;
983 }
984
985 return 0;
986 }
987
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)988 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
989 struct perf_session *session,
990 struct auxtrace_index_entry *ent)
991 {
992 return auxtrace_queues__add_indexed_event(queues, session,
993 ent->file_offset, ent->sz);
994 }
995
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)996 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
997 struct perf_session *session)
998 {
999 struct auxtrace_index *auxtrace_index;
1000 struct auxtrace_index_entry *ent;
1001 size_t i;
1002 int err;
1003
1004 if (auxtrace__dont_decode(session))
1005 return 0;
1006
1007 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1008 for (i = 0; i < auxtrace_index->nr; i++) {
1009 ent = &auxtrace_index->entries[i];
1010 err = auxtrace_queues__process_index_entry(queues,
1011 session,
1012 ent);
1013 if (err)
1014 return err;
1015 }
1016 }
1017 return 0;
1018 }
1019
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)1020 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1021 struct auxtrace_buffer *buffer)
1022 {
1023 if (buffer) {
1024 if (list_is_last(&buffer->list, &queue->head))
1025 return NULL;
1026 return list_entry(buffer->list.next, struct auxtrace_buffer,
1027 list);
1028 } else {
1029 if (list_empty(&queue->head))
1030 return NULL;
1031 return list_entry(queue->head.next, struct auxtrace_buffer,
1032 list);
1033 }
1034 }
1035
auxtrace_queues__sample_queue(struct auxtrace_queues * queues,struct perf_sample * sample,struct perf_session * session)1036 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1037 struct perf_sample *sample,
1038 struct perf_session *session)
1039 {
1040 struct perf_sample_id *sid;
1041 unsigned int idx;
1042 u64 id;
1043
1044 id = sample->id;
1045 if (!id)
1046 return NULL;
1047
1048 sid = evlist__id2sid(session->evlist, id);
1049 if (!sid)
1050 return NULL;
1051
1052 idx = sid->idx;
1053
1054 if (idx >= queues->nr_queues)
1055 return NULL;
1056
1057 return &queues->queue_array[idx];
1058 }
1059
auxtrace_queues__add_sample(struct auxtrace_queues * queues,struct perf_session * session,struct perf_sample * sample,u64 data_offset,u64 reference)1060 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1061 struct perf_session *session,
1062 struct perf_sample *sample, u64 data_offset,
1063 u64 reference)
1064 {
1065 struct auxtrace_buffer buffer = {
1066 .pid = -1,
1067 .data_offset = data_offset,
1068 .reference = reference,
1069 .size = sample->aux_sample.size,
1070 };
1071 struct perf_sample_id *sid;
1072 u64 id = sample->id;
1073 unsigned int idx;
1074
1075 if (!id)
1076 return -EINVAL;
1077
1078 sid = evlist__id2sid(session->evlist, id);
1079 if (!sid)
1080 return -ENOENT;
1081
1082 idx = sid->idx;
1083 buffer.tid = sid->tid;
1084 buffer.cpu = sid->cpu;
1085
1086 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1087 }
1088
1089 struct queue_data {
1090 bool samples;
1091 bool events;
1092 };
1093
auxtrace_queue_data_cb(struct perf_session * session,union perf_event * event,u64 offset,void * data)1094 static int auxtrace_queue_data_cb(struct perf_session *session,
1095 union perf_event *event, u64 offset,
1096 void *data)
1097 {
1098 struct queue_data *qd = data;
1099 struct perf_sample sample;
1100 int err;
1101
1102 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1103 if (event->header.size < sizeof(struct perf_record_auxtrace))
1104 return -EINVAL;
1105 offset += event->header.size;
1106 return session->auxtrace->queue_data(session, NULL, event,
1107 offset);
1108 }
1109
1110 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1111 return 0;
1112
1113 err = evlist__parse_sample(session->evlist, event, &sample);
1114 if (err)
1115 return err;
1116
1117 if (!sample.aux_sample.size)
1118 return 0;
1119
1120 offset += sample.aux_sample.data - (void *)event;
1121
1122 return session->auxtrace->queue_data(session, &sample, NULL, offset);
1123 }
1124
auxtrace_queue_data(struct perf_session * session,bool samples,bool events)1125 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1126 {
1127 struct queue_data qd = {
1128 .samples = samples,
1129 .events = events,
1130 };
1131
1132 if (auxtrace__dont_decode(session))
1133 return 0;
1134
1135 if (!session->auxtrace || !session->auxtrace->queue_data)
1136 return -EINVAL;
1137
1138 return perf_session__peek_events(session, session->header.data_offset,
1139 session->header.data_size,
1140 auxtrace_queue_data_cb, &qd);
1141 }
1142
auxtrace_buffer__get_data_rw(struct auxtrace_buffer * buffer,int fd,bool rw)1143 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1144 {
1145 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1146 size_t adj = buffer->data_offset & (page_size - 1);
1147 size_t size = buffer->size + adj;
1148 off_t file_offset = buffer->data_offset - adj;
1149 void *addr;
1150
1151 if (buffer->data)
1152 return buffer->data;
1153
1154 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1155 if (addr == MAP_FAILED)
1156 return NULL;
1157
1158 buffer->mmap_addr = addr;
1159 buffer->mmap_size = size;
1160
1161 buffer->data = addr + adj;
1162
1163 return buffer->data;
1164 }
1165
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)1166 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1167 {
1168 if (!buffer->data || !buffer->mmap_addr)
1169 return;
1170 munmap(buffer->mmap_addr, buffer->mmap_size);
1171 buffer->mmap_addr = NULL;
1172 buffer->mmap_size = 0;
1173 buffer->data = NULL;
1174 buffer->use_data = NULL;
1175 }
1176
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)1177 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1178 {
1179 auxtrace_buffer__put_data(buffer);
1180 if (buffer->data_needs_freeing) {
1181 buffer->data_needs_freeing = false;
1182 zfree(&buffer->data);
1183 buffer->use_data = NULL;
1184 buffer->size = 0;
1185 }
1186 }
1187
auxtrace_buffer__free(struct auxtrace_buffer * buffer)1188 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1189 {
1190 auxtrace_buffer__drop_data(buffer);
1191 free(buffer);
1192 }
1193
auxtrace_synth_guest_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp,pid_t machine_pid,int vcpu)1194 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1195 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1196 const char *msg, u64 timestamp,
1197 pid_t machine_pid, int vcpu)
1198 {
1199 size_t size;
1200
1201 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1202
1203 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1204 auxtrace_error->type = type;
1205 auxtrace_error->code = code;
1206 auxtrace_error->cpu = cpu;
1207 auxtrace_error->pid = pid;
1208 auxtrace_error->tid = tid;
1209 auxtrace_error->fmt = 1;
1210 auxtrace_error->ip = ip;
1211 auxtrace_error->time = timestamp;
1212 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1213 if (machine_pid) {
1214 auxtrace_error->fmt = 2;
1215 auxtrace_error->machine_pid = machine_pid;
1216 auxtrace_error->vcpu = vcpu;
1217 size = sizeof(*auxtrace_error);
1218 } else {
1219 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1220 strlen(auxtrace_error->msg) + 1;
1221 }
1222 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1223 }
1224
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)1225 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1226 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1227 const char *msg, u64 timestamp)
1228 {
1229 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1230 ip, msg, timestamp, 0, -1);
1231 }
1232
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)1233 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1234 struct perf_tool *tool,
1235 struct perf_session *session,
1236 perf_event__handler_t process)
1237 {
1238 union perf_event *ev;
1239 size_t priv_size;
1240 int err;
1241
1242 pr_debug2("Synthesizing auxtrace information\n");
1243 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1244 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1245 if (!ev)
1246 return -ENOMEM;
1247
1248 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1249 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1250 priv_size;
1251 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1252 priv_size);
1253 if (err)
1254 goto out_free;
1255
1256 err = process(tool, ev, NULL, NULL);
1257 out_free:
1258 free(ev);
1259 return err;
1260 }
1261
unleader_evsel(struct evlist * evlist,struct evsel * leader)1262 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1263 {
1264 struct evsel *new_leader = NULL;
1265 struct evsel *evsel;
1266
1267 /* Find new leader for the group */
1268 evlist__for_each_entry(evlist, evsel) {
1269 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1270 continue;
1271 if (!new_leader)
1272 new_leader = evsel;
1273 evsel__set_leader(evsel, new_leader);
1274 }
1275
1276 /* Update group information */
1277 if (new_leader) {
1278 zfree(&new_leader->group_name);
1279 new_leader->group_name = leader->group_name;
1280 leader->group_name = NULL;
1281
1282 new_leader->core.nr_members = leader->core.nr_members - 1;
1283 leader->core.nr_members = 1;
1284 }
1285 }
1286
unleader_auxtrace(struct perf_session * session)1287 static void unleader_auxtrace(struct perf_session *session)
1288 {
1289 struct evsel *evsel;
1290
1291 evlist__for_each_entry(session->evlist, evsel) {
1292 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1293 evsel__is_group_leader(evsel)) {
1294 unleader_evsel(session->evlist, evsel);
1295 }
1296 }
1297 }
1298
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)1299 int perf_event__process_auxtrace_info(struct perf_session *session,
1300 union perf_event *event)
1301 {
1302 enum auxtrace_type type = event->auxtrace_info.type;
1303 int err;
1304
1305 if (dump_trace)
1306 fprintf(stdout, " type: %u\n", type);
1307
1308 switch (type) {
1309 case PERF_AUXTRACE_INTEL_PT:
1310 err = intel_pt_process_auxtrace_info(event, session);
1311 break;
1312 case PERF_AUXTRACE_INTEL_BTS:
1313 err = intel_bts_process_auxtrace_info(event, session);
1314 break;
1315 case PERF_AUXTRACE_ARM_SPE:
1316 err = arm_spe_process_auxtrace_info(event, session);
1317 break;
1318 case PERF_AUXTRACE_CS_ETM:
1319 err = cs_etm__process_auxtrace_info(event, session);
1320 break;
1321 case PERF_AUXTRACE_S390_CPUMSF:
1322 err = s390_cpumsf_process_auxtrace_info(event, session);
1323 break;
1324 case PERF_AUXTRACE_HISI_PTT:
1325 err = hisi_ptt_process_auxtrace_info(event, session);
1326 break;
1327 case PERF_AUXTRACE_UNKNOWN:
1328 default:
1329 return -EINVAL;
1330 }
1331
1332 if (err)
1333 return err;
1334
1335 unleader_auxtrace(session);
1336
1337 return 0;
1338 }
1339
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)1340 s64 perf_event__process_auxtrace(struct perf_session *session,
1341 union perf_event *event)
1342 {
1343 s64 err;
1344
1345 if (dump_trace)
1346 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
1347 event->auxtrace.size, event->auxtrace.offset,
1348 event->auxtrace.reference, event->auxtrace.idx,
1349 event->auxtrace.tid, event->auxtrace.cpu);
1350
1351 if (auxtrace__dont_decode(session))
1352 return event->auxtrace.size;
1353
1354 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1355 return -EINVAL;
1356
1357 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1358 if (err < 0)
1359 return err;
1360
1361 return event->auxtrace.size;
1362 }
1363
1364 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
1365 #define PERF_ITRACE_DEFAULT_PERIOD 100000
1366 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
1367 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
1368 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
1369 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
1370
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)1371 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1372 bool no_sample)
1373 {
1374 synth_opts->branches = true;
1375 synth_opts->transactions = true;
1376 synth_opts->ptwrites = true;
1377 synth_opts->pwr_events = true;
1378 synth_opts->other_events = true;
1379 synth_opts->intr_events = true;
1380 synth_opts->errors = true;
1381 synth_opts->flc = true;
1382 synth_opts->llc = true;
1383 synth_opts->tlb = true;
1384 synth_opts->mem = true;
1385 synth_opts->remote_access = true;
1386
1387 if (no_sample) {
1388 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1389 synth_opts->period = 1;
1390 synth_opts->calls = true;
1391 } else {
1392 synth_opts->instructions = true;
1393 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1394 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1395 }
1396 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1397 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1398 synth_opts->initial_skip = 0;
1399 }
1400
get_flag(const char ** ptr,unsigned int * flags)1401 static int get_flag(const char **ptr, unsigned int *flags)
1402 {
1403 while (1) {
1404 char c = **ptr;
1405
1406 if (c >= 'a' && c <= 'z') {
1407 *flags |= 1 << (c - 'a');
1408 ++*ptr;
1409 return 0;
1410 } else if (c == ' ') {
1411 ++*ptr;
1412 continue;
1413 } else {
1414 return -1;
1415 }
1416 }
1417 }
1418
get_flags(const char ** ptr,unsigned int * plus_flags,unsigned int * minus_flags)1419 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1420 {
1421 while (1) {
1422 switch (**ptr) {
1423 case '+':
1424 ++*ptr;
1425 if (get_flag(ptr, plus_flags))
1426 return -1;
1427 break;
1428 case '-':
1429 ++*ptr;
1430 if (get_flag(ptr, minus_flags))
1431 return -1;
1432 break;
1433 case ' ':
1434 ++*ptr;
1435 break;
1436 default:
1437 return 0;
1438 }
1439 }
1440 }
1441
1442 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1443
itrace_log_on_error_size(void)1444 static unsigned int itrace_log_on_error_size(void)
1445 {
1446 unsigned int sz = 0;
1447
1448 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1449 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1450 }
1451
1452 /*
1453 * Please check tools/perf/Documentation/perf-script.txt for information
1454 * about the options parsed here, which is introduced after this cset,
1455 * when support in 'perf script' for these options is introduced.
1456 */
itrace_do_parse_synth_opts(struct itrace_synth_opts * synth_opts,const char * str,int unset)1457 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1458 const char *str, int unset)
1459 {
1460 const char *p;
1461 char *endptr;
1462 bool period_type_set = false;
1463 bool period_set = false;
1464
1465 synth_opts->set = true;
1466
1467 if (unset) {
1468 synth_opts->dont_decode = true;
1469 return 0;
1470 }
1471
1472 if (!str) {
1473 itrace_synth_opts__set_default(synth_opts,
1474 synth_opts->default_no_sample);
1475 return 0;
1476 }
1477
1478 for (p = str; *p;) {
1479 switch (*p++) {
1480 case 'i':
1481 synth_opts->instructions = true;
1482 while (*p == ' ' || *p == ',')
1483 p += 1;
1484 if (isdigit(*p)) {
1485 synth_opts->period = strtoull(p, &endptr, 10);
1486 period_set = true;
1487 p = endptr;
1488 while (*p == ' ' || *p == ',')
1489 p += 1;
1490 switch (*p++) {
1491 case 'i':
1492 synth_opts->period_type =
1493 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1494 period_type_set = true;
1495 break;
1496 case 't':
1497 synth_opts->period_type =
1498 PERF_ITRACE_PERIOD_TICKS;
1499 period_type_set = true;
1500 break;
1501 case 'm':
1502 synth_opts->period *= 1000;
1503 /* Fall through */
1504 case 'u':
1505 synth_opts->period *= 1000;
1506 /* Fall through */
1507 case 'n':
1508 if (*p++ != 's')
1509 goto out_err;
1510 synth_opts->period_type =
1511 PERF_ITRACE_PERIOD_NANOSECS;
1512 period_type_set = true;
1513 break;
1514 case '\0':
1515 goto out;
1516 default:
1517 goto out_err;
1518 }
1519 }
1520 break;
1521 case 'b':
1522 synth_opts->branches = true;
1523 break;
1524 case 'x':
1525 synth_opts->transactions = true;
1526 break;
1527 case 'w':
1528 synth_opts->ptwrites = true;
1529 break;
1530 case 'p':
1531 synth_opts->pwr_events = true;
1532 break;
1533 case 'o':
1534 synth_opts->other_events = true;
1535 break;
1536 case 'I':
1537 synth_opts->intr_events = true;
1538 break;
1539 case 'e':
1540 synth_opts->errors = true;
1541 if (get_flags(&p, &synth_opts->error_plus_flags,
1542 &synth_opts->error_minus_flags))
1543 goto out_err;
1544 break;
1545 case 'd':
1546 synth_opts->log = true;
1547 if (get_flags(&p, &synth_opts->log_plus_flags,
1548 &synth_opts->log_minus_flags))
1549 goto out_err;
1550 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1551 synth_opts->log_on_error_size = itrace_log_on_error_size();
1552 break;
1553 case 'c':
1554 synth_opts->branches = true;
1555 synth_opts->calls = true;
1556 break;
1557 case 'r':
1558 synth_opts->branches = true;
1559 synth_opts->returns = true;
1560 break;
1561 case 'G':
1562 case 'g':
1563 if (p[-1] == 'G')
1564 synth_opts->add_callchain = true;
1565 else
1566 synth_opts->callchain = true;
1567 synth_opts->callchain_sz =
1568 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1569 while (*p == ' ' || *p == ',')
1570 p += 1;
1571 if (isdigit(*p)) {
1572 unsigned int val;
1573
1574 val = strtoul(p, &endptr, 10);
1575 p = endptr;
1576 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1577 goto out_err;
1578 synth_opts->callchain_sz = val;
1579 }
1580 break;
1581 case 'L':
1582 case 'l':
1583 if (p[-1] == 'L')
1584 synth_opts->add_last_branch = true;
1585 else
1586 synth_opts->last_branch = true;
1587 synth_opts->last_branch_sz =
1588 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1589 while (*p == ' ' || *p == ',')
1590 p += 1;
1591 if (isdigit(*p)) {
1592 unsigned int val;
1593
1594 val = strtoul(p, &endptr, 10);
1595 p = endptr;
1596 if (!val ||
1597 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1598 goto out_err;
1599 synth_opts->last_branch_sz = val;
1600 }
1601 break;
1602 case 's':
1603 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1604 if (p == endptr)
1605 goto out_err;
1606 p = endptr;
1607 break;
1608 case 'f':
1609 synth_opts->flc = true;
1610 break;
1611 case 'm':
1612 synth_opts->llc = true;
1613 break;
1614 case 't':
1615 synth_opts->tlb = true;
1616 break;
1617 case 'a':
1618 synth_opts->remote_access = true;
1619 break;
1620 case 'M':
1621 synth_opts->mem = true;
1622 break;
1623 case 'q':
1624 synth_opts->quick += 1;
1625 break;
1626 case 'A':
1627 synth_opts->approx_ipc = true;
1628 break;
1629 case 'Z':
1630 synth_opts->timeless_decoding = true;
1631 break;
1632 case ' ':
1633 case ',':
1634 break;
1635 default:
1636 goto out_err;
1637 }
1638 }
1639 out:
1640 if (synth_opts->instructions) {
1641 if (!period_type_set)
1642 synth_opts->period_type =
1643 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1644 if (!period_set)
1645 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1646 }
1647
1648 return 0;
1649
1650 out_err:
1651 pr_err("Bad Instruction Tracing options '%s'\n", str);
1652 return -EINVAL;
1653 }
1654
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1655 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1656 {
1657 return itrace_do_parse_synth_opts(opt->value, str, unset);
1658 }
1659
1660 static const char * const auxtrace_error_type_name[] = {
1661 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1662 };
1663
auxtrace_error_name(int type)1664 static const char *auxtrace_error_name(int type)
1665 {
1666 const char *error_type_name = NULL;
1667
1668 if (type < PERF_AUXTRACE_ERROR_MAX)
1669 error_type_name = auxtrace_error_type_name[type];
1670 if (!error_type_name)
1671 error_type_name = "unknown AUX";
1672 return error_type_name;
1673 }
1674
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1675 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1676 {
1677 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1678 unsigned long long nsecs = e->time;
1679 const char *msg = e->msg;
1680 int ret;
1681
1682 ret = fprintf(fp, " %s error type %u",
1683 auxtrace_error_name(e->type), e->type);
1684
1685 if (e->fmt && nsecs) {
1686 unsigned long secs = nsecs / NSEC_PER_SEC;
1687
1688 nsecs -= secs * NSEC_PER_SEC;
1689 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1690 } else {
1691 ret += fprintf(fp, " time 0");
1692 }
1693
1694 if (!e->fmt)
1695 msg = (const char *)&e->time;
1696
1697 if (e->fmt >= 2 && e->machine_pid)
1698 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1699
1700 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1701 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1702 return ret;
1703 }
1704
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1705 void perf_session__auxtrace_error_inc(struct perf_session *session,
1706 union perf_event *event)
1707 {
1708 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1709
1710 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1711 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1712 }
1713
events_stats__auxtrace_error_warn(const struct events_stats * stats)1714 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1715 {
1716 int i;
1717
1718 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1719 if (!stats->nr_auxtrace_errors[i])
1720 continue;
1721 ui__warning("%u %s errors\n",
1722 stats->nr_auxtrace_errors[i],
1723 auxtrace_error_name(i));
1724 }
1725 }
1726
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1727 int perf_event__process_auxtrace_error(struct perf_session *session,
1728 union perf_event *event)
1729 {
1730 if (auxtrace__dont_decode(session))
1731 return 0;
1732
1733 perf_event__fprintf_auxtrace_error(event, stdout);
1734 return 0;
1735 }
1736
1737 /*
1738 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1739 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1740 * the issues caused by the below sequence on multiple CPUs: when perf tool
1741 * accesses either the load operation or the store operation for 64-bit value,
1742 * on some architectures the operation is divided into two instructions, one
1743 * is for accessing the low 32-bit value and another is for the high 32-bit;
1744 * thus these two user operations can give the kernel chances to access the
1745 * 64-bit value, and thus leads to the unexpected load values.
1746 *
1747 * kernel (64-bit) user (32-bit)
1748 *
1749 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo
1750 * STORE $aux_data | ,--->
1751 * FLUSH $aux_data | | LOAD ->aux_head_hi
1752 * STORE ->aux_head --|-------` smp_rmb()
1753 * } | LOAD $data
1754 * | smp_mb()
1755 * | STORE ->aux_tail_lo
1756 * `----------->
1757 * STORE ->aux_tail_hi
1758 *
1759 * For this reason, it's impossible for the perf tool to work correctly when
1760 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1761 * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1762 * the pointers can be increased monotonically, whatever the buffer size it is,
1763 * at the end the head and tail can be bigger than 4GB and carry out to the
1764 * high 32-bit.
1765 *
1766 * To mitigate the issues and improve the user experience, we can allow the
1767 * perf tool working in certain conditions and bail out with error if detect
1768 * any overflow cannot be handled.
1769 *
1770 * For reading the AUX head, it reads out the values for three times, and
1771 * compares the high 4 bytes of the values between the first time and the last
1772 * time, if there has no change for high 4 bytes injected by the kernel during
1773 * the user reading sequence, it's safe for use the second value.
1774 *
1775 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1776 * 32 bits, it means there have two store operations in user space and it cannot
1777 * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1778 * the caller an overflow error has happened.
1779 */
compat_auxtrace_mmap__read_head(struct auxtrace_mmap * mm)1780 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1781 {
1782 struct perf_event_mmap_page *pc = mm->userpg;
1783 u64 first, second, last;
1784 u64 mask = (u64)(UINT32_MAX) << 32;
1785
1786 do {
1787 first = READ_ONCE(pc->aux_head);
1788 /* Ensure all reads are done after we read the head */
1789 smp_rmb();
1790 second = READ_ONCE(pc->aux_head);
1791 /* Ensure all reads are done after we read the head */
1792 smp_rmb();
1793 last = READ_ONCE(pc->aux_head);
1794 } while ((first & mask) != (last & mask));
1795
1796 return second;
1797 }
1798
compat_auxtrace_mmap__write_tail(struct auxtrace_mmap * mm,u64 tail)1799 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1800 {
1801 struct perf_event_mmap_page *pc = mm->userpg;
1802 u64 mask = (u64)(UINT32_MAX) << 32;
1803
1804 if (tail & mask)
1805 return -1;
1806
1807 /* Ensure all reads are done before we write the tail out */
1808 smp_mb();
1809 WRITE_ONCE(pc->aux_tail, tail);
1810 return 0;
1811 }
1812
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1813 static int __auxtrace_mmap__read(struct mmap *map,
1814 struct auxtrace_record *itr,
1815 struct perf_tool *tool, process_auxtrace_t fn,
1816 bool snapshot, size_t snapshot_size)
1817 {
1818 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1819 u64 head, old = mm->prev, offset, ref;
1820 unsigned char *data = mm->base;
1821 size_t size, head_off, old_off, len1, len2, padding;
1822 union perf_event ev;
1823 void *data1, *data2;
1824 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1825
1826 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1827
1828 if (snapshot &&
1829 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1830 return -1;
1831
1832 if (old == head)
1833 return 0;
1834
1835 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1836 mm->idx, old, head, head - old);
1837
1838 if (mm->mask) {
1839 head_off = head & mm->mask;
1840 old_off = old & mm->mask;
1841 } else {
1842 head_off = head % mm->len;
1843 old_off = old % mm->len;
1844 }
1845
1846 if (head_off > old_off)
1847 size = head_off - old_off;
1848 else
1849 size = mm->len - (old_off - head_off);
1850
1851 if (snapshot && size > snapshot_size)
1852 size = snapshot_size;
1853
1854 ref = auxtrace_record__reference(itr);
1855
1856 if (head > old || size <= head || mm->mask) {
1857 offset = head - size;
1858 } else {
1859 /*
1860 * When the buffer size is not a power of 2, 'head' wraps at the
1861 * highest multiple of the buffer size, so we have to subtract
1862 * the remainder here.
1863 */
1864 u64 rem = (0ULL - mm->len) % mm->len;
1865
1866 offset = head - size - rem;
1867 }
1868
1869 if (size > head_off) {
1870 len1 = size - head_off;
1871 data1 = &data[mm->len - len1];
1872 len2 = head_off;
1873 data2 = &data[0];
1874 } else {
1875 len1 = size;
1876 data1 = &data[head_off - len1];
1877 len2 = 0;
1878 data2 = NULL;
1879 }
1880
1881 if (itr->alignment) {
1882 unsigned int unwanted = len1 % itr->alignment;
1883
1884 len1 -= unwanted;
1885 size -= unwanted;
1886 }
1887
1888 /* padding must be written by fn() e.g. record__process_auxtrace() */
1889 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1890 if (padding)
1891 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1892
1893 memset(&ev, 0, sizeof(ev));
1894 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1895 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1896 ev.auxtrace.size = size + padding;
1897 ev.auxtrace.offset = offset;
1898 ev.auxtrace.reference = ref;
1899 ev.auxtrace.idx = mm->idx;
1900 ev.auxtrace.tid = mm->tid;
1901 ev.auxtrace.cpu = mm->cpu;
1902
1903 if (fn(tool, map, &ev, data1, len1, data2, len2))
1904 return -1;
1905
1906 mm->prev = head;
1907
1908 if (!snapshot) {
1909 int err;
1910
1911 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1912 if (err < 0)
1913 return err;
1914
1915 if (itr->read_finish) {
1916 err = itr->read_finish(itr, mm->idx);
1917 if (err < 0)
1918 return err;
1919 }
1920 }
1921
1922 return 1;
1923 }
1924
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn)1925 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1926 struct perf_tool *tool, process_auxtrace_t fn)
1927 {
1928 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1929 }
1930
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)1931 int auxtrace_mmap__read_snapshot(struct mmap *map,
1932 struct auxtrace_record *itr,
1933 struct perf_tool *tool, process_auxtrace_t fn,
1934 size_t snapshot_size)
1935 {
1936 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1937 }
1938
1939 /**
1940 * struct auxtrace_cache - hash table to implement a cache
1941 * @hashtable: the hashtable
1942 * @sz: hashtable size (number of hlists)
1943 * @entry_size: size of an entry
1944 * @limit: limit the number of entries to this maximum, when reached the cache
1945 * is dropped and caching begins again with an empty cache
1946 * @cnt: current number of entries
1947 * @bits: hashtable size (@sz = 2^@bits)
1948 */
1949 struct auxtrace_cache {
1950 struct hlist_head *hashtable;
1951 size_t sz;
1952 size_t entry_size;
1953 size_t limit;
1954 size_t cnt;
1955 unsigned int bits;
1956 };
1957
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)1958 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1959 unsigned int limit_percent)
1960 {
1961 struct auxtrace_cache *c;
1962 struct hlist_head *ht;
1963 size_t sz, i;
1964
1965 c = zalloc(sizeof(struct auxtrace_cache));
1966 if (!c)
1967 return NULL;
1968
1969 sz = 1UL << bits;
1970
1971 ht = calloc(sz, sizeof(struct hlist_head));
1972 if (!ht)
1973 goto out_free;
1974
1975 for (i = 0; i < sz; i++)
1976 INIT_HLIST_HEAD(&ht[i]);
1977
1978 c->hashtable = ht;
1979 c->sz = sz;
1980 c->entry_size = entry_size;
1981 c->limit = (c->sz * limit_percent) / 100;
1982 c->bits = bits;
1983
1984 return c;
1985
1986 out_free:
1987 free(c);
1988 return NULL;
1989 }
1990
auxtrace_cache__drop(struct auxtrace_cache * c)1991 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1992 {
1993 struct auxtrace_cache_entry *entry;
1994 struct hlist_node *tmp;
1995 size_t i;
1996
1997 if (!c)
1998 return;
1999
2000 for (i = 0; i < c->sz; i++) {
2001 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2002 hlist_del(&entry->hash);
2003 auxtrace_cache__free_entry(c, entry);
2004 }
2005 }
2006
2007 c->cnt = 0;
2008 }
2009
auxtrace_cache__free(struct auxtrace_cache * c)2010 void auxtrace_cache__free(struct auxtrace_cache *c)
2011 {
2012 if (!c)
2013 return;
2014
2015 auxtrace_cache__drop(c);
2016 zfree(&c->hashtable);
2017 free(c);
2018 }
2019
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)2020 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2021 {
2022 return malloc(c->entry_size);
2023 }
2024
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)2025 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2026 void *entry)
2027 {
2028 free(entry);
2029 }
2030
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)2031 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2032 struct auxtrace_cache_entry *entry)
2033 {
2034 if (c->limit && ++c->cnt > c->limit)
2035 auxtrace_cache__drop(c);
2036
2037 entry->key = key;
2038 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2039
2040 return 0;
2041 }
2042
auxtrace_cache__rm(struct auxtrace_cache * c,u32 key)2043 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2044 u32 key)
2045 {
2046 struct auxtrace_cache_entry *entry;
2047 struct hlist_head *hlist;
2048 struct hlist_node *n;
2049
2050 if (!c)
2051 return NULL;
2052
2053 hlist = &c->hashtable[hash_32(key, c->bits)];
2054 hlist_for_each_entry_safe(entry, n, hlist, hash) {
2055 if (entry->key == key) {
2056 hlist_del(&entry->hash);
2057 return entry;
2058 }
2059 }
2060
2061 return NULL;
2062 }
2063
auxtrace_cache__remove(struct auxtrace_cache * c,u32 key)2064 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2065 {
2066 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2067
2068 auxtrace_cache__free_entry(c, entry);
2069 }
2070
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)2071 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2072 {
2073 struct auxtrace_cache_entry *entry;
2074 struct hlist_head *hlist;
2075
2076 if (!c)
2077 return NULL;
2078
2079 hlist = &c->hashtable[hash_32(key, c->bits)];
2080 hlist_for_each_entry(entry, hlist, hash) {
2081 if (entry->key == key)
2082 return entry;
2083 }
2084
2085 return NULL;
2086 }
2087
addr_filter__free_str(struct addr_filter * filt)2088 static void addr_filter__free_str(struct addr_filter *filt)
2089 {
2090 zfree(&filt->str);
2091 filt->action = NULL;
2092 filt->sym_from = NULL;
2093 filt->sym_to = NULL;
2094 filt->filename = NULL;
2095 }
2096
addr_filter__new(void)2097 static struct addr_filter *addr_filter__new(void)
2098 {
2099 struct addr_filter *filt = zalloc(sizeof(*filt));
2100
2101 if (filt)
2102 INIT_LIST_HEAD(&filt->list);
2103
2104 return filt;
2105 }
2106
addr_filter__free(struct addr_filter * filt)2107 static void addr_filter__free(struct addr_filter *filt)
2108 {
2109 if (filt)
2110 addr_filter__free_str(filt);
2111 free(filt);
2112 }
2113
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)2114 static void addr_filters__add(struct addr_filters *filts,
2115 struct addr_filter *filt)
2116 {
2117 list_add_tail(&filt->list, &filts->head);
2118 filts->cnt += 1;
2119 }
2120
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)2121 static void addr_filters__del(struct addr_filters *filts,
2122 struct addr_filter *filt)
2123 {
2124 list_del_init(&filt->list);
2125 filts->cnt -= 1;
2126 }
2127
addr_filters__init(struct addr_filters * filts)2128 void addr_filters__init(struct addr_filters *filts)
2129 {
2130 INIT_LIST_HEAD(&filts->head);
2131 filts->cnt = 0;
2132 }
2133
addr_filters__exit(struct addr_filters * filts)2134 void addr_filters__exit(struct addr_filters *filts)
2135 {
2136 struct addr_filter *filt, *n;
2137
2138 list_for_each_entry_safe(filt, n, &filts->head, list) {
2139 addr_filters__del(filts, filt);
2140 addr_filter__free(filt);
2141 }
2142 }
2143
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)2144 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2145 const char *str_delim)
2146 {
2147 *inp += strspn(*inp, " ");
2148
2149 if (isdigit(**inp)) {
2150 char *endptr;
2151
2152 if (!num)
2153 return -EINVAL;
2154 errno = 0;
2155 *num = strtoull(*inp, &endptr, 0);
2156 if (errno)
2157 return -errno;
2158 if (endptr == *inp)
2159 return -EINVAL;
2160 *inp = endptr;
2161 } else {
2162 size_t n;
2163
2164 if (!str)
2165 return -EINVAL;
2166 *inp += strspn(*inp, " ");
2167 *str = *inp;
2168 n = strcspn(*inp, str_delim);
2169 if (!n)
2170 return -EINVAL;
2171 *inp += n;
2172 if (**inp) {
2173 **inp = '\0';
2174 *inp += 1;
2175 }
2176 }
2177 return 0;
2178 }
2179
parse_action(struct addr_filter * filt)2180 static int parse_action(struct addr_filter *filt)
2181 {
2182 if (!strcmp(filt->action, "filter")) {
2183 filt->start = true;
2184 filt->range = true;
2185 } else if (!strcmp(filt->action, "start")) {
2186 filt->start = true;
2187 } else if (!strcmp(filt->action, "stop")) {
2188 filt->start = false;
2189 } else if (!strcmp(filt->action, "tracestop")) {
2190 filt->start = false;
2191 filt->range = true;
2192 filt->action += 5; /* Change 'tracestop' to 'stop' */
2193 } else {
2194 return -EINVAL;
2195 }
2196 return 0;
2197 }
2198
parse_sym_idx(char ** inp,int * idx)2199 static int parse_sym_idx(char **inp, int *idx)
2200 {
2201 *idx = -1;
2202
2203 *inp += strspn(*inp, " ");
2204
2205 if (**inp != '#')
2206 return 0;
2207
2208 *inp += 1;
2209
2210 if (**inp == 'g' || **inp == 'G') {
2211 *inp += 1;
2212 *idx = 0;
2213 } else {
2214 unsigned long num;
2215 char *endptr;
2216
2217 errno = 0;
2218 num = strtoul(*inp, &endptr, 0);
2219 if (errno)
2220 return -errno;
2221 if (endptr == *inp || num > INT_MAX)
2222 return -EINVAL;
2223 *inp = endptr;
2224 *idx = num;
2225 }
2226
2227 return 0;
2228 }
2229
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)2230 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2231 {
2232 int err = parse_num_or_str(inp, num, str, " ");
2233
2234 if (!err && *str)
2235 err = parse_sym_idx(inp, idx);
2236
2237 return err;
2238 }
2239
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)2240 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2241 {
2242 char *fstr;
2243 int err;
2244
2245 filt->str = fstr = strdup(*filter_inp);
2246 if (!fstr)
2247 return -ENOMEM;
2248
2249 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2250 if (err)
2251 goto out_err;
2252
2253 err = parse_action(filt);
2254 if (err)
2255 goto out_err;
2256
2257 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2258 &filt->sym_from_idx);
2259 if (err)
2260 goto out_err;
2261
2262 fstr += strspn(fstr, " ");
2263
2264 if (*fstr == '/') {
2265 fstr += 1;
2266 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2267 &filt->sym_to_idx);
2268 if (err)
2269 goto out_err;
2270 filt->range = true;
2271 }
2272
2273 fstr += strspn(fstr, " ");
2274
2275 if (*fstr == '@') {
2276 fstr += 1;
2277 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2278 if (err)
2279 goto out_err;
2280 }
2281
2282 fstr += strspn(fstr, " ,");
2283
2284 *filter_inp += fstr - filt->str;
2285
2286 return 0;
2287
2288 out_err:
2289 addr_filter__free_str(filt);
2290
2291 return err;
2292 }
2293
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)2294 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2295 const char *filter)
2296 {
2297 struct addr_filter *filt;
2298 const char *fstr = filter;
2299 int err;
2300
2301 while (*fstr) {
2302 filt = addr_filter__new();
2303 err = parse_one_filter(filt, &fstr);
2304 if (err) {
2305 addr_filter__free(filt);
2306 addr_filters__exit(filts);
2307 return err;
2308 }
2309 addr_filters__add(filts, filt);
2310 }
2311
2312 return 0;
2313 }
2314
2315 struct sym_args {
2316 const char *name;
2317 u64 start;
2318 u64 size;
2319 int idx;
2320 int cnt;
2321 bool started;
2322 bool global;
2323 bool selected;
2324 bool duplicate;
2325 bool near;
2326 };
2327
kern_sym_name_match(const char * kname,const char * name)2328 static bool kern_sym_name_match(const char *kname, const char *name)
2329 {
2330 size_t n = strlen(name);
2331
2332 return !strcmp(kname, name) ||
2333 (!strncmp(kname, name, n) && kname[n] == '\t');
2334 }
2335
kern_sym_match(struct sym_args * args,const char * name,char type)2336 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2337 {
2338 /* A function with the same name, and global or the n'th found or any */
2339 return kallsyms__is_function(type) &&
2340 kern_sym_name_match(name, args->name) &&
2341 ((args->global && isupper(type)) ||
2342 (args->selected && ++(args->cnt) == args->idx) ||
2343 (!args->global && !args->selected));
2344 }
2345
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)2346 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2347 {
2348 struct sym_args *args = arg;
2349
2350 if (args->started) {
2351 if (!args->size)
2352 args->size = start - args->start;
2353 if (args->selected) {
2354 if (args->size)
2355 return 1;
2356 } else if (kern_sym_match(args, name, type)) {
2357 args->duplicate = true;
2358 return 1;
2359 }
2360 } else if (kern_sym_match(args, name, type)) {
2361 args->started = true;
2362 args->start = start;
2363 }
2364
2365 return 0;
2366 }
2367
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)2368 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2369 {
2370 struct sym_args *args = arg;
2371
2372 if (kern_sym_match(args, name, type)) {
2373 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2374 ++args->cnt, start, type, name);
2375 args->near = true;
2376 } else if (args->near) {
2377 args->near = false;
2378 pr_err("\t\twhich is near\t\t%s\n", name);
2379 }
2380
2381 return 0;
2382 }
2383
sym_not_found_error(const char * sym_name,int idx)2384 static int sym_not_found_error(const char *sym_name, int idx)
2385 {
2386 if (idx > 0) {
2387 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2388 idx, sym_name);
2389 } else if (!idx) {
2390 pr_err("Global symbol '%s' not found.\n", sym_name);
2391 } else {
2392 pr_err("Symbol '%s' not found.\n", sym_name);
2393 }
2394 pr_err("Note that symbols must be functions.\n");
2395
2396 return -EINVAL;
2397 }
2398
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)2399 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2400 {
2401 struct sym_args args = {
2402 .name = sym_name,
2403 .idx = idx,
2404 .global = !idx,
2405 .selected = idx > 0,
2406 };
2407 int err;
2408
2409 *start = 0;
2410 *size = 0;
2411
2412 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2413 if (err < 0) {
2414 pr_err("Failed to parse /proc/kallsyms\n");
2415 return err;
2416 }
2417
2418 if (args.duplicate) {
2419 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2420 args.cnt = 0;
2421 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2422 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2423 sym_name);
2424 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2425 return -EINVAL;
2426 }
2427
2428 if (!args.started) {
2429 pr_err("Kernel symbol lookup: ");
2430 return sym_not_found_error(sym_name, idx);
2431 }
2432
2433 *start = args.start;
2434 *size = args.size;
2435
2436 return 0;
2437 }
2438
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)2439 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2440 char type, u64 start)
2441 {
2442 struct sym_args *args = arg;
2443
2444 if (!kallsyms__is_function(type))
2445 return 0;
2446
2447 if (!args->started) {
2448 args->started = true;
2449 args->start = start;
2450 }
2451 /* Don't know exactly where the kernel ends, so we add a page */
2452 args->size = round_up(start, page_size) + page_size - args->start;
2453
2454 return 0;
2455 }
2456
addr_filter__entire_kernel(struct addr_filter * filt)2457 static int addr_filter__entire_kernel(struct addr_filter *filt)
2458 {
2459 struct sym_args args = { .started = false };
2460 int err;
2461
2462 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2463 if (err < 0 || !args.started) {
2464 pr_err("Failed to parse /proc/kallsyms\n");
2465 return err;
2466 }
2467
2468 filt->addr = args.start;
2469 filt->size = args.size;
2470
2471 return 0;
2472 }
2473
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)2474 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2475 {
2476 if (start + size >= filt->addr)
2477 return 0;
2478
2479 if (filt->sym_from) {
2480 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2481 filt->sym_to, start, filt->sym_from, filt->addr);
2482 } else {
2483 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2484 filt->sym_to, start, filt->addr);
2485 }
2486
2487 return -EINVAL;
2488 }
2489
addr_filter__resolve_kernel_syms(struct addr_filter * filt)2490 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2491 {
2492 bool no_size = false;
2493 u64 start, size;
2494 int err;
2495
2496 if (symbol_conf.kptr_restrict) {
2497 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2498 return -EINVAL;
2499 }
2500
2501 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2502 return addr_filter__entire_kernel(filt);
2503
2504 if (filt->sym_from) {
2505 err = find_kern_sym(filt->sym_from, &start, &size,
2506 filt->sym_from_idx);
2507 if (err)
2508 return err;
2509 filt->addr = start;
2510 if (filt->range && !filt->size && !filt->sym_to) {
2511 filt->size = size;
2512 no_size = !size;
2513 }
2514 }
2515
2516 if (filt->sym_to) {
2517 err = find_kern_sym(filt->sym_to, &start, &size,
2518 filt->sym_to_idx);
2519 if (err)
2520 return err;
2521
2522 err = check_end_after_start(filt, start, size);
2523 if (err)
2524 return err;
2525 filt->size = start + size - filt->addr;
2526 no_size = !size;
2527 }
2528
2529 /* The very last symbol in kallsyms does not imply a particular size */
2530 if (no_size) {
2531 pr_err("Cannot determine size of symbol '%s'\n",
2532 filt->sym_to ? filt->sym_to : filt->sym_from);
2533 return -EINVAL;
2534 }
2535
2536 return 0;
2537 }
2538
load_dso(const char * name)2539 static struct dso *load_dso(const char *name)
2540 {
2541 struct map *map;
2542 struct dso *dso;
2543
2544 map = dso__new_map(name);
2545 if (!map)
2546 return NULL;
2547
2548 if (map__load(map) < 0)
2549 pr_err("File '%s' not found or has no symbols.\n", name);
2550
2551 dso = dso__get(map->dso);
2552
2553 map__put(map);
2554
2555 return dso;
2556 }
2557
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)2558 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2559 int idx)
2560 {
2561 /* Same name, and global or the n'th found or any */
2562 return !arch__compare_symbol_names(name, sym->name) &&
2563 ((!idx && sym->binding == STB_GLOBAL) ||
2564 (idx > 0 && ++*cnt == idx) ||
2565 idx < 0);
2566 }
2567
print_duplicate_syms(struct dso * dso,const char * sym_name)2568 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2569 {
2570 struct symbol *sym;
2571 bool near = false;
2572 int cnt = 0;
2573
2574 pr_err("Multiple symbols with name '%s'\n", sym_name);
2575
2576 sym = dso__first_symbol(dso);
2577 while (sym) {
2578 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2579 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2580 ++cnt, sym->start,
2581 sym->binding == STB_GLOBAL ? 'g' :
2582 sym->binding == STB_LOCAL ? 'l' : 'w',
2583 sym->name);
2584 near = true;
2585 } else if (near) {
2586 near = false;
2587 pr_err("\t\twhich is near\t\t%s\n", sym->name);
2588 }
2589 sym = dso__next_symbol(sym);
2590 }
2591
2592 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2593 sym_name);
2594 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2595 }
2596
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)2597 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2598 u64 *size, int idx)
2599 {
2600 struct symbol *sym;
2601 int cnt = 0;
2602
2603 *start = 0;
2604 *size = 0;
2605
2606 sym = dso__first_symbol(dso);
2607 while (sym) {
2608 if (*start) {
2609 if (!*size)
2610 *size = sym->start - *start;
2611 if (idx > 0) {
2612 if (*size)
2613 return 0;
2614 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2615 print_duplicate_syms(dso, sym_name);
2616 return -EINVAL;
2617 }
2618 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2619 *start = sym->start;
2620 *size = sym->end - sym->start;
2621 }
2622 sym = dso__next_symbol(sym);
2623 }
2624
2625 if (!*start)
2626 return sym_not_found_error(sym_name, idx);
2627
2628 return 0;
2629 }
2630
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2631 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2632 {
2633 if (dso__data_file_size(dso, NULL)) {
2634 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2635 filt->filename);
2636 return -EINVAL;
2637 }
2638
2639 filt->addr = 0;
2640 filt->size = dso->data.file_size;
2641
2642 return 0;
2643 }
2644
addr_filter__resolve_syms(struct addr_filter * filt)2645 static int addr_filter__resolve_syms(struct addr_filter *filt)
2646 {
2647 u64 start, size;
2648 struct dso *dso;
2649 int err = 0;
2650
2651 if (!filt->sym_from && !filt->sym_to)
2652 return 0;
2653
2654 if (!filt->filename)
2655 return addr_filter__resolve_kernel_syms(filt);
2656
2657 dso = load_dso(filt->filename);
2658 if (!dso) {
2659 pr_err("Failed to load symbols from: %s\n", filt->filename);
2660 return -EINVAL;
2661 }
2662
2663 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2664 err = addr_filter__entire_dso(filt, dso);
2665 goto put_dso;
2666 }
2667
2668 if (filt->sym_from) {
2669 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2670 filt->sym_from_idx);
2671 if (err)
2672 goto put_dso;
2673 filt->addr = start;
2674 if (filt->range && !filt->size && !filt->sym_to)
2675 filt->size = size;
2676 }
2677
2678 if (filt->sym_to) {
2679 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2680 filt->sym_to_idx);
2681 if (err)
2682 goto put_dso;
2683
2684 err = check_end_after_start(filt, start, size);
2685 if (err)
2686 return err;
2687
2688 filt->size = start + size - filt->addr;
2689 }
2690
2691 put_dso:
2692 dso__put(dso);
2693
2694 return err;
2695 }
2696
addr_filter__to_str(struct addr_filter * filt)2697 static char *addr_filter__to_str(struct addr_filter *filt)
2698 {
2699 char filename_buf[PATH_MAX];
2700 const char *at = "";
2701 const char *fn = "";
2702 char *filter;
2703 int err;
2704
2705 if (filt->filename) {
2706 at = "@";
2707 fn = realpath(filt->filename, filename_buf);
2708 if (!fn)
2709 return NULL;
2710 }
2711
2712 if (filt->range) {
2713 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2714 filt->action, filt->addr, filt->size, at, fn);
2715 } else {
2716 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2717 filt->action, filt->addr, at, fn);
2718 }
2719
2720 return err < 0 ? NULL : filter;
2721 }
2722
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2723 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2724 int max_nr)
2725 {
2726 struct addr_filters filts;
2727 struct addr_filter *filt;
2728 int err;
2729
2730 addr_filters__init(&filts);
2731
2732 err = addr_filters__parse_bare_filter(&filts, filter);
2733 if (err)
2734 goto out_exit;
2735
2736 if (filts.cnt > max_nr) {
2737 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2738 filts.cnt, max_nr);
2739 err = -EINVAL;
2740 goto out_exit;
2741 }
2742
2743 list_for_each_entry(filt, &filts.head, list) {
2744 char *new_filter;
2745
2746 err = addr_filter__resolve_syms(filt);
2747 if (err)
2748 goto out_exit;
2749
2750 new_filter = addr_filter__to_str(filt);
2751 if (!new_filter) {
2752 err = -ENOMEM;
2753 goto out_exit;
2754 }
2755
2756 if (evsel__append_addr_filter(evsel, new_filter)) {
2757 err = -ENOMEM;
2758 goto out_exit;
2759 }
2760 }
2761
2762 out_exit:
2763 addr_filters__exit(&filts);
2764
2765 if (err) {
2766 pr_err("Failed to parse address filter: '%s'\n", filter);
2767 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2768 pr_err("Where multiple filters are separated by space or comma.\n");
2769 }
2770
2771 return err;
2772 }
2773
evsel__nr_addr_filter(struct evsel * evsel)2774 static int evsel__nr_addr_filter(struct evsel *evsel)
2775 {
2776 struct perf_pmu *pmu = evsel__find_pmu(evsel);
2777 int nr_addr_filters = 0;
2778
2779 if (!pmu)
2780 return 0;
2781
2782 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2783
2784 return nr_addr_filters;
2785 }
2786
auxtrace_parse_filters(struct evlist * evlist)2787 int auxtrace_parse_filters(struct evlist *evlist)
2788 {
2789 struct evsel *evsel;
2790 char *filter;
2791 int err, max_nr;
2792
2793 evlist__for_each_entry(evlist, evsel) {
2794 filter = evsel->filter;
2795 max_nr = evsel__nr_addr_filter(evsel);
2796 if (!filter || !max_nr)
2797 continue;
2798 evsel->filter = NULL;
2799 err = parse_addr_filter(evsel, filter, max_nr);
2800 free(filter);
2801 if (err)
2802 return err;
2803 pr_debug("Address filter: %s\n", evsel->filter);
2804 }
2805
2806 return 0;
2807 }
2808
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2809 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2810 struct perf_sample *sample, struct perf_tool *tool)
2811 {
2812 if (!session->auxtrace)
2813 return 0;
2814
2815 return session->auxtrace->process_event(session, event, sample, tool);
2816 }
2817
auxtrace__dump_auxtrace_sample(struct perf_session * session,struct perf_sample * sample)2818 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2819 struct perf_sample *sample)
2820 {
2821 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2822 auxtrace__dont_decode(session))
2823 return;
2824
2825 session->auxtrace->dump_auxtrace_sample(session, sample);
2826 }
2827
auxtrace__flush_events(struct perf_session * session,struct perf_tool * tool)2828 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2829 {
2830 if (!session->auxtrace)
2831 return 0;
2832
2833 return session->auxtrace->flush_events(session, tool);
2834 }
2835
auxtrace__free_events(struct perf_session * session)2836 void auxtrace__free_events(struct perf_session *session)
2837 {
2838 if (!session->auxtrace)
2839 return;
2840
2841 return session->auxtrace->free_events(session);
2842 }
2843
auxtrace__free(struct perf_session * session)2844 void auxtrace__free(struct perf_session *session)
2845 {
2846 if (!session->auxtrace)
2847 return;
2848
2849 return session->auxtrace->free(session);
2850 }
2851
auxtrace__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2852 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2853 struct evsel *evsel)
2854 {
2855 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2856 return false;
2857
2858 return session->auxtrace->evsel_is_auxtrace(session, evsel);
2859 }
2860