1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale DMA ALSA SoC PCM driver
4 //
5 // Author: Timur Tabi <timur@freescale.com>
6 //
7 // Copyright 2007-2010 Freescale Semiconductor, Inc.
8 //
9 // This driver implements ASoC support for the Elo DMA controller, which is
10 // the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
11 // the PCM driver is what handles the DMA buffer.
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/platform_device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <linux/gfp.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
25 
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
30 
31 #include <asm/io.h>
32 
33 #include "fsl_dma.h"
34 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
35 
36 #define DRV_NAME "fsl_dma"
37 
38 /*
39  * The formats that the DMA controller supports, which is anything
40  * that is 8, 16, or 32 bits.
41  */
42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
43 			    SNDRV_PCM_FMTBIT_U8 	| \
44 			    SNDRV_PCM_FMTBIT_S16_LE     | \
45 			    SNDRV_PCM_FMTBIT_S16_BE     | \
46 			    SNDRV_PCM_FMTBIT_U16_LE     | \
47 			    SNDRV_PCM_FMTBIT_U16_BE     | \
48 			    SNDRV_PCM_FMTBIT_S24_LE     | \
49 			    SNDRV_PCM_FMTBIT_S24_BE     | \
50 			    SNDRV_PCM_FMTBIT_U24_LE     | \
51 			    SNDRV_PCM_FMTBIT_U24_BE     | \
52 			    SNDRV_PCM_FMTBIT_S32_LE     | \
53 			    SNDRV_PCM_FMTBIT_S32_BE     | \
54 			    SNDRV_PCM_FMTBIT_U32_LE     | \
55 			    SNDRV_PCM_FMTBIT_U32_BE)
56 struct dma_object {
57 	struct snd_soc_component_driver dai;
58 	dma_addr_t ssi_stx_phys;
59 	dma_addr_t ssi_srx_phys;
60 	unsigned int ssi_fifo_depth;
61 	struct ccsr_dma_channel __iomem *channel;
62 	unsigned int irq;
63 	bool assigned;
64 };
65 
66 /*
67  * The number of DMA links to use.  Two is the bare minimum, but if you
68  * have really small links you might need more.
69  */
70 #define NUM_DMA_LINKS   2
71 
72 /** fsl_dma_private: p-substream DMA data
73  *
74  * Each substream has a 1-to-1 association with a DMA channel.
75  *
76  * The link[] array is first because it needs to be aligned on a 32-byte
77  * boundary, so putting it first will ensure alignment without padding the
78  * structure.
79  *
80  * @link[]: array of link descriptors
81  * @dma_channel: pointer to the DMA channel's registers
82  * @irq: IRQ for this DMA channel
83  * @substream: pointer to the substream object, needed by the ISR
84  * @ssi_sxx_phys: bus address of the STX or SRX register to use
85  * @ld_buf_phys: physical address of the LD buffer
86  * @current_link: index into link[] of the link currently being processed
87  * @dma_buf_phys: physical address of the DMA buffer
88  * @dma_buf_next: physical address of the next period to process
89  * @dma_buf_end: physical address of the byte after the end of the DMA
90  * @buffer period_size: the size of a single period
91  * @num_periods: the number of periods in the DMA buffer
92  */
93 struct fsl_dma_private {
94 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
95 	struct ccsr_dma_channel __iomem *dma_channel;
96 	unsigned int irq;
97 	struct snd_pcm_substream *substream;
98 	dma_addr_t ssi_sxx_phys;
99 	unsigned int ssi_fifo_depth;
100 	dma_addr_t ld_buf_phys;
101 	unsigned int current_link;
102 	dma_addr_t dma_buf_phys;
103 	dma_addr_t dma_buf_next;
104 	dma_addr_t dma_buf_end;
105 	size_t period_size;
106 	unsigned int num_periods;
107 };
108 
109 /**
110  * fsl_dma_hardare: define characteristics of the PCM hardware.
111  *
112  * The PCM hardware is the Freescale DMA controller.  This structure defines
113  * the capabilities of that hardware.
114  *
115  * Since the sampling rate and data format are not controlled by the DMA
116  * controller, we specify no limits for those values.  The only exception is
117  * period_bytes_min, which is set to a reasonably low value to prevent the
118  * DMA controller from generating too many interrupts per second.
119  *
120  * Since each link descriptor has a 32-bit byte count field, we set
121  * period_bytes_max to the largest 32-bit number.  We also have no maximum
122  * number of periods.
123  *
124  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
125  * limitation in the SSI driver requires the sample rates for playback and
126  * capture to be the same.
127  */
128 static const struct snd_pcm_hardware fsl_dma_hardware = {
129 
130 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
131 				  SNDRV_PCM_INFO_MMAP |
132 				  SNDRV_PCM_INFO_MMAP_VALID |
133 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
134 				  SNDRV_PCM_INFO_PAUSE,
135 	.formats		= FSLDMA_PCM_FORMATS,
136 	.period_bytes_min       = 512,  	/* A reasonable limit */
137 	.period_bytes_max       = (u32) -1,
138 	.periods_min    	= NUM_DMA_LINKS,
139 	.periods_max    	= (unsigned int) -1,
140 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
141 };
142 
143 /**
144  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
145  *
146  * This function should be called by the ISR whenever the DMA controller
147  * halts data transfer.
148  */
fsl_dma_abort_stream(struct snd_pcm_substream * substream)149 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
150 {
151 	snd_pcm_stop_xrun(substream);
152 }
153 
154 /**
155  * fsl_dma_update_pointers - update LD pointers to point to the next period
156  *
157  * As each period is completed, this function changes the link
158  * descriptor pointers for that period to point to the next period.
159  */
fsl_dma_update_pointers(struct fsl_dma_private * dma_private)160 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
161 {
162 	struct fsl_dma_link_descriptor *link =
163 		&dma_private->link[dma_private->current_link];
164 
165 	/* Update our link descriptors to point to the next period. On a 36-bit
166 	 * system, we also need to update the ESAD bits.  We also set (keep) the
167 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
168 	 */
169 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
170 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
171 #ifdef CONFIG_PHYS_64BIT
172 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
173 			upper_32_bits(dma_private->dma_buf_next));
174 #endif
175 	} else {
176 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
177 #ifdef CONFIG_PHYS_64BIT
178 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
179 			upper_32_bits(dma_private->dma_buf_next));
180 #endif
181 	}
182 
183 	/* Update our variables for next time */
184 	dma_private->dma_buf_next += dma_private->period_size;
185 
186 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
187 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
188 
189 	if (++dma_private->current_link >= NUM_DMA_LINKS)
190 		dma_private->current_link = 0;
191 }
192 
193 /**
194  * fsl_dma_isr: interrupt handler for the DMA controller
195  *
196  * @irq: IRQ of the DMA channel
197  * @dev_id: pointer to the dma_private structure for this DMA channel
198  */
fsl_dma_isr(int irq,void * dev_id)199 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
200 {
201 	struct fsl_dma_private *dma_private = dev_id;
202 	struct snd_pcm_substream *substream = dma_private->substream;
203 	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
204 	struct device *dev = rtd->dev;
205 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
206 	irqreturn_t ret = IRQ_NONE;
207 	u32 sr, sr2 = 0;
208 
209 	/* We got an interrupt, so read the status register to see what we
210 	   were interrupted for.
211 	 */
212 	sr = in_be32(&dma_channel->sr);
213 
214 	if (sr & CCSR_DMA_SR_TE) {
215 		dev_err(dev, "dma transmit error\n");
216 		fsl_dma_abort_stream(substream);
217 		sr2 |= CCSR_DMA_SR_TE;
218 		ret = IRQ_HANDLED;
219 	}
220 
221 	if (sr & CCSR_DMA_SR_CH)
222 		ret = IRQ_HANDLED;
223 
224 	if (sr & CCSR_DMA_SR_PE) {
225 		dev_err(dev, "dma programming error\n");
226 		fsl_dma_abort_stream(substream);
227 		sr2 |= CCSR_DMA_SR_PE;
228 		ret = IRQ_HANDLED;
229 	}
230 
231 	if (sr & CCSR_DMA_SR_EOLNI) {
232 		sr2 |= CCSR_DMA_SR_EOLNI;
233 		ret = IRQ_HANDLED;
234 	}
235 
236 	if (sr & CCSR_DMA_SR_CB)
237 		ret = IRQ_HANDLED;
238 
239 	if (sr & CCSR_DMA_SR_EOSI) {
240 		/* Tell ALSA we completed a period. */
241 		snd_pcm_period_elapsed(substream);
242 
243 		/*
244 		 * Update our link descriptors to point to the next period. We
245 		 * only need to do this if the number of periods is not equal to
246 		 * the number of links.
247 		 */
248 		if (dma_private->num_periods != NUM_DMA_LINKS)
249 			fsl_dma_update_pointers(dma_private);
250 
251 		sr2 |= CCSR_DMA_SR_EOSI;
252 		ret = IRQ_HANDLED;
253 	}
254 
255 	if (sr & CCSR_DMA_SR_EOLSI) {
256 		sr2 |= CCSR_DMA_SR_EOLSI;
257 		ret = IRQ_HANDLED;
258 	}
259 
260 	/* Clear the bits that we set */
261 	if (sr2)
262 		out_be32(&dma_channel->sr, sr2);
263 
264 	return ret;
265 }
266 
267 /**
268  * fsl_dma_new: initialize this PCM driver.
269  *
270  * This function is called when the codec driver calls snd_soc_new_pcms(),
271  * once for each .dai_link in the machine driver's snd_soc_card
272  * structure.
273  *
274  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
275  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
276  * is specified. Therefore, any DMA buffers we allocate will always be in low
277  * memory, but we support for 36-bit physical addresses anyway.
278  *
279  * Regardless of where the memory is actually allocated, since the device can
280  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
281  */
fsl_dma_new(struct snd_soc_component * component,struct snd_soc_pcm_runtime * rtd)282 static int fsl_dma_new(struct snd_soc_component *component,
283 		       struct snd_soc_pcm_runtime *rtd)
284 {
285 	struct snd_card *card = rtd->card->snd_card;
286 	struct snd_pcm *pcm = rtd->pcm;
287 	int ret;
288 
289 	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
290 	if (ret)
291 		return ret;
292 
293 	return snd_pcm_set_fixed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
294 					    card->dev,
295 					    fsl_dma_hardware.buffer_bytes_max);
296 }
297 
298 /**
299  * fsl_dma_open: open a new substream.
300  *
301  * Each substream has its own DMA buffer.
302  *
303  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
304  * descriptors that ping-pong from one period to the next.  For example, if
305  * there are six periods and two link descriptors, this is how they look
306  * before playback starts:
307  *
308  *      	   The last link descriptor
309  *   ____________  points back to the first
310  *  |   	 |
311  *  V   	 |
312  *  ___    ___   |
313  * |   |->|   |->|
314  * |___|  |___|
315  *   |      |
316  *   |      |
317  *   V      V
318  *  _________________________________________
319  * |      |      |      |      |      |      |  The DMA buffer is
320  * |      |      |      |      |      |      |    divided into 6 parts
321  * |______|______|______|______|______|______|
322  *
323  * and here's how they look after the first period is finished playing:
324  *
325  *   ____________
326  *  |   	 |
327  *  V   	 |
328  *  ___    ___   |
329  * |   |->|   |->|
330  * |___|  |___|
331  *   |      |
332  *   |______________
333  *          |       |
334  *          V       V
335  *  _________________________________________
336  * |      |      |      |      |      |      |
337  * |      |      |      |      |      |      |
338  * |______|______|______|______|______|______|
339  *
340  * The first link descriptor now points to the third period.  The DMA
341  * controller is currently playing the second period.  When it finishes, it
342  * will jump back to the first descriptor and play the third period.
343  *
344  * There are four reasons we do this:
345  *
346  * 1. The only way to get the DMA controller to automatically restart the
347  *    transfer when it gets to the end of the buffer is to use chaining
348  *    mode.  Basic direct mode doesn't offer that feature.
349  * 2. We need to receive an interrupt at the end of every period.  The DMA
350  *    controller can generate an interrupt at the end of every link transfer
351  *    (aka segment).  Making each period into a DMA segment will give us the
352  *    interrupts we need.
353  * 3. By creating only two link descriptors, regardless of the number of
354  *    periods, we do not need to reallocate the link descriptors if the
355  *    number of periods changes.
356  * 4. All of the audio data is still stored in a single, contiguous DMA
357  *    buffer, which is what ALSA expects.  We're just dividing it into
358  *    contiguous parts, and creating a link descriptor for each one.
359  */
fsl_dma_open(struct snd_soc_component * component,struct snd_pcm_substream * substream)360 static int fsl_dma_open(struct snd_soc_component *component,
361 			struct snd_pcm_substream *substream)
362 {
363 	struct snd_pcm_runtime *runtime = substream->runtime;
364 	struct device *dev = component->dev;
365 	struct dma_object *dma =
366 		container_of(component->driver, struct dma_object, dai);
367 	struct fsl_dma_private *dma_private;
368 	struct ccsr_dma_channel __iomem *dma_channel;
369 	dma_addr_t ld_buf_phys;
370 	u64 temp_link;  	/* Pointer to next link descriptor */
371 	u32 mr;
372 	int ret = 0;
373 	unsigned int i;
374 
375 	/*
376 	 * Reject any DMA buffer whose size is not a multiple of the period
377 	 * size.  We need to make sure that the DMA buffer can be evenly divided
378 	 * into periods.
379 	 */
380 	ret = snd_pcm_hw_constraint_integer(runtime,
381 		SNDRV_PCM_HW_PARAM_PERIODS);
382 	if (ret < 0) {
383 		dev_err(dev, "invalid buffer size\n");
384 		return ret;
385 	}
386 
387 	if (dma->assigned) {
388 		dev_err(dev, "dma channel already assigned\n");
389 		return -EBUSY;
390 	}
391 
392 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
393 					 &ld_buf_phys, GFP_KERNEL);
394 	if (!dma_private) {
395 		dev_err(dev, "can't allocate dma private data\n");
396 		return -ENOMEM;
397 	}
398 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
399 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
400 	else
401 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
402 
403 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
404 	dma_private->dma_channel = dma->channel;
405 	dma_private->irq = dma->irq;
406 	dma_private->substream = substream;
407 	dma_private->ld_buf_phys = ld_buf_phys;
408 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
409 
410 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
411 			  dma_private);
412 	if (ret) {
413 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
414 			dma_private->irq, ret);
415 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
416 			dma_private, dma_private->ld_buf_phys);
417 		return ret;
418 	}
419 
420 	dma->assigned = true;
421 
422 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
423 	runtime->private_data = dma_private;
424 
425 	/* Program the fixed DMA controller parameters */
426 
427 	dma_channel = dma_private->dma_channel;
428 
429 	temp_link = dma_private->ld_buf_phys +
430 		sizeof(struct fsl_dma_link_descriptor);
431 
432 	for (i = 0; i < NUM_DMA_LINKS; i++) {
433 		dma_private->link[i].next = cpu_to_be64(temp_link);
434 
435 		temp_link += sizeof(struct fsl_dma_link_descriptor);
436 	}
437 	/* The last link descriptor points to the first */
438 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
439 
440 	/* Tell the DMA controller where the first link descriptor is */
441 	out_be32(&dma_channel->clndar,
442 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
443 	out_be32(&dma_channel->eclndar,
444 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
445 
446 	/* The manual says the BCR must be clear before enabling EMP */
447 	out_be32(&dma_channel->bcr, 0);
448 
449 	/*
450 	 * Program the mode register for interrupts, external master control,
451 	 * and source/destination hold.  Also clear the Channel Abort bit.
452 	 */
453 	mr = in_be32(&dma_channel->mr) &
454 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
455 
456 	/*
457 	 * We want External Master Start and External Master Pause enabled,
458 	 * because the SSI is controlling the DMA controller.  We want the DMA
459 	 * controller to be set up in advance, and then we signal only the SSI
460 	 * to start transferring.
461 	 *
462 	 * We want End-Of-Segment Interrupts enabled, because this will generate
463 	 * an interrupt at the end of each segment (each link descriptor
464 	 * represents one segment).  Each DMA segment is the same thing as an
465 	 * ALSA period, so this is how we get an interrupt at the end of every
466 	 * period.
467 	 *
468 	 * We want Error Interrupt enabled, so that we can get an error if
469 	 * the DMA controller is mis-programmed somehow.
470 	 */
471 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
472 		CCSR_DMA_MR_EMS_EN;
473 
474 	/* For playback, we want the destination address to be held.  For
475 	   capture, set the source address to be held. */
476 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
477 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
478 
479 	out_be32(&dma_channel->mr, mr);
480 
481 	return 0;
482 }
483 
484 /**
485  * fsl_dma_hw_params: continue initializing the DMA links
486  *
487  * This function obtains hardware parameters about the opened stream and
488  * programs the DMA controller accordingly.
489  *
490  * One drawback of big-endian is that when copying integers of different
491  * sizes to a fixed-sized register, the address to which the integer must be
492  * copied is dependent on the size of the integer.
493  *
494  * For example, if P is the address of a 32-bit register, and X is a 32-bit
495  * integer, then X should be copied to address P.  However, if X is a 16-bit
496  * integer, then it should be copied to P+2.  If X is an 8-bit register,
497  * then it should be copied to P+3.
498  *
499  * So for playback of 8-bit samples, the DMA controller must transfer single
500  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
501  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
502  *
503  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
504  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
505  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
506  * 24-bit data must be padded to 32 bits.
507  */
fsl_dma_hw_params(struct snd_soc_component * component,struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)508 static int fsl_dma_hw_params(struct snd_soc_component *component,
509 			     struct snd_pcm_substream *substream,
510 			     struct snd_pcm_hw_params *hw_params)
511 {
512 	struct snd_pcm_runtime *runtime = substream->runtime;
513 	struct fsl_dma_private *dma_private = runtime->private_data;
514 	struct device *dev = component->dev;
515 
516 	/* Number of bits per sample */
517 	unsigned int sample_bits =
518 		snd_pcm_format_physical_width(params_format(hw_params));
519 
520 	/* Number of bytes per frame */
521 	unsigned int sample_bytes = sample_bits / 8;
522 
523 	/* Bus address of SSI STX register */
524 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
525 
526 	/* Size of the DMA buffer, in bytes */
527 	size_t buffer_size = params_buffer_bytes(hw_params);
528 
529 	/* Number of bytes per period */
530 	size_t period_size = params_period_bytes(hw_params);
531 
532 	/* Pointer to next period */
533 	dma_addr_t temp_addr = substream->dma_buffer.addr;
534 
535 	/* Pointer to DMA controller */
536 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
537 
538 	u32 mr; /* DMA Mode Register */
539 
540 	unsigned int i;
541 
542 	/* Initialize our DMA tracking variables */
543 	dma_private->period_size = period_size;
544 	dma_private->num_periods = params_periods(hw_params);
545 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
546 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
547 		(NUM_DMA_LINKS * period_size);
548 
549 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
550 		/* This happens if the number of periods == NUM_DMA_LINKS */
551 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
552 
553 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
554 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
555 
556 	/* Due to a quirk of the SSI's STX register, the target address
557 	 * for the DMA operations depends on the sample size.  So we calculate
558 	 * that offset here.  While we're at it, also tell the DMA controller
559 	 * how much data to transfer per sample.
560 	 */
561 	switch (sample_bits) {
562 	case 8:
563 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
564 		ssi_sxx_phys += 3;
565 		break;
566 	case 16:
567 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
568 		ssi_sxx_phys += 2;
569 		break;
570 	case 32:
571 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
572 		break;
573 	default:
574 		/* We should never get here */
575 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
576 		return -EINVAL;
577 	}
578 
579 	/*
580 	 * BWC determines how many bytes are sent/received before the DMA
581 	 * controller checks the SSI to see if it needs to stop. BWC should
582 	 * always be a multiple of the frame size, so that we always transmit
583 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
584 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
585 	 * (MR[BWC] can only represent even powers of two).
586 	 *
587 	 * To simplify the process, we set BWC to the largest value that is
588 	 * less than or equal to the FIFO watermark.  For playback, this ensures
589 	 * that we transfer the maximum amount without overrunning the FIFO.
590 	 * For capture, this ensures that we transfer the maximum amount without
591 	 * underrunning the FIFO.
592 	 *
593 	 * f = SSI FIFO depth
594 	 * w = SSI watermark value (which equals f - 2)
595 	 * b = DMA bandwidth count (in bytes)
596 	 * s = sample size (in bytes, which equals frame_size * 2)
597 	 *
598 	 * For playback, we never transmit more than the transmit FIFO
599 	 * watermark, otherwise we might write more data than the FIFO can hold.
600 	 * The watermark is equal to the FIFO depth minus two.
601 	 *
602 	 * For capture, two equations must hold:
603 	 *	w > f - (b / s)
604 	 *	w >= b / s
605 	 *
606 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
607 	 * b = s * w, which is equal to
608 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
609 	 */
610 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
611 
612 	out_be32(&dma_channel->mr, mr);
613 
614 	for (i = 0; i < NUM_DMA_LINKS; i++) {
615 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
616 
617 		link->count = cpu_to_be32(period_size);
618 
619 		/* The snoop bit tells the DMA controller whether it should tell
620 		 * the ECM to snoop during a read or write to an address. For
621 		 * audio, we use DMA to transfer data between memory and an I/O
622 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
623 		 * needed if there is a cache, so we need to snoop memory
624 		 * addresses only.  For playback, that means we snoop the source
625 		 * but not the destination.  For capture, we snoop the
626 		 * destination but not the source.
627 		 *
628 		 * Note that failing to snoop properly is unlikely to cause
629 		 * cache incoherency if the period size is larger than the
630 		 * size of L1 cache.  This is because filling in one period will
631 		 * flush out the data for the previous period.  So if you
632 		 * increased period_bytes_min to a large enough size, you might
633 		 * get more performance by not snooping, and you'll still be
634 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
635 		 */
636 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
637 			link->source_addr = cpu_to_be32(temp_addr);
638 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
639 				upper_32_bits(temp_addr));
640 
641 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
642 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
643 				upper_32_bits(ssi_sxx_phys));
644 		} else {
645 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
646 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
647 				upper_32_bits(ssi_sxx_phys));
648 
649 			link->dest_addr = cpu_to_be32(temp_addr);
650 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
651 				upper_32_bits(temp_addr));
652 		}
653 
654 		temp_addr += period_size;
655 	}
656 
657 	return 0;
658 }
659 
660 /**
661  * fsl_dma_pointer: determine the current position of the DMA transfer
662  *
663  * This function is called by ALSA when ALSA wants to know where in the
664  * stream buffer the hardware currently is.
665  *
666  * For playback, the SAR register contains the physical address of the most
667  * recent DMA transfer.  For capture, the value is in the DAR register.
668  *
669  * The base address of the buffer is stored in the source_addr field of the
670  * first link descriptor.
671  */
fsl_dma_pointer(struct snd_soc_component * component,struct snd_pcm_substream * substream)672 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
673 					 struct snd_pcm_substream *substream)
674 {
675 	struct snd_pcm_runtime *runtime = substream->runtime;
676 	struct fsl_dma_private *dma_private = runtime->private_data;
677 	struct device *dev = component->dev;
678 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
679 	dma_addr_t position;
680 	snd_pcm_uframes_t frames;
681 
682 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
683 	 * only have 32-bit DMA addresses.  This function is typically called
684 	 * in interrupt context, so we need to optimize it.
685 	 */
686 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
687 		position = in_be32(&dma_channel->sar);
688 #ifdef CONFIG_PHYS_64BIT
689 		position |= (u64)(in_be32(&dma_channel->satr) &
690 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
691 #endif
692 	} else {
693 		position = in_be32(&dma_channel->dar);
694 #ifdef CONFIG_PHYS_64BIT
695 		position |= (u64)(in_be32(&dma_channel->datr) &
696 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
697 #endif
698 	}
699 
700 	/*
701 	 * When capture is started, the SSI immediately starts to fill its FIFO.
702 	 * This means that the DMA controller is not started until the FIFO is
703 	 * full.  However, ALSA calls this function before that happens, when
704 	 * MR.DAR is still zero.  In this case, just return zero to indicate
705 	 * that nothing has been received yet.
706 	 */
707 	if (!position)
708 		return 0;
709 
710 	if ((position < dma_private->dma_buf_phys) ||
711 	    (position > dma_private->dma_buf_end)) {
712 		dev_err(dev, "dma pointer is out of range, halting stream\n");
713 		return SNDRV_PCM_POS_XRUN;
714 	}
715 
716 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
717 
718 	/*
719 	 * If the current address is just past the end of the buffer, wrap it
720 	 * around.
721 	 */
722 	if (frames == runtime->buffer_size)
723 		frames = 0;
724 
725 	return frames;
726 }
727 
728 /**
729  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
730  *
731  * Release the resources allocated in fsl_dma_hw_params() and de-program the
732  * registers.
733  *
734  * This function can be called multiple times.
735  */
fsl_dma_hw_free(struct snd_soc_component * component,struct snd_pcm_substream * substream)736 static int fsl_dma_hw_free(struct snd_soc_component *component,
737 			   struct snd_pcm_substream *substream)
738 {
739 	struct snd_pcm_runtime *runtime = substream->runtime;
740 	struct fsl_dma_private *dma_private = runtime->private_data;
741 
742 	if (dma_private) {
743 		struct ccsr_dma_channel __iomem *dma_channel;
744 
745 		dma_channel = dma_private->dma_channel;
746 
747 		/* Stop the DMA */
748 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
749 		out_be32(&dma_channel->mr, 0);
750 
751 		/* Reset all the other registers */
752 		out_be32(&dma_channel->sr, -1);
753 		out_be32(&dma_channel->clndar, 0);
754 		out_be32(&dma_channel->eclndar, 0);
755 		out_be32(&dma_channel->satr, 0);
756 		out_be32(&dma_channel->sar, 0);
757 		out_be32(&dma_channel->datr, 0);
758 		out_be32(&dma_channel->dar, 0);
759 		out_be32(&dma_channel->bcr, 0);
760 		out_be32(&dma_channel->nlndar, 0);
761 		out_be32(&dma_channel->enlndar, 0);
762 	}
763 
764 	return 0;
765 }
766 
767 /**
768  * fsl_dma_close: close the stream.
769  */
fsl_dma_close(struct snd_soc_component * component,struct snd_pcm_substream * substream)770 static int fsl_dma_close(struct snd_soc_component *component,
771 			 struct snd_pcm_substream *substream)
772 {
773 	struct snd_pcm_runtime *runtime = substream->runtime;
774 	struct fsl_dma_private *dma_private = runtime->private_data;
775 	struct device *dev = component->dev;
776 	struct dma_object *dma =
777 		container_of(component->driver, struct dma_object, dai);
778 
779 	if (dma_private) {
780 		if (dma_private->irq)
781 			free_irq(dma_private->irq, dma_private);
782 
783 		/* Deallocate the fsl_dma_private structure */
784 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
785 				  dma_private, dma_private->ld_buf_phys);
786 		substream->runtime->private_data = NULL;
787 	}
788 
789 	dma->assigned = false;
790 
791 	return 0;
792 }
793 
794 /**
795  * find_ssi_node -- returns the SSI node that points to its DMA channel node
796  *
797  * Although this DMA driver attempts to operate independently of the other
798  * devices, it still needs to determine some information about the SSI device
799  * that it's working with.  Unfortunately, the device tree does not contain
800  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
801  * other way.  So we need to scan the device tree for SSI nodes until we find
802  * the one that points to the given DMA channel node.  It's ugly, but at least
803  * it's contained in this one function.
804  */
find_ssi_node(struct device_node * dma_channel_np)805 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
806 {
807 	struct device_node *ssi_np, *np;
808 
809 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
810 		/* Check each DMA phandle to see if it points to us.  We
811 		 * assume that device_node pointers are a valid comparison.
812 		 */
813 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
814 		of_node_put(np);
815 		if (np == dma_channel_np)
816 			return ssi_np;
817 
818 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
819 		of_node_put(np);
820 		if (np == dma_channel_np)
821 			return ssi_np;
822 	}
823 
824 	return NULL;
825 }
826 
fsl_soc_dma_probe(struct platform_device * pdev)827 static int fsl_soc_dma_probe(struct platform_device *pdev)
828 {
829 	struct dma_object *dma;
830 	struct device_node *np = pdev->dev.of_node;
831 	struct device_node *ssi_np;
832 	struct resource res;
833 	const uint32_t *iprop;
834 	int ret;
835 
836 	/* Find the SSI node that points to us. */
837 	ssi_np = find_ssi_node(np);
838 	if (!ssi_np) {
839 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
840 		return -ENODEV;
841 	}
842 
843 	ret = of_address_to_resource(ssi_np, 0, &res);
844 	if (ret) {
845 		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
846 			ssi_np);
847 		of_node_put(ssi_np);
848 		return ret;
849 	}
850 
851 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
852 	if (!dma) {
853 		of_node_put(ssi_np);
854 		return -ENOMEM;
855 	}
856 
857 	dma->dai.name = DRV_NAME;
858 	dma->dai.open = fsl_dma_open;
859 	dma->dai.close = fsl_dma_close;
860 	dma->dai.hw_params = fsl_dma_hw_params;
861 	dma->dai.hw_free = fsl_dma_hw_free;
862 	dma->dai.pointer = fsl_dma_pointer;
863 	dma->dai.pcm_construct = fsl_dma_new;
864 
865 	/* Store the SSI-specific information that we need */
866 	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
867 	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
868 
869 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
870 	if (iprop)
871 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
872 	else
873                 /* Older 8610 DTs didn't have the fifo-depth property */
874 		dma->ssi_fifo_depth = 8;
875 
876 	of_node_put(ssi_np);
877 
878 	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
879 	if (ret) {
880 		dev_err(&pdev->dev, "could not register platform\n");
881 		kfree(dma);
882 		return ret;
883 	}
884 
885 	dma->channel = of_iomap(np, 0);
886 	dma->irq = irq_of_parse_and_map(np, 0);
887 
888 	dev_set_drvdata(&pdev->dev, dma);
889 
890 	return 0;
891 }
892 
fsl_soc_dma_remove(struct platform_device * pdev)893 static int fsl_soc_dma_remove(struct platform_device *pdev)
894 {
895 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
896 
897 	iounmap(dma->channel);
898 	irq_dispose_mapping(dma->irq);
899 	kfree(dma);
900 
901 	return 0;
902 }
903 
904 static const struct of_device_id fsl_soc_dma_ids[] = {
905 	{ .compatible = "fsl,ssi-dma-channel", },
906 	{}
907 };
908 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
909 
910 static struct platform_driver fsl_soc_dma_driver = {
911 	.driver = {
912 		.name = "fsl-pcm-audio",
913 		.of_match_table = fsl_soc_dma_ids,
914 	},
915 	.probe = fsl_soc_dma_probe,
916 	.remove = fsl_soc_dma_remove,
917 };
918 
919 module_platform_driver(fsl_soc_dma_driver);
920 
921 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
922 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
923 MODULE_LICENSE("GPL v2");
924