1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 #include <linux/page_table_check.h>
12 #include <linux/rcupdate.h>
13
14 /*
15 * struct page extension
16 *
17 * This is the feature to manage memory for extended data per page.
18 *
19 * Until now, we must modify struct page itself to store extra data per page.
20 * This requires rebuilding the kernel and it is really time consuming process.
21 * And, sometimes, rebuild is impossible due to third party module dependency.
22 * At last, enlarging struct page could cause un-wanted system behaviour change.
23 *
24 * This feature is intended to overcome above mentioned problems. This feature
25 * allocates memory for extended data per page in certain place rather than
26 * the struct page itself. This memory can be accessed by the accessor
27 * functions provided by this code. During the boot process, it checks whether
28 * allocation of huge chunk of memory is needed or not. If not, it avoids
29 * allocating memory at all. With this advantage, we can include this feature
30 * into the kernel in default and can avoid rebuild and solve related problems.
31 *
32 * To help these things to work well, there are two callbacks for clients. One
33 * is the need callback which is mandatory if user wants to avoid useless
34 * memory allocation at boot-time. The other is optional, init callback, which
35 * is used to do proper initialization after memory is allocated.
36 *
37 * The need callback is used to decide whether extended memory allocation is
38 * needed or not. Sometimes users want to deactivate some features in this
39 * boot and extra memory would be unnecessary. In this case, to avoid
40 * allocating huge chunk of memory, each clients represent their need of
41 * extra memory through the need callback. If one of the need callbacks
42 * returns true, it means that someone needs extra memory so that
43 * page extension core should allocates memory for page extension. If
44 * none of need callbacks return true, memory isn't needed at all in this boot
45 * and page extension core can skip to allocate memory. As result,
46 * none of memory is wasted.
47 *
48 * When need callback returns true, page_ext checks if there is a request for
49 * extra memory through size in struct page_ext_operations. If it is non-zero,
50 * extra space is allocated for each page_ext entry and offset is returned to
51 * user through offset in struct page_ext_operations.
52 *
53 * The init callback is used to do proper initialization after page extension
54 * is completely initialized. In sparse memory system, extra memory is
55 * allocated some time later than memmap is allocated. In other words, lifetime
56 * of memory for page extension isn't same with memmap for struct page.
57 * Therefore, clients can't store extra data until page extension is
58 * initialized, even if pages are allocated and used freely. This could
59 * cause inadequate state of extra data per page, so, to prevent it, client
60 * can utilize this callback to initialize the state of it correctly.
61 */
62
63 #ifdef CONFIG_SPARSEMEM
64 #define PAGE_EXT_INVALID (0x1)
65 #endif
66
67 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
need_page_idle(void)68 static bool need_page_idle(void)
69 {
70 return true;
71 }
72 static struct page_ext_operations page_idle_ops __initdata = {
73 .need = need_page_idle,
74 };
75 #endif
76
77 static struct page_ext_operations *page_ext_ops[] __initdata = {
78 #ifdef CONFIG_PAGE_OWNER
79 &page_owner_ops,
80 #endif
81 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
82 &page_idle_ops,
83 #endif
84 #ifdef CONFIG_PAGE_TABLE_CHECK
85 &page_table_check_ops,
86 #endif
87 };
88
89 unsigned long page_ext_size = sizeof(struct page_ext);
90
91 static unsigned long total_usage;
92 static struct page_ext *lookup_page_ext(const struct page *page);
93
94 bool early_page_ext;
setup_early_page_ext(char * str)95 static int __init setup_early_page_ext(char *str)
96 {
97 early_page_ext = true;
98 return 0;
99 }
100 early_param("early_page_ext", setup_early_page_ext);
101
invoke_need_callbacks(void)102 static bool __init invoke_need_callbacks(void)
103 {
104 int i;
105 int entries = ARRAY_SIZE(page_ext_ops);
106 bool need = false;
107
108 for (i = 0; i < entries; i++) {
109 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
110 page_ext_ops[i]->offset = page_ext_size;
111 page_ext_size += page_ext_ops[i]->size;
112 need = true;
113 }
114 }
115
116 return need;
117 }
118
invoke_init_callbacks(void)119 static void __init invoke_init_callbacks(void)
120 {
121 int i;
122 int entries = ARRAY_SIZE(page_ext_ops);
123
124 for (i = 0; i < entries; i++) {
125 if (page_ext_ops[i]->init)
126 page_ext_ops[i]->init();
127 }
128 }
129
130 #ifndef CONFIG_SPARSEMEM
page_ext_init_flatmem_late(void)131 void __init page_ext_init_flatmem_late(void)
132 {
133 invoke_init_callbacks();
134 }
135 #endif
136
get_entry(void * base,unsigned long index)137 static inline struct page_ext *get_entry(void *base, unsigned long index)
138 {
139 return base + page_ext_size * index;
140 }
141
142 /**
143 * page_ext_get() - Get the extended information for a page.
144 * @page: The page we're interested in.
145 *
146 * Ensures that the page_ext will remain valid until page_ext_put()
147 * is called.
148 *
149 * Return: NULL if no page_ext exists for this page.
150 * Context: Any context. Caller may not sleep until they have called
151 * page_ext_put().
152 */
page_ext_get(struct page * page)153 struct page_ext *page_ext_get(struct page *page)
154 {
155 struct page_ext *page_ext;
156
157 rcu_read_lock();
158 page_ext = lookup_page_ext(page);
159 if (!page_ext) {
160 rcu_read_unlock();
161 return NULL;
162 }
163
164 return page_ext;
165 }
166
167 /**
168 * page_ext_put() - Working with page extended information is done.
169 * @page_ext: Page extended information received from page_ext_get().
170 *
171 * The page extended information of the page may not be valid after this
172 * function is called.
173 *
174 * Return: None.
175 * Context: Any context with corresponding page_ext_get() is called.
176 */
page_ext_put(struct page_ext * page_ext)177 void page_ext_put(struct page_ext *page_ext)
178 {
179 if (unlikely(!page_ext))
180 return;
181
182 rcu_read_unlock();
183 }
184 #ifndef CONFIG_SPARSEMEM
185
186
pgdat_page_ext_init(struct pglist_data * pgdat)187 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
188 {
189 pgdat->node_page_ext = NULL;
190 }
191
lookup_page_ext(const struct page * page)192 static struct page_ext *lookup_page_ext(const struct page *page)
193 {
194 unsigned long pfn = page_to_pfn(page);
195 unsigned long index;
196 struct page_ext *base;
197
198 WARN_ON_ONCE(!rcu_read_lock_held());
199 base = NODE_DATA(page_to_nid(page))->node_page_ext;
200 /*
201 * The sanity checks the page allocator does upon freeing a
202 * page can reach here before the page_ext arrays are
203 * allocated when feeding a range of pages to the allocator
204 * for the first time during bootup or memory hotplug.
205 */
206 if (unlikely(!base))
207 return NULL;
208 index = pfn - round_down(node_start_pfn(page_to_nid(page)),
209 MAX_ORDER_NR_PAGES);
210 return get_entry(base, index);
211 }
212
alloc_node_page_ext(int nid)213 static int __init alloc_node_page_ext(int nid)
214 {
215 struct page_ext *base;
216 unsigned long table_size;
217 unsigned long nr_pages;
218
219 nr_pages = NODE_DATA(nid)->node_spanned_pages;
220 if (!nr_pages)
221 return 0;
222
223 /*
224 * Need extra space if node range is not aligned with
225 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
226 * checks buddy's status, range could be out of exact node range.
227 */
228 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
229 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
230 nr_pages += MAX_ORDER_NR_PAGES;
231
232 table_size = page_ext_size * nr_pages;
233
234 base = memblock_alloc_try_nid(
235 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
236 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
237 if (!base)
238 return -ENOMEM;
239 NODE_DATA(nid)->node_page_ext = base;
240 total_usage += table_size;
241 return 0;
242 }
243
page_ext_init_flatmem(void)244 void __init page_ext_init_flatmem(void)
245 {
246
247 int nid, fail;
248
249 if (!invoke_need_callbacks())
250 return;
251
252 for_each_online_node(nid) {
253 fail = alloc_node_page_ext(nid);
254 if (fail)
255 goto fail;
256 }
257 pr_info("allocated %ld bytes of page_ext\n", total_usage);
258 return;
259
260 fail:
261 pr_crit("allocation of page_ext failed.\n");
262 panic("Out of memory");
263 }
264
265 #else /* CONFIG_SPARSEMEM */
page_ext_invalid(struct page_ext * page_ext)266 static bool page_ext_invalid(struct page_ext *page_ext)
267 {
268 return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
269 }
270
lookup_page_ext(const struct page * page)271 static struct page_ext *lookup_page_ext(const struct page *page)
272 {
273 unsigned long pfn = page_to_pfn(page);
274 struct mem_section *section = __pfn_to_section(pfn);
275 struct page_ext *page_ext = READ_ONCE(section->page_ext);
276
277 WARN_ON_ONCE(!rcu_read_lock_held());
278 /*
279 * The sanity checks the page allocator does upon freeing a
280 * page can reach here before the page_ext arrays are
281 * allocated when feeding a range of pages to the allocator
282 * for the first time during bootup or memory hotplug.
283 */
284 if (page_ext_invalid(page_ext))
285 return NULL;
286 return get_entry(page_ext, pfn);
287 }
288
alloc_page_ext(size_t size,int nid)289 static void *__meminit alloc_page_ext(size_t size, int nid)
290 {
291 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
292 void *addr = NULL;
293
294 addr = alloc_pages_exact_nid(nid, size, flags);
295 if (addr) {
296 kmemleak_alloc(addr, size, 1, flags);
297 return addr;
298 }
299
300 addr = vzalloc_node(size, nid);
301
302 return addr;
303 }
304
init_section_page_ext(unsigned long pfn,int nid)305 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
306 {
307 struct mem_section *section;
308 struct page_ext *base;
309 unsigned long table_size;
310
311 section = __pfn_to_section(pfn);
312
313 if (section->page_ext)
314 return 0;
315
316 table_size = page_ext_size * PAGES_PER_SECTION;
317 base = alloc_page_ext(table_size, nid);
318
319 /*
320 * The value stored in section->page_ext is (base - pfn)
321 * and it does not point to the memory block allocated above,
322 * causing kmemleak false positives.
323 */
324 kmemleak_not_leak(base);
325
326 if (!base) {
327 pr_err("page ext allocation failure\n");
328 return -ENOMEM;
329 }
330
331 /*
332 * The passed "pfn" may not be aligned to SECTION. For the calculation
333 * we need to apply a mask.
334 */
335 pfn &= PAGE_SECTION_MASK;
336 section->page_ext = (void *)base - page_ext_size * pfn;
337 total_usage += table_size;
338 return 0;
339 }
340
free_page_ext(void * addr)341 static void free_page_ext(void *addr)
342 {
343 if (is_vmalloc_addr(addr)) {
344 vfree(addr);
345 } else {
346 struct page *page = virt_to_page(addr);
347 size_t table_size;
348
349 table_size = page_ext_size * PAGES_PER_SECTION;
350
351 BUG_ON(PageReserved(page));
352 kmemleak_free(addr);
353 free_pages_exact(addr, table_size);
354 }
355 }
356
__free_page_ext(unsigned long pfn)357 static void __free_page_ext(unsigned long pfn)
358 {
359 struct mem_section *ms;
360 struct page_ext *base;
361
362 ms = __pfn_to_section(pfn);
363 if (!ms || !ms->page_ext)
364 return;
365
366 base = READ_ONCE(ms->page_ext);
367 /*
368 * page_ext here can be valid while doing the roll back
369 * operation in online_page_ext().
370 */
371 if (page_ext_invalid(base))
372 base = (void *)base - PAGE_EXT_INVALID;
373 WRITE_ONCE(ms->page_ext, NULL);
374
375 base = get_entry(base, pfn);
376 free_page_ext(base);
377 }
378
__invalidate_page_ext(unsigned long pfn)379 static void __invalidate_page_ext(unsigned long pfn)
380 {
381 struct mem_section *ms;
382 void *val;
383
384 ms = __pfn_to_section(pfn);
385 if (!ms || !ms->page_ext)
386 return;
387 val = (void *)ms->page_ext + PAGE_EXT_INVALID;
388 WRITE_ONCE(ms->page_ext, val);
389 }
390
online_page_ext(unsigned long start_pfn,unsigned long nr_pages,int nid)391 static int __meminit online_page_ext(unsigned long start_pfn,
392 unsigned long nr_pages,
393 int nid)
394 {
395 unsigned long start, end, pfn;
396 int fail = 0;
397
398 start = SECTION_ALIGN_DOWN(start_pfn);
399 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
400
401 if (nid == NUMA_NO_NODE) {
402 /*
403 * In this case, "nid" already exists and contains valid memory.
404 * "start_pfn" passed to us is a pfn which is an arg for
405 * online__pages(), and start_pfn should exist.
406 */
407 nid = pfn_to_nid(start_pfn);
408 VM_BUG_ON(!node_online(nid));
409 }
410
411 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
412 fail = init_section_page_ext(pfn, nid);
413 if (!fail)
414 return 0;
415
416 /* rollback */
417 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
418 __free_page_ext(pfn);
419
420 return -ENOMEM;
421 }
422
offline_page_ext(unsigned long start_pfn,unsigned long nr_pages)423 static int __meminit offline_page_ext(unsigned long start_pfn,
424 unsigned long nr_pages)
425 {
426 unsigned long start, end, pfn;
427
428 start = SECTION_ALIGN_DOWN(start_pfn);
429 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
430
431 /*
432 * Freeing of page_ext is done in 3 steps to avoid
433 * use-after-free of it:
434 * 1) Traverse all the sections and mark their page_ext
435 * as invalid.
436 * 2) Wait for all the existing users of page_ext who
437 * started before invalidation to finish.
438 * 3) Free the page_ext.
439 */
440 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
441 __invalidate_page_ext(pfn);
442
443 synchronize_rcu();
444
445 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
446 __free_page_ext(pfn);
447 return 0;
448
449 }
450
page_ext_callback(struct notifier_block * self,unsigned long action,void * arg)451 static int __meminit page_ext_callback(struct notifier_block *self,
452 unsigned long action, void *arg)
453 {
454 struct memory_notify *mn = arg;
455 int ret = 0;
456
457 switch (action) {
458 case MEM_GOING_ONLINE:
459 ret = online_page_ext(mn->start_pfn,
460 mn->nr_pages, mn->status_change_nid);
461 break;
462 case MEM_OFFLINE:
463 offline_page_ext(mn->start_pfn,
464 mn->nr_pages);
465 break;
466 case MEM_CANCEL_ONLINE:
467 offline_page_ext(mn->start_pfn,
468 mn->nr_pages);
469 break;
470 case MEM_GOING_OFFLINE:
471 break;
472 case MEM_ONLINE:
473 case MEM_CANCEL_OFFLINE:
474 break;
475 }
476
477 return notifier_from_errno(ret);
478 }
479
page_ext_init(void)480 void __init page_ext_init(void)
481 {
482 unsigned long pfn;
483 int nid;
484
485 if (!invoke_need_callbacks())
486 return;
487
488 for_each_node_state(nid, N_MEMORY) {
489 unsigned long start_pfn, end_pfn;
490
491 start_pfn = node_start_pfn(nid);
492 end_pfn = node_end_pfn(nid);
493 /*
494 * start_pfn and end_pfn may not be aligned to SECTION and the
495 * page->flags of out of node pages are not initialized. So we
496 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
497 */
498 for (pfn = start_pfn; pfn < end_pfn;
499 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
500
501 if (!pfn_valid(pfn))
502 continue;
503 /*
504 * Nodes's pfns can be overlapping.
505 * We know some arch can have a nodes layout such as
506 * -------------pfn-------------->
507 * N0 | N1 | N2 | N0 | N1 | N2|....
508 */
509 if (pfn_to_nid(pfn) != nid)
510 continue;
511 if (init_section_page_ext(pfn, nid))
512 goto oom;
513 cond_resched();
514 }
515 }
516 hotplug_memory_notifier(page_ext_callback, 0);
517 pr_info("allocated %ld bytes of page_ext\n", total_usage);
518 invoke_init_callbacks();
519 return;
520
521 oom:
522 panic("Out of memory");
523 }
524
pgdat_page_ext_init(struct pglist_data * pgdat)525 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
526 {
527 }
528
529 #endif
530