1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113 * and ZONE_HIGHMEM.
114 */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119 * Randomize the address space (stacks, mmaps, brk, etc.).
120 *
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
123 */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126 1;
127 #else
128 2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134 /*
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
138 */
139 return false;
140 }
141 #endif
142
disable_randmaps(char * s)143 static int __init disable_randmaps(char *s)
144 {
145 randomize_va_space = 0;
146 return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157 */
init_zero_pfn(void)158 static int __init init_zero_pfn(void)
159 {
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 return 0;
162 }
163 early_initcall(init_zero_pfn);
164
mm_trace_rss_stat(struct mm_struct * mm,int member,long count)165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
166 {
167 trace_rss_stat(mm, member, count);
168 }
169
170 #if defined(SPLIT_RSS_COUNTING)
171
sync_mm_rss(struct mm_struct * mm)172 void sync_mm_rss(struct mm_struct *mm)
173 {
174 int i;
175
176 for (i = 0; i < NR_MM_COUNTERS; i++) {
177 if (current->rss_stat.count[i]) {
178 add_mm_counter(mm, i, current->rss_stat.count[i]);
179 current->rss_stat.count[i] = 0;
180 }
181 }
182 current->rss_stat.events = 0;
183 }
184
add_mm_counter_fast(struct mm_struct * mm,int member,int val)185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186 {
187 struct task_struct *task = current;
188
189 if (likely(task->mm == mm))
190 task->rss_stat.count[member] += val;
191 else
192 add_mm_counter(mm, member, val);
193 }
194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196
197 /* sync counter once per 64 page faults */
198 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)199 static void check_sync_rss_stat(struct task_struct *task)
200 {
201 if (unlikely(task != current))
202 return;
203 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
204 sync_mm_rss(task->mm);
205 }
206 #else /* SPLIT_RSS_COUNTING */
207
208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210
check_sync_rss_stat(struct task_struct * task)211 static void check_sync_rss_stat(struct task_struct *task)
212 {
213 }
214
215 #endif /* SPLIT_RSS_COUNTING */
216
217 /*
218 * Note: this doesn't free the actual pages themselves. That
219 * has been handled earlier when unmapping all the memory regions.
220 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
222 unsigned long addr)
223 {
224 pgtable_t token = pmd_pgtable(*pmd);
225 pmd_clear(pmd);
226 pte_free_tlb(tlb, token, addr);
227 mm_dec_nr_ptes(tlb->mm);
228 }
229
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
233 {
234 pmd_t *pmd;
235 unsigned long next;
236 unsigned long start;
237
238 start = addr;
239 pmd = pmd_offset(pud, addr);
240 do {
241 next = pmd_addr_end(addr, end);
242 if (pmd_none_or_clear_bad(pmd))
243 continue;
244 free_pte_range(tlb, pmd, addr);
245 } while (pmd++, addr = next, addr != end);
246
247 start &= PUD_MASK;
248 if (start < floor)
249 return;
250 if (ceiling) {
251 ceiling &= PUD_MASK;
252 if (!ceiling)
253 return;
254 }
255 if (end - 1 > ceiling - 1)
256 return;
257
258 pmd = pmd_offset(pud, start);
259 pud_clear(pud);
260 pmd_free_tlb(tlb, pmd, start);
261 mm_dec_nr_pmds(tlb->mm);
262 }
263
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
267 {
268 pud_t *pud;
269 unsigned long next;
270 unsigned long start;
271
272 start = addr;
273 pud = pud_offset(p4d, addr);
274 do {
275 next = pud_addr_end(addr, end);
276 if (pud_none_or_clear_bad(pud))
277 continue;
278 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
279 } while (pud++, addr = next, addr != end);
280
281 start &= P4D_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= P4D_MASK;
286 if (!ceiling)
287 return;
288 }
289 if (end - 1 > ceiling - 1)
290 return;
291
292 pud = pud_offset(p4d, start);
293 p4d_clear(p4d);
294 pud_free_tlb(tlb, pud, start);
295 mm_dec_nr_puds(tlb->mm);
296 }
297
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299 unsigned long addr, unsigned long end,
300 unsigned long floor, unsigned long ceiling)
301 {
302 p4d_t *p4d;
303 unsigned long next;
304 unsigned long start;
305
306 start = addr;
307 p4d = p4d_offset(pgd, addr);
308 do {
309 next = p4d_addr_end(addr, end);
310 if (p4d_none_or_clear_bad(p4d))
311 continue;
312 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313 } while (p4d++, addr = next, addr != end);
314
315 start &= PGDIR_MASK;
316 if (start < floor)
317 return;
318 if (ceiling) {
319 ceiling &= PGDIR_MASK;
320 if (!ceiling)
321 return;
322 }
323 if (end - 1 > ceiling - 1)
324 return;
325
326 p4d = p4d_offset(pgd, start);
327 pgd_clear(pgd);
328 p4d_free_tlb(tlb, p4d, start);
329 }
330
331 /*
332 * This function frees user-level page tables of a process.
333 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)334 void free_pgd_range(struct mmu_gather *tlb,
335 unsigned long addr, unsigned long end,
336 unsigned long floor, unsigned long ceiling)
337 {
338 pgd_t *pgd;
339 unsigned long next;
340
341 /*
342 * The next few lines have given us lots of grief...
343 *
344 * Why are we testing PMD* at this top level? Because often
345 * there will be no work to do at all, and we'd prefer not to
346 * go all the way down to the bottom just to discover that.
347 *
348 * Why all these "- 1"s? Because 0 represents both the bottom
349 * of the address space and the top of it (using -1 for the
350 * top wouldn't help much: the masks would do the wrong thing).
351 * The rule is that addr 0 and floor 0 refer to the bottom of
352 * the address space, but end 0 and ceiling 0 refer to the top
353 * Comparisons need to use "end - 1" and "ceiling - 1" (though
354 * that end 0 case should be mythical).
355 *
356 * Wherever addr is brought up or ceiling brought down, we must
357 * be careful to reject "the opposite 0" before it confuses the
358 * subsequent tests. But what about where end is brought down
359 * by PMD_SIZE below? no, end can't go down to 0 there.
360 *
361 * Whereas we round start (addr) and ceiling down, by different
362 * masks at different levels, in order to test whether a table
363 * now has no other vmas using it, so can be freed, we don't
364 * bother to round floor or end up - the tests don't need that.
365 */
366
367 addr &= PMD_MASK;
368 if (addr < floor) {
369 addr += PMD_SIZE;
370 if (!addr)
371 return;
372 }
373 if (ceiling) {
374 ceiling &= PMD_MASK;
375 if (!ceiling)
376 return;
377 }
378 if (end - 1 > ceiling - 1)
379 end -= PMD_SIZE;
380 if (addr > end - 1)
381 return;
382 /*
383 * We add page table cache pages with PAGE_SIZE,
384 * (see pte_free_tlb()), flush the tlb if we need
385 */
386 tlb_change_page_size(tlb, PAGE_SIZE);
387 pgd = pgd_offset(tlb->mm, addr);
388 do {
389 next = pgd_addr_end(addr, end);
390 if (pgd_none_or_clear_bad(pgd))
391 continue;
392 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
393 } while (pgd++, addr = next, addr != end);
394 }
395
free_pgtables(struct mmu_gather * tlb,struct maple_tree * mt,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397 struct vm_area_struct *vma, unsigned long floor,
398 unsigned long ceiling)
399 {
400 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
401
402 do {
403 unsigned long addr = vma->vm_start;
404 struct vm_area_struct *next;
405
406 /*
407 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408 * be 0. This will underflow and is okay.
409 */
410 next = mas_find(&mas, ceiling - 1);
411
412 /*
413 * Hide vma from rmap and truncate_pagecache before freeing
414 * pgtables
415 */
416 unlink_anon_vmas(vma);
417 unlink_file_vma(vma);
418
419 if (is_vm_hugetlb_page(vma)) {
420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 floor, next ? next->vm_start : ceiling);
422 } else {
423 /*
424 * Optimization: gather nearby vmas into one call down
425 */
426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 && !is_vm_hugetlb_page(next)) {
428 vma = next;
429 next = mas_find(&mas, ceiling - 1);
430 unlink_anon_vmas(vma);
431 unlink_file_vma(vma);
432 }
433 free_pgd_range(tlb, addr, vma->vm_end,
434 floor, next ? next->vm_start : ceiling);
435 }
436 vma = next;
437 } while (vma);
438 }
439
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442 spinlock_t *ptl = pmd_lock(mm, pmd);
443
444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
445 mm_inc_nr_ptes(mm);
446 /*
447 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 * visible before the pte is made visible to other CPUs by being
449 * put into page tables.
450 *
451 * The other side of the story is the pointer chasing in the page
452 * table walking code (when walking the page table without locking;
453 * ie. most of the time). Fortunately, these data accesses consist
454 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 * being the notable exception) will already guarantee loads are
456 * seen in-order. See the alpha page table accessors for the
457 * smp_rmb() barriers in page table walking code.
458 */
459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 pmd_populate(mm, pmd, *pte);
461 *pte = NULL;
462 }
463 spin_unlock(ptl);
464 }
465
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468 pgtable_t new = pte_alloc_one(mm);
469 if (!new)
470 return -ENOMEM;
471
472 pmd_install(mm, pmd, &new);
473 if (new)
474 pte_free(mm, new);
475 return 0;
476 }
477
__pte_alloc_kernel(pmd_t * pmd)478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480 pte_t *new = pte_alloc_one_kernel(&init_mm);
481 if (!new)
482 return -ENOMEM;
483
484 spin_lock(&init_mm.page_table_lock);
485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
486 smp_wmb(); /* See comment in pmd_install() */
487 pmd_populate_kernel(&init_mm, pmd, new);
488 new = NULL;
489 }
490 spin_unlock(&init_mm.page_table_lock);
491 if (new)
492 pte_free_kernel(&init_mm, new);
493 return 0;
494 }
495
init_rss_vec(int * rss)496 static inline void init_rss_vec(int *rss)
497 {
498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500
add_mm_rss_vec(struct mm_struct * mm,int * rss)501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503 int i;
504
505 if (current->mm == mm)
506 sync_mm_rss(mm);
507 for (i = 0; i < NR_MM_COUNTERS; i++)
508 if (rss[i])
509 add_mm_counter(mm, i, rss[i]);
510 }
511
512 /*
513 * This function is called to print an error when a bad pte
514 * is found. For example, we might have a PFN-mapped pte in
515 * a region that doesn't allow it.
516 *
517 * The calling function must still handle the error.
518 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 pte_t pte, struct page *page)
521 {
522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 p4d_t *p4d = p4d_offset(pgd, addr);
524 pud_t *pud = pud_offset(p4d, addr);
525 pmd_t *pmd = pmd_offset(pud, addr);
526 struct address_space *mapping;
527 pgoff_t index;
528 static unsigned long resume;
529 static unsigned long nr_shown;
530 static unsigned long nr_unshown;
531
532 /*
533 * Allow a burst of 60 reports, then keep quiet for that minute;
534 * or allow a steady drip of one report per second.
535 */
536 if (nr_shown == 60) {
537 if (time_before(jiffies, resume)) {
538 nr_unshown++;
539 return;
540 }
541 if (nr_unshown) {
542 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 index = linear_page_index(vma, addr);
553
554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
555 current->comm,
556 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 if (page)
558 dump_page(page, "bad pte");
559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562 vma->vm_file,
563 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 mapping ? mapping->a_ops->read_folio : NULL);
566 dump_stack();
567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569
570 /*
571 * vm_normal_page -- This function gets the "struct page" associated with a pte.
572 *
573 * "Special" mappings do not wish to be associated with a "struct page" (either
574 * it doesn't exist, or it exists but they don't want to touch it). In this
575 * case, NULL is returned here. "Normal" mappings do have a struct page.
576 *
577 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578 * pte bit, in which case this function is trivial. Secondly, an architecture
579 * may not have a spare pte bit, which requires a more complicated scheme,
580 * described below.
581 *
582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583 * special mapping (even if there are underlying and valid "struct pages").
584 * COWed pages of a VM_PFNMAP are always normal.
585 *
586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589 * mapping will always honor the rule
590 *
591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592 *
593 * And for normal mappings this is false.
594 *
595 * This restricts such mappings to be a linear translation from virtual address
596 * to pfn. To get around this restriction, we allow arbitrary mappings so long
597 * as the vma is not a COW mapping; in that case, we know that all ptes are
598 * special (because none can have been COWed).
599 *
600 *
601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602 *
603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604 * page" backing, however the difference is that _all_ pages with a struct
605 * page (that is, those where pfn_valid is true) are refcounted and considered
606 * normal pages by the VM. The disadvantage is that pages are refcounted
607 * (which can be slower and simply not an option for some PFNMAP users). The
608 * advantage is that we don't have to follow the strict linearity rule of
609 * PFNMAP mappings in order to support COWable mappings.
610 *
611 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 pte_t pte)
614 {
615 unsigned long pfn = pte_pfn(pte);
616
617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 if (likely(!pte_special(pte)))
619 goto check_pfn;
620 if (vma->vm_ops && vma->vm_ops->find_special_page)
621 return vma->vm_ops->find_special_page(vma, addr);
622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 return NULL;
624 if (is_zero_pfn(pfn))
625 return NULL;
626 if (pte_devmap(pte))
627 /*
628 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 * and will have refcounts incremented on their struct pages
630 * when they are inserted into PTEs, thus they are safe to
631 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634 */
635 return NULL;
636
637 print_bad_pte(vma, addr, pte, NULL);
638 return NULL;
639 }
640
641 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642
643 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 if (vma->vm_flags & VM_MIXEDMAP) {
645 if (!pfn_valid(pfn))
646 return NULL;
647 goto out;
648 } else {
649 unsigned long off;
650 off = (addr - vma->vm_start) >> PAGE_SHIFT;
651 if (pfn == vma->vm_pgoff + off)
652 return NULL;
653 if (!is_cow_mapping(vma->vm_flags))
654 return NULL;
655 }
656 }
657
658 if (is_zero_pfn(pfn))
659 return NULL;
660
661 check_pfn:
662 if (unlikely(pfn > highest_memmap_pfn)) {
663 print_bad_pte(vma, addr, pte, NULL);
664 return NULL;
665 }
666
667 /*
668 * NOTE! We still have PageReserved() pages in the page tables.
669 * eg. VDSO mappings can cause them to exist.
670 */
671 out:
672 return pfn_to_page(pfn);
673 }
674
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677 pmd_t pmd)
678 {
679 unsigned long pfn = pmd_pfn(pmd);
680
681 /*
682 * There is no pmd_special() but there may be special pmds, e.g.
683 * in a direct-access (dax) mapping, so let's just replicate the
684 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685 */
686 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 if (vma->vm_flags & VM_MIXEDMAP) {
688 if (!pfn_valid(pfn))
689 return NULL;
690 goto out;
691 } else {
692 unsigned long off;
693 off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 if (pfn == vma->vm_pgoff + off)
695 return NULL;
696 if (!is_cow_mapping(vma->vm_flags))
697 return NULL;
698 }
699 }
700
701 if (pmd_devmap(pmd))
702 return NULL;
703 if (is_huge_zero_pmd(pmd))
704 return NULL;
705 if (unlikely(pfn > highest_memmap_pfn))
706 return NULL;
707
708 /*
709 * NOTE! We still have PageReserved() pages in the page tables.
710 * eg. VDSO mappings can cause them to exist.
711 */
712 out:
713 return pfn_to_page(pfn);
714 }
715 #endif
716
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718 struct page *page, unsigned long address,
719 pte_t *ptep)
720 {
721 pte_t pte;
722 swp_entry_t entry;
723
724 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 if (pte_swp_soft_dirty(*ptep))
726 pte = pte_mksoft_dirty(pte);
727
728 entry = pte_to_swp_entry(*ptep);
729 if (pte_swp_uffd_wp(*ptep))
730 pte = pte_mkuffd_wp(pte);
731 else if (is_writable_device_exclusive_entry(entry))
732 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733
734 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735
736 /*
737 * No need to take a page reference as one was already
738 * created when the swap entry was made.
739 */
740 if (PageAnon(page))
741 page_add_anon_rmap(page, vma, address, RMAP_NONE);
742 else
743 /*
744 * Currently device exclusive access only supports anonymous
745 * memory so the entry shouldn't point to a filebacked page.
746 */
747 WARN_ON_ONCE(1);
748
749 set_pte_at(vma->vm_mm, address, ptep, pte);
750
751 /*
752 * No need to invalidate - it was non-present before. However
753 * secondary CPUs may have mappings that need invalidating.
754 */
755 update_mmu_cache(vma, address, ptep);
756 }
757
758 /*
759 * Tries to restore an exclusive pte if the page lock can be acquired without
760 * sleeping.
761 */
762 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764 unsigned long addr)
765 {
766 swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 struct page *page = pfn_swap_entry_to_page(entry);
768
769 if (trylock_page(page)) {
770 restore_exclusive_pte(vma, page, addr, src_pte);
771 unlock_page(page);
772 return 0;
773 }
774
775 return -EBUSY;
776 }
777
778 /*
779 * copy one vm_area from one task to the other. Assumes the page tables
780 * already present in the new task to be cleared in the whole range
781 * covered by this vma.
782 */
783
784 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789 unsigned long vm_flags = dst_vma->vm_flags;
790 pte_t pte = *src_pte;
791 struct page *page;
792 swp_entry_t entry = pte_to_swp_entry(pte);
793
794 if (likely(!non_swap_entry(entry))) {
795 if (swap_duplicate(entry) < 0)
796 return -EIO;
797
798 /* make sure dst_mm is on swapoff's mmlist. */
799 if (unlikely(list_empty(&dst_mm->mmlist))) {
800 spin_lock(&mmlist_lock);
801 if (list_empty(&dst_mm->mmlist))
802 list_add(&dst_mm->mmlist,
803 &src_mm->mmlist);
804 spin_unlock(&mmlist_lock);
805 }
806 /* Mark the swap entry as shared. */
807 if (pte_swp_exclusive(*src_pte)) {
808 pte = pte_swp_clear_exclusive(*src_pte);
809 set_pte_at(src_mm, addr, src_pte, pte);
810 }
811 rss[MM_SWAPENTS]++;
812 } else if (is_migration_entry(entry)) {
813 page = pfn_swap_entry_to_page(entry);
814
815 rss[mm_counter(page)]++;
816
817 if (!is_readable_migration_entry(entry) &&
818 is_cow_mapping(vm_flags)) {
819 /*
820 * COW mappings require pages in both parent and child
821 * to be set to read. A previously exclusive entry is
822 * now shared.
823 */
824 entry = make_readable_migration_entry(
825 swp_offset(entry));
826 pte = swp_entry_to_pte(entry);
827 if (pte_swp_soft_dirty(*src_pte))
828 pte = pte_swp_mksoft_dirty(pte);
829 if (pte_swp_uffd_wp(*src_pte))
830 pte = pte_swp_mkuffd_wp(pte);
831 set_pte_at(src_mm, addr, src_pte, pte);
832 }
833 } else if (is_device_private_entry(entry)) {
834 page = pfn_swap_entry_to_page(entry);
835
836 /*
837 * Update rss count even for unaddressable pages, as
838 * they should treated just like normal pages in this
839 * respect.
840 *
841 * We will likely want to have some new rss counters
842 * for unaddressable pages, at some point. But for now
843 * keep things as they are.
844 */
845 get_page(page);
846 rss[mm_counter(page)]++;
847 /* Cannot fail as these pages cannot get pinned. */
848 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849
850 /*
851 * We do not preserve soft-dirty information, because so
852 * far, checkpoint/restore is the only feature that
853 * requires that. And checkpoint/restore does not work
854 * when a device driver is involved (you cannot easily
855 * save and restore device driver state).
856 */
857 if (is_writable_device_private_entry(entry) &&
858 is_cow_mapping(vm_flags)) {
859 entry = make_readable_device_private_entry(
860 swp_offset(entry));
861 pte = swp_entry_to_pte(entry);
862 if (pte_swp_uffd_wp(*src_pte))
863 pte = pte_swp_mkuffd_wp(pte);
864 set_pte_at(src_mm, addr, src_pte, pte);
865 }
866 } else if (is_device_exclusive_entry(entry)) {
867 /*
868 * Make device exclusive entries present by restoring the
869 * original entry then copying as for a present pte. Device
870 * exclusive entries currently only support private writable
871 * (ie. COW) mappings.
872 */
873 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875 return -EBUSY;
876 return -ENOENT;
877 } else if (is_pte_marker_entry(entry)) {
878 /*
879 * We're copying the pgtable should only because dst_vma has
880 * uffd-wp enabled, do sanity check.
881 */
882 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883 set_pte_at(dst_mm, addr, dst_pte, pte);
884 return 0;
885 }
886 if (!userfaultfd_wp(dst_vma))
887 pte = pte_swp_clear_uffd_wp(pte);
888 set_pte_at(dst_mm, addr, dst_pte, pte);
889 return 0;
890 }
891
892 /*
893 * Copy a present and normal page.
894 *
895 * NOTE! The usual case is that this isn't required;
896 * instead, the caller can just increase the page refcount
897 * and re-use the pte the traditional way.
898 *
899 * And if we need a pre-allocated page but don't yet have
900 * one, return a negative error to let the preallocation
901 * code know so that it can do so outside the page table
902 * lock.
903 */
904 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,struct page * page)905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
907 struct page **prealloc, struct page *page)
908 {
909 struct page *new_page;
910 pte_t pte;
911
912 new_page = *prealloc;
913 if (!new_page)
914 return -EAGAIN;
915
916 /*
917 * We have a prealloc page, all good! Take it
918 * over and copy the page & arm it.
919 */
920 *prealloc = NULL;
921 copy_user_highpage(new_page, page, addr, src_vma);
922 __SetPageUptodate(new_page);
923 page_add_new_anon_rmap(new_page, dst_vma, addr);
924 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
925 rss[mm_counter(new_page)]++;
926
927 /* All done, just insert the new page copy in the child */
928 pte = mk_pte(new_page, dst_vma->vm_page_prot);
929 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930 if (userfaultfd_pte_wp(dst_vma, *src_pte))
931 /* Uffd-wp needs to be delivered to dest pte as well */
932 pte = pte_wrprotect(pte_mkuffd_wp(pte));
933 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 return 0;
935 }
936
937 /*
938 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
939 * is required to copy this pte.
940 */
941 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944 struct page **prealloc)
945 {
946 struct mm_struct *src_mm = src_vma->vm_mm;
947 unsigned long vm_flags = src_vma->vm_flags;
948 pte_t pte = *src_pte;
949 struct page *page;
950
951 page = vm_normal_page(src_vma, addr, pte);
952 if (page && PageAnon(page)) {
953 /*
954 * If this page may have been pinned by the parent process,
955 * copy the page immediately for the child so that we'll always
956 * guarantee the pinned page won't be randomly replaced in the
957 * future.
958 */
959 get_page(page);
960 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961 /* Page maybe pinned, we have to copy. */
962 put_page(page);
963 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964 addr, rss, prealloc, page);
965 }
966 rss[mm_counter(page)]++;
967 } else if (page) {
968 get_page(page);
969 page_dup_file_rmap(page, false);
970 rss[mm_counter(page)]++;
971 }
972
973 /*
974 * If it's a COW mapping, write protect it both
975 * in the parent and the child
976 */
977 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
978 ptep_set_wrprotect(src_mm, addr, src_pte);
979 pte = pte_wrprotect(pte);
980 }
981 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
982
983 /*
984 * If it's a shared mapping, mark it clean in
985 * the child
986 */
987 if (vm_flags & VM_SHARED)
988 pte = pte_mkclean(pte);
989 pte = pte_mkold(pte);
990
991 if (!userfaultfd_wp(dst_vma))
992 pte = pte_clear_uffd_wp(pte);
993
994 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
995 return 0;
996 }
997
998 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000 unsigned long addr)
1001 {
1002 struct page *new_page;
1003
1004 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005 if (!new_page)
1006 return NULL;
1007
1008 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1009 put_page(new_page);
1010 return NULL;
1011 }
1012 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1013
1014 return new_page;
1015 }
1016
1017 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 unsigned long end)
1021 {
1022 struct mm_struct *dst_mm = dst_vma->vm_mm;
1023 struct mm_struct *src_mm = src_vma->vm_mm;
1024 pte_t *orig_src_pte, *orig_dst_pte;
1025 pte_t *src_pte, *dst_pte;
1026 spinlock_t *src_ptl, *dst_ptl;
1027 int progress, ret = 0;
1028 int rss[NR_MM_COUNTERS];
1029 swp_entry_t entry = (swp_entry_t){0};
1030 struct page *prealloc = NULL;
1031
1032 again:
1033 progress = 0;
1034 init_rss_vec(rss);
1035
1036 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037 if (!dst_pte) {
1038 ret = -ENOMEM;
1039 goto out;
1040 }
1041 src_pte = pte_offset_map(src_pmd, addr);
1042 src_ptl = pte_lockptr(src_mm, src_pmd);
1043 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044 orig_src_pte = src_pte;
1045 orig_dst_pte = dst_pte;
1046 arch_enter_lazy_mmu_mode();
1047
1048 do {
1049 /*
1050 * We are holding two locks at this point - either of them
1051 * could generate latencies in another task on another CPU.
1052 */
1053 if (progress >= 32) {
1054 progress = 0;
1055 if (need_resched() ||
1056 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1057 break;
1058 }
1059 if (pte_none(*src_pte)) {
1060 progress++;
1061 continue;
1062 }
1063 if (unlikely(!pte_present(*src_pte))) {
1064 ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 dst_pte, src_pte,
1066 dst_vma, src_vma,
1067 addr, rss);
1068 if (ret == -EIO) {
1069 entry = pte_to_swp_entry(*src_pte);
1070 break;
1071 } else if (ret == -EBUSY) {
1072 break;
1073 } else if (!ret) {
1074 progress += 8;
1075 continue;
1076 }
1077
1078 /*
1079 * Device exclusive entry restored, continue by copying
1080 * the now present pte.
1081 */
1082 WARN_ON_ONCE(ret != -ENOENT);
1083 }
1084 /* copy_present_pte() will clear `*prealloc' if consumed */
1085 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 addr, rss, &prealloc);
1087 /*
1088 * If we need a pre-allocated page for this pte, drop the
1089 * locks, allocate, and try again.
1090 */
1091 if (unlikely(ret == -EAGAIN))
1092 break;
1093 if (unlikely(prealloc)) {
1094 /*
1095 * pre-alloc page cannot be reused by next time so as
1096 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 * will allocate page according to address). This
1098 * could only happen if one pinned pte changed.
1099 */
1100 put_page(prealloc);
1101 prealloc = NULL;
1102 }
1103 progress += 8;
1104 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105
1106 arch_leave_lazy_mmu_mode();
1107 spin_unlock(src_ptl);
1108 pte_unmap(orig_src_pte);
1109 add_mm_rss_vec(dst_mm, rss);
1110 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1111 cond_resched();
1112
1113 if (ret == -EIO) {
1114 VM_WARN_ON_ONCE(!entry.val);
1115 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 ret = -ENOMEM;
1117 goto out;
1118 }
1119 entry.val = 0;
1120 } else if (ret == -EBUSY) {
1121 goto out;
1122 } else if (ret == -EAGAIN) {
1123 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1124 if (!prealloc)
1125 return -ENOMEM;
1126 } else if (ret) {
1127 VM_WARN_ON_ONCE(1);
1128 }
1129
1130 /* We've captured and resolved the error. Reset, try again. */
1131 ret = 0;
1132
1133 if (addr != end)
1134 goto again;
1135 out:
1136 if (unlikely(prealloc))
1137 put_page(prealloc);
1138 return ret;
1139 }
1140
1141 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144 unsigned long end)
1145 {
1146 struct mm_struct *dst_mm = dst_vma->vm_mm;
1147 struct mm_struct *src_mm = src_vma->vm_mm;
1148 pmd_t *src_pmd, *dst_pmd;
1149 unsigned long next;
1150
1151 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152 if (!dst_pmd)
1153 return -ENOMEM;
1154 src_pmd = pmd_offset(src_pud, addr);
1155 do {
1156 next = pmd_addr_end(addr, end);
1157 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158 || pmd_devmap(*src_pmd)) {
1159 int err;
1160 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1161 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162 addr, dst_vma, src_vma);
1163 if (err == -ENOMEM)
1164 return -ENOMEM;
1165 if (!err)
1166 continue;
1167 /* fall through */
1168 }
1169 if (pmd_none_or_clear_bad(src_pmd))
1170 continue;
1171 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172 addr, next))
1173 return -ENOMEM;
1174 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 return 0;
1176 }
1177
1178 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181 unsigned long end)
1182 {
1183 struct mm_struct *dst_mm = dst_vma->vm_mm;
1184 struct mm_struct *src_mm = src_vma->vm_mm;
1185 pud_t *src_pud, *dst_pud;
1186 unsigned long next;
1187
1188 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189 if (!dst_pud)
1190 return -ENOMEM;
1191 src_pud = pud_offset(src_p4d, addr);
1192 do {
1193 next = pud_addr_end(addr, end);
1194 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 int err;
1196
1197 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1198 err = copy_huge_pud(dst_mm, src_mm,
1199 dst_pud, src_pud, addr, src_vma);
1200 if (err == -ENOMEM)
1201 return -ENOMEM;
1202 if (!err)
1203 continue;
1204 /* fall through */
1205 }
1206 if (pud_none_or_clear_bad(src_pud))
1207 continue;
1208 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209 addr, next))
1210 return -ENOMEM;
1211 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 return 0;
1213 }
1214
1215 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218 unsigned long end)
1219 {
1220 struct mm_struct *dst_mm = dst_vma->vm_mm;
1221 p4d_t *src_p4d, *dst_p4d;
1222 unsigned long next;
1223
1224 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225 if (!dst_p4d)
1226 return -ENOMEM;
1227 src_p4d = p4d_offset(src_pgd, addr);
1228 do {
1229 next = p4d_addr_end(addr, end);
1230 if (p4d_none_or_clear_bad(src_p4d))
1231 continue;
1232 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233 addr, next))
1234 return -ENOMEM;
1235 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 return 0;
1237 }
1238
1239 /*
1240 * Return true if the vma needs to copy the pgtable during this fork(). Return
1241 * false when we can speed up fork() by allowing lazy page faults later until
1242 * when the child accesses the memory range.
1243 */
1244 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246 {
1247 /*
1248 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250 * contains uffd-wp protection information, that's something we can't
1251 * retrieve from page cache, and skip copying will lose those info.
1252 */
1253 if (userfaultfd_wp(dst_vma))
1254 return true;
1255
1256 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1257 return true;
1258
1259 if (src_vma->anon_vma)
1260 return true;
1261
1262 /*
1263 * Don't copy ptes where a page fault will fill them correctly. Fork
1264 * becomes much lighter when there are big shared or private readonly
1265 * mappings. The tradeoff is that copy_page_range is more efficient
1266 * than faulting.
1267 */
1268 return false;
1269 }
1270
1271 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 {
1274 pgd_t *src_pgd, *dst_pgd;
1275 unsigned long next;
1276 unsigned long addr = src_vma->vm_start;
1277 unsigned long end = src_vma->vm_end;
1278 struct mm_struct *dst_mm = dst_vma->vm_mm;
1279 struct mm_struct *src_mm = src_vma->vm_mm;
1280 struct mmu_notifier_range range;
1281 bool is_cow;
1282 int ret;
1283
1284 if (!vma_needs_copy(dst_vma, src_vma))
1285 return 0;
1286
1287 if (is_vm_hugetlb_page(src_vma))
1288 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289
1290 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291 /*
1292 * We do not free on error cases below as remove_vma
1293 * gets called on error from higher level routine
1294 */
1295 ret = track_pfn_copy(src_vma);
1296 if (ret)
1297 return ret;
1298 }
1299
1300 /*
1301 * We need to invalidate the secondary MMU mappings only when
1302 * there could be a permission downgrade on the ptes of the
1303 * parent mm. And a permission downgrade will only happen if
1304 * is_cow_mapping() returns true.
1305 */
1306 is_cow = is_cow_mapping(src_vma->vm_flags);
1307
1308 if (is_cow) {
1309 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1310 0, src_vma, src_mm, addr, end);
1311 mmu_notifier_invalidate_range_start(&range);
1312 /*
1313 * Disabling preemption is not needed for the write side, as
1314 * the read side doesn't spin, but goes to the mmap_lock.
1315 *
1316 * Use the raw variant of the seqcount_t write API to avoid
1317 * lockdep complaining about preemptibility.
1318 */
1319 mmap_assert_write_locked(src_mm);
1320 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1321 }
1322
1323 ret = 0;
1324 dst_pgd = pgd_offset(dst_mm, addr);
1325 src_pgd = pgd_offset(src_mm, addr);
1326 do {
1327 next = pgd_addr_end(addr, end);
1328 if (pgd_none_or_clear_bad(src_pgd))
1329 continue;
1330 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 addr, next))) {
1332 ret = -ENOMEM;
1333 break;
1334 }
1335 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336
1337 if (is_cow) {
1338 raw_write_seqcount_end(&src_mm->write_protect_seq);
1339 mmu_notifier_invalidate_range_end(&range);
1340 }
1341 return ret;
1342 }
1343
1344 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1345 static inline bool should_zap_cows(struct zap_details *details)
1346 {
1347 /* By default, zap all pages */
1348 if (!details)
1349 return true;
1350
1351 /* Or, we zap COWed pages only if the caller wants to */
1352 return details->even_cows;
1353 }
1354
1355 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details * details,struct page * page)1356 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1357 {
1358 /* If we can make a decision without *page.. */
1359 if (should_zap_cows(details))
1360 return true;
1361
1362 /* E.g. the caller passes NULL for the case of a zero page */
1363 if (!page)
1364 return true;
1365
1366 /* Otherwise we should only zap non-anon pages */
1367 return !PageAnon(page);
1368 }
1369
zap_drop_file_uffd_wp(struct zap_details * details)1370 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1371 {
1372 if (!details)
1373 return false;
1374
1375 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1376 }
1377
1378 /*
1379 * This function makes sure that we'll replace the none pte with an uffd-wp
1380 * swap special pte marker when necessary. Must be with the pgtable lock held.
1381 */
1382 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,struct zap_details * details,pte_t pteval)1383 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1384 unsigned long addr, pte_t *pte,
1385 struct zap_details *details, pte_t pteval)
1386 {
1387 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1388 if (zap_drop_file_uffd_wp(details))
1389 return;
1390
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 #endif
1393 }
1394
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1395 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1396 struct vm_area_struct *vma, pmd_t *pmd,
1397 unsigned long addr, unsigned long end,
1398 struct zap_details *details)
1399 {
1400 struct mm_struct *mm = tlb->mm;
1401 int force_flush = 0;
1402 int rss[NR_MM_COUNTERS];
1403 spinlock_t *ptl;
1404 pte_t *start_pte;
1405 pte_t *pte;
1406 swp_entry_t entry;
1407
1408 tlb_change_page_size(tlb, PAGE_SIZE);
1409 again:
1410 init_rss_vec(rss);
1411 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1412 pte = start_pte;
1413 flush_tlb_batched_pending(mm);
1414 arch_enter_lazy_mmu_mode();
1415 do {
1416 pte_t ptent = *pte;
1417 struct page *page;
1418
1419 if (pte_none(ptent))
1420 continue;
1421
1422 if (need_resched())
1423 break;
1424
1425 if (pte_present(ptent)) {
1426 page = vm_normal_page(vma, addr, ptent);
1427 if (unlikely(!should_zap_page(details, page)))
1428 continue;
1429 ptent = ptep_get_and_clear_full(mm, addr, pte,
1430 tlb->fullmm);
1431 tlb_remove_tlb_entry(tlb, pte, addr);
1432 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1433 ptent);
1434 if (unlikely(!page))
1435 continue;
1436
1437 if (!PageAnon(page)) {
1438 if (pte_dirty(ptent)) {
1439 force_flush = 1;
1440 set_page_dirty(page);
1441 }
1442 if (pte_young(ptent) &&
1443 likely(!(vma->vm_flags & VM_SEQ_READ)))
1444 mark_page_accessed(page);
1445 }
1446 rss[mm_counter(page)]--;
1447 page_remove_rmap(page, vma, false);
1448 if (unlikely(page_mapcount(page) < 0))
1449 print_bad_pte(vma, addr, ptent, page);
1450 if (unlikely(__tlb_remove_page(tlb, page))) {
1451 force_flush = 1;
1452 addr += PAGE_SIZE;
1453 break;
1454 }
1455 continue;
1456 }
1457
1458 entry = pte_to_swp_entry(ptent);
1459 if (is_device_private_entry(entry) ||
1460 is_device_exclusive_entry(entry)) {
1461 page = pfn_swap_entry_to_page(entry);
1462 if (unlikely(!should_zap_page(details, page)))
1463 continue;
1464 /*
1465 * Both device private/exclusive mappings should only
1466 * work with anonymous page so far, so we don't need to
1467 * consider uffd-wp bit when zap. For more information,
1468 * see zap_install_uffd_wp_if_needed().
1469 */
1470 WARN_ON_ONCE(!vma_is_anonymous(vma));
1471 rss[mm_counter(page)]--;
1472 if (is_device_private_entry(entry))
1473 page_remove_rmap(page, vma, false);
1474 put_page(page);
1475 } else if (!non_swap_entry(entry)) {
1476 /* Genuine swap entry, hence a private anon page */
1477 if (!should_zap_cows(details))
1478 continue;
1479 rss[MM_SWAPENTS]--;
1480 if (unlikely(!free_swap_and_cache(entry)))
1481 print_bad_pte(vma, addr, ptent, NULL);
1482 } else if (is_migration_entry(entry)) {
1483 page = pfn_swap_entry_to_page(entry);
1484 if (!should_zap_page(details, page))
1485 continue;
1486 rss[mm_counter(page)]--;
1487 } else if (pte_marker_entry_uffd_wp(entry)) {
1488 /* Only drop the uffd-wp marker if explicitly requested */
1489 if (!zap_drop_file_uffd_wp(details))
1490 continue;
1491 } else if (is_hwpoison_entry(entry) ||
1492 is_swapin_error_entry(entry)) {
1493 if (!should_zap_cows(details))
1494 continue;
1495 } else {
1496 /* We should have covered all the swap entry types */
1497 WARN_ON_ONCE(1);
1498 }
1499 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1500 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1501 } while (pte++, addr += PAGE_SIZE, addr != end);
1502
1503 add_mm_rss_vec(mm, rss);
1504 arch_leave_lazy_mmu_mode();
1505
1506 /* Do the actual TLB flush before dropping ptl */
1507 if (force_flush)
1508 tlb_flush_mmu_tlbonly(tlb);
1509 pte_unmap_unlock(start_pte, ptl);
1510
1511 /*
1512 * If we forced a TLB flush (either due to running out of
1513 * batch buffers or because we needed to flush dirty TLB
1514 * entries before releasing the ptl), free the batched
1515 * memory too. Restart if we didn't do everything.
1516 */
1517 if (force_flush) {
1518 force_flush = 0;
1519 tlb_flush_mmu(tlb);
1520 }
1521
1522 if (addr != end) {
1523 cond_resched();
1524 goto again;
1525 }
1526
1527 return addr;
1528 }
1529
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1530 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1531 struct vm_area_struct *vma, pud_t *pud,
1532 unsigned long addr, unsigned long end,
1533 struct zap_details *details)
1534 {
1535 pmd_t *pmd;
1536 unsigned long next;
1537
1538 pmd = pmd_offset(pud, addr);
1539 do {
1540 next = pmd_addr_end(addr, end);
1541 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1542 if (next - addr != HPAGE_PMD_SIZE)
1543 __split_huge_pmd(vma, pmd, addr, false, NULL);
1544 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1545 goto next;
1546 /* fall through */
1547 } else if (details && details->single_folio &&
1548 folio_test_pmd_mappable(details->single_folio) &&
1549 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1550 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1551 /*
1552 * Take and drop THP pmd lock so that we cannot return
1553 * prematurely, while zap_huge_pmd() has cleared *pmd,
1554 * but not yet decremented compound_mapcount().
1555 */
1556 spin_unlock(ptl);
1557 }
1558
1559 /*
1560 * Here there can be other concurrent MADV_DONTNEED or
1561 * trans huge page faults running, and if the pmd is
1562 * none or trans huge it can change under us. This is
1563 * because MADV_DONTNEED holds the mmap_lock in read
1564 * mode.
1565 */
1566 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1567 goto next;
1568 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1569 next:
1570 cond_resched();
1571 } while (pmd++, addr = next, addr != end);
1572
1573 return addr;
1574 }
1575
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1576 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1577 struct vm_area_struct *vma, p4d_t *p4d,
1578 unsigned long addr, unsigned long end,
1579 struct zap_details *details)
1580 {
1581 pud_t *pud;
1582 unsigned long next;
1583
1584 pud = pud_offset(p4d, addr);
1585 do {
1586 next = pud_addr_end(addr, end);
1587 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1588 if (next - addr != HPAGE_PUD_SIZE) {
1589 mmap_assert_locked(tlb->mm);
1590 split_huge_pud(vma, pud, addr);
1591 } else if (zap_huge_pud(tlb, vma, pud, addr))
1592 goto next;
1593 /* fall through */
1594 }
1595 if (pud_none_or_clear_bad(pud))
1596 continue;
1597 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1598 next:
1599 cond_resched();
1600 } while (pud++, addr = next, addr != end);
1601
1602 return addr;
1603 }
1604
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1605 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1606 struct vm_area_struct *vma, pgd_t *pgd,
1607 unsigned long addr, unsigned long end,
1608 struct zap_details *details)
1609 {
1610 p4d_t *p4d;
1611 unsigned long next;
1612
1613 p4d = p4d_offset(pgd, addr);
1614 do {
1615 next = p4d_addr_end(addr, end);
1616 if (p4d_none_or_clear_bad(p4d))
1617 continue;
1618 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1619 } while (p4d++, addr = next, addr != end);
1620
1621 return addr;
1622 }
1623
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1624 void unmap_page_range(struct mmu_gather *tlb,
1625 struct vm_area_struct *vma,
1626 unsigned long addr, unsigned long end,
1627 struct zap_details *details)
1628 {
1629 pgd_t *pgd;
1630 unsigned long next;
1631
1632 BUG_ON(addr >= end);
1633 tlb_start_vma(tlb, vma);
1634 pgd = pgd_offset(vma->vm_mm, addr);
1635 do {
1636 next = pgd_addr_end(addr, end);
1637 if (pgd_none_or_clear_bad(pgd))
1638 continue;
1639 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1640 } while (pgd++, addr = next, addr != end);
1641 tlb_end_vma(tlb, vma);
1642 }
1643
1644
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1645 static void unmap_single_vma(struct mmu_gather *tlb,
1646 struct vm_area_struct *vma, unsigned long start_addr,
1647 unsigned long end_addr,
1648 struct zap_details *details)
1649 {
1650 unsigned long start = max(vma->vm_start, start_addr);
1651 unsigned long end;
1652
1653 if (start >= vma->vm_end)
1654 return;
1655 end = min(vma->vm_end, end_addr);
1656 if (end <= vma->vm_start)
1657 return;
1658
1659 if (vma->vm_file)
1660 uprobe_munmap(vma, start, end);
1661
1662 if (unlikely(vma->vm_flags & VM_PFNMAP))
1663 untrack_pfn(vma, 0, 0);
1664
1665 if (start != end) {
1666 if (unlikely(is_vm_hugetlb_page(vma))) {
1667 /*
1668 * It is undesirable to test vma->vm_file as it
1669 * should be non-null for valid hugetlb area.
1670 * However, vm_file will be NULL in the error
1671 * cleanup path of mmap_region. When
1672 * hugetlbfs ->mmap method fails,
1673 * mmap_region() nullifies vma->vm_file
1674 * before calling this function to clean up.
1675 * Since no pte has actually been setup, it is
1676 * safe to do nothing in this case.
1677 */
1678 if (vma->vm_file) {
1679 zap_flags_t zap_flags = details ?
1680 details->zap_flags : 0;
1681 __unmap_hugepage_range_final(tlb, vma, start, end,
1682 NULL, zap_flags);
1683 }
1684 } else
1685 unmap_page_range(tlb, vma, start, end, details);
1686 }
1687 }
1688
1689 /**
1690 * unmap_vmas - unmap a range of memory covered by a list of vma's
1691 * @tlb: address of the caller's struct mmu_gather
1692 * @mt: the maple tree
1693 * @vma: the starting vma
1694 * @start_addr: virtual address at which to start unmapping
1695 * @end_addr: virtual address at which to end unmapping
1696 *
1697 * Unmap all pages in the vma list.
1698 *
1699 * Only addresses between `start' and `end' will be unmapped.
1700 *
1701 * The VMA list must be sorted in ascending virtual address order.
1702 *
1703 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1704 * range after unmap_vmas() returns. So the only responsibility here is to
1705 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1706 * drops the lock and schedules.
1707 */
unmap_vmas(struct mmu_gather * tlb,struct maple_tree * mt,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1708 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1709 struct vm_area_struct *vma, unsigned long start_addr,
1710 unsigned long end_addr)
1711 {
1712 struct mmu_notifier_range range;
1713 struct zap_details details = {
1714 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1715 /* Careful - we need to zap private pages too! */
1716 .even_cows = true,
1717 };
1718 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1719
1720 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1721 start_addr, end_addr);
1722 mmu_notifier_invalidate_range_start(&range);
1723 do {
1724 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1725 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1726 mmu_notifier_invalidate_range_end(&range);
1727 }
1728
1729 /**
1730 * zap_page_range - remove user pages in a given range
1731 * @vma: vm_area_struct holding the applicable pages
1732 * @start: starting address of pages to zap
1733 * @size: number of bytes to zap
1734 *
1735 * Caller must protect the VMA list
1736 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1737 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1738 unsigned long size)
1739 {
1740 struct maple_tree *mt = &vma->vm_mm->mm_mt;
1741 unsigned long end = start + size;
1742 struct mmu_notifier_range range;
1743 struct mmu_gather tlb;
1744 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1745
1746 lru_add_drain();
1747 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1748 start, start + size);
1749 tlb_gather_mmu(&tlb, vma->vm_mm);
1750 update_hiwater_rss(vma->vm_mm);
1751 mmu_notifier_invalidate_range_start(&range);
1752 do {
1753 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1754 } while ((vma = mas_find(&mas, end - 1)) != NULL);
1755 mmu_notifier_invalidate_range_end(&range);
1756 tlb_finish_mmu(&tlb);
1757 }
1758
1759 /**
1760 * zap_page_range_single - remove user pages in a given range
1761 * @vma: vm_area_struct holding the applicable pages
1762 * @address: starting address of pages to zap
1763 * @size: number of bytes to zap
1764 * @details: details of shared cache invalidation
1765 *
1766 * The range must fit into one VMA.
1767 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1768 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1769 unsigned long size, struct zap_details *details)
1770 {
1771 const unsigned long end = address + size;
1772 struct mmu_notifier_range range;
1773 struct mmu_gather tlb;
1774
1775 lru_add_drain();
1776 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1777 address, end);
1778 if (is_vm_hugetlb_page(vma))
1779 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1780 &range.end);
1781 tlb_gather_mmu(&tlb, vma->vm_mm);
1782 update_hiwater_rss(vma->vm_mm);
1783 mmu_notifier_invalidate_range_start(&range);
1784 /*
1785 * unmap 'address-end' not 'range.start-range.end' as range
1786 * could have been expanded for hugetlb pmd sharing.
1787 */
1788 unmap_single_vma(&tlb, vma, address, end, details);
1789 mmu_notifier_invalidate_range_end(&range);
1790 tlb_finish_mmu(&tlb);
1791 }
1792
1793 /**
1794 * zap_vma_ptes - remove ptes mapping the vma
1795 * @vma: vm_area_struct holding ptes to be zapped
1796 * @address: starting address of pages to zap
1797 * @size: number of bytes to zap
1798 *
1799 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1800 *
1801 * The entire address range must be fully contained within the vma.
1802 *
1803 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1804 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1805 unsigned long size)
1806 {
1807 if (!range_in_vma(vma, address, address + size) ||
1808 !(vma->vm_flags & VM_PFNMAP))
1809 return;
1810
1811 zap_page_range_single(vma, address, size, NULL);
1812 }
1813 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1814
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1815 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1816 {
1817 pgd_t *pgd;
1818 p4d_t *p4d;
1819 pud_t *pud;
1820 pmd_t *pmd;
1821
1822 pgd = pgd_offset(mm, addr);
1823 p4d = p4d_alloc(mm, pgd, addr);
1824 if (!p4d)
1825 return NULL;
1826 pud = pud_alloc(mm, p4d, addr);
1827 if (!pud)
1828 return NULL;
1829 pmd = pmd_alloc(mm, pud, addr);
1830 if (!pmd)
1831 return NULL;
1832
1833 VM_BUG_ON(pmd_trans_huge(*pmd));
1834 return pmd;
1835 }
1836
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1837 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1838 spinlock_t **ptl)
1839 {
1840 pmd_t *pmd = walk_to_pmd(mm, addr);
1841
1842 if (!pmd)
1843 return NULL;
1844 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1845 }
1846
validate_page_before_insert(struct page * page)1847 static int validate_page_before_insert(struct page *page)
1848 {
1849 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1850 return -EINVAL;
1851 flush_dcache_page(page);
1852 return 0;
1853 }
1854
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1855 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1856 unsigned long addr, struct page *page, pgprot_t prot)
1857 {
1858 if (!pte_none(*pte))
1859 return -EBUSY;
1860 /* Ok, finally just insert the thing.. */
1861 get_page(page);
1862 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1863 page_add_file_rmap(page, vma, false);
1864 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1865 return 0;
1866 }
1867
1868 /*
1869 * This is the old fallback for page remapping.
1870 *
1871 * For historical reasons, it only allows reserved pages. Only
1872 * old drivers should use this, and they needed to mark their
1873 * pages reserved for the old functions anyway.
1874 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1875 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1876 struct page *page, pgprot_t prot)
1877 {
1878 int retval;
1879 pte_t *pte;
1880 spinlock_t *ptl;
1881
1882 retval = validate_page_before_insert(page);
1883 if (retval)
1884 goto out;
1885 retval = -ENOMEM;
1886 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1887 if (!pte)
1888 goto out;
1889 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1890 pte_unmap_unlock(pte, ptl);
1891 out:
1892 return retval;
1893 }
1894
1895 #ifdef pte_index
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1896 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1897 unsigned long addr, struct page *page, pgprot_t prot)
1898 {
1899 int err;
1900
1901 if (!page_count(page))
1902 return -EINVAL;
1903 err = validate_page_before_insert(page);
1904 if (err)
1905 return err;
1906 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1907 }
1908
1909 /* insert_pages() amortizes the cost of spinlock operations
1910 * when inserting pages in a loop. Arch *must* define pte_index.
1911 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1912 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1913 struct page **pages, unsigned long *num, pgprot_t prot)
1914 {
1915 pmd_t *pmd = NULL;
1916 pte_t *start_pte, *pte;
1917 spinlock_t *pte_lock;
1918 struct mm_struct *const mm = vma->vm_mm;
1919 unsigned long curr_page_idx = 0;
1920 unsigned long remaining_pages_total = *num;
1921 unsigned long pages_to_write_in_pmd;
1922 int ret;
1923 more:
1924 ret = -EFAULT;
1925 pmd = walk_to_pmd(mm, addr);
1926 if (!pmd)
1927 goto out;
1928
1929 pages_to_write_in_pmd = min_t(unsigned long,
1930 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1931
1932 /* Allocate the PTE if necessary; takes PMD lock once only. */
1933 ret = -ENOMEM;
1934 if (pte_alloc(mm, pmd))
1935 goto out;
1936
1937 while (pages_to_write_in_pmd) {
1938 int pte_idx = 0;
1939 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1940
1941 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1942 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1943 int err = insert_page_in_batch_locked(vma, pte,
1944 addr, pages[curr_page_idx], prot);
1945 if (unlikely(err)) {
1946 pte_unmap_unlock(start_pte, pte_lock);
1947 ret = err;
1948 remaining_pages_total -= pte_idx;
1949 goto out;
1950 }
1951 addr += PAGE_SIZE;
1952 ++curr_page_idx;
1953 }
1954 pte_unmap_unlock(start_pte, pte_lock);
1955 pages_to_write_in_pmd -= batch_size;
1956 remaining_pages_total -= batch_size;
1957 }
1958 if (remaining_pages_total)
1959 goto more;
1960 ret = 0;
1961 out:
1962 *num = remaining_pages_total;
1963 return ret;
1964 }
1965 #endif /* ifdef pte_index */
1966
1967 /**
1968 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1969 * @vma: user vma to map to
1970 * @addr: target start user address of these pages
1971 * @pages: source kernel pages
1972 * @num: in: number of pages to map. out: number of pages that were *not*
1973 * mapped. (0 means all pages were successfully mapped).
1974 *
1975 * Preferred over vm_insert_page() when inserting multiple pages.
1976 *
1977 * In case of error, we may have mapped a subset of the provided
1978 * pages. It is the caller's responsibility to account for this case.
1979 *
1980 * The same restrictions apply as in vm_insert_page().
1981 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1982 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1983 struct page **pages, unsigned long *num)
1984 {
1985 #ifdef pte_index
1986 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1987
1988 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1989 return -EFAULT;
1990 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1991 BUG_ON(mmap_read_trylock(vma->vm_mm));
1992 BUG_ON(vma->vm_flags & VM_PFNMAP);
1993 vma->vm_flags |= VM_MIXEDMAP;
1994 }
1995 /* Defer page refcount checking till we're about to map that page. */
1996 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1997 #else
1998 unsigned long idx = 0, pgcount = *num;
1999 int err = -EINVAL;
2000
2001 for (; idx < pgcount; ++idx) {
2002 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
2003 if (err)
2004 break;
2005 }
2006 *num = pgcount - idx;
2007 return err;
2008 #endif /* ifdef pte_index */
2009 }
2010 EXPORT_SYMBOL(vm_insert_pages);
2011
2012 /**
2013 * vm_insert_page - insert single page into user vma
2014 * @vma: user vma to map to
2015 * @addr: target user address of this page
2016 * @page: source kernel page
2017 *
2018 * This allows drivers to insert individual pages they've allocated
2019 * into a user vma.
2020 *
2021 * The page has to be a nice clean _individual_ kernel allocation.
2022 * If you allocate a compound page, you need to have marked it as
2023 * such (__GFP_COMP), or manually just split the page up yourself
2024 * (see split_page()).
2025 *
2026 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2027 * took an arbitrary page protection parameter. This doesn't allow
2028 * that. Your vma protection will have to be set up correctly, which
2029 * means that if you want a shared writable mapping, you'd better
2030 * ask for a shared writable mapping!
2031 *
2032 * The page does not need to be reserved.
2033 *
2034 * Usually this function is called from f_op->mmap() handler
2035 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2036 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2037 * function from other places, for example from page-fault handler.
2038 *
2039 * Return: %0 on success, negative error code otherwise.
2040 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2041 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2042 struct page *page)
2043 {
2044 if (addr < vma->vm_start || addr >= vma->vm_end)
2045 return -EFAULT;
2046 if (!page_count(page))
2047 return -EINVAL;
2048 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2049 BUG_ON(mmap_read_trylock(vma->vm_mm));
2050 BUG_ON(vma->vm_flags & VM_PFNMAP);
2051 vma->vm_flags |= VM_MIXEDMAP;
2052 }
2053 return insert_page(vma, addr, page, vma->vm_page_prot);
2054 }
2055 EXPORT_SYMBOL(vm_insert_page);
2056
2057 /*
2058 * __vm_map_pages - maps range of kernel pages into user vma
2059 * @vma: user vma to map to
2060 * @pages: pointer to array of source kernel pages
2061 * @num: number of pages in page array
2062 * @offset: user's requested vm_pgoff
2063 *
2064 * This allows drivers to map range of kernel pages into a user vma.
2065 *
2066 * Return: 0 on success and error code otherwise.
2067 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2068 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2069 unsigned long num, unsigned long offset)
2070 {
2071 unsigned long count = vma_pages(vma);
2072 unsigned long uaddr = vma->vm_start;
2073 int ret, i;
2074
2075 /* Fail if the user requested offset is beyond the end of the object */
2076 if (offset >= num)
2077 return -ENXIO;
2078
2079 /* Fail if the user requested size exceeds available object size */
2080 if (count > num - offset)
2081 return -ENXIO;
2082
2083 for (i = 0; i < count; i++) {
2084 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2085 if (ret < 0)
2086 return ret;
2087 uaddr += PAGE_SIZE;
2088 }
2089
2090 return 0;
2091 }
2092
2093 /**
2094 * vm_map_pages - maps range of kernel pages starts with non zero offset
2095 * @vma: user vma to map to
2096 * @pages: pointer to array of source kernel pages
2097 * @num: number of pages in page array
2098 *
2099 * Maps an object consisting of @num pages, catering for the user's
2100 * requested vm_pgoff
2101 *
2102 * If we fail to insert any page into the vma, the function will return
2103 * immediately leaving any previously inserted pages present. Callers
2104 * from the mmap handler may immediately return the error as their caller
2105 * will destroy the vma, removing any successfully inserted pages. Other
2106 * callers should make their own arrangements for calling unmap_region().
2107 *
2108 * Context: Process context. Called by mmap handlers.
2109 * Return: 0 on success and error code otherwise.
2110 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2111 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2112 unsigned long num)
2113 {
2114 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2115 }
2116 EXPORT_SYMBOL(vm_map_pages);
2117
2118 /**
2119 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2120 * @vma: user vma to map to
2121 * @pages: pointer to array of source kernel pages
2122 * @num: number of pages in page array
2123 *
2124 * Similar to vm_map_pages(), except that it explicitly sets the offset
2125 * to 0. This function is intended for the drivers that did not consider
2126 * vm_pgoff.
2127 *
2128 * Context: Process context. Called by mmap handlers.
2129 * Return: 0 on success and error code otherwise.
2130 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2131 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2132 unsigned long num)
2133 {
2134 return __vm_map_pages(vma, pages, num, 0);
2135 }
2136 EXPORT_SYMBOL(vm_map_pages_zero);
2137
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2138 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2139 pfn_t pfn, pgprot_t prot, bool mkwrite)
2140 {
2141 struct mm_struct *mm = vma->vm_mm;
2142 pte_t *pte, entry;
2143 spinlock_t *ptl;
2144
2145 pte = get_locked_pte(mm, addr, &ptl);
2146 if (!pte)
2147 return VM_FAULT_OOM;
2148 if (!pte_none(*pte)) {
2149 if (mkwrite) {
2150 /*
2151 * For read faults on private mappings the PFN passed
2152 * in may not match the PFN we have mapped if the
2153 * mapped PFN is a writeable COW page. In the mkwrite
2154 * case we are creating a writable PTE for a shared
2155 * mapping and we expect the PFNs to match. If they
2156 * don't match, we are likely racing with block
2157 * allocation and mapping invalidation so just skip the
2158 * update.
2159 */
2160 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2161 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2162 goto out_unlock;
2163 }
2164 entry = pte_mkyoung(*pte);
2165 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2166 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2167 update_mmu_cache(vma, addr, pte);
2168 }
2169 goto out_unlock;
2170 }
2171
2172 /* Ok, finally just insert the thing.. */
2173 if (pfn_t_devmap(pfn))
2174 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2175 else
2176 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2177
2178 if (mkwrite) {
2179 entry = pte_mkyoung(entry);
2180 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2181 }
2182
2183 set_pte_at(mm, addr, pte, entry);
2184 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2185
2186 out_unlock:
2187 pte_unmap_unlock(pte, ptl);
2188 return VM_FAULT_NOPAGE;
2189 }
2190
2191 /**
2192 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2193 * @vma: user vma to map to
2194 * @addr: target user address of this page
2195 * @pfn: source kernel pfn
2196 * @pgprot: pgprot flags for the inserted page
2197 *
2198 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2199 * to override pgprot on a per-page basis.
2200 *
2201 * This only makes sense for IO mappings, and it makes no sense for
2202 * COW mappings. In general, using multiple vmas is preferable;
2203 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2204 * impractical.
2205 *
2206 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2207 * a value of @pgprot different from that of @vma->vm_page_prot.
2208 *
2209 * Context: Process context. May allocate using %GFP_KERNEL.
2210 * Return: vm_fault_t value.
2211 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2212 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2213 unsigned long pfn, pgprot_t pgprot)
2214 {
2215 /*
2216 * Technically, architectures with pte_special can avoid all these
2217 * restrictions (same for remap_pfn_range). However we would like
2218 * consistency in testing and feature parity among all, so we should
2219 * try to keep these invariants in place for everybody.
2220 */
2221 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2222 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2223 (VM_PFNMAP|VM_MIXEDMAP));
2224 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2225 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2226
2227 if (addr < vma->vm_start || addr >= vma->vm_end)
2228 return VM_FAULT_SIGBUS;
2229
2230 if (!pfn_modify_allowed(pfn, pgprot))
2231 return VM_FAULT_SIGBUS;
2232
2233 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2234
2235 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2236 false);
2237 }
2238 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2239
2240 /**
2241 * vmf_insert_pfn - insert single pfn into user vma
2242 * @vma: user vma to map to
2243 * @addr: target user address of this page
2244 * @pfn: source kernel pfn
2245 *
2246 * Similar to vm_insert_page, this allows drivers to insert individual pages
2247 * they've allocated into a user vma. Same comments apply.
2248 *
2249 * This function should only be called from a vm_ops->fault handler, and
2250 * in that case the handler should return the result of this function.
2251 *
2252 * vma cannot be a COW mapping.
2253 *
2254 * As this is called only for pages that do not currently exist, we
2255 * do not need to flush old virtual caches or the TLB.
2256 *
2257 * Context: Process context. May allocate using %GFP_KERNEL.
2258 * Return: vm_fault_t value.
2259 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2260 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2261 unsigned long pfn)
2262 {
2263 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2264 }
2265 EXPORT_SYMBOL(vmf_insert_pfn);
2266
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2267 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2268 {
2269 /* these checks mirror the abort conditions in vm_normal_page */
2270 if (vma->vm_flags & VM_MIXEDMAP)
2271 return true;
2272 if (pfn_t_devmap(pfn))
2273 return true;
2274 if (pfn_t_special(pfn))
2275 return true;
2276 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2277 return true;
2278 return false;
2279 }
2280
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2281 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2282 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2283 bool mkwrite)
2284 {
2285 int err;
2286
2287 BUG_ON(!vm_mixed_ok(vma, pfn));
2288
2289 if (addr < vma->vm_start || addr >= vma->vm_end)
2290 return VM_FAULT_SIGBUS;
2291
2292 track_pfn_insert(vma, &pgprot, pfn);
2293
2294 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2295 return VM_FAULT_SIGBUS;
2296
2297 /*
2298 * If we don't have pte special, then we have to use the pfn_valid()
2299 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2300 * refcount the page if pfn_valid is true (hence insert_page rather
2301 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2302 * without pte special, it would there be refcounted as a normal page.
2303 */
2304 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2305 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2306 struct page *page;
2307
2308 /*
2309 * At this point we are committed to insert_page()
2310 * regardless of whether the caller specified flags that
2311 * result in pfn_t_has_page() == false.
2312 */
2313 page = pfn_to_page(pfn_t_to_pfn(pfn));
2314 err = insert_page(vma, addr, page, pgprot);
2315 } else {
2316 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2317 }
2318
2319 if (err == -ENOMEM)
2320 return VM_FAULT_OOM;
2321 if (err < 0 && err != -EBUSY)
2322 return VM_FAULT_SIGBUS;
2323
2324 return VM_FAULT_NOPAGE;
2325 }
2326
2327 /**
2328 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2329 * @vma: user vma to map to
2330 * @addr: target user address of this page
2331 * @pfn: source kernel pfn
2332 * @pgprot: pgprot flags for the inserted page
2333 *
2334 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2335 * to override pgprot on a per-page basis.
2336 *
2337 * Typically this function should be used by drivers to set caching- and
2338 * encryption bits different than those of @vma->vm_page_prot, because
2339 * the caching- or encryption mode may not be known at mmap() time.
2340 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2341 * to set caching and encryption bits for those vmas (except for COW pages).
2342 * This is ensured by core vm only modifying these page table entries using
2343 * functions that don't touch caching- or encryption bits, using pte_modify()
2344 * if needed. (See for example mprotect()).
2345 * Also when new page-table entries are created, this is only done using the
2346 * fault() callback, and never using the value of vma->vm_page_prot,
2347 * except for page-table entries that point to anonymous pages as the result
2348 * of COW.
2349 *
2350 * Context: Process context. May allocate using %GFP_KERNEL.
2351 * Return: vm_fault_t value.
2352 */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2353 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2354 pfn_t pfn, pgprot_t pgprot)
2355 {
2356 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2357 }
2358 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2359
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2360 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2361 pfn_t pfn)
2362 {
2363 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2364 }
2365 EXPORT_SYMBOL(vmf_insert_mixed);
2366
2367 /*
2368 * If the insertion of PTE failed because someone else already added a
2369 * different entry in the mean time, we treat that as success as we assume
2370 * the same entry was actually inserted.
2371 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2372 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2373 unsigned long addr, pfn_t pfn)
2374 {
2375 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2376 }
2377 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2378
2379 /*
2380 * maps a range of physical memory into the requested pages. the old
2381 * mappings are removed. any references to nonexistent pages results
2382 * in null mappings (currently treated as "copy-on-access")
2383 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2384 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2385 unsigned long addr, unsigned long end,
2386 unsigned long pfn, pgprot_t prot)
2387 {
2388 pte_t *pte, *mapped_pte;
2389 spinlock_t *ptl;
2390 int err = 0;
2391
2392 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2393 if (!pte)
2394 return -ENOMEM;
2395 arch_enter_lazy_mmu_mode();
2396 do {
2397 BUG_ON(!pte_none(*pte));
2398 if (!pfn_modify_allowed(pfn, prot)) {
2399 err = -EACCES;
2400 break;
2401 }
2402 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2403 pfn++;
2404 } while (pte++, addr += PAGE_SIZE, addr != end);
2405 arch_leave_lazy_mmu_mode();
2406 pte_unmap_unlock(mapped_pte, ptl);
2407 return err;
2408 }
2409
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2410 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2411 unsigned long addr, unsigned long end,
2412 unsigned long pfn, pgprot_t prot)
2413 {
2414 pmd_t *pmd;
2415 unsigned long next;
2416 int err;
2417
2418 pfn -= addr >> PAGE_SHIFT;
2419 pmd = pmd_alloc(mm, pud, addr);
2420 if (!pmd)
2421 return -ENOMEM;
2422 VM_BUG_ON(pmd_trans_huge(*pmd));
2423 do {
2424 next = pmd_addr_end(addr, end);
2425 err = remap_pte_range(mm, pmd, addr, next,
2426 pfn + (addr >> PAGE_SHIFT), prot);
2427 if (err)
2428 return err;
2429 } while (pmd++, addr = next, addr != end);
2430 return 0;
2431 }
2432
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2433 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2434 unsigned long addr, unsigned long end,
2435 unsigned long pfn, pgprot_t prot)
2436 {
2437 pud_t *pud;
2438 unsigned long next;
2439 int err;
2440
2441 pfn -= addr >> PAGE_SHIFT;
2442 pud = pud_alloc(mm, p4d, addr);
2443 if (!pud)
2444 return -ENOMEM;
2445 do {
2446 next = pud_addr_end(addr, end);
2447 err = remap_pmd_range(mm, pud, addr, next,
2448 pfn + (addr >> PAGE_SHIFT), prot);
2449 if (err)
2450 return err;
2451 } while (pud++, addr = next, addr != end);
2452 return 0;
2453 }
2454
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2455 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2456 unsigned long addr, unsigned long end,
2457 unsigned long pfn, pgprot_t prot)
2458 {
2459 p4d_t *p4d;
2460 unsigned long next;
2461 int err;
2462
2463 pfn -= addr >> PAGE_SHIFT;
2464 p4d = p4d_alloc(mm, pgd, addr);
2465 if (!p4d)
2466 return -ENOMEM;
2467 do {
2468 next = p4d_addr_end(addr, end);
2469 err = remap_pud_range(mm, p4d, addr, next,
2470 pfn + (addr >> PAGE_SHIFT), prot);
2471 if (err)
2472 return err;
2473 } while (p4d++, addr = next, addr != end);
2474 return 0;
2475 }
2476
2477 /*
2478 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2479 * must have pre-validated the caching bits of the pgprot_t.
2480 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2481 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2482 unsigned long pfn, unsigned long size, pgprot_t prot)
2483 {
2484 pgd_t *pgd;
2485 unsigned long next;
2486 unsigned long end = addr + PAGE_ALIGN(size);
2487 struct mm_struct *mm = vma->vm_mm;
2488 int err;
2489
2490 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2491 return -EINVAL;
2492
2493 /*
2494 * Physically remapped pages are special. Tell the
2495 * rest of the world about it:
2496 * VM_IO tells people not to look at these pages
2497 * (accesses can have side effects).
2498 * VM_PFNMAP tells the core MM that the base pages are just
2499 * raw PFN mappings, and do not have a "struct page" associated
2500 * with them.
2501 * VM_DONTEXPAND
2502 * Disable vma merging and expanding with mremap().
2503 * VM_DONTDUMP
2504 * Omit vma from core dump, even when VM_IO turned off.
2505 *
2506 * There's a horrible special case to handle copy-on-write
2507 * behaviour that some programs depend on. We mark the "original"
2508 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2509 * See vm_normal_page() for details.
2510 */
2511 if (is_cow_mapping(vma->vm_flags)) {
2512 if (addr != vma->vm_start || end != vma->vm_end)
2513 return -EINVAL;
2514 vma->vm_pgoff = pfn;
2515 }
2516
2517 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2518
2519 BUG_ON(addr >= end);
2520 pfn -= addr >> PAGE_SHIFT;
2521 pgd = pgd_offset(mm, addr);
2522 flush_cache_range(vma, addr, end);
2523 do {
2524 next = pgd_addr_end(addr, end);
2525 err = remap_p4d_range(mm, pgd, addr, next,
2526 pfn + (addr >> PAGE_SHIFT), prot);
2527 if (err)
2528 return err;
2529 } while (pgd++, addr = next, addr != end);
2530
2531 return 0;
2532 }
2533
2534 /**
2535 * remap_pfn_range - remap kernel memory to userspace
2536 * @vma: user vma to map to
2537 * @addr: target page aligned user address to start at
2538 * @pfn: page frame number of kernel physical memory address
2539 * @size: size of mapping area
2540 * @prot: page protection flags for this mapping
2541 *
2542 * Note: this is only safe if the mm semaphore is held when called.
2543 *
2544 * Return: %0 on success, negative error code otherwise.
2545 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2546 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2547 unsigned long pfn, unsigned long size, pgprot_t prot)
2548 {
2549 int err;
2550
2551 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2552 if (err)
2553 return -EINVAL;
2554
2555 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2556 if (err)
2557 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2558 return err;
2559 }
2560 EXPORT_SYMBOL(remap_pfn_range);
2561
2562 /**
2563 * vm_iomap_memory - remap memory to userspace
2564 * @vma: user vma to map to
2565 * @start: start of the physical memory to be mapped
2566 * @len: size of area
2567 *
2568 * This is a simplified io_remap_pfn_range() for common driver use. The
2569 * driver just needs to give us the physical memory range to be mapped,
2570 * we'll figure out the rest from the vma information.
2571 *
2572 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2573 * whatever write-combining details or similar.
2574 *
2575 * Return: %0 on success, negative error code otherwise.
2576 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2577 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2578 {
2579 unsigned long vm_len, pfn, pages;
2580
2581 /* Check that the physical memory area passed in looks valid */
2582 if (start + len < start)
2583 return -EINVAL;
2584 /*
2585 * You *really* shouldn't map things that aren't page-aligned,
2586 * but we've historically allowed it because IO memory might
2587 * just have smaller alignment.
2588 */
2589 len += start & ~PAGE_MASK;
2590 pfn = start >> PAGE_SHIFT;
2591 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2592 if (pfn + pages < pfn)
2593 return -EINVAL;
2594
2595 /* We start the mapping 'vm_pgoff' pages into the area */
2596 if (vma->vm_pgoff > pages)
2597 return -EINVAL;
2598 pfn += vma->vm_pgoff;
2599 pages -= vma->vm_pgoff;
2600
2601 /* Can we fit all of the mapping? */
2602 vm_len = vma->vm_end - vma->vm_start;
2603 if (vm_len >> PAGE_SHIFT > pages)
2604 return -EINVAL;
2605
2606 /* Ok, let it rip */
2607 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2608 }
2609 EXPORT_SYMBOL(vm_iomap_memory);
2610
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2611 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2612 unsigned long addr, unsigned long end,
2613 pte_fn_t fn, void *data, bool create,
2614 pgtbl_mod_mask *mask)
2615 {
2616 pte_t *pte, *mapped_pte;
2617 int err = 0;
2618 spinlock_t *ptl;
2619
2620 if (create) {
2621 mapped_pte = pte = (mm == &init_mm) ?
2622 pte_alloc_kernel_track(pmd, addr, mask) :
2623 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2624 if (!pte)
2625 return -ENOMEM;
2626 } else {
2627 mapped_pte = pte = (mm == &init_mm) ?
2628 pte_offset_kernel(pmd, addr) :
2629 pte_offset_map_lock(mm, pmd, addr, &ptl);
2630 }
2631
2632 BUG_ON(pmd_huge(*pmd));
2633
2634 arch_enter_lazy_mmu_mode();
2635
2636 if (fn) {
2637 do {
2638 if (create || !pte_none(*pte)) {
2639 err = fn(pte++, addr, data);
2640 if (err)
2641 break;
2642 }
2643 } while (addr += PAGE_SIZE, addr != end);
2644 }
2645 *mask |= PGTBL_PTE_MODIFIED;
2646
2647 arch_leave_lazy_mmu_mode();
2648
2649 if (mm != &init_mm)
2650 pte_unmap_unlock(mapped_pte, ptl);
2651 return err;
2652 }
2653
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2654 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2655 unsigned long addr, unsigned long end,
2656 pte_fn_t fn, void *data, bool create,
2657 pgtbl_mod_mask *mask)
2658 {
2659 pmd_t *pmd;
2660 unsigned long next;
2661 int err = 0;
2662
2663 BUG_ON(pud_huge(*pud));
2664
2665 if (create) {
2666 pmd = pmd_alloc_track(mm, pud, addr, mask);
2667 if (!pmd)
2668 return -ENOMEM;
2669 } else {
2670 pmd = pmd_offset(pud, addr);
2671 }
2672 do {
2673 next = pmd_addr_end(addr, end);
2674 if (pmd_none(*pmd) && !create)
2675 continue;
2676 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2677 return -EINVAL;
2678 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2679 if (!create)
2680 continue;
2681 pmd_clear_bad(pmd);
2682 }
2683 err = apply_to_pte_range(mm, pmd, addr, next,
2684 fn, data, create, mask);
2685 if (err)
2686 break;
2687 } while (pmd++, addr = next, addr != end);
2688
2689 return err;
2690 }
2691
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2692 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2693 unsigned long addr, unsigned long end,
2694 pte_fn_t fn, void *data, bool create,
2695 pgtbl_mod_mask *mask)
2696 {
2697 pud_t *pud;
2698 unsigned long next;
2699 int err = 0;
2700
2701 if (create) {
2702 pud = pud_alloc_track(mm, p4d, addr, mask);
2703 if (!pud)
2704 return -ENOMEM;
2705 } else {
2706 pud = pud_offset(p4d, addr);
2707 }
2708 do {
2709 next = pud_addr_end(addr, end);
2710 if (pud_none(*pud) && !create)
2711 continue;
2712 if (WARN_ON_ONCE(pud_leaf(*pud)))
2713 return -EINVAL;
2714 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2715 if (!create)
2716 continue;
2717 pud_clear_bad(pud);
2718 }
2719 err = apply_to_pmd_range(mm, pud, addr, next,
2720 fn, data, create, mask);
2721 if (err)
2722 break;
2723 } while (pud++, addr = next, addr != end);
2724
2725 return err;
2726 }
2727
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2728 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2729 unsigned long addr, unsigned long end,
2730 pte_fn_t fn, void *data, bool create,
2731 pgtbl_mod_mask *mask)
2732 {
2733 p4d_t *p4d;
2734 unsigned long next;
2735 int err = 0;
2736
2737 if (create) {
2738 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2739 if (!p4d)
2740 return -ENOMEM;
2741 } else {
2742 p4d = p4d_offset(pgd, addr);
2743 }
2744 do {
2745 next = p4d_addr_end(addr, end);
2746 if (p4d_none(*p4d) && !create)
2747 continue;
2748 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2749 return -EINVAL;
2750 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2751 if (!create)
2752 continue;
2753 p4d_clear_bad(p4d);
2754 }
2755 err = apply_to_pud_range(mm, p4d, addr, next,
2756 fn, data, create, mask);
2757 if (err)
2758 break;
2759 } while (p4d++, addr = next, addr != end);
2760
2761 return err;
2762 }
2763
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2764 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2765 unsigned long size, pte_fn_t fn,
2766 void *data, bool create)
2767 {
2768 pgd_t *pgd;
2769 unsigned long start = addr, next;
2770 unsigned long end = addr + size;
2771 pgtbl_mod_mask mask = 0;
2772 int err = 0;
2773
2774 if (WARN_ON(addr >= end))
2775 return -EINVAL;
2776
2777 pgd = pgd_offset(mm, addr);
2778 do {
2779 next = pgd_addr_end(addr, end);
2780 if (pgd_none(*pgd) && !create)
2781 continue;
2782 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2783 return -EINVAL;
2784 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2785 if (!create)
2786 continue;
2787 pgd_clear_bad(pgd);
2788 }
2789 err = apply_to_p4d_range(mm, pgd, addr, next,
2790 fn, data, create, &mask);
2791 if (err)
2792 break;
2793 } while (pgd++, addr = next, addr != end);
2794
2795 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2796 arch_sync_kernel_mappings(start, start + size);
2797
2798 return err;
2799 }
2800
2801 /*
2802 * Scan a region of virtual memory, filling in page tables as necessary
2803 * and calling a provided function on each leaf page table.
2804 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2805 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2806 unsigned long size, pte_fn_t fn, void *data)
2807 {
2808 return __apply_to_page_range(mm, addr, size, fn, data, true);
2809 }
2810 EXPORT_SYMBOL_GPL(apply_to_page_range);
2811
2812 /*
2813 * Scan a region of virtual memory, calling a provided function on
2814 * each leaf page table where it exists.
2815 *
2816 * Unlike apply_to_page_range, this does _not_ fill in page tables
2817 * where they are absent.
2818 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2819 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2820 unsigned long size, pte_fn_t fn, void *data)
2821 {
2822 return __apply_to_page_range(mm, addr, size, fn, data, false);
2823 }
2824 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2825
2826 /*
2827 * handle_pte_fault chooses page fault handler according to an entry which was
2828 * read non-atomically. Before making any commitment, on those architectures
2829 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2830 * parts, do_swap_page must check under lock before unmapping the pte and
2831 * proceeding (but do_wp_page is only called after already making such a check;
2832 * and do_anonymous_page can safely check later on).
2833 */
pte_unmap_same(struct vm_fault * vmf)2834 static inline int pte_unmap_same(struct vm_fault *vmf)
2835 {
2836 int same = 1;
2837 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2838 if (sizeof(pte_t) > sizeof(unsigned long)) {
2839 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2840 spin_lock(ptl);
2841 same = pte_same(*vmf->pte, vmf->orig_pte);
2842 spin_unlock(ptl);
2843 }
2844 #endif
2845 pte_unmap(vmf->pte);
2846 vmf->pte = NULL;
2847 return same;
2848 }
2849
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)2850 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2851 struct vm_fault *vmf)
2852 {
2853 bool ret;
2854 void *kaddr;
2855 void __user *uaddr;
2856 bool locked = false;
2857 struct vm_area_struct *vma = vmf->vma;
2858 struct mm_struct *mm = vma->vm_mm;
2859 unsigned long addr = vmf->address;
2860
2861 if (likely(src)) {
2862 copy_user_highpage(dst, src, addr, vma);
2863 return true;
2864 }
2865
2866 /*
2867 * If the source page was a PFN mapping, we don't have
2868 * a "struct page" for it. We do a best-effort copy by
2869 * just copying from the original user address. If that
2870 * fails, we just zero-fill it. Live with it.
2871 */
2872 kaddr = kmap_atomic(dst);
2873 uaddr = (void __user *)(addr & PAGE_MASK);
2874
2875 /*
2876 * On architectures with software "accessed" bits, we would
2877 * take a double page fault, so mark it accessed here.
2878 */
2879 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2880 pte_t entry;
2881
2882 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2883 locked = true;
2884 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2885 /*
2886 * Other thread has already handled the fault
2887 * and update local tlb only
2888 */
2889 update_mmu_tlb(vma, addr, vmf->pte);
2890 ret = false;
2891 goto pte_unlock;
2892 }
2893
2894 entry = pte_mkyoung(vmf->orig_pte);
2895 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2896 update_mmu_cache(vma, addr, vmf->pte);
2897 }
2898
2899 /*
2900 * This really shouldn't fail, because the page is there
2901 * in the page tables. But it might just be unreadable,
2902 * in which case we just give up and fill the result with
2903 * zeroes.
2904 */
2905 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2906 if (locked)
2907 goto warn;
2908
2909 /* Re-validate under PTL if the page is still mapped */
2910 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2911 locked = true;
2912 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2913 /* The PTE changed under us, update local tlb */
2914 update_mmu_tlb(vma, addr, vmf->pte);
2915 ret = false;
2916 goto pte_unlock;
2917 }
2918
2919 /*
2920 * The same page can be mapped back since last copy attempt.
2921 * Try to copy again under PTL.
2922 */
2923 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2924 /*
2925 * Give a warn in case there can be some obscure
2926 * use-case
2927 */
2928 warn:
2929 WARN_ON_ONCE(1);
2930 clear_page(kaddr);
2931 }
2932 }
2933
2934 ret = true;
2935
2936 pte_unlock:
2937 if (locked)
2938 pte_unmap_unlock(vmf->pte, vmf->ptl);
2939 kunmap_atomic(kaddr);
2940 flush_dcache_page(dst);
2941
2942 return ret;
2943 }
2944
__get_fault_gfp_mask(struct vm_area_struct * vma)2945 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2946 {
2947 struct file *vm_file = vma->vm_file;
2948
2949 if (vm_file)
2950 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2951
2952 /*
2953 * Special mappings (e.g. VDSO) do not have any file so fake
2954 * a default GFP_KERNEL for them.
2955 */
2956 return GFP_KERNEL;
2957 }
2958
2959 /*
2960 * Notify the address space that the page is about to become writable so that
2961 * it can prohibit this or wait for the page to get into an appropriate state.
2962 *
2963 * We do this without the lock held, so that it can sleep if it needs to.
2964 */
do_page_mkwrite(struct vm_fault * vmf)2965 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2966 {
2967 vm_fault_t ret;
2968 struct page *page = vmf->page;
2969 unsigned int old_flags = vmf->flags;
2970
2971 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2972
2973 if (vmf->vma->vm_file &&
2974 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2975 return VM_FAULT_SIGBUS;
2976
2977 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2978 /* Restore original flags so that caller is not surprised */
2979 vmf->flags = old_flags;
2980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2981 return ret;
2982 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2983 lock_page(page);
2984 if (!page->mapping) {
2985 unlock_page(page);
2986 return 0; /* retry */
2987 }
2988 ret |= VM_FAULT_LOCKED;
2989 } else
2990 VM_BUG_ON_PAGE(!PageLocked(page), page);
2991 return ret;
2992 }
2993
2994 /*
2995 * Handle dirtying of a page in shared file mapping on a write fault.
2996 *
2997 * The function expects the page to be locked and unlocks it.
2998 */
fault_dirty_shared_page(struct vm_fault * vmf)2999 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3000 {
3001 struct vm_area_struct *vma = vmf->vma;
3002 struct address_space *mapping;
3003 struct page *page = vmf->page;
3004 bool dirtied;
3005 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3006
3007 dirtied = set_page_dirty(page);
3008 VM_BUG_ON_PAGE(PageAnon(page), page);
3009 /*
3010 * Take a local copy of the address_space - page.mapping may be zeroed
3011 * by truncate after unlock_page(). The address_space itself remains
3012 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3013 * release semantics to prevent the compiler from undoing this copying.
3014 */
3015 mapping = page_rmapping(page);
3016 unlock_page(page);
3017
3018 if (!page_mkwrite)
3019 file_update_time(vma->vm_file);
3020
3021 /*
3022 * Throttle page dirtying rate down to writeback speed.
3023 *
3024 * mapping may be NULL here because some device drivers do not
3025 * set page.mapping but still dirty their pages
3026 *
3027 * Drop the mmap_lock before waiting on IO, if we can. The file
3028 * is pinning the mapping, as per above.
3029 */
3030 if ((dirtied || page_mkwrite) && mapping) {
3031 struct file *fpin;
3032
3033 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3034 balance_dirty_pages_ratelimited(mapping);
3035 if (fpin) {
3036 fput(fpin);
3037 return VM_FAULT_COMPLETED;
3038 }
3039 }
3040
3041 return 0;
3042 }
3043
3044 /*
3045 * Handle write page faults for pages that can be reused in the current vma
3046 *
3047 * This can happen either due to the mapping being with the VM_SHARED flag,
3048 * or due to us being the last reference standing to the page. In either
3049 * case, all we need to do here is to mark the page as writable and update
3050 * any related book-keeping.
3051 */
wp_page_reuse(struct vm_fault * vmf)3052 static inline void wp_page_reuse(struct vm_fault *vmf)
3053 __releases(vmf->ptl)
3054 {
3055 struct vm_area_struct *vma = vmf->vma;
3056 struct page *page = vmf->page;
3057 pte_t entry;
3058
3059 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3060 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3061
3062 /*
3063 * Clear the pages cpupid information as the existing
3064 * information potentially belongs to a now completely
3065 * unrelated process.
3066 */
3067 if (page)
3068 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3069
3070 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3071 entry = pte_mkyoung(vmf->orig_pte);
3072 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3073 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3074 update_mmu_cache(vma, vmf->address, vmf->pte);
3075 pte_unmap_unlock(vmf->pte, vmf->ptl);
3076 count_vm_event(PGREUSE);
3077 }
3078
3079 /*
3080 * Handle the case of a page which we actually need to copy to a new page,
3081 * either due to COW or unsharing.
3082 *
3083 * Called with mmap_lock locked and the old page referenced, but
3084 * without the ptl held.
3085 *
3086 * High level logic flow:
3087 *
3088 * - Allocate a page, copy the content of the old page to the new one.
3089 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3090 * - Take the PTL. If the pte changed, bail out and release the allocated page
3091 * - If the pte is still the way we remember it, update the page table and all
3092 * relevant references. This includes dropping the reference the page-table
3093 * held to the old page, as well as updating the rmap.
3094 * - In any case, unlock the PTL and drop the reference we took to the old page.
3095 */
wp_page_copy(struct vm_fault * vmf)3096 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3097 {
3098 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3099 struct vm_area_struct *vma = vmf->vma;
3100 struct mm_struct *mm = vma->vm_mm;
3101 struct page *old_page = vmf->page;
3102 struct page *new_page = NULL;
3103 pte_t entry;
3104 int page_copied = 0;
3105 struct mmu_notifier_range range;
3106
3107 delayacct_wpcopy_start();
3108
3109 if (unlikely(anon_vma_prepare(vma)))
3110 goto oom;
3111
3112 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3113 new_page = alloc_zeroed_user_highpage_movable(vma,
3114 vmf->address);
3115 if (!new_page)
3116 goto oom;
3117 } else {
3118 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3119 vmf->address);
3120 if (!new_page)
3121 goto oom;
3122
3123 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3124 /*
3125 * COW failed, if the fault was solved by other,
3126 * it's fine. If not, userspace would re-fault on
3127 * the same address and we will handle the fault
3128 * from the second attempt.
3129 */
3130 put_page(new_page);
3131 if (old_page)
3132 put_page(old_page);
3133
3134 delayacct_wpcopy_end();
3135 return 0;
3136 }
3137 kmsan_copy_page_meta(new_page, old_page);
3138 }
3139
3140 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3141 goto oom_free_new;
3142 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3143
3144 __SetPageUptodate(new_page);
3145
3146 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3147 vmf->address & PAGE_MASK,
3148 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3149 mmu_notifier_invalidate_range_start(&range);
3150
3151 /*
3152 * Re-check the pte - we dropped the lock
3153 */
3154 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3155 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3156 if (old_page) {
3157 if (!PageAnon(old_page)) {
3158 dec_mm_counter_fast(mm,
3159 mm_counter_file(old_page));
3160 inc_mm_counter_fast(mm, MM_ANONPAGES);
3161 }
3162 } else {
3163 inc_mm_counter_fast(mm, MM_ANONPAGES);
3164 }
3165 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3166 entry = mk_pte(new_page, vma->vm_page_prot);
3167 entry = pte_sw_mkyoung(entry);
3168 if (unlikely(unshare)) {
3169 if (pte_soft_dirty(vmf->orig_pte))
3170 entry = pte_mksoft_dirty(entry);
3171 if (pte_uffd_wp(vmf->orig_pte))
3172 entry = pte_mkuffd_wp(entry);
3173 } else {
3174 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3175 }
3176
3177 /*
3178 * Clear the pte entry and flush it first, before updating the
3179 * pte with the new entry, to keep TLBs on different CPUs in
3180 * sync. This code used to set the new PTE then flush TLBs, but
3181 * that left a window where the new PTE could be loaded into
3182 * some TLBs while the old PTE remains in others.
3183 */
3184 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3185 page_add_new_anon_rmap(new_page, vma, vmf->address);
3186 lru_cache_add_inactive_or_unevictable(new_page, vma);
3187 /*
3188 * We call the notify macro here because, when using secondary
3189 * mmu page tables (such as kvm shadow page tables), we want the
3190 * new page to be mapped directly into the secondary page table.
3191 */
3192 BUG_ON(unshare && pte_write(entry));
3193 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3194 update_mmu_cache(vma, vmf->address, vmf->pte);
3195 if (old_page) {
3196 /*
3197 * Only after switching the pte to the new page may
3198 * we remove the mapcount here. Otherwise another
3199 * process may come and find the rmap count decremented
3200 * before the pte is switched to the new page, and
3201 * "reuse" the old page writing into it while our pte
3202 * here still points into it and can be read by other
3203 * threads.
3204 *
3205 * The critical issue is to order this
3206 * page_remove_rmap with the ptp_clear_flush above.
3207 * Those stores are ordered by (if nothing else,)
3208 * the barrier present in the atomic_add_negative
3209 * in page_remove_rmap.
3210 *
3211 * Then the TLB flush in ptep_clear_flush ensures that
3212 * no process can access the old page before the
3213 * decremented mapcount is visible. And the old page
3214 * cannot be reused until after the decremented
3215 * mapcount is visible. So transitively, TLBs to
3216 * old page will be flushed before it can be reused.
3217 */
3218 page_remove_rmap(old_page, vma, false);
3219 }
3220
3221 /* Free the old page.. */
3222 new_page = old_page;
3223 page_copied = 1;
3224 } else {
3225 update_mmu_tlb(vma, vmf->address, vmf->pte);
3226 }
3227
3228 if (new_page)
3229 put_page(new_page);
3230
3231 pte_unmap_unlock(vmf->pte, vmf->ptl);
3232 /*
3233 * No need to double call mmu_notifier->invalidate_range() callback as
3234 * the above ptep_clear_flush_notify() did already call it.
3235 */
3236 mmu_notifier_invalidate_range_only_end(&range);
3237 if (old_page) {
3238 if (page_copied)
3239 free_swap_cache(old_page);
3240 put_page(old_page);
3241 }
3242
3243 delayacct_wpcopy_end();
3244 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3245 oom_free_new:
3246 put_page(new_page);
3247 oom:
3248 if (old_page)
3249 put_page(old_page);
3250
3251 delayacct_wpcopy_end();
3252 return VM_FAULT_OOM;
3253 }
3254
3255 /**
3256 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3257 * writeable once the page is prepared
3258 *
3259 * @vmf: structure describing the fault
3260 *
3261 * This function handles all that is needed to finish a write page fault in a
3262 * shared mapping due to PTE being read-only once the mapped page is prepared.
3263 * It handles locking of PTE and modifying it.
3264 *
3265 * The function expects the page to be locked or other protection against
3266 * concurrent faults / writeback (such as DAX radix tree locks).
3267 *
3268 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3269 * we acquired PTE lock.
3270 */
finish_mkwrite_fault(struct vm_fault * vmf)3271 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3272 {
3273 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3274 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3275 &vmf->ptl);
3276 /*
3277 * We might have raced with another page fault while we released the
3278 * pte_offset_map_lock.
3279 */
3280 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3281 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3282 pte_unmap_unlock(vmf->pte, vmf->ptl);
3283 return VM_FAULT_NOPAGE;
3284 }
3285 wp_page_reuse(vmf);
3286 return 0;
3287 }
3288
3289 /*
3290 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3291 * mapping
3292 */
wp_pfn_shared(struct vm_fault * vmf)3293 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3294 {
3295 struct vm_area_struct *vma = vmf->vma;
3296
3297 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3298 vm_fault_t ret;
3299
3300 pte_unmap_unlock(vmf->pte, vmf->ptl);
3301 vmf->flags |= FAULT_FLAG_MKWRITE;
3302 ret = vma->vm_ops->pfn_mkwrite(vmf);
3303 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3304 return ret;
3305 return finish_mkwrite_fault(vmf);
3306 }
3307 wp_page_reuse(vmf);
3308 return VM_FAULT_WRITE;
3309 }
3310
wp_page_shared(struct vm_fault * vmf)3311 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3312 __releases(vmf->ptl)
3313 {
3314 struct vm_area_struct *vma = vmf->vma;
3315 vm_fault_t ret = VM_FAULT_WRITE;
3316
3317 get_page(vmf->page);
3318
3319 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3320 vm_fault_t tmp;
3321
3322 pte_unmap_unlock(vmf->pte, vmf->ptl);
3323 tmp = do_page_mkwrite(vmf);
3324 if (unlikely(!tmp || (tmp &
3325 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3326 put_page(vmf->page);
3327 return tmp;
3328 }
3329 tmp = finish_mkwrite_fault(vmf);
3330 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3331 unlock_page(vmf->page);
3332 put_page(vmf->page);
3333 return tmp;
3334 }
3335 } else {
3336 wp_page_reuse(vmf);
3337 lock_page(vmf->page);
3338 }
3339 ret |= fault_dirty_shared_page(vmf);
3340 put_page(vmf->page);
3341
3342 return ret;
3343 }
3344
3345 /*
3346 * This routine handles present pages, when
3347 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3348 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3349 * (FAULT_FLAG_UNSHARE)
3350 *
3351 * It is done by copying the page to a new address and decrementing the
3352 * shared-page counter for the old page.
3353 *
3354 * Note that this routine assumes that the protection checks have been
3355 * done by the caller (the low-level page fault routine in most cases).
3356 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3357 * done any necessary COW.
3358 *
3359 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3360 * though the page will change only once the write actually happens. This
3361 * avoids a few races, and potentially makes it more efficient.
3362 *
3363 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3364 * but allow concurrent faults), with pte both mapped and locked.
3365 * We return with mmap_lock still held, but pte unmapped and unlocked.
3366 */
do_wp_page(struct vm_fault * vmf)3367 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3368 __releases(vmf->ptl)
3369 {
3370 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3371 struct vm_area_struct *vma = vmf->vma;
3372 struct folio *folio;
3373
3374 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3375 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3376
3377 if (likely(!unshare)) {
3378 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3379 pte_unmap_unlock(vmf->pte, vmf->ptl);
3380 return handle_userfault(vmf, VM_UFFD_WP);
3381 }
3382
3383 /*
3384 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3385 * is flushed in this case before copying.
3386 */
3387 if (unlikely(userfaultfd_wp(vmf->vma) &&
3388 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3389 flush_tlb_page(vmf->vma, vmf->address);
3390 }
3391
3392 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3393 if (!vmf->page) {
3394 if (unlikely(unshare)) {
3395 /* No anonymous page -> nothing to do. */
3396 pte_unmap_unlock(vmf->pte, vmf->ptl);
3397 return 0;
3398 }
3399
3400 /*
3401 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3402 * VM_PFNMAP VMA.
3403 *
3404 * We should not cow pages in a shared writeable mapping.
3405 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3406 */
3407 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3408 (VM_WRITE|VM_SHARED))
3409 return wp_pfn_shared(vmf);
3410
3411 pte_unmap_unlock(vmf->pte, vmf->ptl);
3412 return wp_page_copy(vmf);
3413 }
3414
3415 /*
3416 * Take out anonymous pages first, anonymous shared vmas are
3417 * not dirty accountable.
3418 */
3419 folio = page_folio(vmf->page);
3420 if (folio_test_anon(folio)) {
3421 /*
3422 * If the page is exclusive to this process we must reuse the
3423 * page without further checks.
3424 */
3425 if (PageAnonExclusive(vmf->page))
3426 goto reuse;
3427
3428 /*
3429 * We have to verify under folio lock: these early checks are
3430 * just an optimization to avoid locking the folio and freeing
3431 * the swapcache if there is little hope that we can reuse.
3432 *
3433 * KSM doesn't necessarily raise the folio refcount.
3434 */
3435 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3436 goto copy;
3437 if (!folio_test_lru(folio))
3438 /*
3439 * Note: We cannot easily detect+handle references from
3440 * remote LRU pagevecs or references to LRU folios.
3441 */
3442 lru_add_drain();
3443 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3444 goto copy;
3445 if (!folio_trylock(folio))
3446 goto copy;
3447 if (folio_test_swapcache(folio))
3448 folio_free_swap(folio);
3449 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3450 folio_unlock(folio);
3451 goto copy;
3452 }
3453 /*
3454 * Ok, we've got the only folio reference from our mapping
3455 * and the folio is locked, it's dark out, and we're wearing
3456 * sunglasses. Hit it.
3457 */
3458 page_move_anon_rmap(vmf->page, vma);
3459 folio_unlock(folio);
3460 reuse:
3461 if (unlikely(unshare)) {
3462 pte_unmap_unlock(vmf->pte, vmf->ptl);
3463 return 0;
3464 }
3465 wp_page_reuse(vmf);
3466 return VM_FAULT_WRITE;
3467 } else if (unshare) {
3468 /* No anonymous page -> nothing to do. */
3469 pte_unmap_unlock(vmf->pte, vmf->ptl);
3470 return 0;
3471 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3472 (VM_WRITE|VM_SHARED))) {
3473 return wp_page_shared(vmf);
3474 }
3475 copy:
3476 /*
3477 * Ok, we need to copy. Oh, well..
3478 */
3479 get_page(vmf->page);
3480
3481 pte_unmap_unlock(vmf->pte, vmf->ptl);
3482 #ifdef CONFIG_KSM
3483 if (PageKsm(vmf->page))
3484 count_vm_event(COW_KSM);
3485 #endif
3486 return wp_page_copy(vmf);
3487 }
3488
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3489 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3490 unsigned long start_addr, unsigned long end_addr,
3491 struct zap_details *details)
3492 {
3493 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3494 }
3495
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3496 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3497 pgoff_t first_index,
3498 pgoff_t last_index,
3499 struct zap_details *details)
3500 {
3501 struct vm_area_struct *vma;
3502 pgoff_t vba, vea, zba, zea;
3503
3504 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3505 vba = vma->vm_pgoff;
3506 vea = vba + vma_pages(vma) - 1;
3507 zba = max(first_index, vba);
3508 zea = min(last_index, vea);
3509
3510 unmap_mapping_range_vma(vma,
3511 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3512 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3513 details);
3514 }
3515 }
3516
3517 /**
3518 * unmap_mapping_folio() - Unmap single folio from processes.
3519 * @folio: The locked folio to be unmapped.
3520 *
3521 * Unmap this folio from any userspace process which still has it mmaped.
3522 * Typically, for efficiency, the range of nearby pages has already been
3523 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3524 * truncation or invalidation holds the lock on a folio, it may find that
3525 * the page has been remapped again: and then uses unmap_mapping_folio()
3526 * to unmap it finally.
3527 */
unmap_mapping_folio(struct folio * folio)3528 void unmap_mapping_folio(struct folio *folio)
3529 {
3530 struct address_space *mapping = folio->mapping;
3531 struct zap_details details = { };
3532 pgoff_t first_index;
3533 pgoff_t last_index;
3534
3535 VM_BUG_ON(!folio_test_locked(folio));
3536
3537 first_index = folio->index;
3538 last_index = folio->index + folio_nr_pages(folio) - 1;
3539
3540 details.even_cows = false;
3541 details.single_folio = folio;
3542 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3543
3544 i_mmap_lock_read(mapping);
3545 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3546 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3547 last_index, &details);
3548 i_mmap_unlock_read(mapping);
3549 }
3550
3551 /**
3552 * unmap_mapping_pages() - Unmap pages from processes.
3553 * @mapping: The address space containing pages to be unmapped.
3554 * @start: Index of first page to be unmapped.
3555 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3556 * @even_cows: Whether to unmap even private COWed pages.
3557 *
3558 * Unmap the pages in this address space from any userspace process which
3559 * has them mmaped. Generally, you want to remove COWed pages as well when
3560 * a file is being truncated, but not when invalidating pages from the page
3561 * cache.
3562 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3563 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3564 pgoff_t nr, bool even_cows)
3565 {
3566 struct zap_details details = { };
3567 pgoff_t first_index = start;
3568 pgoff_t last_index = start + nr - 1;
3569
3570 details.even_cows = even_cows;
3571 if (last_index < first_index)
3572 last_index = ULONG_MAX;
3573
3574 i_mmap_lock_read(mapping);
3575 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3576 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3577 last_index, &details);
3578 i_mmap_unlock_read(mapping);
3579 }
3580 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3581
3582 /**
3583 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3584 * address_space corresponding to the specified byte range in the underlying
3585 * file.
3586 *
3587 * @mapping: the address space containing mmaps to be unmapped.
3588 * @holebegin: byte in first page to unmap, relative to the start of
3589 * the underlying file. This will be rounded down to a PAGE_SIZE
3590 * boundary. Note that this is different from truncate_pagecache(), which
3591 * must keep the partial page. In contrast, we must get rid of
3592 * partial pages.
3593 * @holelen: size of prospective hole in bytes. This will be rounded
3594 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3595 * end of the file.
3596 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3597 * but 0 when invalidating pagecache, don't throw away private data.
3598 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3599 void unmap_mapping_range(struct address_space *mapping,
3600 loff_t const holebegin, loff_t const holelen, int even_cows)
3601 {
3602 pgoff_t hba = holebegin >> PAGE_SHIFT;
3603 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3604
3605 /* Check for overflow. */
3606 if (sizeof(holelen) > sizeof(hlen)) {
3607 long long holeend =
3608 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3609 if (holeend & ~(long long)ULONG_MAX)
3610 hlen = ULONG_MAX - hba + 1;
3611 }
3612
3613 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3614 }
3615 EXPORT_SYMBOL(unmap_mapping_range);
3616
3617 /*
3618 * Restore a potential device exclusive pte to a working pte entry
3619 */
remove_device_exclusive_entry(struct vm_fault * vmf)3620 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3621 {
3622 struct folio *folio = page_folio(vmf->page);
3623 struct vm_area_struct *vma = vmf->vma;
3624 struct mmu_notifier_range range;
3625
3626 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3627 return VM_FAULT_RETRY;
3628 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3629 vma->vm_mm, vmf->address & PAGE_MASK,
3630 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3631 mmu_notifier_invalidate_range_start(&range);
3632
3633 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3634 &vmf->ptl);
3635 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3636 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3637
3638 pte_unmap_unlock(vmf->pte, vmf->ptl);
3639 folio_unlock(folio);
3640
3641 mmu_notifier_invalidate_range_end(&range);
3642 return 0;
3643 }
3644
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3645 static inline bool should_try_to_free_swap(struct folio *folio,
3646 struct vm_area_struct *vma,
3647 unsigned int fault_flags)
3648 {
3649 if (!folio_test_swapcache(folio))
3650 return false;
3651 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3652 folio_test_mlocked(folio))
3653 return true;
3654 /*
3655 * If we want to map a page that's in the swapcache writable, we
3656 * have to detect via the refcount if we're really the exclusive
3657 * user. Try freeing the swapcache to get rid of the swapcache
3658 * reference only in case it's likely that we'll be the exlusive user.
3659 */
3660 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3661 folio_ref_count(folio) == 2;
3662 }
3663
pte_marker_clear(struct vm_fault * vmf)3664 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3665 {
3666 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3667 vmf->address, &vmf->ptl);
3668 /*
3669 * Be careful so that we will only recover a special uffd-wp pte into a
3670 * none pte. Otherwise it means the pte could have changed, so retry.
3671 */
3672 if (is_pte_marker(*vmf->pte))
3673 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3674 pte_unmap_unlock(vmf->pte, vmf->ptl);
3675 return 0;
3676 }
3677
3678 /*
3679 * This is actually a page-missing access, but with uffd-wp special pte
3680 * installed. It means this pte was wr-protected before being unmapped.
3681 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)3682 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3683 {
3684 /*
3685 * Just in case there're leftover special ptes even after the region
3686 * got unregistered - we can simply clear them. We can also do that
3687 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3688 * ranges, but it should be more efficient to be done lazily here.
3689 */
3690 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3691 return pte_marker_clear(vmf);
3692
3693 /* do_fault() can handle pte markers too like none pte */
3694 return do_fault(vmf);
3695 }
3696
handle_pte_marker(struct vm_fault * vmf)3697 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3698 {
3699 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3700 unsigned long marker = pte_marker_get(entry);
3701
3702 /*
3703 * PTE markers should always be with file-backed memories, and the
3704 * marker should never be empty. If anything weird happened, the best
3705 * thing to do is to kill the process along with its mm.
3706 */
3707 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3708 return VM_FAULT_SIGBUS;
3709
3710 if (pte_marker_entry_uffd_wp(entry))
3711 return pte_marker_handle_uffd_wp(vmf);
3712
3713 /* This is an unknown pte marker */
3714 return VM_FAULT_SIGBUS;
3715 }
3716
3717 /*
3718 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3719 * but allow concurrent faults), and pte mapped but not yet locked.
3720 * We return with pte unmapped and unlocked.
3721 *
3722 * We return with the mmap_lock locked or unlocked in the same cases
3723 * as does filemap_fault().
3724 */
do_swap_page(struct vm_fault * vmf)3725 vm_fault_t do_swap_page(struct vm_fault *vmf)
3726 {
3727 struct vm_area_struct *vma = vmf->vma;
3728 struct folio *swapcache, *folio = NULL;
3729 struct page *page;
3730 struct swap_info_struct *si = NULL;
3731 rmap_t rmap_flags = RMAP_NONE;
3732 bool exclusive = false;
3733 swp_entry_t entry;
3734 pte_t pte;
3735 int locked;
3736 vm_fault_t ret = 0;
3737 void *shadow = NULL;
3738
3739 if (!pte_unmap_same(vmf))
3740 goto out;
3741
3742 entry = pte_to_swp_entry(vmf->orig_pte);
3743 if (unlikely(non_swap_entry(entry))) {
3744 if (is_migration_entry(entry)) {
3745 migration_entry_wait(vma->vm_mm, vmf->pmd,
3746 vmf->address);
3747 } else if (is_device_exclusive_entry(entry)) {
3748 vmf->page = pfn_swap_entry_to_page(entry);
3749 ret = remove_device_exclusive_entry(vmf);
3750 } else if (is_device_private_entry(entry)) {
3751 vmf->page = pfn_swap_entry_to_page(entry);
3752 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3753 vmf->address, &vmf->ptl);
3754 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3755 spin_unlock(vmf->ptl);
3756 goto out;
3757 }
3758
3759 /*
3760 * Get a page reference while we know the page can't be
3761 * freed.
3762 */
3763 get_page(vmf->page);
3764 pte_unmap_unlock(vmf->pte, vmf->ptl);
3765 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3766 put_page(vmf->page);
3767 } else if (is_hwpoison_entry(entry)) {
3768 ret = VM_FAULT_HWPOISON;
3769 } else if (is_swapin_error_entry(entry)) {
3770 ret = VM_FAULT_SIGBUS;
3771 } else if (is_pte_marker_entry(entry)) {
3772 ret = handle_pte_marker(vmf);
3773 } else {
3774 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3775 ret = VM_FAULT_SIGBUS;
3776 }
3777 goto out;
3778 }
3779
3780 /* Prevent swapoff from happening to us. */
3781 si = get_swap_device(entry);
3782 if (unlikely(!si))
3783 goto out;
3784
3785 folio = swap_cache_get_folio(entry, vma, vmf->address);
3786 if (folio)
3787 page = folio_file_page(folio, swp_offset(entry));
3788 swapcache = folio;
3789
3790 if (!folio) {
3791 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3792 __swap_count(entry) == 1) {
3793 /* skip swapcache */
3794 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3795 vma, vmf->address, false);
3796 page = &folio->page;
3797 if (folio) {
3798 __folio_set_locked(folio);
3799 __folio_set_swapbacked(folio);
3800
3801 if (mem_cgroup_swapin_charge_folio(folio,
3802 vma->vm_mm, GFP_KERNEL,
3803 entry)) {
3804 ret = VM_FAULT_OOM;
3805 goto out_page;
3806 }
3807 mem_cgroup_swapin_uncharge_swap(entry);
3808
3809 shadow = get_shadow_from_swap_cache(entry);
3810 if (shadow)
3811 workingset_refault(folio, shadow);
3812
3813 folio_add_lru(folio);
3814
3815 /* To provide entry to swap_readpage() */
3816 folio_set_swap_entry(folio, entry);
3817 swap_readpage(page, true, NULL);
3818 folio->private = NULL;
3819 }
3820 } else {
3821 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3822 vmf);
3823 if (page)
3824 folio = page_folio(page);
3825 swapcache = folio;
3826 }
3827
3828 if (!folio) {
3829 /*
3830 * Back out if somebody else faulted in this pte
3831 * while we released the pte lock.
3832 */
3833 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3834 vmf->address, &vmf->ptl);
3835 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3836 ret = VM_FAULT_OOM;
3837 goto unlock;
3838 }
3839
3840 /* Had to read the page from swap area: Major fault */
3841 ret = VM_FAULT_MAJOR;
3842 count_vm_event(PGMAJFAULT);
3843 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3844 } else if (PageHWPoison(page)) {
3845 /*
3846 * hwpoisoned dirty swapcache pages are kept for killing
3847 * owner processes (which may be unknown at hwpoison time)
3848 */
3849 ret = VM_FAULT_HWPOISON;
3850 goto out_release;
3851 }
3852
3853 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3854
3855 if (!locked) {
3856 ret |= VM_FAULT_RETRY;
3857 goto out_release;
3858 }
3859
3860 if (swapcache) {
3861 /*
3862 * Make sure folio_free_swap() or swapoff did not release the
3863 * swapcache from under us. The page pin, and pte_same test
3864 * below, are not enough to exclude that. Even if it is still
3865 * swapcache, we need to check that the page's swap has not
3866 * changed.
3867 */
3868 if (unlikely(!folio_test_swapcache(folio) ||
3869 page_private(page) != entry.val))
3870 goto out_page;
3871
3872 /*
3873 * KSM sometimes has to copy on read faults, for example, if
3874 * page->index of !PageKSM() pages would be nonlinear inside the
3875 * anon VMA -- PageKSM() is lost on actual swapout.
3876 */
3877 page = ksm_might_need_to_copy(page, vma, vmf->address);
3878 if (unlikely(!page)) {
3879 ret = VM_FAULT_OOM;
3880 goto out_page;
3881 }
3882 folio = page_folio(page);
3883
3884 /*
3885 * If we want to map a page that's in the swapcache writable, we
3886 * have to detect via the refcount if we're really the exclusive
3887 * owner. Try removing the extra reference from the local LRU
3888 * pagevecs if required.
3889 */
3890 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3891 !folio_test_ksm(folio) && !folio_test_lru(folio))
3892 lru_add_drain();
3893 }
3894
3895 cgroup_throttle_swaprate(page, GFP_KERNEL);
3896
3897 /*
3898 * Back out if somebody else already faulted in this pte.
3899 */
3900 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3901 &vmf->ptl);
3902 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3903 goto out_nomap;
3904
3905 if (unlikely(!folio_test_uptodate(folio))) {
3906 ret = VM_FAULT_SIGBUS;
3907 goto out_nomap;
3908 }
3909
3910 /*
3911 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3912 * must never point at an anonymous page in the swapcache that is
3913 * PG_anon_exclusive. Sanity check that this holds and especially, that
3914 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3915 * check after taking the PT lock and making sure that nobody
3916 * concurrently faulted in this page and set PG_anon_exclusive.
3917 */
3918 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3919 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3920
3921 /*
3922 * Check under PT lock (to protect against concurrent fork() sharing
3923 * the swap entry concurrently) for certainly exclusive pages.
3924 */
3925 if (!folio_test_ksm(folio)) {
3926 /*
3927 * Note that pte_swp_exclusive() == false for architectures
3928 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3929 */
3930 exclusive = pte_swp_exclusive(vmf->orig_pte);
3931 if (folio != swapcache) {
3932 /*
3933 * We have a fresh page that is not exposed to the
3934 * swapcache -> certainly exclusive.
3935 */
3936 exclusive = true;
3937 } else if (exclusive && folio_test_writeback(folio) &&
3938 data_race(si->flags & SWP_STABLE_WRITES)) {
3939 /*
3940 * This is tricky: not all swap backends support
3941 * concurrent page modifications while under writeback.
3942 *
3943 * So if we stumble over such a page in the swapcache
3944 * we must not set the page exclusive, otherwise we can
3945 * map it writable without further checks and modify it
3946 * while still under writeback.
3947 *
3948 * For these problematic swap backends, simply drop the
3949 * exclusive marker: this is perfectly fine as we start
3950 * writeback only if we fully unmapped the page and
3951 * there are no unexpected references on the page after
3952 * unmapping succeeded. After fully unmapped, no
3953 * further GUP references (FOLL_GET and FOLL_PIN) can
3954 * appear, so dropping the exclusive marker and mapping
3955 * it only R/O is fine.
3956 */
3957 exclusive = false;
3958 }
3959 }
3960
3961 /*
3962 * Remove the swap entry and conditionally try to free up the swapcache.
3963 * We're already holding a reference on the page but haven't mapped it
3964 * yet.
3965 */
3966 swap_free(entry);
3967 if (should_try_to_free_swap(folio, vma, vmf->flags))
3968 folio_free_swap(folio);
3969
3970 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3971 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3972 pte = mk_pte(page, vma->vm_page_prot);
3973
3974 /*
3975 * Same logic as in do_wp_page(); however, optimize for pages that are
3976 * certainly not shared either because we just allocated them without
3977 * exposing them to the swapcache or because the swap entry indicates
3978 * exclusivity.
3979 */
3980 if (!folio_test_ksm(folio) &&
3981 (exclusive || folio_ref_count(folio) == 1)) {
3982 if (vmf->flags & FAULT_FLAG_WRITE) {
3983 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3984 vmf->flags &= ~FAULT_FLAG_WRITE;
3985 ret |= VM_FAULT_WRITE;
3986 }
3987 rmap_flags |= RMAP_EXCLUSIVE;
3988 }
3989 flush_icache_page(vma, page);
3990 if (pte_swp_soft_dirty(vmf->orig_pte))
3991 pte = pte_mksoft_dirty(pte);
3992 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3993 pte = pte_mkuffd_wp(pte);
3994 pte = pte_wrprotect(pte);
3995 }
3996 vmf->orig_pte = pte;
3997
3998 /* ksm created a completely new copy */
3999 if (unlikely(folio != swapcache && swapcache)) {
4000 page_add_new_anon_rmap(page, vma, vmf->address);
4001 folio_add_lru_vma(folio, vma);
4002 } else {
4003 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4004 }
4005
4006 VM_BUG_ON(!folio_test_anon(folio) ||
4007 (pte_write(pte) && !PageAnonExclusive(page)));
4008 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4009 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4010
4011 folio_unlock(folio);
4012 if (folio != swapcache && swapcache) {
4013 /*
4014 * Hold the lock to avoid the swap entry to be reused
4015 * until we take the PT lock for the pte_same() check
4016 * (to avoid false positives from pte_same). For
4017 * further safety release the lock after the swap_free
4018 * so that the swap count won't change under a
4019 * parallel locked swapcache.
4020 */
4021 folio_unlock(swapcache);
4022 folio_put(swapcache);
4023 }
4024
4025 if (vmf->flags & FAULT_FLAG_WRITE) {
4026 ret |= do_wp_page(vmf);
4027 if (ret & VM_FAULT_ERROR)
4028 ret &= VM_FAULT_ERROR;
4029 goto out;
4030 }
4031
4032 /* No need to invalidate - it was non-present before */
4033 update_mmu_cache(vma, vmf->address, vmf->pte);
4034 unlock:
4035 pte_unmap_unlock(vmf->pte, vmf->ptl);
4036 out:
4037 if (si)
4038 put_swap_device(si);
4039 return ret;
4040 out_nomap:
4041 pte_unmap_unlock(vmf->pte, vmf->ptl);
4042 out_page:
4043 folio_unlock(folio);
4044 out_release:
4045 folio_put(folio);
4046 if (folio != swapcache && swapcache) {
4047 folio_unlock(swapcache);
4048 folio_put(swapcache);
4049 }
4050 if (si)
4051 put_swap_device(si);
4052 return ret;
4053 }
4054
4055 /*
4056 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4057 * but allow concurrent faults), and pte mapped but not yet locked.
4058 * We return with mmap_lock still held, but pte unmapped and unlocked.
4059 */
do_anonymous_page(struct vm_fault * vmf)4060 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4061 {
4062 struct vm_area_struct *vma = vmf->vma;
4063 struct page *page;
4064 vm_fault_t ret = 0;
4065 pte_t entry;
4066
4067 /* File mapping without ->vm_ops ? */
4068 if (vma->vm_flags & VM_SHARED)
4069 return VM_FAULT_SIGBUS;
4070
4071 /*
4072 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4073 * pte_offset_map() on pmds where a huge pmd might be created
4074 * from a different thread.
4075 *
4076 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4077 * parallel threads are excluded by other means.
4078 *
4079 * Here we only have mmap_read_lock(mm).
4080 */
4081 if (pte_alloc(vma->vm_mm, vmf->pmd))
4082 return VM_FAULT_OOM;
4083
4084 /* See comment in handle_pte_fault() */
4085 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4086 return 0;
4087
4088 /* Use the zero-page for reads */
4089 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4090 !mm_forbids_zeropage(vma->vm_mm)) {
4091 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4092 vma->vm_page_prot));
4093 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4094 vmf->address, &vmf->ptl);
4095 if (!pte_none(*vmf->pte)) {
4096 update_mmu_tlb(vma, vmf->address, vmf->pte);
4097 goto unlock;
4098 }
4099 ret = check_stable_address_space(vma->vm_mm);
4100 if (ret)
4101 goto unlock;
4102 /* Deliver the page fault to userland, check inside PT lock */
4103 if (userfaultfd_missing(vma)) {
4104 pte_unmap_unlock(vmf->pte, vmf->ptl);
4105 return handle_userfault(vmf, VM_UFFD_MISSING);
4106 }
4107 goto setpte;
4108 }
4109
4110 /* Allocate our own private page. */
4111 if (unlikely(anon_vma_prepare(vma)))
4112 goto oom;
4113 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4114 if (!page)
4115 goto oom;
4116
4117 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4118 goto oom_free_page;
4119 cgroup_throttle_swaprate(page, GFP_KERNEL);
4120
4121 /*
4122 * The memory barrier inside __SetPageUptodate makes sure that
4123 * preceding stores to the page contents become visible before
4124 * the set_pte_at() write.
4125 */
4126 __SetPageUptodate(page);
4127
4128 entry = mk_pte(page, vma->vm_page_prot);
4129 entry = pte_sw_mkyoung(entry);
4130 if (vma->vm_flags & VM_WRITE)
4131 entry = pte_mkwrite(pte_mkdirty(entry));
4132
4133 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4134 &vmf->ptl);
4135 if (!pte_none(*vmf->pte)) {
4136 update_mmu_tlb(vma, vmf->address, vmf->pte);
4137 goto release;
4138 }
4139
4140 ret = check_stable_address_space(vma->vm_mm);
4141 if (ret)
4142 goto release;
4143
4144 /* Deliver the page fault to userland, check inside PT lock */
4145 if (userfaultfd_missing(vma)) {
4146 pte_unmap_unlock(vmf->pte, vmf->ptl);
4147 put_page(page);
4148 return handle_userfault(vmf, VM_UFFD_MISSING);
4149 }
4150
4151 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4152 page_add_new_anon_rmap(page, vma, vmf->address);
4153 lru_cache_add_inactive_or_unevictable(page, vma);
4154 setpte:
4155 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4156
4157 /* No need to invalidate - it was non-present before */
4158 update_mmu_cache(vma, vmf->address, vmf->pte);
4159 unlock:
4160 pte_unmap_unlock(vmf->pte, vmf->ptl);
4161 return ret;
4162 release:
4163 put_page(page);
4164 goto unlock;
4165 oom_free_page:
4166 put_page(page);
4167 oom:
4168 return VM_FAULT_OOM;
4169 }
4170
4171 /*
4172 * The mmap_lock must have been held on entry, and may have been
4173 * released depending on flags and vma->vm_ops->fault() return value.
4174 * See filemap_fault() and __lock_page_retry().
4175 */
__do_fault(struct vm_fault * vmf)4176 static vm_fault_t __do_fault(struct vm_fault *vmf)
4177 {
4178 struct vm_area_struct *vma = vmf->vma;
4179 vm_fault_t ret;
4180
4181 /*
4182 * Preallocate pte before we take page_lock because this might lead to
4183 * deadlocks for memcg reclaim which waits for pages under writeback:
4184 * lock_page(A)
4185 * SetPageWriteback(A)
4186 * unlock_page(A)
4187 * lock_page(B)
4188 * lock_page(B)
4189 * pte_alloc_one
4190 * shrink_page_list
4191 * wait_on_page_writeback(A)
4192 * SetPageWriteback(B)
4193 * unlock_page(B)
4194 * # flush A, B to clear the writeback
4195 */
4196 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4197 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4198 if (!vmf->prealloc_pte)
4199 return VM_FAULT_OOM;
4200 }
4201
4202 ret = vma->vm_ops->fault(vmf);
4203 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4204 VM_FAULT_DONE_COW)))
4205 return ret;
4206
4207 if (unlikely(PageHWPoison(vmf->page))) {
4208 struct page *page = vmf->page;
4209 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4210 if (ret & VM_FAULT_LOCKED) {
4211 if (page_mapped(page))
4212 unmap_mapping_pages(page_mapping(page),
4213 page->index, 1, false);
4214 /* Retry if a clean page was removed from the cache. */
4215 if (invalidate_inode_page(page))
4216 poisonret = VM_FAULT_NOPAGE;
4217 unlock_page(page);
4218 }
4219 put_page(page);
4220 vmf->page = NULL;
4221 return poisonret;
4222 }
4223
4224 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4225 lock_page(vmf->page);
4226 else
4227 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4228
4229 return ret;
4230 }
4231
4232 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4233 static void deposit_prealloc_pte(struct vm_fault *vmf)
4234 {
4235 struct vm_area_struct *vma = vmf->vma;
4236
4237 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4238 /*
4239 * We are going to consume the prealloc table,
4240 * count that as nr_ptes.
4241 */
4242 mm_inc_nr_ptes(vma->vm_mm);
4243 vmf->prealloc_pte = NULL;
4244 }
4245
do_set_pmd(struct vm_fault * vmf,struct page * page)4246 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4247 {
4248 struct vm_area_struct *vma = vmf->vma;
4249 bool write = vmf->flags & FAULT_FLAG_WRITE;
4250 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4251 pmd_t entry;
4252 int i;
4253 vm_fault_t ret = VM_FAULT_FALLBACK;
4254
4255 if (!transhuge_vma_suitable(vma, haddr))
4256 return ret;
4257
4258 page = compound_head(page);
4259 if (compound_order(page) != HPAGE_PMD_ORDER)
4260 return ret;
4261
4262 /*
4263 * Just backoff if any subpage of a THP is corrupted otherwise
4264 * the corrupted page may mapped by PMD silently to escape the
4265 * check. This kind of THP just can be PTE mapped. Access to
4266 * the corrupted subpage should trigger SIGBUS as expected.
4267 */
4268 if (unlikely(PageHasHWPoisoned(page)))
4269 return ret;
4270
4271 /*
4272 * Archs like ppc64 need additional space to store information
4273 * related to pte entry. Use the preallocated table for that.
4274 */
4275 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4276 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4277 if (!vmf->prealloc_pte)
4278 return VM_FAULT_OOM;
4279 }
4280
4281 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4282 if (unlikely(!pmd_none(*vmf->pmd)))
4283 goto out;
4284
4285 for (i = 0; i < HPAGE_PMD_NR; i++)
4286 flush_icache_page(vma, page + i);
4287
4288 entry = mk_huge_pmd(page, vma->vm_page_prot);
4289 if (write)
4290 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4291
4292 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4293 page_add_file_rmap(page, vma, true);
4294
4295 /*
4296 * deposit and withdraw with pmd lock held
4297 */
4298 if (arch_needs_pgtable_deposit())
4299 deposit_prealloc_pte(vmf);
4300
4301 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4302
4303 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4304
4305 /* fault is handled */
4306 ret = 0;
4307 count_vm_event(THP_FILE_MAPPED);
4308 out:
4309 spin_unlock(vmf->ptl);
4310 return ret;
4311 }
4312 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4313 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4314 {
4315 return VM_FAULT_FALLBACK;
4316 }
4317 #endif
4318
do_set_pte(struct vm_fault * vmf,struct page * page,unsigned long addr)4319 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4320 {
4321 struct vm_area_struct *vma = vmf->vma;
4322 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4323 bool write = vmf->flags & FAULT_FLAG_WRITE;
4324 bool prefault = vmf->address != addr;
4325 pte_t entry;
4326
4327 flush_icache_page(vma, page);
4328 entry = mk_pte(page, vma->vm_page_prot);
4329
4330 if (prefault && arch_wants_old_prefaulted_pte())
4331 entry = pte_mkold(entry);
4332 else
4333 entry = pte_sw_mkyoung(entry);
4334
4335 if (write)
4336 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4337 if (unlikely(uffd_wp))
4338 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4339 /* copy-on-write page */
4340 if (write && !(vma->vm_flags & VM_SHARED)) {
4341 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4342 page_add_new_anon_rmap(page, vma, addr);
4343 lru_cache_add_inactive_or_unevictable(page, vma);
4344 } else {
4345 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4346 page_add_file_rmap(page, vma, false);
4347 }
4348 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4349 }
4350
vmf_pte_changed(struct vm_fault * vmf)4351 static bool vmf_pte_changed(struct vm_fault *vmf)
4352 {
4353 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4354 return !pte_same(*vmf->pte, vmf->orig_pte);
4355
4356 return !pte_none(*vmf->pte);
4357 }
4358
4359 /**
4360 * finish_fault - finish page fault once we have prepared the page to fault
4361 *
4362 * @vmf: structure describing the fault
4363 *
4364 * This function handles all that is needed to finish a page fault once the
4365 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4366 * given page, adds reverse page mapping, handles memcg charges and LRU
4367 * addition.
4368 *
4369 * The function expects the page to be locked and on success it consumes a
4370 * reference of a page being mapped (for the PTE which maps it).
4371 *
4372 * Return: %0 on success, %VM_FAULT_ code in case of error.
4373 */
finish_fault(struct vm_fault * vmf)4374 vm_fault_t finish_fault(struct vm_fault *vmf)
4375 {
4376 struct vm_area_struct *vma = vmf->vma;
4377 struct page *page;
4378 vm_fault_t ret;
4379
4380 /* Did we COW the page? */
4381 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4382 page = vmf->cow_page;
4383 else
4384 page = vmf->page;
4385
4386 /*
4387 * check even for read faults because we might have lost our CoWed
4388 * page
4389 */
4390 if (!(vma->vm_flags & VM_SHARED)) {
4391 ret = check_stable_address_space(vma->vm_mm);
4392 if (ret)
4393 return ret;
4394 }
4395
4396 if (pmd_none(*vmf->pmd)) {
4397 if (PageTransCompound(page)) {
4398 ret = do_set_pmd(vmf, page);
4399 if (ret != VM_FAULT_FALLBACK)
4400 return ret;
4401 }
4402
4403 if (vmf->prealloc_pte)
4404 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4405 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4406 return VM_FAULT_OOM;
4407 }
4408
4409 /*
4410 * See comment in handle_pte_fault() for how this scenario happens, we
4411 * need to return NOPAGE so that we drop this page.
4412 */
4413 if (pmd_devmap_trans_unstable(vmf->pmd))
4414 return VM_FAULT_NOPAGE;
4415
4416 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4417 vmf->address, &vmf->ptl);
4418
4419 /* Re-check under ptl */
4420 if (likely(!vmf_pte_changed(vmf))) {
4421 do_set_pte(vmf, page, vmf->address);
4422
4423 /* no need to invalidate: a not-present page won't be cached */
4424 update_mmu_cache(vma, vmf->address, vmf->pte);
4425
4426 ret = 0;
4427 } else {
4428 update_mmu_tlb(vma, vmf->address, vmf->pte);
4429 ret = VM_FAULT_NOPAGE;
4430 }
4431
4432 pte_unmap_unlock(vmf->pte, vmf->ptl);
4433 return ret;
4434 }
4435
4436 static unsigned long fault_around_bytes __read_mostly =
4437 rounddown_pow_of_two(65536);
4438
4439 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4440 static int fault_around_bytes_get(void *data, u64 *val)
4441 {
4442 *val = fault_around_bytes;
4443 return 0;
4444 }
4445
4446 /*
4447 * fault_around_bytes must be rounded down to the nearest page order as it's
4448 * what do_fault_around() expects to see.
4449 */
fault_around_bytes_set(void * data,u64 val)4450 static int fault_around_bytes_set(void *data, u64 val)
4451 {
4452 if (val / PAGE_SIZE > PTRS_PER_PTE)
4453 return -EINVAL;
4454 if (val > PAGE_SIZE)
4455 fault_around_bytes = rounddown_pow_of_two(val);
4456 else
4457 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4458 return 0;
4459 }
4460 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4461 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4462
fault_around_debugfs(void)4463 static int __init fault_around_debugfs(void)
4464 {
4465 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4466 &fault_around_bytes_fops);
4467 return 0;
4468 }
4469 late_initcall(fault_around_debugfs);
4470 #endif
4471
4472 /*
4473 * do_fault_around() tries to map few pages around the fault address. The hope
4474 * is that the pages will be needed soon and this will lower the number of
4475 * faults to handle.
4476 *
4477 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4478 * not ready to be mapped: not up-to-date, locked, etc.
4479 *
4480 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4481 * only once.
4482 *
4483 * fault_around_bytes defines how many bytes we'll try to map.
4484 * do_fault_around() expects it to be set to a power of two less than or equal
4485 * to PTRS_PER_PTE.
4486 *
4487 * The virtual address of the area that we map is naturally aligned to
4488 * fault_around_bytes rounded down to the machine page size
4489 * (and therefore to page order). This way it's easier to guarantee
4490 * that we don't cross page table boundaries.
4491 */
do_fault_around(struct vm_fault * vmf)4492 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4493 {
4494 unsigned long address = vmf->address, nr_pages, mask;
4495 pgoff_t start_pgoff = vmf->pgoff;
4496 pgoff_t end_pgoff;
4497 int off;
4498
4499 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4500 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4501
4502 address = max(address & mask, vmf->vma->vm_start);
4503 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4504 start_pgoff -= off;
4505
4506 /*
4507 * end_pgoff is either the end of the page table, the end of
4508 * the vma or nr_pages from start_pgoff, depending what is nearest.
4509 */
4510 end_pgoff = start_pgoff -
4511 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4512 PTRS_PER_PTE - 1;
4513 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4514 start_pgoff + nr_pages - 1);
4515
4516 if (pmd_none(*vmf->pmd)) {
4517 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4518 if (!vmf->prealloc_pte)
4519 return VM_FAULT_OOM;
4520 }
4521
4522 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4523 }
4524
4525 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)4526 static inline bool should_fault_around(struct vm_fault *vmf)
4527 {
4528 /* No ->map_pages? No way to fault around... */
4529 if (!vmf->vma->vm_ops->map_pages)
4530 return false;
4531
4532 if (uffd_disable_fault_around(vmf->vma))
4533 return false;
4534
4535 return fault_around_bytes >> PAGE_SHIFT > 1;
4536 }
4537
do_read_fault(struct vm_fault * vmf)4538 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4539 {
4540 vm_fault_t ret = 0;
4541
4542 /*
4543 * Let's call ->map_pages() first and use ->fault() as fallback
4544 * if page by the offset is not ready to be mapped (cold cache or
4545 * something).
4546 */
4547 if (should_fault_around(vmf)) {
4548 ret = do_fault_around(vmf);
4549 if (ret)
4550 return ret;
4551 }
4552
4553 ret = __do_fault(vmf);
4554 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4555 return ret;
4556
4557 ret |= finish_fault(vmf);
4558 unlock_page(vmf->page);
4559 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4560 put_page(vmf->page);
4561 return ret;
4562 }
4563
do_cow_fault(struct vm_fault * vmf)4564 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4565 {
4566 struct vm_area_struct *vma = vmf->vma;
4567 vm_fault_t ret;
4568
4569 if (unlikely(anon_vma_prepare(vma)))
4570 return VM_FAULT_OOM;
4571
4572 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4573 if (!vmf->cow_page)
4574 return VM_FAULT_OOM;
4575
4576 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4577 GFP_KERNEL)) {
4578 put_page(vmf->cow_page);
4579 return VM_FAULT_OOM;
4580 }
4581 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4582
4583 ret = __do_fault(vmf);
4584 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4585 goto uncharge_out;
4586 if (ret & VM_FAULT_DONE_COW)
4587 return ret;
4588
4589 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4590 __SetPageUptodate(vmf->cow_page);
4591
4592 ret |= finish_fault(vmf);
4593 unlock_page(vmf->page);
4594 put_page(vmf->page);
4595 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4596 goto uncharge_out;
4597 return ret;
4598 uncharge_out:
4599 put_page(vmf->cow_page);
4600 return ret;
4601 }
4602
do_shared_fault(struct vm_fault * vmf)4603 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4604 {
4605 struct vm_area_struct *vma = vmf->vma;
4606 vm_fault_t ret, tmp;
4607
4608 ret = __do_fault(vmf);
4609 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4610 return ret;
4611
4612 /*
4613 * Check if the backing address space wants to know that the page is
4614 * about to become writable
4615 */
4616 if (vma->vm_ops->page_mkwrite) {
4617 unlock_page(vmf->page);
4618 tmp = do_page_mkwrite(vmf);
4619 if (unlikely(!tmp ||
4620 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4621 put_page(vmf->page);
4622 return tmp;
4623 }
4624 }
4625
4626 ret |= finish_fault(vmf);
4627 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4628 VM_FAULT_RETRY))) {
4629 unlock_page(vmf->page);
4630 put_page(vmf->page);
4631 return ret;
4632 }
4633
4634 ret |= fault_dirty_shared_page(vmf);
4635 return ret;
4636 }
4637
4638 /*
4639 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4640 * but allow concurrent faults).
4641 * The mmap_lock may have been released depending on flags and our
4642 * return value. See filemap_fault() and __folio_lock_or_retry().
4643 * If mmap_lock is released, vma may become invalid (for example
4644 * by other thread calling munmap()).
4645 */
do_fault(struct vm_fault * vmf)4646 static vm_fault_t do_fault(struct vm_fault *vmf)
4647 {
4648 struct vm_area_struct *vma = vmf->vma;
4649 struct mm_struct *vm_mm = vma->vm_mm;
4650 vm_fault_t ret;
4651
4652 /*
4653 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4654 */
4655 if (!vma->vm_ops->fault) {
4656 /*
4657 * If we find a migration pmd entry or a none pmd entry, which
4658 * should never happen, return SIGBUS
4659 */
4660 if (unlikely(!pmd_present(*vmf->pmd)))
4661 ret = VM_FAULT_SIGBUS;
4662 else {
4663 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4664 vmf->pmd,
4665 vmf->address,
4666 &vmf->ptl);
4667 /*
4668 * Make sure this is not a temporary clearing of pte
4669 * by holding ptl and checking again. A R/M/W update
4670 * of pte involves: take ptl, clearing the pte so that
4671 * we don't have concurrent modification by hardware
4672 * followed by an update.
4673 */
4674 if (unlikely(pte_none(*vmf->pte)))
4675 ret = VM_FAULT_SIGBUS;
4676 else
4677 ret = VM_FAULT_NOPAGE;
4678
4679 pte_unmap_unlock(vmf->pte, vmf->ptl);
4680 }
4681 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4682 ret = do_read_fault(vmf);
4683 else if (!(vma->vm_flags & VM_SHARED))
4684 ret = do_cow_fault(vmf);
4685 else
4686 ret = do_shared_fault(vmf);
4687
4688 /* preallocated pagetable is unused: free it */
4689 if (vmf->prealloc_pte) {
4690 pte_free(vm_mm, vmf->prealloc_pte);
4691 vmf->prealloc_pte = NULL;
4692 }
4693 return ret;
4694 }
4695
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4696 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4697 unsigned long addr, int page_nid, int *flags)
4698 {
4699 get_page(page);
4700
4701 count_vm_numa_event(NUMA_HINT_FAULTS);
4702 if (page_nid == numa_node_id()) {
4703 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4704 *flags |= TNF_FAULT_LOCAL;
4705 }
4706
4707 return mpol_misplaced(page, vma, addr);
4708 }
4709
do_numa_page(struct vm_fault * vmf)4710 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4711 {
4712 struct vm_area_struct *vma = vmf->vma;
4713 struct page *page = NULL;
4714 int page_nid = NUMA_NO_NODE;
4715 int last_cpupid;
4716 int target_nid;
4717 pte_t pte, old_pte;
4718 bool was_writable = pte_savedwrite(vmf->orig_pte);
4719 int flags = 0;
4720
4721 /*
4722 * The "pte" at this point cannot be used safely without
4723 * validation through pte_unmap_same(). It's of NUMA type but
4724 * the pfn may be screwed if the read is non atomic.
4725 */
4726 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4727 spin_lock(vmf->ptl);
4728 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4729 pte_unmap_unlock(vmf->pte, vmf->ptl);
4730 goto out;
4731 }
4732
4733 /* Get the normal PTE */
4734 old_pte = ptep_get(vmf->pte);
4735 pte = pte_modify(old_pte, vma->vm_page_prot);
4736
4737 page = vm_normal_page(vma, vmf->address, pte);
4738 if (!page || is_zone_device_page(page))
4739 goto out_map;
4740
4741 /* TODO: handle PTE-mapped THP */
4742 if (PageCompound(page))
4743 goto out_map;
4744
4745 /*
4746 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4747 * much anyway since they can be in shared cache state. This misses
4748 * the case where a mapping is writable but the process never writes
4749 * to it but pte_write gets cleared during protection updates and
4750 * pte_dirty has unpredictable behaviour between PTE scan updates,
4751 * background writeback, dirty balancing and application behaviour.
4752 */
4753 if (!was_writable)
4754 flags |= TNF_NO_GROUP;
4755
4756 /*
4757 * Flag if the page is shared between multiple address spaces. This
4758 * is later used when determining whether to group tasks together
4759 */
4760 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4761 flags |= TNF_SHARED;
4762
4763 page_nid = page_to_nid(page);
4764 /*
4765 * For memory tiering mode, cpupid of slow memory page is used
4766 * to record page access time. So use default value.
4767 */
4768 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4769 !node_is_toptier(page_nid))
4770 last_cpupid = (-1 & LAST_CPUPID_MASK);
4771 else
4772 last_cpupid = page_cpupid_last(page);
4773 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4774 &flags);
4775 if (target_nid == NUMA_NO_NODE) {
4776 put_page(page);
4777 goto out_map;
4778 }
4779 pte_unmap_unlock(vmf->pte, vmf->ptl);
4780
4781 /* Migrate to the requested node */
4782 if (migrate_misplaced_page(page, vma, target_nid)) {
4783 page_nid = target_nid;
4784 flags |= TNF_MIGRATED;
4785 } else {
4786 flags |= TNF_MIGRATE_FAIL;
4787 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4788 spin_lock(vmf->ptl);
4789 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4790 pte_unmap_unlock(vmf->pte, vmf->ptl);
4791 goto out;
4792 }
4793 goto out_map;
4794 }
4795
4796 out:
4797 if (page_nid != NUMA_NO_NODE)
4798 task_numa_fault(last_cpupid, page_nid, 1, flags);
4799 return 0;
4800 out_map:
4801 /*
4802 * Make it present again, depending on how arch implements
4803 * non-accessible ptes, some can allow access by kernel mode.
4804 */
4805 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4806 pte = pte_modify(old_pte, vma->vm_page_prot);
4807 pte = pte_mkyoung(pte);
4808 if (was_writable)
4809 pte = pte_mkwrite(pte);
4810 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4811 update_mmu_cache(vma, vmf->address, vmf->pte);
4812 pte_unmap_unlock(vmf->pte, vmf->ptl);
4813 goto out;
4814 }
4815
create_huge_pmd(struct vm_fault * vmf)4816 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4817 {
4818 if (vma_is_anonymous(vmf->vma))
4819 return do_huge_pmd_anonymous_page(vmf);
4820 if (vmf->vma->vm_ops->huge_fault)
4821 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4822 return VM_FAULT_FALLBACK;
4823 }
4824
4825 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4826 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4827 {
4828 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4829
4830 if (vma_is_anonymous(vmf->vma)) {
4831 if (likely(!unshare) &&
4832 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4833 return handle_userfault(vmf, VM_UFFD_WP);
4834 return do_huge_pmd_wp_page(vmf);
4835 }
4836 if (vmf->vma->vm_ops->huge_fault) {
4837 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4838
4839 if (!(ret & VM_FAULT_FALLBACK))
4840 return ret;
4841 }
4842
4843 /* COW or write-notify handled on pte level: split pmd. */
4844 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4845
4846 return VM_FAULT_FALLBACK;
4847 }
4848
create_huge_pud(struct vm_fault * vmf)4849 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4850 {
4851 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4852 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4853 /* No support for anonymous transparent PUD pages yet */
4854 if (vma_is_anonymous(vmf->vma))
4855 return VM_FAULT_FALLBACK;
4856 if (vmf->vma->vm_ops->huge_fault)
4857 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4858 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4859 return VM_FAULT_FALLBACK;
4860 }
4861
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4862 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4863 {
4864 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4865 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4866 /* No support for anonymous transparent PUD pages yet */
4867 if (vma_is_anonymous(vmf->vma))
4868 goto split;
4869 if (vmf->vma->vm_ops->huge_fault) {
4870 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4871
4872 if (!(ret & VM_FAULT_FALLBACK))
4873 return ret;
4874 }
4875 split:
4876 /* COW or write-notify not handled on PUD level: split pud.*/
4877 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4878 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4879 return VM_FAULT_FALLBACK;
4880 }
4881
4882 /*
4883 * These routines also need to handle stuff like marking pages dirty
4884 * and/or accessed for architectures that don't do it in hardware (most
4885 * RISC architectures). The early dirtying is also good on the i386.
4886 *
4887 * There is also a hook called "update_mmu_cache()" that architectures
4888 * with external mmu caches can use to update those (ie the Sparc or
4889 * PowerPC hashed page tables that act as extended TLBs).
4890 *
4891 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4892 * concurrent faults).
4893 *
4894 * The mmap_lock may have been released depending on flags and our return value.
4895 * See filemap_fault() and __folio_lock_or_retry().
4896 */
handle_pte_fault(struct vm_fault * vmf)4897 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4898 {
4899 pte_t entry;
4900
4901 if (unlikely(pmd_none(*vmf->pmd))) {
4902 /*
4903 * Leave __pte_alloc() until later: because vm_ops->fault may
4904 * want to allocate huge page, and if we expose page table
4905 * for an instant, it will be difficult to retract from
4906 * concurrent faults and from rmap lookups.
4907 */
4908 vmf->pte = NULL;
4909 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4910 } else {
4911 /*
4912 * If a huge pmd materialized under us just retry later. Use
4913 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4914 * of pmd_trans_huge() to ensure the pmd didn't become
4915 * pmd_trans_huge under us and then back to pmd_none, as a
4916 * result of MADV_DONTNEED running immediately after a huge pmd
4917 * fault in a different thread of this mm, in turn leading to a
4918 * misleading pmd_trans_huge() retval. All we have to ensure is
4919 * that it is a regular pmd that we can walk with
4920 * pte_offset_map() and we can do that through an atomic read
4921 * in C, which is what pmd_trans_unstable() provides.
4922 */
4923 if (pmd_devmap_trans_unstable(vmf->pmd))
4924 return 0;
4925 /*
4926 * A regular pmd is established and it can't morph into a huge
4927 * pmd from under us anymore at this point because we hold the
4928 * mmap_lock read mode and khugepaged takes it in write mode.
4929 * So now it's safe to run pte_offset_map().
4930 */
4931 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4932 vmf->orig_pte = *vmf->pte;
4933 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4934
4935 /*
4936 * some architectures can have larger ptes than wordsize,
4937 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4938 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4939 * accesses. The code below just needs a consistent view
4940 * for the ifs and we later double check anyway with the
4941 * ptl lock held. So here a barrier will do.
4942 */
4943 barrier();
4944 if (pte_none(vmf->orig_pte)) {
4945 pte_unmap(vmf->pte);
4946 vmf->pte = NULL;
4947 }
4948 }
4949
4950 if (!vmf->pte) {
4951 if (vma_is_anonymous(vmf->vma))
4952 return do_anonymous_page(vmf);
4953 else
4954 return do_fault(vmf);
4955 }
4956
4957 if (!pte_present(vmf->orig_pte))
4958 return do_swap_page(vmf);
4959
4960 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4961 return do_numa_page(vmf);
4962
4963 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4964 spin_lock(vmf->ptl);
4965 entry = vmf->orig_pte;
4966 if (unlikely(!pte_same(*vmf->pte, entry))) {
4967 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4968 goto unlock;
4969 }
4970 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4971 if (!pte_write(entry))
4972 return do_wp_page(vmf);
4973 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4974 entry = pte_mkdirty(entry);
4975 }
4976 entry = pte_mkyoung(entry);
4977 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4978 vmf->flags & FAULT_FLAG_WRITE)) {
4979 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4980 } else {
4981 /* Skip spurious TLB flush for retried page fault */
4982 if (vmf->flags & FAULT_FLAG_TRIED)
4983 goto unlock;
4984 /*
4985 * This is needed only for protection faults but the arch code
4986 * is not yet telling us if this is a protection fault or not.
4987 * This still avoids useless tlb flushes for .text page faults
4988 * with threads.
4989 */
4990 if (vmf->flags & FAULT_FLAG_WRITE)
4991 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4992 }
4993 unlock:
4994 pte_unmap_unlock(vmf->pte, vmf->ptl);
4995 return 0;
4996 }
4997
4998 /*
4999 * By the time we get here, we already hold the mm semaphore
5000 *
5001 * The mmap_lock may have been released depending on flags and our
5002 * return value. See filemap_fault() and __folio_lock_or_retry().
5003 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5004 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5005 unsigned long address, unsigned int flags)
5006 {
5007 struct vm_fault vmf = {
5008 .vma = vma,
5009 .address = address & PAGE_MASK,
5010 .real_address = address,
5011 .flags = flags,
5012 .pgoff = linear_page_index(vma, address),
5013 .gfp_mask = __get_fault_gfp_mask(vma),
5014 };
5015 struct mm_struct *mm = vma->vm_mm;
5016 unsigned long vm_flags = vma->vm_flags;
5017 pgd_t *pgd;
5018 p4d_t *p4d;
5019 vm_fault_t ret;
5020
5021 pgd = pgd_offset(mm, address);
5022 p4d = p4d_alloc(mm, pgd, address);
5023 if (!p4d)
5024 return VM_FAULT_OOM;
5025
5026 vmf.pud = pud_alloc(mm, p4d, address);
5027 if (!vmf.pud)
5028 return VM_FAULT_OOM;
5029 retry_pud:
5030 if (pud_none(*vmf.pud) &&
5031 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5032 ret = create_huge_pud(&vmf);
5033 if (!(ret & VM_FAULT_FALLBACK))
5034 return ret;
5035 } else {
5036 pud_t orig_pud = *vmf.pud;
5037
5038 barrier();
5039 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5040
5041 /*
5042 * TODO once we support anonymous PUDs: NUMA case and
5043 * FAULT_FLAG_UNSHARE handling.
5044 */
5045 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5046 ret = wp_huge_pud(&vmf, orig_pud);
5047 if (!(ret & VM_FAULT_FALLBACK))
5048 return ret;
5049 } else {
5050 huge_pud_set_accessed(&vmf, orig_pud);
5051 return 0;
5052 }
5053 }
5054 }
5055
5056 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5057 if (!vmf.pmd)
5058 return VM_FAULT_OOM;
5059
5060 /* Huge pud page fault raced with pmd_alloc? */
5061 if (pud_trans_unstable(vmf.pud))
5062 goto retry_pud;
5063
5064 if (pmd_none(*vmf.pmd) &&
5065 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5066 ret = create_huge_pmd(&vmf);
5067 if (!(ret & VM_FAULT_FALLBACK))
5068 return ret;
5069 } else {
5070 vmf.orig_pmd = *vmf.pmd;
5071
5072 barrier();
5073 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5074 VM_BUG_ON(thp_migration_supported() &&
5075 !is_pmd_migration_entry(vmf.orig_pmd));
5076 if (is_pmd_migration_entry(vmf.orig_pmd))
5077 pmd_migration_entry_wait(mm, vmf.pmd);
5078 return 0;
5079 }
5080 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5081 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5082 return do_huge_pmd_numa_page(&vmf);
5083
5084 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5085 !pmd_write(vmf.orig_pmd)) {
5086 ret = wp_huge_pmd(&vmf);
5087 if (!(ret & VM_FAULT_FALLBACK))
5088 return ret;
5089 } else {
5090 huge_pmd_set_accessed(&vmf);
5091 return 0;
5092 }
5093 }
5094 }
5095
5096 return handle_pte_fault(&vmf);
5097 }
5098
5099 /**
5100 * mm_account_fault - Do page fault accounting
5101 *
5102 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5103 * of perf event counters, but we'll still do the per-task accounting to
5104 * the task who triggered this page fault.
5105 * @address: the faulted address.
5106 * @flags: the fault flags.
5107 * @ret: the fault retcode.
5108 *
5109 * This will take care of most of the page fault accounting. Meanwhile, it
5110 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5111 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5112 * still be in per-arch page fault handlers at the entry of page fault.
5113 */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5114 static inline void mm_account_fault(struct pt_regs *regs,
5115 unsigned long address, unsigned int flags,
5116 vm_fault_t ret)
5117 {
5118 bool major;
5119
5120 /*
5121 * We don't do accounting for some specific faults:
5122 *
5123 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5124 * includes arch_vma_access_permitted() failing before reaching here.
5125 * So this is not a "this many hardware page faults" counter. We
5126 * should use the hw profiling for that.
5127 *
5128 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5129 * once they're completed.
5130 */
5131 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5132 return;
5133
5134 /*
5135 * We define the fault as a major fault when the final successful fault
5136 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5137 * handle it immediately previously).
5138 */
5139 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5140
5141 if (major)
5142 current->maj_flt++;
5143 else
5144 current->min_flt++;
5145
5146 /*
5147 * If the fault is done for GUP, regs will be NULL. We only do the
5148 * accounting for the per thread fault counters who triggered the
5149 * fault, and we skip the perf event updates.
5150 */
5151 if (!regs)
5152 return;
5153
5154 if (major)
5155 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5156 else
5157 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5158 }
5159
5160 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5161 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5162 {
5163 /* the LRU algorithm doesn't apply to sequential or random reads */
5164 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5165 }
5166
lru_gen_exit_fault(void)5167 static void lru_gen_exit_fault(void)
5168 {
5169 current->in_lru_fault = false;
5170 }
5171 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5172 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5173 {
5174 }
5175
lru_gen_exit_fault(void)5176 static void lru_gen_exit_fault(void)
5177 {
5178 }
5179 #endif /* CONFIG_LRU_GEN */
5180
5181 /*
5182 * By the time we get here, we already hold the mm semaphore
5183 *
5184 * The mmap_lock may have been released depending on flags and our
5185 * return value. See filemap_fault() and __folio_lock_or_retry().
5186 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5187 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5188 unsigned int flags, struct pt_regs *regs)
5189 {
5190 vm_fault_t ret;
5191
5192 __set_current_state(TASK_RUNNING);
5193
5194 count_vm_event(PGFAULT);
5195 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5196
5197 /* do counter updates before entering really critical section. */
5198 check_sync_rss_stat(current);
5199
5200 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5201 flags & FAULT_FLAG_INSTRUCTION,
5202 flags & FAULT_FLAG_REMOTE))
5203 return VM_FAULT_SIGSEGV;
5204
5205 /*
5206 * Enable the memcg OOM handling for faults triggered in user
5207 * space. Kernel faults are handled more gracefully.
5208 */
5209 if (flags & FAULT_FLAG_USER)
5210 mem_cgroup_enter_user_fault();
5211
5212 lru_gen_enter_fault(vma);
5213
5214 if (unlikely(is_vm_hugetlb_page(vma)))
5215 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5216 else
5217 ret = __handle_mm_fault(vma, address, flags);
5218
5219 lru_gen_exit_fault();
5220
5221 if (flags & FAULT_FLAG_USER) {
5222 mem_cgroup_exit_user_fault();
5223 /*
5224 * The task may have entered a memcg OOM situation but
5225 * if the allocation error was handled gracefully (no
5226 * VM_FAULT_OOM), there is no need to kill anything.
5227 * Just clean up the OOM state peacefully.
5228 */
5229 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5230 mem_cgroup_oom_synchronize(false);
5231 }
5232
5233 mm_account_fault(regs, address, flags, ret);
5234
5235 return ret;
5236 }
5237 EXPORT_SYMBOL_GPL(handle_mm_fault);
5238
5239 #ifndef __PAGETABLE_P4D_FOLDED
5240 /*
5241 * Allocate p4d page table.
5242 * We've already handled the fast-path in-line.
5243 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5244 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5245 {
5246 p4d_t *new = p4d_alloc_one(mm, address);
5247 if (!new)
5248 return -ENOMEM;
5249
5250 spin_lock(&mm->page_table_lock);
5251 if (pgd_present(*pgd)) { /* Another has populated it */
5252 p4d_free(mm, new);
5253 } else {
5254 smp_wmb(); /* See comment in pmd_install() */
5255 pgd_populate(mm, pgd, new);
5256 }
5257 spin_unlock(&mm->page_table_lock);
5258 return 0;
5259 }
5260 #endif /* __PAGETABLE_P4D_FOLDED */
5261
5262 #ifndef __PAGETABLE_PUD_FOLDED
5263 /*
5264 * Allocate page upper directory.
5265 * We've already handled the fast-path in-line.
5266 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5267 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5268 {
5269 pud_t *new = pud_alloc_one(mm, address);
5270 if (!new)
5271 return -ENOMEM;
5272
5273 spin_lock(&mm->page_table_lock);
5274 if (!p4d_present(*p4d)) {
5275 mm_inc_nr_puds(mm);
5276 smp_wmb(); /* See comment in pmd_install() */
5277 p4d_populate(mm, p4d, new);
5278 } else /* Another has populated it */
5279 pud_free(mm, new);
5280 spin_unlock(&mm->page_table_lock);
5281 return 0;
5282 }
5283 #endif /* __PAGETABLE_PUD_FOLDED */
5284
5285 #ifndef __PAGETABLE_PMD_FOLDED
5286 /*
5287 * Allocate page middle directory.
5288 * We've already handled the fast-path in-line.
5289 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5290 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5291 {
5292 spinlock_t *ptl;
5293 pmd_t *new = pmd_alloc_one(mm, address);
5294 if (!new)
5295 return -ENOMEM;
5296
5297 ptl = pud_lock(mm, pud);
5298 if (!pud_present(*pud)) {
5299 mm_inc_nr_pmds(mm);
5300 smp_wmb(); /* See comment in pmd_install() */
5301 pud_populate(mm, pud, new);
5302 } else { /* Another has populated it */
5303 pmd_free(mm, new);
5304 }
5305 spin_unlock(ptl);
5306 return 0;
5307 }
5308 #endif /* __PAGETABLE_PMD_FOLDED */
5309
5310 /**
5311 * follow_pte - look up PTE at a user virtual address
5312 * @mm: the mm_struct of the target address space
5313 * @address: user virtual address
5314 * @ptepp: location to store found PTE
5315 * @ptlp: location to store the lock for the PTE
5316 *
5317 * On a successful return, the pointer to the PTE is stored in @ptepp;
5318 * the corresponding lock is taken and its location is stored in @ptlp.
5319 * The contents of the PTE are only stable until @ptlp is released;
5320 * any further use, if any, must be protected against invalidation
5321 * with MMU notifiers.
5322 *
5323 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5324 * should be taken for read.
5325 *
5326 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5327 * it is not a good general-purpose API.
5328 *
5329 * Return: zero on success, -ve otherwise.
5330 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5331 int follow_pte(struct mm_struct *mm, unsigned long address,
5332 pte_t **ptepp, spinlock_t **ptlp)
5333 {
5334 pgd_t *pgd;
5335 p4d_t *p4d;
5336 pud_t *pud;
5337 pmd_t *pmd;
5338 pte_t *ptep;
5339
5340 pgd = pgd_offset(mm, address);
5341 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5342 goto out;
5343
5344 p4d = p4d_offset(pgd, address);
5345 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5346 goto out;
5347
5348 pud = pud_offset(p4d, address);
5349 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5350 goto out;
5351
5352 pmd = pmd_offset(pud, address);
5353 VM_BUG_ON(pmd_trans_huge(*pmd));
5354
5355 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5356 goto out;
5357
5358 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5359 if (!pte_present(*ptep))
5360 goto unlock;
5361 *ptepp = ptep;
5362 return 0;
5363 unlock:
5364 pte_unmap_unlock(ptep, *ptlp);
5365 out:
5366 return -EINVAL;
5367 }
5368 EXPORT_SYMBOL_GPL(follow_pte);
5369
5370 /**
5371 * follow_pfn - look up PFN at a user virtual address
5372 * @vma: memory mapping
5373 * @address: user virtual address
5374 * @pfn: location to store found PFN
5375 *
5376 * Only IO mappings and raw PFN mappings are allowed.
5377 *
5378 * This function does not allow the caller to read the permissions
5379 * of the PTE. Do not use it.
5380 *
5381 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5382 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5383 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5384 unsigned long *pfn)
5385 {
5386 int ret = -EINVAL;
5387 spinlock_t *ptl;
5388 pte_t *ptep;
5389
5390 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5391 return ret;
5392
5393 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5394 if (ret)
5395 return ret;
5396 *pfn = pte_pfn(*ptep);
5397 pte_unmap_unlock(ptep, ptl);
5398 return 0;
5399 }
5400 EXPORT_SYMBOL(follow_pfn);
5401
5402 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5403 int follow_phys(struct vm_area_struct *vma,
5404 unsigned long address, unsigned int flags,
5405 unsigned long *prot, resource_size_t *phys)
5406 {
5407 int ret = -EINVAL;
5408 pte_t *ptep, pte;
5409 spinlock_t *ptl;
5410
5411 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5412 goto out;
5413
5414 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5415 goto out;
5416 pte = *ptep;
5417
5418 if ((flags & FOLL_WRITE) && !pte_write(pte))
5419 goto unlock;
5420
5421 *prot = pgprot_val(pte_pgprot(pte));
5422 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5423
5424 ret = 0;
5425 unlock:
5426 pte_unmap_unlock(ptep, ptl);
5427 out:
5428 return ret;
5429 }
5430
5431 /**
5432 * generic_access_phys - generic implementation for iomem mmap access
5433 * @vma: the vma to access
5434 * @addr: userspace address, not relative offset within @vma
5435 * @buf: buffer to read/write
5436 * @len: length of transfer
5437 * @write: set to FOLL_WRITE when writing, otherwise reading
5438 *
5439 * This is a generic implementation for &vm_operations_struct.access for an
5440 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5441 * not page based.
5442 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5443 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5444 void *buf, int len, int write)
5445 {
5446 resource_size_t phys_addr;
5447 unsigned long prot = 0;
5448 void __iomem *maddr;
5449 pte_t *ptep, pte;
5450 spinlock_t *ptl;
5451 int offset = offset_in_page(addr);
5452 int ret = -EINVAL;
5453
5454 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5455 return -EINVAL;
5456
5457 retry:
5458 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5459 return -EINVAL;
5460 pte = *ptep;
5461 pte_unmap_unlock(ptep, ptl);
5462
5463 prot = pgprot_val(pte_pgprot(pte));
5464 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5465
5466 if ((write & FOLL_WRITE) && !pte_write(pte))
5467 return -EINVAL;
5468
5469 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5470 if (!maddr)
5471 return -ENOMEM;
5472
5473 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5474 goto out_unmap;
5475
5476 if (!pte_same(pte, *ptep)) {
5477 pte_unmap_unlock(ptep, ptl);
5478 iounmap(maddr);
5479
5480 goto retry;
5481 }
5482
5483 if (write)
5484 memcpy_toio(maddr + offset, buf, len);
5485 else
5486 memcpy_fromio(buf, maddr + offset, len);
5487 ret = len;
5488 pte_unmap_unlock(ptep, ptl);
5489 out_unmap:
5490 iounmap(maddr);
5491
5492 return ret;
5493 }
5494 EXPORT_SYMBOL_GPL(generic_access_phys);
5495 #endif
5496
5497 /*
5498 * Access another process' address space as given in mm.
5499 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5500 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5501 int len, unsigned int gup_flags)
5502 {
5503 struct vm_area_struct *vma;
5504 void *old_buf = buf;
5505 int write = gup_flags & FOLL_WRITE;
5506
5507 if (mmap_read_lock_killable(mm))
5508 return 0;
5509
5510 /* ignore errors, just check how much was successfully transferred */
5511 while (len) {
5512 int bytes, ret, offset;
5513 void *maddr;
5514 struct page *page = NULL;
5515
5516 ret = get_user_pages_remote(mm, addr, 1,
5517 gup_flags, &page, &vma, NULL);
5518 if (ret <= 0) {
5519 #ifndef CONFIG_HAVE_IOREMAP_PROT
5520 break;
5521 #else
5522 /*
5523 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5524 * we can access using slightly different code.
5525 */
5526 vma = vma_lookup(mm, addr);
5527 if (!vma)
5528 break;
5529 if (vma->vm_ops && vma->vm_ops->access)
5530 ret = vma->vm_ops->access(vma, addr, buf,
5531 len, write);
5532 if (ret <= 0)
5533 break;
5534 bytes = ret;
5535 #endif
5536 } else {
5537 bytes = len;
5538 offset = addr & (PAGE_SIZE-1);
5539 if (bytes > PAGE_SIZE-offset)
5540 bytes = PAGE_SIZE-offset;
5541
5542 maddr = kmap(page);
5543 if (write) {
5544 copy_to_user_page(vma, page, addr,
5545 maddr + offset, buf, bytes);
5546 set_page_dirty_lock(page);
5547 } else {
5548 copy_from_user_page(vma, page, addr,
5549 buf, maddr + offset, bytes);
5550 }
5551 kunmap(page);
5552 put_page(page);
5553 }
5554 len -= bytes;
5555 buf += bytes;
5556 addr += bytes;
5557 }
5558 mmap_read_unlock(mm);
5559
5560 return buf - old_buf;
5561 }
5562
5563 /**
5564 * access_remote_vm - access another process' address space
5565 * @mm: the mm_struct of the target address space
5566 * @addr: start address to access
5567 * @buf: source or destination buffer
5568 * @len: number of bytes to transfer
5569 * @gup_flags: flags modifying lookup behaviour
5570 *
5571 * The caller must hold a reference on @mm.
5572 *
5573 * Return: number of bytes copied from source to destination.
5574 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5575 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5576 void *buf, int len, unsigned int gup_flags)
5577 {
5578 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5579 }
5580
5581 /*
5582 * Access another process' address space.
5583 * Source/target buffer must be kernel space,
5584 * Do not walk the page table directly, use get_user_pages
5585 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5586 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5587 void *buf, int len, unsigned int gup_flags)
5588 {
5589 struct mm_struct *mm;
5590 int ret;
5591
5592 mm = get_task_mm(tsk);
5593 if (!mm)
5594 return 0;
5595
5596 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5597
5598 mmput(mm);
5599
5600 return ret;
5601 }
5602 EXPORT_SYMBOL_GPL(access_process_vm);
5603
5604 /*
5605 * Print the name of a VMA.
5606 */
print_vma_addr(char * prefix,unsigned long ip)5607 void print_vma_addr(char *prefix, unsigned long ip)
5608 {
5609 struct mm_struct *mm = current->mm;
5610 struct vm_area_struct *vma;
5611
5612 /*
5613 * we might be running from an atomic context so we cannot sleep
5614 */
5615 if (!mmap_read_trylock(mm))
5616 return;
5617
5618 vma = find_vma(mm, ip);
5619 if (vma && vma->vm_file) {
5620 struct file *f = vma->vm_file;
5621 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5622 if (buf) {
5623 char *p;
5624
5625 p = file_path(f, buf, PAGE_SIZE);
5626 if (IS_ERR(p))
5627 p = "?";
5628 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5629 vma->vm_start,
5630 vma->vm_end - vma->vm_start);
5631 free_page((unsigned long)buf);
5632 }
5633 }
5634 mmap_read_unlock(mm);
5635 }
5636
5637 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5638 void __might_fault(const char *file, int line)
5639 {
5640 if (pagefault_disabled())
5641 return;
5642 __might_sleep(file, line);
5643 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5644 if (current->mm)
5645 might_lock_read(¤t->mm->mmap_lock);
5646 #endif
5647 }
5648 EXPORT_SYMBOL(__might_fault);
5649 #endif
5650
5651 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5652 /*
5653 * Process all subpages of the specified huge page with the specified
5654 * operation. The target subpage will be processed last to keep its
5655 * cache lines hot.
5656 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5657 static inline void process_huge_page(
5658 unsigned long addr_hint, unsigned int pages_per_huge_page,
5659 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5660 void *arg)
5661 {
5662 int i, n, base, l;
5663 unsigned long addr = addr_hint &
5664 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5665
5666 /* Process target subpage last to keep its cache lines hot */
5667 might_sleep();
5668 n = (addr_hint - addr) / PAGE_SIZE;
5669 if (2 * n <= pages_per_huge_page) {
5670 /* If target subpage in first half of huge page */
5671 base = 0;
5672 l = n;
5673 /* Process subpages at the end of huge page */
5674 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5675 cond_resched();
5676 process_subpage(addr + i * PAGE_SIZE, i, arg);
5677 }
5678 } else {
5679 /* If target subpage in second half of huge page */
5680 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5681 l = pages_per_huge_page - n;
5682 /* Process subpages at the begin of huge page */
5683 for (i = 0; i < base; i++) {
5684 cond_resched();
5685 process_subpage(addr + i * PAGE_SIZE, i, arg);
5686 }
5687 }
5688 /*
5689 * Process remaining subpages in left-right-left-right pattern
5690 * towards the target subpage
5691 */
5692 for (i = 0; i < l; i++) {
5693 int left_idx = base + i;
5694 int right_idx = base + 2 * l - 1 - i;
5695
5696 cond_resched();
5697 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5698 cond_resched();
5699 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5700 }
5701 }
5702
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5703 static void clear_gigantic_page(struct page *page,
5704 unsigned long addr,
5705 unsigned int pages_per_huge_page)
5706 {
5707 int i;
5708 struct page *p;
5709
5710 might_sleep();
5711 for (i = 0; i < pages_per_huge_page; i++) {
5712 p = nth_page(page, i);
5713 cond_resched();
5714 clear_user_highpage(p, addr + i * PAGE_SIZE);
5715 }
5716 }
5717
clear_subpage(unsigned long addr,int idx,void * arg)5718 static void clear_subpage(unsigned long addr, int idx, void *arg)
5719 {
5720 struct page *page = arg;
5721
5722 clear_user_highpage(page + idx, addr);
5723 }
5724
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5725 void clear_huge_page(struct page *page,
5726 unsigned long addr_hint, unsigned int pages_per_huge_page)
5727 {
5728 unsigned long addr = addr_hint &
5729 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5730
5731 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5732 clear_gigantic_page(page, addr, pages_per_huge_page);
5733 return;
5734 }
5735
5736 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5737 }
5738
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5739 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5740 unsigned long addr,
5741 struct vm_area_struct *vma,
5742 unsigned int pages_per_huge_page)
5743 {
5744 int i;
5745 struct page *dst_base = dst;
5746 struct page *src_base = src;
5747
5748 for (i = 0; i < pages_per_huge_page; i++) {
5749 dst = nth_page(dst_base, i);
5750 src = nth_page(src_base, i);
5751
5752 cond_resched();
5753 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5754 }
5755 }
5756
5757 struct copy_subpage_arg {
5758 struct page *dst;
5759 struct page *src;
5760 struct vm_area_struct *vma;
5761 };
5762
copy_subpage(unsigned long addr,int idx,void * arg)5763 static void copy_subpage(unsigned long addr, int idx, void *arg)
5764 {
5765 struct copy_subpage_arg *copy_arg = arg;
5766
5767 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5768 addr, copy_arg->vma);
5769 }
5770
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5771 void copy_user_huge_page(struct page *dst, struct page *src,
5772 unsigned long addr_hint, struct vm_area_struct *vma,
5773 unsigned int pages_per_huge_page)
5774 {
5775 unsigned long addr = addr_hint &
5776 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5777 struct copy_subpage_arg arg = {
5778 .dst = dst,
5779 .src = src,
5780 .vma = vma,
5781 };
5782
5783 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5784 copy_user_gigantic_page(dst, src, addr, vma,
5785 pages_per_huge_page);
5786 return;
5787 }
5788
5789 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5790 }
5791
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5792 long copy_huge_page_from_user(struct page *dst_page,
5793 const void __user *usr_src,
5794 unsigned int pages_per_huge_page,
5795 bool allow_pagefault)
5796 {
5797 void *page_kaddr;
5798 unsigned long i, rc = 0;
5799 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5800 struct page *subpage;
5801
5802 for (i = 0; i < pages_per_huge_page; i++) {
5803 subpage = nth_page(dst_page, i);
5804 if (allow_pagefault)
5805 page_kaddr = kmap(subpage);
5806 else
5807 page_kaddr = kmap_atomic(subpage);
5808 rc = copy_from_user(page_kaddr,
5809 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5810 if (allow_pagefault)
5811 kunmap(subpage);
5812 else
5813 kunmap_atomic(page_kaddr);
5814
5815 ret_val -= (PAGE_SIZE - rc);
5816 if (rc)
5817 break;
5818
5819 flush_dcache_page(subpage);
5820
5821 cond_resched();
5822 }
5823 return ret_val;
5824 }
5825 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5826
5827 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5828
5829 static struct kmem_cache *page_ptl_cachep;
5830
ptlock_cache_init(void)5831 void __init ptlock_cache_init(void)
5832 {
5833 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5834 SLAB_PANIC, NULL);
5835 }
5836
ptlock_alloc(struct page * page)5837 bool ptlock_alloc(struct page *page)
5838 {
5839 spinlock_t *ptl;
5840
5841 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5842 if (!ptl)
5843 return false;
5844 page->ptl = ptl;
5845 return true;
5846 }
5847
ptlock_free(struct page * page)5848 void ptlock_free(struct page *page)
5849 {
5850 kmem_cache_free(page_ptl_cachep, page->ptl);
5851 }
5852 #endif
5853