1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/mman.h>
14 #include <linux/module.h>
15 #include <linux/printk.h>
16 #include <linux/random.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/uaccess.h>
20 #include <linux/io.h>
21 #include <linux/vmalloc.h>
22 #include <linux/set_memory.h>
23 
24 #include <asm/page.h>
25 
26 #include <kunit/test.h>
27 
28 #include "kasan.h"
29 
30 #define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
31 
32 /*
33  * Some tests use these global variables to store return values from function
34  * calls that could otherwise be eliminated by the compiler as dead code.
35  */
36 void *kasan_ptr_result;
37 int kasan_int_result;
38 
39 static struct kunit_resource resource;
40 static struct kunit_kasan_status test_status;
41 static bool multishot;
42 
43 /*
44  * Temporarily enable multi-shot mode. Otherwise, KASAN would only report the
45  * first detected bug and panic the kernel if panic_on_warn is enabled. For
46  * hardware tag-based KASAN also allow tag checking to be reenabled for each
47  * test, see the comment for KUNIT_EXPECT_KASAN_FAIL().
48  */
kasan_test_init(struct kunit * test)49 static int kasan_test_init(struct kunit *test)
50 {
51 	if (!kasan_enabled()) {
52 		kunit_err(test, "can't run KASAN tests with KASAN disabled");
53 		return -1;
54 	}
55 
56 	multishot = kasan_save_enable_multi_shot();
57 	test_status.report_found = false;
58 	test_status.sync_fault = false;
59 	kunit_add_named_resource(test, NULL, NULL, &resource,
60 					"kasan_status", &test_status);
61 	return 0;
62 }
63 
kasan_test_exit(struct kunit * test)64 static void kasan_test_exit(struct kunit *test)
65 {
66 	kasan_restore_multi_shot(multishot);
67 	KUNIT_EXPECT_FALSE(test, test_status.report_found);
68 }
69 
70 /**
71  * KUNIT_EXPECT_KASAN_FAIL() - check that the executed expression produces a
72  * KASAN report; causes a test failure otherwise. This relies on a KUnit
73  * resource named "kasan_status". Do not use this name for KUnit resources
74  * outside of KASAN tests.
75  *
76  * For hardware tag-based KASAN, when a synchronous tag fault happens, tag
77  * checking is auto-disabled. When this happens, this test handler reenables
78  * tag checking. As tag checking can be only disabled or enabled per CPU,
79  * this handler disables migration (preemption).
80  *
81  * Since the compiler doesn't see that the expression can change the test_status
82  * fields, it can reorder or optimize away the accesses to those fields.
83  * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
84  * expression to prevent that.
85  *
86  * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
87  * as false. This allows detecting KASAN reports that happen outside of the
88  * checks by asserting !test_status.report_found at the start of
89  * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
90  */
91 #define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {			\
92 	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
93 	    kasan_sync_fault_possible())				\
94 		migrate_disable();					\
95 	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));	\
96 	barrier();							\
97 	expression;							\
98 	barrier();							\
99 	if (kasan_async_fault_possible())				\
100 		kasan_force_async_fault();				\
101 	if (!READ_ONCE(test_status.report_found)) {			\
102 		KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure "	\
103 				"expected in \"" #expression		\
104 				 "\", but none occurred");		\
105 	}								\
106 	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
107 	    kasan_sync_fault_possible()) {				\
108 		if (READ_ONCE(test_status.report_found) &&		\
109 		    READ_ONCE(test_status.sync_fault))			\
110 			kasan_enable_tagging();				\
111 		migrate_enable();					\
112 	}								\
113 	WRITE_ONCE(test_status.report_found, false);			\
114 } while (0)
115 
116 #define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {			\
117 	if (!IS_ENABLED(config))					\
118 		kunit_skip((test), "Test requires " #config "=y");	\
119 } while (0)
120 
121 #define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {			\
122 	if (IS_ENABLED(config))						\
123 		kunit_skip((test), "Test requires " #config "=n");	\
124 } while (0)
125 
kmalloc_oob_right(struct kunit * test)126 static void kmalloc_oob_right(struct kunit *test)
127 {
128 	char *ptr;
129 	size_t size = 128 - KASAN_GRANULE_SIZE - 5;
130 
131 	ptr = kmalloc(size, GFP_KERNEL);
132 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
133 
134 	OPTIMIZER_HIDE_VAR(ptr);
135 	/*
136 	 * An unaligned access past the requested kmalloc size.
137 	 * Only generic KASAN can precisely detect these.
138 	 */
139 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
140 		KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');
141 
142 	/*
143 	 * An aligned access into the first out-of-bounds granule that falls
144 	 * within the aligned kmalloc object.
145 	 */
146 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');
147 
148 	/* Out-of-bounds access past the aligned kmalloc object. */
149 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
150 					ptr[size + KASAN_GRANULE_SIZE + 5]);
151 
152 	kfree(ptr);
153 }
154 
kmalloc_oob_left(struct kunit * test)155 static void kmalloc_oob_left(struct kunit *test)
156 {
157 	char *ptr;
158 	size_t size = 15;
159 
160 	ptr = kmalloc(size, GFP_KERNEL);
161 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
162 
163 	OPTIMIZER_HIDE_VAR(ptr);
164 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
165 	kfree(ptr);
166 }
167 
kmalloc_node_oob_right(struct kunit * test)168 static void kmalloc_node_oob_right(struct kunit *test)
169 {
170 	char *ptr;
171 	size_t size = 4096;
172 
173 	ptr = kmalloc_node(size, GFP_KERNEL, 0);
174 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
175 
176 	OPTIMIZER_HIDE_VAR(ptr);
177 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
178 	kfree(ptr);
179 }
180 
181 /*
182  * These kmalloc_pagealloc_* tests try allocating a memory chunk that doesn't
183  * fit into a slab cache and therefore is allocated via the page allocator
184  * fallback. Since this kind of fallback is only implemented for SLUB, these
185  * tests are limited to that allocator.
186  */
kmalloc_pagealloc_oob_right(struct kunit * test)187 static void kmalloc_pagealloc_oob_right(struct kunit *test)
188 {
189 	char *ptr;
190 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
191 
192 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
193 
194 	ptr = kmalloc(size, GFP_KERNEL);
195 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
196 
197 	OPTIMIZER_HIDE_VAR(ptr);
198 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
199 
200 	kfree(ptr);
201 }
202 
kmalloc_pagealloc_uaf(struct kunit * test)203 static void kmalloc_pagealloc_uaf(struct kunit *test)
204 {
205 	char *ptr;
206 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
207 
208 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
209 
210 	ptr = kmalloc(size, GFP_KERNEL);
211 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
212 	kfree(ptr);
213 
214 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
215 }
216 
kmalloc_pagealloc_invalid_free(struct kunit * test)217 static void kmalloc_pagealloc_invalid_free(struct kunit *test)
218 {
219 	char *ptr;
220 	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
221 
222 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
223 
224 	ptr = kmalloc(size, GFP_KERNEL);
225 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
226 
227 	KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
228 }
229 
pagealloc_oob_right(struct kunit * test)230 static void pagealloc_oob_right(struct kunit *test)
231 {
232 	char *ptr;
233 	struct page *pages;
234 	size_t order = 4;
235 	size_t size = (1UL << (PAGE_SHIFT + order));
236 
237 	/*
238 	 * With generic KASAN page allocations have no redzones, thus
239 	 * out-of-bounds detection is not guaranteed.
240 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
241 	 */
242 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
243 
244 	pages = alloc_pages(GFP_KERNEL, order);
245 	ptr = page_address(pages);
246 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
247 
248 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
249 	free_pages((unsigned long)ptr, order);
250 }
251 
pagealloc_uaf(struct kunit * test)252 static void pagealloc_uaf(struct kunit *test)
253 {
254 	char *ptr;
255 	struct page *pages;
256 	size_t order = 4;
257 
258 	pages = alloc_pages(GFP_KERNEL, order);
259 	ptr = page_address(pages);
260 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
261 	free_pages((unsigned long)ptr, order);
262 
263 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
264 }
265 
kmalloc_large_oob_right(struct kunit * test)266 static void kmalloc_large_oob_right(struct kunit *test)
267 {
268 	char *ptr;
269 	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
270 
271 	/*
272 	 * Allocate a chunk that is large enough, but still fits into a slab
273 	 * and does not trigger the page allocator fallback in SLUB.
274 	 */
275 	ptr = kmalloc(size, GFP_KERNEL);
276 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
277 
278 	OPTIMIZER_HIDE_VAR(ptr);
279 	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
280 	kfree(ptr);
281 }
282 
krealloc_more_oob_helper(struct kunit * test,size_t size1,size_t size2)283 static void krealloc_more_oob_helper(struct kunit *test,
284 					size_t size1, size_t size2)
285 {
286 	char *ptr1, *ptr2;
287 	size_t middle;
288 
289 	KUNIT_ASSERT_LT(test, size1, size2);
290 	middle = size1 + (size2 - size1) / 2;
291 
292 	ptr1 = kmalloc(size1, GFP_KERNEL);
293 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
294 
295 	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
296 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
297 
298 	/* Suppress -Warray-bounds warnings. */
299 	OPTIMIZER_HIDE_VAR(ptr2);
300 
301 	/* All offsets up to size2 must be accessible. */
302 	ptr2[size1 - 1] = 'x';
303 	ptr2[size1] = 'x';
304 	ptr2[middle] = 'x';
305 	ptr2[size2 - 1] = 'x';
306 
307 	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
308 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
309 		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
310 
311 	/* For all modes first aligned offset after size2 must be inaccessible. */
312 	KUNIT_EXPECT_KASAN_FAIL(test,
313 		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
314 
315 	kfree(ptr2);
316 }
317 
krealloc_less_oob_helper(struct kunit * test,size_t size1,size_t size2)318 static void krealloc_less_oob_helper(struct kunit *test,
319 					size_t size1, size_t size2)
320 {
321 	char *ptr1, *ptr2;
322 	size_t middle;
323 
324 	KUNIT_ASSERT_LT(test, size2, size1);
325 	middle = size2 + (size1 - size2) / 2;
326 
327 	ptr1 = kmalloc(size1, GFP_KERNEL);
328 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
329 
330 	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
331 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
332 
333 	/* Suppress -Warray-bounds warnings. */
334 	OPTIMIZER_HIDE_VAR(ptr2);
335 
336 	/* Must be accessible for all modes. */
337 	ptr2[size2 - 1] = 'x';
338 
339 	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
340 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
341 		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
342 
343 	/* For all modes first aligned offset after size2 must be inaccessible. */
344 	KUNIT_EXPECT_KASAN_FAIL(test,
345 		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
346 
347 	/*
348 	 * For all modes all size2, middle, and size1 should land in separate
349 	 * granules and thus the latter two offsets should be inaccessible.
350 	 */
351 	KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
352 				round_down(middle, KASAN_GRANULE_SIZE));
353 	KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
354 				round_down(size1, KASAN_GRANULE_SIZE));
355 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
356 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
357 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
358 
359 	kfree(ptr2);
360 }
361 
krealloc_more_oob(struct kunit * test)362 static void krealloc_more_oob(struct kunit *test)
363 {
364 	krealloc_more_oob_helper(test, 201, 235);
365 }
366 
krealloc_less_oob(struct kunit * test)367 static void krealloc_less_oob(struct kunit *test)
368 {
369 	krealloc_less_oob_helper(test, 235, 201);
370 }
371 
krealloc_pagealloc_more_oob(struct kunit * test)372 static void krealloc_pagealloc_more_oob(struct kunit *test)
373 {
374 	/* page_alloc fallback in only implemented for SLUB. */
375 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
376 
377 	krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
378 					KMALLOC_MAX_CACHE_SIZE + 235);
379 }
380 
krealloc_pagealloc_less_oob(struct kunit * test)381 static void krealloc_pagealloc_less_oob(struct kunit *test)
382 {
383 	/* page_alloc fallback in only implemented for SLUB. */
384 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);
385 
386 	krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
387 					KMALLOC_MAX_CACHE_SIZE + 201);
388 }
389 
390 /*
391  * Check that krealloc() detects a use-after-free, returns NULL,
392  * and doesn't unpoison the freed object.
393  */
krealloc_uaf(struct kunit * test)394 static void krealloc_uaf(struct kunit *test)
395 {
396 	char *ptr1, *ptr2;
397 	int size1 = 201;
398 	int size2 = 235;
399 
400 	ptr1 = kmalloc(size1, GFP_KERNEL);
401 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
402 	kfree(ptr1);
403 
404 	KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
405 	KUNIT_ASSERT_NULL(test, ptr2);
406 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
407 }
408 
kmalloc_oob_16(struct kunit * test)409 static void kmalloc_oob_16(struct kunit *test)
410 {
411 	struct {
412 		u64 words[2];
413 	} *ptr1, *ptr2;
414 
415 	/* This test is specifically crafted for the generic mode. */
416 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
417 
418 	ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
419 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
420 
421 	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
422 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
423 
424 	OPTIMIZER_HIDE_VAR(ptr1);
425 	OPTIMIZER_HIDE_VAR(ptr2);
426 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
427 	kfree(ptr1);
428 	kfree(ptr2);
429 }
430 
kmalloc_uaf_16(struct kunit * test)431 static void kmalloc_uaf_16(struct kunit *test)
432 {
433 	struct {
434 		u64 words[2];
435 	} *ptr1, *ptr2;
436 
437 	ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
438 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
439 
440 	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
441 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
442 	kfree(ptr2);
443 
444 	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
445 	kfree(ptr1);
446 }
447 
448 /*
449  * Note: in the memset tests below, the written range touches both valid and
450  * invalid memory. This makes sure that the instrumentation does not only check
451  * the starting address but the whole range.
452  */
453 
kmalloc_oob_memset_2(struct kunit * test)454 static void kmalloc_oob_memset_2(struct kunit *test)
455 {
456 	char *ptr;
457 	size_t size = 128 - KASAN_GRANULE_SIZE;
458 
459 	ptr = kmalloc(size, GFP_KERNEL);
460 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
461 
462 	OPTIMIZER_HIDE_VAR(size);
463 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, 2));
464 	kfree(ptr);
465 }
466 
kmalloc_oob_memset_4(struct kunit * test)467 static void kmalloc_oob_memset_4(struct kunit *test)
468 {
469 	char *ptr;
470 	size_t size = 128 - KASAN_GRANULE_SIZE;
471 
472 	ptr = kmalloc(size, GFP_KERNEL);
473 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
474 
475 	OPTIMIZER_HIDE_VAR(size);
476 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, 4));
477 	kfree(ptr);
478 }
479 
kmalloc_oob_memset_8(struct kunit * test)480 static void kmalloc_oob_memset_8(struct kunit *test)
481 {
482 	char *ptr;
483 	size_t size = 128 - KASAN_GRANULE_SIZE;
484 
485 	ptr = kmalloc(size, GFP_KERNEL);
486 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
487 
488 	OPTIMIZER_HIDE_VAR(size);
489 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, 8));
490 	kfree(ptr);
491 }
492 
kmalloc_oob_memset_16(struct kunit * test)493 static void kmalloc_oob_memset_16(struct kunit *test)
494 {
495 	char *ptr;
496 	size_t size = 128 - KASAN_GRANULE_SIZE;
497 
498 	ptr = kmalloc(size, GFP_KERNEL);
499 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
500 
501 	OPTIMIZER_HIDE_VAR(size);
502 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, 16));
503 	kfree(ptr);
504 }
505 
kmalloc_oob_in_memset(struct kunit * test)506 static void kmalloc_oob_in_memset(struct kunit *test)
507 {
508 	char *ptr;
509 	size_t size = 128 - KASAN_GRANULE_SIZE;
510 
511 	ptr = kmalloc(size, GFP_KERNEL);
512 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
513 
514 	OPTIMIZER_HIDE_VAR(ptr);
515 	OPTIMIZER_HIDE_VAR(size);
516 	KUNIT_EXPECT_KASAN_FAIL(test,
517 				memset(ptr, 0, size + KASAN_GRANULE_SIZE));
518 	kfree(ptr);
519 }
520 
kmalloc_memmove_negative_size(struct kunit * test)521 static void kmalloc_memmove_negative_size(struct kunit *test)
522 {
523 	char *ptr;
524 	size_t size = 64;
525 	size_t invalid_size = -2;
526 
527 	/*
528 	 * Hardware tag-based mode doesn't check memmove for negative size.
529 	 * As a result, this test introduces a side-effect memory corruption,
530 	 * which can result in a crash.
531 	 */
532 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);
533 
534 	ptr = kmalloc(size, GFP_KERNEL);
535 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
536 
537 	memset((char *)ptr, 0, 64);
538 	OPTIMIZER_HIDE_VAR(ptr);
539 	OPTIMIZER_HIDE_VAR(invalid_size);
540 	KUNIT_EXPECT_KASAN_FAIL(test,
541 		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
542 	kfree(ptr);
543 }
544 
kmalloc_memmove_invalid_size(struct kunit * test)545 static void kmalloc_memmove_invalid_size(struct kunit *test)
546 {
547 	char *ptr;
548 	size_t size = 64;
549 	size_t invalid_size = size;
550 
551 	ptr = kmalloc(size, GFP_KERNEL);
552 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
553 
554 	memset((char *)ptr, 0, 64);
555 	OPTIMIZER_HIDE_VAR(ptr);
556 	OPTIMIZER_HIDE_VAR(invalid_size);
557 	KUNIT_EXPECT_KASAN_FAIL(test,
558 		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
559 	kfree(ptr);
560 }
561 
kmalloc_uaf(struct kunit * test)562 static void kmalloc_uaf(struct kunit *test)
563 {
564 	char *ptr;
565 	size_t size = 10;
566 
567 	ptr = kmalloc(size, GFP_KERNEL);
568 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
569 
570 	kfree(ptr);
571 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
572 }
573 
kmalloc_uaf_memset(struct kunit * test)574 static void kmalloc_uaf_memset(struct kunit *test)
575 {
576 	char *ptr;
577 	size_t size = 33;
578 
579 	/*
580 	 * Only generic KASAN uses quarantine, which is required to avoid a
581 	 * kernel memory corruption this test causes.
582 	 */
583 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
584 
585 	ptr = kmalloc(size, GFP_KERNEL);
586 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
587 
588 	kfree(ptr);
589 	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
590 }
591 
kmalloc_uaf2(struct kunit * test)592 static void kmalloc_uaf2(struct kunit *test)
593 {
594 	char *ptr1, *ptr2;
595 	size_t size = 43;
596 	int counter = 0;
597 
598 again:
599 	ptr1 = kmalloc(size, GFP_KERNEL);
600 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
601 
602 	kfree(ptr1);
603 
604 	ptr2 = kmalloc(size, GFP_KERNEL);
605 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
606 
607 	/*
608 	 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
609 	 * Allow up to 16 attempts at generating different tags.
610 	 */
611 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
612 		kfree(ptr2);
613 		goto again;
614 	}
615 
616 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
617 	KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
618 
619 	kfree(ptr2);
620 }
621 
622 /*
623  * Check that KASAN detects use-after-free when another object was allocated in
624  * the same slot. Relevant for the tag-based modes, which do not use quarantine.
625  */
kmalloc_uaf3(struct kunit * test)626 static void kmalloc_uaf3(struct kunit *test)
627 {
628 	char *ptr1, *ptr2;
629 	size_t size = 100;
630 
631 	/* This test is specifically crafted for tag-based modes. */
632 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
633 
634 	ptr1 = kmalloc(size, GFP_KERNEL);
635 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
636 	kfree(ptr1);
637 
638 	ptr2 = kmalloc(size, GFP_KERNEL);
639 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
640 	kfree(ptr2);
641 
642 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]);
643 }
644 
kfree_via_page(struct kunit * test)645 static void kfree_via_page(struct kunit *test)
646 {
647 	char *ptr;
648 	size_t size = 8;
649 	struct page *page;
650 	unsigned long offset;
651 
652 	ptr = kmalloc(size, GFP_KERNEL);
653 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
654 
655 	page = virt_to_page(ptr);
656 	offset = offset_in_page(ptr);
657 	kfree(page_address(page) + offset);
658 }
659 
kfree_via_phys(struct kunit * test)660 static void kfree_via_phys(struct kunit *test)
661 {
662 	char *ptr;
663 	size_t size = 8;
664 	phys_addr_t phys;
665 
666 	ptr = kmalloc(size, GFP_KERNEL);
667 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
668 
669 	phys = virt_to_phys(ptr);
670 	kfree(phys_to_virt(phys));
671 }
672 
kmem_cache_oob(struct kunit * test)673 static void kmem_cache_oob(struct kunit *test)
674 {
675 	char *p;
676 	size_t size = 200;
677 	struct kmem_cache *cache;
678 
679 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
680 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
681 
682 	p = kmem_cache_alloc(cache, GFP_KERNEL);
683 	if (!p) {
684 		kunit_err(test, "Allocation failed: %s\n", __func__);
685 		kmem_cache_destroy(cache);
686 		return;
687 	}
688 
689 	KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
690 
691 	kmem_cache_free(cache, p);
692 	kmem_cache_destroy(cache);
693 }
694 
kmem_cache_accounted(struct kunit * test)695 static void kmem_cache_accounted(struct kunit *test)
696 {
697 	int i;
698 	char *p;
699 	size_t size = 200;
700 	struct kmem_cache *cache;
701 
702 	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
703 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
704 
705 	/*
706 	 * Several allocations with a delay to allow for lazy per memcg kmem
707 	 * cache creation.
708 	 */
709 	for (i = 0; i < 5; i++) {
710 		p = kmem_cache_alloc(cache, GFP_KERNEL);
711 		if (!p)
712 			goto free_cache;
713 
714 		kmem_cache_free(cache, p);
715 		msleep(100);
716 	}
717 
718 free_cache:
719 	kmem_cache_destroy(cache);
720 }
721 
kmem_cache_bulk(struct kunit * test)722 static void kmem_cache_bulk(struct kunit *test)
723 {
724 	struct kmem_cache *cache;
725 	size_t size = 200;
726 	char *p[10];
727 	bool ret;
728 	int i;
729 
730 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
731 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
732 
733 	ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
734 	if (!ret) {
735 		kunit_err(test, "Allocation failed: %s\n", __func__);
736 		kmem_cache_destroy(cache);
737 		return;
738 	}
739 
740 	for (i = 0; i < ARRAY_SIZE(p); i++)
741 		p[i][0] = p[i][size - 1] = 42;
742 
743 	kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
744 	kmem_cache_destroy(cache);
745 }
746 
747 static char global_array[10];
748 
kasan_global_oob_right(struct kunit * test)749 static void kasan_global_oob_right(struct kunit *test)
750 {
751 	/*
752 	 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
753 	 * from failing here and panicking the kernel, access the array via a
754 	 * volatile pointer, which will prevent the compiler from being able to
755 	 * determine the array bounds.
756 	 *
757 	 * This access uses a volatile pointer to char (char *volatile) rather
758 	 * than the more conventional pointer to volatile char (volatile char *)
759 	 * because we want to prevent the compiler from making inferences about
760 	 * the pointer itself (i.e. its array bounds), not the data that it
761 	 * refers to.
762 	 */
763 	char *volatile array = global_array;
764 	char *p = &array[ARRAY_SIZE(global_array) + 3];
765 
766 	/* Only generic mode instruments globals. */
767 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
768 
769 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
770 }
771 
kasan_global_oob_left(struct kunit * test)772 static void kasan_global_oob_left(struct kunit *test)
773 {
774 	char *volatile array = global_array;
775 	char *p = array - 3;
776 
777 	/*
778 	 * GCC is known to fail this test, skip it.
779 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
780 	 */
781 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
782 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
783 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
784 }
785 
786 /* Check that ksize() makes the whole object accessible. */
ksize_unpoisons_memory(struct kunit * test)787 static void ksize_unpoisons_memory(struct kunit *test)
788 {
789 	char *ptr;
790 	size_t size = 123, real_size;
791 
792 	ptr = kmalloc(size, GFP_KERNEL);
793 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
794 	real_size = ksize(ptr);
795 
796 	OPTIMIZER_HIDE_VAR(ptr);
797 
798 	/* This access shouldn't trigger a KASAN report. */
799 	ptr[size] = 'x';
800 
801 	/* This one must. */
802 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size]);
803 
804 	kfree(ptr);
805 }
806 
807 /*
808  * Check that a use-after-free is detected by ksize() and via normal accesses
809  * after it.
810  */
ksize_uaf(struct kunit * test)811 static void ksize_uaf(struct kunit *test)
812 {
813 	char *ptr;
814 	int size = 128 - KASAN_GRANULE_SIZE;
815 
816 	ptr = kmalloc(size, GFP_KERNEL);
817 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
818 	kfree(ptr);
819 
820 	OPTIMIZER_HIDE_VAR(ptr);
821 	KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
822 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
823 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
824 }
825 
kasan_stack_oob(struct kunit * test)826 static void kasan_stack_oob(struct kunit *test)
827 {
828 	char stack_array[10];
829 	/* See comment in kasan_global_oob_right. */
830 	char *volatile array = stack_array;
831 	char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
832 
833 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
834 
835 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
836 }
837 
kasan_alloca_oob_left(struct kunit * test)838 static void kasan_alloca_oob_left(struct kunit *test)
839 {
840 	volatile int i = 10;
841 	char alloca_array[i];
842 	/* See comment in kasan_global_oob_right. */
843 	char *volatile array = alloca_array;
844 	char *p = array - 1;
845 
846 	/* Only generic mode instruments dynamic allocas. */
847 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
848 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
849 
850 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
851 }
852 
kasan_alloca_oob_right(struct kunit * test)853 static void kasan_alloca_oob_right(struct kunit *test)
854 {
855 	volatile int i = 10;
856 	char alloca_array[i];
857 	/* See comment in kasan_global_oob_right. */
858 	char *volatile array = alloca_array;
859 	char *p = array + i;
860 
861 	/* Only generic mode instruments dynamic allocas. */
862 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
863 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
864 
865 	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
866 }
867 
kmem_cache_double_free(struct kunit * test)868 static void kmem_cache_double_free(struct kunit *test)
869 {
870 	char *p;
871 	size_t size = 200;
872 	struct kmem_cache *cache;
873 
874 	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
875 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
876 
877 	p = kmem_cache_alloc(cache, GFP_KERNEL);
878 	if (!p) {
879 		kunit_err(test, "Allocation failed: %s\n", __func__);
880 		kmem_cache_destroy(cache);
881 		return;
882 	}
883 
884 	kmem_cache_free(cache, p);
885 	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
886 	kmem_cache_destroy(cache);
887 }
888 
kmem_cache_invalid_free(struct kunit * test)889 static void kmem_cache_invalid_free(struct kunit *test)
890 {
891 	char *p;
892 	size_t size = 200;
893 	struct kmem_cache *cache;
894 
895 	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
896 				  NULL);
897 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
898 
899 	p = kmem_cache_alloc(cache, GFP_KERNEL);
900 	if (!p) {
901 		kunit_err(test, "Allocation failed: %s\n", __func__);
902 		kmem_cache_destroy(cache);
903 		return;
904 	}
905 
906 	/* Trigger invalid free, the object doesn't get freed. */
907 	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
908 
909 	/*
910 	 * Properly free the object to prevent the "Objects remaining in
911 	 * test_cache on __kmem_cache_shutdown" BUG failure.
912 	 */
913 	kmem_cache_free(cache, p);
914 
915 	kmem_cache_destroy(cache);
916 }
917 
empty_cache_ctor(void * object)918 static void empty_cache_ctor(void *object) { }
919 
kmem_cache_double_destroy(struct kunit * test)920 static void kmem_cache_double_destroy(struct kunit *test)
921 {
922 	struct kmem_cache *cache;
923 
924 	/* Provide a constructor to prevent cache merging. */
925 	cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
926 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
927 	kmem_cache_destroy(cache);
928 	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
929 }
930 
kasan_memchr(struct kunit * test)931 static void kasan_memchr(struct kunit *test)
932 {
933 	char *ptr;
934 	size_t size = 24;
935 
936 	/*
937 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
938 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
939 	 */
940 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
941 
942 	if (OOB_TAG_OFF)
943 		size = round_up(size, OOB_TAG_OFF);
944 
945 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
946 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
947 
948 	OPTIMIZER_HIDE_VAR(ptr);
949 	OPTIMIZER_HIDE_VAR(size);
950 	KUNIT_EXPECT_KASAN_FAIL(test,
951 		kasan_ptr_result = memchr(ptr, '1', size + 1));
952 
953 	kfree(ptr);
954 }
955 
kasan_memcmp(struct kunit * test)956 static void kasan_memcmp(struct kunit *test)
957 {
958 	char *ptr;
959 	size_t size = 24;
960 	int arr[9];
961 
962 	/*
963 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
964 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
965 	 */
966 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
967 
968 	if (OOB_TAG_OFF)
969 		size = round_up(size, OOB_TAG_OFF);
970 
971 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
972 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
973 	memset(arr, 0, sizeof(arr));
974 
975 	OPTIMIZER_HIDE_VAR(ptr);
976 	OPTIMIZER_HIDE_VAR(size);
977 	KUNIT_EXPECT_KASAN_FAIL(test,
978 		kasan_int_result = memcmp(ptr, arr, size+1));
979 	kfree(ptr);
980 }
981 
kasan_strings(struct kunit * test)982 static void kasan_strings(struct kunit *test)
983 {
984 	char *ptr;
985 	size_t size = 24;
986 
987 	/*
988 	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
989 	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
990 	 */
991 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
992 
993 	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
994 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
995 
996 	kfree(ptr);
997 
998 	/*
999 	 * Try to cause only 1 invalid access (less spam in dmesg).
1000 	 * For that we need ptr to point to zeroed byte.
1001 	 * Skip metadata that could be stored in freed object so ptr
1002 	 * will likely point to zeroed byte.
1003 	 */
1004 	ptr += 16;
1005 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
1006 
1007 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
1008 
1009 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
1010 
1011 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
1012 
1013 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
1014 
1015 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
1016 }
1017 
kasan_bitops_modify(struct kunit * test,int nr,void * addr)1018 static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
1019 {
1020 	KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
1021 	KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
1022 	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
1023 	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
1024 	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
1025 	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
1026 	KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
1027 	KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
1028 }
1029 
kasan_bitops_test_and_modify(struct kunit * test,int nr,void * addr)1030 static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
1031 {
1032 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
1033 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
1034 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
1035 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
1036 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
1037 	KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
1038 	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
1039 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
1040 
1041 #if defined(clear_bit_unlock_is_negative_byte)
1042 	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
1043 				clear_bit_unlock_is_negative_byte(nr, addr));
1044 #endif
1045 }
1046 
kasan_bitops_generic(struct kunit * test)1047 static void kasan_bitops_generic(struct kunit *test)
1048 {
1049 	long *bits;
1050 
1051 	/* This test is specifically crafted for the generic mode. */
1052 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
1053 
1054 	/*
1055 	 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
1056 	 * this way we do not actually corrupt other memory.
1057 	 */
1058 	bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
1059 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1060 
1061 	/*
1062 	 * Below calls try to access bit within allocated memory; however, the
1063 	 * below accesses are still out-of-bounds, since bitops are defined to
1064 	 * operate on the whole long the bit is in.
1065 	 */
1066 	kasan_bitops_modify(test, BITS_PER_LONG, bits);
1067 
1068 	/*
1069 	 * Below calls try to access bit beyond allocated memory.
1070 	 */
1071 	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
1072 
1073 	kfree(bits);
1074 }
1075 
kasan_bitops_tags(struct kunit * test)1076 static void kasan_bitops_tags(struct kunit *test)
1077 {
1078 	long *bits;
1079 
1080 	/* This test is specifically crafted for tag-based modes. */
1081 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1082 
1083 	/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
1084 	bits = kzalloc(48, GFP_KERNEL);
1085 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
1086 
1087 	/* Do the accesses past the 48 allocated bytes, but within the redone. */
1088 	kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
1089 	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
1090 
1091 	kfree(bits);
1092 }
1093 
kmalloc_double_kzfree(struct kunit * test)1094 static void kmalloc_double_kzfree(struct kunit *test)
1095 {
1096 	char *ptr;
1097 	size_t size = 16;
1098 
1099 	ptr = kmalloc(size, GFP_KERNEL);
1100 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1101 
1102 	kfree_sensitive(ptr);
1103 	KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
1104 }
1105 
vmalloc_helpers_tags(struct kunit * test)1106 static void vmalloc_helpers_tags(struct kunit *test)
1107 {
1108 	void *ptr;
1109 
1110 	/* This test is intended for tag-based modes. */
1111 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1112 
1113 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1114 
1115 	ptr = vmalloc(PAGE_SIZE);
1116 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1117 
1118 	/* Check that the returned pointer is tagged. */
1119 	KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1120 	KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1121 
1122 	/* Make sure exported vmalloc helpers handle tagged pointers. */
1123 	KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
1124 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));
1125 
1126 #if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
1127 	{
1128 		int rv;
1129 
1130 		/* Make sure vmalloc'ed memory permissions can be changed. */
1131 		rv = set_memory_ro((unsigned long)ptr, 1);
1132 		KUNIT_ASSERT_GE(test, rv, 0);
1133 		rv = set_memory_rw((unsigned long)ptr, 1);
1134 		KUNIT_ASSERT_GE(test, rv, 0);
1135 	}
1136 #endif
1137 
1138 	vfree(ptr);
1139 }
1140 
vmalloc_oob(struct kunit * test)1141 static void vmalloc_oob(struct kunit *test)
1142 {
1143 	char *v_ptr, *p_ptr;
1144 	struct page *page;
1145 	size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;
1146 
1147 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1148 
1149 	v_ptr = vmalloc(size);
1150 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1151 
1152 	OPTIMIZER_HIDE_VAR(v_ptr);
1153 
1154 	/*
1155 	 * We have to be careful not to hit the guard page in vmalloc tests.
1156 	 * The MMU will catch that and crash us.
1157 	 */
1158 
1159 	/* Make sure in-bounds accesses are valid. */
1160 	v_ptr[0] = 0;
1161 	v_ptr[size - 1] = 0;
1162 
1163 	/*
1164 	 * An unaligned access past the requested vmalloc size.
1165 	 * Only generic KASAN can precisely detect these.
1166 	 */
1167 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1168 		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);
1169 
1170 	/* An aligned access into the first out-of-bounds granule. */
1171 	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);
1172 
1173 	/* Check that in-bounds accesses to the physical page are valid. */
1174 	page = vmalloc_to_page(v_ptr);
1175 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1176 	p_ptr = page_address(page);
1177 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1178 	p_ptr[0] = 0;
1179 
1180 	vfree(v_ptr);
1181 
1182 	/*
1183 	 * We can't check for use-after-unmap bugs in this nor in the following
1184 	 * vmalloc tests, as the page might be fully unmapped and accessing it
1185 	 * will crash the kernel.
1186 	 */
1187 }
1188 
vmap_tags(struct kunit * test)1189 static void vmap_tags(struct kunit *test)
1190 {
1191 	char *p_ptr, *v_ptr;
1192 	struct page *p_page, *v_page;
1193 
1194 	/*
1195 	 * This test is specifically crafted for the software tag-based mode,
1196 	 * the only tag-based mode that poisons vmap mappings.
1197 	 */
1198 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1199 
1200 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
1201 
1202 	p_page = alloc_pages(GFP_KERNEL, 1);
1203 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
1204 	p_ptr = page_address(p_page);
1205 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1206 
1207 	v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
1208 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1209 
1210 	/*
1211 	 * We can't check for out-of-bounds bugs in this nor in the following
1212 	 * vmalloc tests, as allocations have page granularity and accessing
1213 	 * the guard page will crash the kernel.
1214 	 */
1215 
1216 	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1217 	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1218 
1219 	/* Make sure that in-bounds accesses through both pointers work. */
1220 	*p_ptr = 0;
1221 	*v_ptr = 0;
1222 
1223 	/* Make sure vmalloc_to_page() correctly recovers the page pointer. */
1224 	v_page = vmalloc_to_page(v_ptr);
1225 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
1226 	KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);
1227 
1228 	vunmap(v_ptr);
1229 	free_pages((unsigned long)p_ptr, 1);
1230 }
1231 
vm_map_ram_tags(struct kunit * test)1232 static void vm_map_ram_tags(struct kunit *test)
1233 {
1234 	char *p_ptr, *v_ptr;
1235 	struct page *page;
1236 
1237 	/*
1238 	 * This test is specifically crafted for the software tag-based mode,
1239 	 * the only tag-based mode that poisons vm_map_ram mappings.
1240 	 */
1241 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1242 
1243 	page = alloc_pages(GFP_KERNEL, 1);
1244 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
1245 	p_ptr = page_address(page);
1246 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
1247 
1248 	v_ptr = vm_map_ram(&page, 1, -1);
1249 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
1250 
1251 	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
1252 	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
1253 
1254 	/* Make sure that in-bounds accesses through both pointers work. */
1255 	*p_ptr = 0;
1256 	*v_ptr = 0;
1257 
1258 	vm_unmap_ram(v_ptr, 1);
1259 	free_pages((unsigned long)p_ptr, 1);
1260 }
1261 
vmalloc_percpu(struct kunit * test)1262 static void vmalloc_percpu(struct kunit *test)
1263 {
1264 	char __percpu *ptr;
1265 	int cpu;
1266 
1267 	/*
1268 	 * This test is specifically crafted for the software tag-based mode,
1269 	 * the only tag-based mode that poisons percpu mappings.
1270 	 */
1271 	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
1272 
1273 	ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);
1274 
1275 	for_each_possible_cpu(cpu) {
1276 		char *c_ptr = per_cpu_ptr(ptr, cpu);
1277 
1278 		KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
1279 		KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);
1280 
1281 		/* Make sure that in-bounds accesses don't crash the kernel. */
1282 		*c_ptr = 0;
1283 	}
1284 
1285 	free_percpu(ptr);
1286 }
1287 
1288 /*
1289  * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
1290  * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
1291  * modes.
1292  */
match_all_not_assigned(struct kunit * test)1293 static void match_all_not_assigned(struct kunit *test)
1294 {
1295 	char *ptr;
1296 	struct page *pages;
1297 	int i, size, order;
1298 
1299 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1300 
1301 	for (i = 0; i < 256; i++) {
1302 		size = prandom_u32_max(1024) + 1;
1303 		ptr = kmalloc(size, GFP_KERNEL);
1304 		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1305 		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1306 		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1307 		kfree(ptr);
1308 	}
1309 
1310 	for (i = 0; i < 256; i++) {
1311 		order = prandom_u32_max(4) + 1;
1312 		pages = alloc_pages(GFP_KERNEL, order);
1313 		ptr = page_address(pages);
1314 		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1315 		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1316 		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1317 		free_pages((unsigned long)ptr, order);
1318 	}
1319 
1320 	if (!IS_ENABLED(CONFIG_KASAN_VMALLOC))
1321 		return;
1322 
1323 	for (i = 0; i < 256; i++) {
1324 		size = prandom_u32_max(1024) + 1;
1325 		ptr = vmalloc(size);
1326 		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1327 		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
1328 		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1329 		vfree(ptr);
1330 	}
1331 }
1332 
1333 /* Check that 0xff works as a match-all pointer tag for tag-based modes. */
match_all_ptr_tag(struct kunit * test)1334 static void match_all_ptr_tag(struct kunit *test)
1335 {
1336 	char *ptr;
1337 	u8 tag;
1338 
1339 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1340 
1341 	ptr = kmalloc(128, GFP_KERNEL);
1342 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1343 
1344 	/* Backup the assigned tag. */
1345 	tag = get_tag(ptr);
1346 	KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
1347 
1348 	/* Reset the tag to 0xff.*/
1349 	ptr = set_tag(ptr, KASAN_TAG_KERNEL);
1350 
1351 	/* This access shouldn't trigger a KASAN report. */
1352 	*ptr = 0;
1353 
1354 	/* Recover the pointer tag and free. */
1355 	ptr = set_tag(ptr, tag);
1356 	kfree(ptr);
1357 }
1358 
1359 /* Check that there are no match-all memory tags for tag-based modes. */
match_all_mem_tag(struct kunit * test)1360 static void match_all_mem_tag(struct kunit *test)
1361 {
1362 	char *ptr;
1363 	int tag;
1364 
1365 	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
1366 
1367 	ptr = kmalloc(128, GFP_KERNEL);
1368 	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
1369 	KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
1370 
1371 	/* For each possible tag value not matching the pointer tag. */
1372 	for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
1373 		if (tag == get_tag(ptr))
1374 			continue;
1375 
1376 		/* Mark the first memory granule with the chosen memory tag. */
1377 		kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
1378 
1379 		/* This access must cause a KASAN report. */
1380 		KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
1381 	}
1382 
1383 	/* Recover the memory tag and free. */
1384 	kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
1385 	kfree(ptr);
1386 }
1387 
1388 static struct kunit_case kasan_kunit_test_cases[] = {
1389 	KUNIT_CASE(kmalloc_oob_right),
1390 	KUNIT_CASE(kmalloc_oob_left),
1391 	KUNIT_CASE(kmalloc_node_oob_right),
1392 	KUNIT_CASE(kmalloc_pagealloc_oob_right),
1393 	KUNIT_CASE(kmalloc_pagealloc_uaf),
1394 	KUNIT_CASE(kmalloc_pagealloc_invalid_free),
1395 	KUNIT_CASE(pagealloc_oob_right),
1396 	KUNIT_CASE(pagealloc_uaf),
1397 	KUNIT_CASE(kmalloc_large_oob_right),
1398 	KUNIT_CASE(krealloc_more_oob),
1399 	KUNIT_CASE(krealloc_less_oob),
1400 	KUNIT_CASE(krealloc_pagealloc_more_oob),
1401 	KUNIT_CASE(krealloc_pagealloc_less_oob),
1402 	KUNIT_CASE(krealloc_uaf),
1403 	KUNIT_CASE(kmalloc_oob_16),
1404 	KUNIT_CASE(kmalloc_uaf_16),
1405 	KUNIT_CASE(kmalloc_oob_in_memset),
1406 	KUNIT_CASE(kmalloc_oob_memset_2),
1407 	KUNIT_CASE(kmalloc_oob_memset_4),
1408 	KUNIT_CASE(kmalloc_oob_memset_8),
1409 	KUNIT_CASE(kmalloc_oob_memset_16),
1410 	KUNIT_CASE(kmalloc_memmove_negative_size),
1411 	KUNIT_CASE(kmalloc_memmove_invalid_size),
1412 	KUNIT_CASE(kmalloc_uaf),
1413 	KUNIT_CASE(kmalloc_uaf_memset),
1414 	KUNIT_CASE(kmalloc_uaf2),
1415 	KUNIT_CASE(kmalloc_uaf3),
1416 	KUNIT_CASE(kfree_via_page),
1417 	KUNIT_CASE(kfree_via_phys),
1418 	KUNIT_CASE(kmem_cache_oob),
1419 	KUNIT_CASE(kmem_cache_accounted),
1420 	KUNIT_CASE(kmem_cache_bulk),
1421 	KUNIT_CASE(kasan_global_oob_right),
1422 	KUNIT_CASE(kasan_global_oob_left),
1423 	KUNIT_CASE(kasan_stack_oob),
1424 	KUNIT_CASE(kasan_alloca_oob_left),
1425 	KUNIT_CASE(kasan_alloca_oob_right),
1426 	KUNIT_CASE(ksize_unpoisons_memory),
1427 	KUNIT_CASE(ksize_uaf),
1428 	KUNIT_CASE(kmem_cache_double_free),
1429 	KUNIT_CASE(kmem_cache_invalid_free),
1430 	KUNIT_CASE(kmem_cache_double_destroy),
1431 	KUNIT_CASE(kasan_memchr),
1432 	KUNIT_CASE(kasan_memcmp),
1433 	KUNIT_CASE(kasan_strings),
1434 	KUNIT_CASE(kasan_bitops_generic),
1435 	KUNIT_CASE(kasan_bitops_tags),
1436 	KUNIT_CASE(kmalloc_double_kzfree),
1437 	KUNIT_CASE(vmalloc_helpers_tags),
1438 	KUNIT_CASE(vmalloc_oob),
1439 	KUNIT_CASE(vmap_tags),
1440 	KUNIT_CASE(vm_map_ram_tags),
1441 	KUNIT_CASE(vmalloc_percpu),
1442 	KUNIT_CASE(match_all_not_assigned),
1443 	KUNIT_CASE(match_all_ptr_tag),
1444 	KUNIT_CASE(match_all_mem_tag),
1445 	{}
1446 };
1447 
1448 static struct kunit_suite kasan_kunit_test_suite = {
1449 	.name = "kasan",
1450 	.init = kasan_test_init,
1451 	.test_cases = kasan_kunit_test_cases,
1452 	.exit = kasan_test_exit,
1453 };
1454 
1455 kunit_test_suite(kasan_kunit_test_suite);
1456 
1457 MODULE_LICENSE("GPL");
1458