1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/task_work.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
sig_handler(struct task_struct * t,int sig)67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
sig_handler_ignored(void __user * handler,int sig)72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
sig_task_ignored(struct task_struct * t,int sig,bool force)79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
sig_ignored(struct task_struct * t,int sig,bool force)101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
has_pending_signals(sigset_t * signal,sigset_t * blocked)126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
recalc_sigpending_tsk(struct task_struct * t)154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
recalc_sigpending_and_wake(struct task_struct * t)176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
recalc_sigpending(void)182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
186
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189
calculate_sigpending(void)190 void calculate_sigpending(void)
191 {
192 /* Have any signals or users of TIF_SIGPENDING been delayed
193 * until after fork?
194 */
195 spin_lock_irq(¤t->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
197 recalc_sigpending();
198 spin_unlock_irq(¤t->sighand->siglock);
199 }
200
201 /* Given the mask, find the first available signal that should be serviced. */
202
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206
next_signal(struct sigpending * pending,sigset_t * mask)207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 unsigned long i, *s, *m, x;
210 int sig = 0;
211
212 s = pending->signal.sig;
213 m = mask->sig;
214
215 /*
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
218 */
219 x = *s &~ *m;
220 if (x) {
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
223 sig = ffz(~x) + 1;
224 return sig;
225 }
226
227 switch (_NSIG_WORDS) {
228 default:
229 for (i = 1; i < _NSIG_WORDS; ++i) {
230 x = *++s &~ *++m;
231 if (!x)
232 continue;
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
234 break;
235 }
236 break;
237
238 case 2:
239 x = s[1] &~ m[1];
240 if (!x)
241 break;
242 sig = ffz(~x) + _NSIG_BPW + 1;
243 break;
244
245 case 1:
246 /* Nothing to do */
247 break;
248 }
249
250 return sig;
251 }
252
print_dropped_signal(int sig)253 static inline void print_dropped_signal(int sig)
254 {
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256
257 if (!print_fatal_signals)
258 return;
259
260 if (!__ratelimit(&ratelimit_state))
261 return;
262
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
265 }
266
267 /**
268 * task_set_jobctl_pending - set jobctl pending bits
269 * @task: target task
270 * @mask: pending bits to set
271 *
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
276 * becomes noop.
277 *
278 * CONTEXT:
279 * Must be called with @task->sighand->siglock held.
280 *
281 * RETURNS:
282 * %true if @mask is set, %false if made noop because @task was dying.
283 */
task_set_jobctl_pending(struct task_struct * task,unsigned long mask)284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 return false;
292
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295
296 task->jobctl |= mask;
297 return true;
298 }
299
300 /**
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
302 * @task: target task
303 *
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
307 * ptracer.
308 *
309 * CONTEXT:
310 * Must be called with @task->sighand->siglock held.
311 */
task_clear_jobctl_trapping(struct task_struct * task)312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 }
319 }
320
321 /**
322 * task_clear_jobctl_pending - clear jobctl pending bits
323 * @task: target task
324 * @mask: pending bits to clear
325 *
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
329 *
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
332 *
333 * CONTEXT:
334 * Must be called with @task->sighand->siglock held.
335 */
task_clear_jobctl_pending(struct task_struct * task,unsigned long mask)336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342
343 task->jobctl &= ~mask;
344
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
347 }
348
349 /**
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
352 *
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
357 *
358 * CONTEXT:
359 * Must be called with @task->sighand->siglock held.
360 *
361 * RETURNS:
362 * %true if group stop completion should be notified to the parent, %false
363 * otherwise.
364 */
task_participate_group_stop(struct task_struct * task)365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373
374 if (!consume)
375 return false;
376
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
379
380 /*
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
383 */
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 return true;
387 }
388 return false;
389 }
390
task_join_group_stop(struct task_struct * task)391 void task_join_group_stop(struct task_struct *task)
392 {
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
395
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 return;
401
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405
406 /*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t gfp_flags,int override_rlimit,const unsigned int sigqueue_flags)412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
417 long sigpending;
418
419 /*
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
422 *
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
426 */
427 rcu_read_lock();
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 rcu_read_unlock();
431 if (!sigpending)
432 return NULL;
433
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 } else {
437 print_dropped_signal(sig);
438 }
439
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 } else {
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
446 }
447 return q;
448 }
449
__sigqueue_free(struct sigqueue * q)450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 if (q->flags & SIGQUEUE_PREALLOC)
453 return;
454 if (q->ucounts) {
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 q->ucounts = NULL;
457 }
458 kmem_cache_free(sigqueue_cachep, q);
459 }
460
flush_sigqueue(struct sigpending * queue)461 void flush_sigqueue(struct sigpending *queue)
462 {
463 struct sigqueue *q;
464
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
469 __sigqueue_free(q);
470 }
471 }
472
473 /*
474 * Flush all pending signals for this kthread.
475 */
flush_signals(struct task_struct * t)476 void flush_signals(struct task_struct *t)
477 {
478 unsigned long flags;
479
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487
488 #ifdef CONFIG_POSIX_TIMERS
__flush_itimer_signals(struct sigpending * pending)489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
493
494 signal = pending->signal;
495 sigemptyset(&retain);
496
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
499
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
502 } else {
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
505 __sigqueue_free(q);
506 }
507 }
508
509 sigorsets(&pending->signal, &signal, &retain);
510 }
511
flush_itimer_signals(void)512 void flush_itimer_signals(void)
513 {
514 struct task_struct *tsk = current;
515 unsigned long flags;
516
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523
ignore_signals(struct task_struct * t)524 void ignore_signals(struct task_struct *t)
525 {
526 int i;
527
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
530
531 flush_signals(t);
532 }
533
534 /*
535 * Flush all handlers for a task.
536 */
537
538 void
flush_signal_handlers(struct task_struct * t,int force_default)539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 int i;
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
546 ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
549 #endif
550 sigemptyset(&ka->sa.sa_mask);
551 ka++;
552 }
553 }
554
unhandled_signal(struct task_struct * tsk,int sig)555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
559 return true;
560
561 if (handler != SIG_IGN && handler != SIG_DFL)
562 return false;
563
564 /* if ptraced, let the tracer determine */
565 return !tsk->ptrace;
566 }
567
collect_signal(int sig,struct sigpending * list,kernel_siginfo_t * info,bool * resched_timer)568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 bool *resched_timer)
570 {
571 struct sigqueue *q, *first = NULL;
572
573 /*
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
576 */
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
579 if (first)
580 goto still_pending;
581 first = q;
582 }
583 }
584
585 sigdelset(&list->signal, sig);
586
587 if (first) {
588 still_pending:
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
591
592 *resched_timer =
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
596
597 __sigqueue_free(first);
598 } else {
599 /*
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
603 */
604 clear_siginfo(info);
605 info->si_signo = sig;
606 info->si_errno = 0;
607 info->si_code = SI_USER;
608 info->si_pid = 0;
609 info->si_uid = 0;
610 }
611 }
612
__dequeue_signal(struct sigpending * pending,sigset_t * mask,kernel_siginfo_t * info,bool * resched_timer)613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
615 {
616 int sig = next_signal(pending, mask);
617
618 if (sig)
619 collect_signal(sig, pending, info, resched_timer);
620 return sig;
621 }
622
623 /*
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
626 *
627 * All callers have to hold the siglock.
628 */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,kernel_siginfo_t * info,enum pid_type * type)629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
630 kernel_siginfo_t *info, enum pid_type *type)
631 {
632 bool resched_timer = false;
633 int signr;
634
635 /* We only dequeue private signals from ourselves, we don't let
636 * signalfd steal them
637 */
638 *type = PIDTYPE_PID;
639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
640 if (!signr) {
641 *type = PIDTYPE_TGID;
642 signr = __dequeue_signal(&tsk->signal->shared_pending,
643 mask, info, &resched_timer);
644 #ifdef CONFIG_POSIX_TIMERS
645 /*
646 * itimer signal ?
647 *
648 * itimers are process shared and we restart periodic
649 * itimers in the signal delivery path to prevent DoS
650 * attacks in the high resolution timer case. This is
651 * compliant with the old way of self-restarting
652 * itimers, as the SIGALRM is a legacy signal and only
653 * queued once. Changing the restart behaviour to
654 * restart the timer in the signal dequeue path is
655 * reducing the timer noise on heavy loaded !highres
656 * systems too.
657 */
658 if (unlikely(signr == SIGALRM)) {
659 struct hrtimer *tmr = &tsk->signal->real_timer;
660
661 if (!hrtimer_is_queued(tmr) &&
662 tsk->signal->it_real_incr != 0) {
663 hrtimer_forward(tmr, tmr->base->get_time(),
664 tsk->signal->it_real_incr);
665 hrtimer_restart(tmr);
666 }
667 }
668 #endif
669 }
670
671 recalc_sigpending();
672 if (!signr)
673 return 0;
674
675 if (unlikely(sig_kernel_stop(signr))) {
676 /*
677 * Set a marker that we have dequeued a stop signal. Our
678 * caller might release the siglock and then the pending
679 * stop signal it is about to process is no longer in the
680 * pending bitmasks, but must still be cleared by a SIGCONT
681 * (and overruled by a SIGKILL). So those cases clear this
682 * shared flag after we've set it. Note that this flag may
683 * remain set after the signal we return is ignored or
684 * handled. That doesn't matter because its only purpose
685 * is to alert stop-signal processing code when another
686 * processor has come along and cleared the flag.
687 */
688 current->jobctl |= JOBCTL_STOP_DEQUEUED;
689 }
690 #ifdef CONFIG_POSIX_TIMERS
691 if (resched_timer) {
692 /*
693 * Release the siglock to ensure proper locking order
694 * of timer locks outside of siglocks. Note, we leave
695 * irqs disabled here, since the posix-timers code is
696 * about to disable them again anyway.
697 */
698 spin_unlock(&tsk->sighand->siglock);
699 posixtimer_rearm(info);
700 spin_lock(&tsk->sighand->siglock);
701
702 /* Don't expose the si_sys_private value to userspace */
703 info->si_sys_private = 0;
704 }
705 #endif
706 return signr;
707 }
708 EXPORT_SYMBOL_GPL(dequeue_signal);
709
dequeue_synchronous_signal(kernel_siginfo_t * info)710 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
711 {
712 struct task_struct *tsk = current;
713 struct sigpending *pending = &tsk->pending;
714 struct sigqueue *q, *sync = NULL;
715
716 /*
717 * Might a synchronous signal be in the queue?
718 */
719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
720 return 0;
721
722 /*
723 * Return the first synchronous signal in the queue.
724 */
725 list_for_each_entry(q, &pending->list, list) {
726 /* Synchronous signals have a positive si_code */
727 if ((q->info.si_code > SI_USER) &&
728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
729 sync = q;
730 goto next;
731 }
732 }
733 return 0;
734 next:
735 /*
736 * Check if there is another siginfo for the same signal.
737 */
738 list_for_each_entry_continue(q, &pending->list, list) {
739 if (q->info.si_signo == sync->info.si_signo)
740 goto still_pending;
741 }
742
743 sigdelset(&pending->signal, sync->info.si_signo);
744 recalc_sigpending();
745 still_pending:
746 list_del_init(&sync->list);
747 copy_siginfo(info, &sync->info);
748 __sigqueue_free(sync);
749 return info->si_signo;
750 }
751
752 /*
753 * Tell a process that it has a new active signal..
754 *
755 * NOTE! we rely on the previous spin_lock to
756 * lock interrupts for us! We can only be called with
757 * "siglock" held, and the local interrupt must
758 * have been disabled when that got acquired!
759 *
760 * No need to set need_resched since signal event passing
761 * goes through ->blocked
762 */
signal_wake_up_state(struct task_struct * t,unsigned int state)763 void signal_wake_up_state(struct task_struct *t, unsigned int state)
764 {
765 lockdep_assert_held(&t->sighand->siglock);
766
767 set_tsk_thread_flag(t, TIF_SIGPENDING);
768
769 /*
770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
771 * case. We don't check t->state here because there is a race with it
772 * executing another processor and just now entering stopped state.
773 * By using wake_up_state, we ensure the process will wake up and
774 * handle its death signal.
775 */
776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
777 kick_process(t);
778 }
779
780 /*
781 * Remove signals in mask from the pending set and queue.
782 * Returns 1 if any signals were found.
783 *
784 * All callers must be holding the siglock.
785 */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)786 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
787 {
788 struct sigqueue *q, *n;
789 sigset_t m;
790
791 sigandsets(&m, mask, &s->signal);
792 if (sigisemptyset(&m))
793 return;
794
795 sigandnsets(&s->signal, &s->signal, mask);
796 list_for_each_entry_safe(q, n, &s->list, list) {
797 if (sigismember(mask, q->info.si_signo)) {
798 list_del_init(&q->list);
799 __sigqueue_free(q);
800 }
801 }
802 }
803
is_si_special(const struct kernel_siginfo * info)804 static inline int is_si_special(const struct kernel_siginfo *info)
805 {
806 return info <= SEND_SIG_PRIV;
807 }
808
si_fromuser(const struct kernel_siginfo * info)809 static inline bool si_fromuser(const struct kernel_siginfo *info)
810 {
811 return info == SEND_SIG_NOINFO ||
812 (!is_si_special(info) && SI_FROMUSER(info));
813 }
814
815 /*
816 * called with RCU read lock from check_kill_permission()
817 */
kill_ok_by_cred(struct task_struct * t)818 static bool kill_ok_by_cred(struct task_struct *t)
819 {
820 const struct cred *cred = current_cred();
821 const struct cred *tcred = __task_cred(t);
822
823 return uid_eq(cred->euid, tcred->suid) ||
824 uid_eq(cred->euid, tcred->uid) ||
825 uid_eq(cred->uid, tcred->suid) ||
826 uid_eq(cred->uid, tcred->uid) ||
827 ns_capable(tcred->user_ns, CAP_KILL);
828 }
829
830 /*
831 * Bad permissions for sending the signal
832 * - the caller must hold the RCU read lock
833 */
check_kill_permission(int sig,struct kernel_siginfo * info,struct task_struct * t)834 static int check_kill_permission(int sig, struct kernel_siginfo *info,
835 struct task_struct *t)
836 {
837 struct pid *sid;
838 int error;
839
840 if (!valid_signal(sig))
841 return -EINVAL;
842
843 if (!si_fromuser(info))
844 return 0;
845
846 error = audit_signal_info(sig, t); /* Let audit system see the signal */
847 if (error)
848 return error;
849
850 if (!same_thread_group(current, t) &&
851 !kill_ok_by_cred(t)) {
852 switch (sig) {
853 case SIGCONT:
854 sid = task_session(t);
855 /*
856 * We don't return the error if sid == NULL. The
857 * task was unhashed, the caller must notice this.
858 */
859 if (!sid || sid == task_session(current))
860 break;
861 fallthrough;
862 default:
863 return -EPERM;
864 }
865 }
866
867 return security_task_kill(t, info, sig, NULL);
868 }
869
870 /**
871 * ptrace_trap_notify - schedule trap to notify ptracer
872 * @t: tracee wanting to notify tracer
873 *
874 * This function schedules sticky ptrace trap which is cleared on the next
875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
876 * ptracer.
877 *
878 * If @t is running, STOP trap will be taken. If trapped for STOP and
879 * ptracer is listening for events, tracee is woken up so that it can
880 * re-trap for the new event. If trapped otherwise, STOP trap will be
881 * eventually taken without returning to userland after the existing traps
882 * are finished by PTRACE_CONT.
883 *
884 * CONTEXT:
885 * Must be called with @task->sighand->siglock held.
886 */
ptrace_trap_notify(struct task_struct * t)887 static void ptrace_trap_notify(struct task_struct *t)
888 {
889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
890 lockdep_assert_held(&t->sighand->siglock);
891
892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
894 }
895
896 /*
897 * Handle magic process-wide effects of stop/continue signals. Unlike
898 * the signal actions, these happen immediately at signal-generation
899 * time regardless of blocking, ignoring, or handling. This does the
900 * actual continuing for SIGCONT, but not the actual stopping for stop
901 * signals. The process stop is done as a signal action for SIG_DFL.
902 *
903 * Returns true if the signal should be actually delivered, otherwise
904 * it should be dropped.
905 */
prepare_signal(int sig,struct task_struct * p,bool force)906 static bool prepare_signal(int sig, struct task_struct *p, bool force)
907 {
908 struct signal_struct *signal = p->signal;
909 struct task_struct *t;
910 sigset_t flush;
911
912 if (signal->flags & SIGNAL_GROUP_EXIT) {
913 if (signal->core_state)
914 return sig == SIGKILL;
915 /*
916 * The process is in the middle of dying, drop the signal.
917 */
918 return false;
919 } else if (sig_kernel_stop(sig)) {
920 /*
921 * This is a stop signal. Remove SIGCONT from all queues.
922 */
923 siginitset(&flush, sigmask(SIGCONT));
924 flush_sigqueue_mask(&flush, &signal->shared_pending);
925 for_each_thread(p, t)
926 flush_sigqueue_mask(&flush, &t->pending);
927 } else if (sig == SIGCONT) {
928 unsigned int why;
929 /*
930 * Remove all stop signals from all queues, wake all threads.
931 */
932 siginitset(&flush, SIG_KERNEL_STOP_MASK);
933 flush_sigqueue_mask(&flush, &signal->shared_pending);
934 for_each_thread(p, t) {
935 flush_sigqueue_mask(&flush, &t->pending);
936 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
937 if (likely(!(t->ptrace & PT_SEIZED))) {
938 t->jobctl &= ~JOBCTL_STOPPED;
939 wake_up_state(t, __TASK_STOPPED);
940 } else
941 ptrace_trap_notify(t);
942 }
943
944 /*
945 * Notify the parent with CLD_CONTINUED if we were stopped.
946 *
947 * If we were in the middle of a group stop, we pretend it
948 * was already finished, and then continued. Since SIGCHLD
949 * doesn't queue we report only CLD_STOPPED, as if the next
950 * CLD_CONTINUED was dropped.
951 */
952 why = 0;
953 if (signal->flags & SIGNAL_STOP_STOPPED)
954 why |= SIGNAL_CLD_CONTINUED;
955 else if (signal->group_stop_count)
956 why |= SIGNAL_CLD_STOPPED;
957
958 if (why) {
959 /*
960 * The first thread which returns from do_signal_stop()
961 * will take ->siglock, notice SIGNAL_CLD_MASK, and
962 * notify its parent. See get_signal().
963 */
964 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
965 signal->group_stop_count = 0;
966 signal->group_exit_code = 0;
967 }
968 }
969
970 return !sig_ignored(p, sig, force);
971 }
972
973 /*
974 * Test if P wants to take SIG. After we've checked all threads with this,
975 * it's equivalent to finding no threads not blocking SIG. Any threads not
976 * blocking SIG were ruled out because they are not running and already
977 * have pending signals. Such threads will dequeue from the shared queue
978 * as soon as they're available, so putting the signal on the shared queue
979 * will be equivalent to sending it to one such thread.
980 */
wants_signal(int sig,struct task_struct * p)981 static inline bool wants_signal(int sig, struct task_struct *p)
982 {
983 if (sigismember(&p->blocked, sig))
984 return false;
985
986 if (p->flags & PF_EXITING)
987 return false;
988
989 if (sig == SIGKILL)
990 return true;
991
992 if (task_is_stopped_or_traced(p))
993 return false;
994
995 return task_curr(p) || !task_sigpending(p);
996 }
997
complete_signal(int sig,struct task_struct * p,enum pid_type type)998 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
999 {
1000 struct signal_struct *signal = p->signal;
1001 struct task_struct *t;
1002
1003 /*
1004 * Now find a thread we can wake up to take the signal off the queue.
1005 *
1006 * If the main thread wants the signal, it gets first crack.
1007 * Probably the least surprising to the average bear.
1008 */
1009 if (wants_signal(sig, p))
1010 t = p;
1011 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012 /*
1013 * There is just one thread and it does not need to be woken.
1014 * It will dequeue unblocked signals before it runs again.
1015 */
1016 return;
1017 else {
1018 /*
1019 * Otherwise try to find a suitable thread.
1020 */
1021 t = signal->curr_target;
1022 while (!wants_signal(sig, t)) {
1023 t = next_thread(t);
1024 if (t == signal->curr_target)
1025 /*
1026 * No thread needs to be woken.
1027 * Any eligible threads will see
1028 * the signal in the queue soon.
1029 */
1030 return;
1031 }
1032 signal->curr_target = t;
1033 }
1034
1035 /*
1036 * Found a killable thread. If the signal will be fatal,
1037 * then start taking the whole group down immediately.
1038 */
1039 if (sig_fatal(p, sig) &&
1040 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041 !sigismember(&t->real_blocked, sig) &&
1042 (sig == SIGKILL || !p->ptrace)) {
1043 /*
1044 * This signal will be fatal to the whole group.
1045 */
1046 if (!sig_kernel_coredump(sig)) {
1047 /*
1048 * Start a group exit and wake everybody up.
1049 * This way we don't have other threads
1050 * running and doing things after a slower
1051 * thread has the fatal signal pending.
1052 */
1053 signal->flags = SIGNAL_GROUP_EXIT;
1054 signal->group_exit_code = sig;
1055 signal->group_stop_count = 0;
1056 t = p;
1057 do {
1058 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059 sigaddset(&t->pending.signal, SIGKILL);
1060 signal_wake_up(t, 1);
1061 } while_each_thread(p, t);
1062 return;
1063 }
1064 }
1065
1066 /*
1067 * The signal is already in the shared-pending queue.
1068 * Tell the chosen thread to wake up and dequeue it.
1069 */
1070 signal_wake_up(t, sig == SIGKILL);
1071 return;
1072 }
1073
legacy_queue(struct sigpending * signals,int sig)1074 static inline bool legacy_queue(struct sigpending *signals, int sig)
1075 {
1076 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077 }
1078
__send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type,bool force)1079 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080 struct task_struct *t, enum pid_type type, bool force)
1081 {
1082 struct sigpending *pending;
1083 struct sigqueue *q;
1084 int override_rlimit;
1085 int ret = 0, result;
1086
1087 lockdep_assert_held(&t->sighand->siglock);
1088
1089 result = TRACE_SIGNAL_IGNORED;
1090 if (!prepare_signal(sig, t, force))
1091 goto ret;
1092
1093 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094 /*
1095 * Short-circuit ignored signals and support queuing
1096 * exactly one non-rt signal, so that we can get more
1097 * detailed information about the cause of the signal.
1098 */
1099 result = TRACE_SIGNAL_ALREADY_PENDING;
1100 if (legacy_queue(pending, sig))
1101 goto ret;
1102
1103 result = TRACE_SIGNAL_DELIVERED;
1104 /*
1105 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106 */
1107 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108 goto out_set;
1109
1110 /*
1111 * Real-time signals must be queued if sent by sigqueue, or
1112 * some other real-time mechanism. It is implementation
1113 * defined whether kill() does so. We attempt to do so, on
1114 * the principle of least surprise, but since kill is not
1115 * allowed to fail with EAGAIN when low on memory we just
1116 * make sure at least one signal gets delivered and don't
1117 * pass on the info struct.
1118 */
1119 if (sig < SIGRTMIN)
1120 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121 else
1122 override_rlimit = 0;
1123
1124 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126 if (q) {
1127 list_add_tail(&q->list, &pending->list);
1128 switch ((unsigned long) info) {
1129 case (unsigned long) SEND_SIG_NOINFO:
1130 clear_siginfo(&q->info);
1131 q->info.si_signo = sig;
1132 q->info.si_errno = 0;
1133 q->info.si_code = SI_USER;
1134 q->info.si_pid = task_tgid_nr_ns(current,
1135 task_active_pid_ns(t));
1136 rcu_read_lock();
1137 q->info.si_uid =
1138 from_kuid_munged(task_cred_xxx(t, user_ns),
1139 current_uid());
1140 rcu_read_unlock();
1141 break;
1142 case (unsigned long) SEND_SIG_PRIV:
1143 clear_siginfo(&q->info);
1144 q->info.si_signo = sig;
1145 q->info.si_errno = 0;
1146 q->info.si_code = SI_KERNEL;
1147 q->info.si_pid = 0;
1148 q->info.si_uid = 0;
1149 break;
1150 default:
1151 copy_siginfo(&q->info, info);
1152 break;
1153 }
1154 } else if (!is_si_special(info) &&
1155 sig >= SIGRTMIN && info->si_code != SI_USER) {
1156 /*
1157 * Queue overflow, abort. We may abort if the
1158 * signal was rt and sent by user using something
1159 * other than kill().
1160 */
1161 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162 ret = -EAGAIN;
1163 goto ret;
1164 } else {
1165 /*
1166 * This is a silent loss of information. We still
1167 * send the signal, but the *info bits are lost.
1168 */
1169 result = TRACE_SIGNAL_LOSE_INFO;
1170 }
1171
1172 out_set:
1173 signalfd_notify(t, sig);
1174 sigaddset(&pending->signal, sig);
1175
1176 /* Let multiprocess signals appear after on-going forks */
1177 if (type > PIDTYPE_TGID) {
1178 struct multiprocess_signals *delayed;
1179 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180 sigset_t *signal = &delayed->signal;
1181 /* Can't queue both a stop and a continue signal */
1182 if (sig == SIGCONT)
1183 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184 else if (sig_kernel_stop(sig))
1185 sigdelset(signal, SIGCONT);
1186 sigaddset(signal, sig);
1187 }
1188 }
1189
1190 complete_signal(sig, t, type);
1191 ret:
1192 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193 return ret;
1194 }
1195
has_si_pid_and_uid(struct kernel_siginfo * info)1196 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197 {
1198 bool ret = false;
1199 switch (siginfo_layout(info->si_signo, info->si_code)) {
1200 case SIL_KILL:
1201 case SIL_CHLD:
1202 case SIL_RT:
1203 ret = true;
1204 break;
1205 case SIL_TIMER:
1206 case SIL_POLL:
1207 case SIL_FAULT:
1208 case SIL_FAULT_TRAPNO:
1209 case SIL_FAULT_MCEERR:
1210 case SIL_FAULT_BNDERR:
1211 case SIL_FAULT_PKUERR:
1212 case SIL_FAULT_PERF_EVENT:
1213 case SIL_SYS:
1214 ret = false;
1215 break;
1216 }
1217 return ret;
1218 }
1219
send_signal_locked(int sig,struct kernel_siginfo * info,struct task_struct * t,enum pid_type type)1220 int send_signal_locked(int sig, struct kernel_siginfo *info,
1221 struct task_struct *t, enum pid_type type)
1222 {
1223 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224 bool force = false;
1225
1226 if (info == SEND_SIG_NOINFO) {
1227 /* Force if sent from an ancestor pid namespace */
1228 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229 } else if (info == SEND_SIG_PRIV) {
1230 /* Don't ignore kernel generated signals */
1231 force = true;
1232 } else if (has_si_pid_and_uid(info)) {
1233 /* SIGKILL and SIGSTOP is special or has ids */
1234 struct user_namespace *t_user_ns;
1235
1236 rcu_read_lock();
1237 t_user_ns = task_cred_xxx(t, user_ns);
1238 if (current_user_ns() != t_user_ns) {
1239 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240 info->si_uid = from_kuid_munged(t_user_ns, uid);
1241 }
1242 rcu_read_unlock();
1243
1244 /* A kernel generated signal? */
1245 force = (info->si_code == SI_KERNEL);
1246
1247 /* From an ancestor pid namespace? */
1248 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249 info->si_pid = 0;
1250 force = true;
1251 }
1252 }
1253 return __send_signal_locked(sig, info, t, type, force);
1254 }
1255
print_fatal_signal(int signr)1256 static void print_fatal_signal(int signr)
1257 {
1258 struct pt_regs *regs = signal_pt_regs();
1259 pr_info("potentially unexpected fatal signal %d.\n", signr);
1260
1261 #if defined(__i386__) && !defined(__arch_um__)
1262 pr_info("code at %08lx: ", regs->ip);
1263 {
1264 int i;
1265 for (i = 0; i < 16; i++) {
1266 unsigned char insn;
1267
1268 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269 break;
1270 pr_cont("%02x ", insn);
1271 }
1272 }
1273 pr_cont("\n");
1274 #endif
1275 preempt_disable();
1276 show_regs(regs);
1277 preempt_enable();
1278 }
1279
setup_print_fatal_signals(char * str)1280 static int __init setup_print_fatal_signals(char *str)
1281 {
1282 get_option (&str, &print_fatal_signals);
1283
1284 return 1;
1285 }
1286
1287 __setup("print-fatal-signals=", setup_print_fatal_signals);
1288
do_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1289 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290 enum pid_type type)
1291 {
1292 unsigned long flags;
1293 int ret = -ESRCH;
1294
1295 if (lock_task_sighand(p, &flags)) {
1296 ret = send_signal_locked(sig, info, p, type);
1297 unlock_task_sighand(p, &flags);
1298 }
1299
1300 return ret;
1301 }
1302
1303 enum sig_handler {
1304 HANDLER_CURRENT, /* If reachable use the current handler */
1305 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306 HANDLER_EXIT, /* Only visible as the process exit code */
1307 };
1308
1309 /*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320 static int
force_sig_info_to_task(struct kernel_siginfo * info,struct task_struct * t,enum sig_handler handler)1321 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322 enum sig_handler handler)
1323 {
1324 unsigned long int flags;
1325 int ret, blocked, ignored;
1326 struct k_sigaction *action;
1327 int sig = info->si_signo;
1328
1329 spin_lock_irqsave(&t->sighand->siglock, flags);
1330 action = &t->sighand->action[sig-1];
1331 ignored = action->sa.sa_handler == SIG_IGN;
1332 blocked = sigismember(&t->blocked, sig);
1333 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334 action->sa.sa_handler = SIG_DFL;
1335 if (handler == HANDLER_EXIT)
1336 action->sa.sa_flags |= SA_IMMUTABLE;
1337 if (blocked) {
1338 sigdelset(&t->blocked, sig);
1339 recalc_sigpending_and_wake(t);
1340 }
1341 }
1342 /*
1343 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345 */
1346 if (action->sa.sa_handler == SIG_DFL &&
1347 (!t->ptrace || (handler == HANDLER_EXIT)))
1348 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352 return ret;
1353 }
1354
force_sig_info(struct kernel_siginfo * info)1355 int force_sig_info(struct kernel_siginfo *info)
1356 {
1357 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358 }
1359
1360 /*
1361 * Nuke all other threads in the group.
1362 */
zap_other_threads(struct task_struct * p)1363 int zap_other_threads(struct task_struct *p)
1364 {
1365 struct task_struct *t = p;
1366 int count = 0;
1367
1368 p->signal->group_stop_count = 0;
1369
1370 while_each_thread(p, t) {
1371 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372 count++;
1373
1374 /* Don't bother with already dead threads */
1375 if (t->exit_state)
1376 continue;
1377 sigaddset(&t->pending.signal, SIGKILL);
1378 signal_wake_up(t, 1);
1379 }
1380
1381 return count;
1382 }
1383
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1384 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385 unsigned long *flags)
1386 {
1387 struct sighand_struct *sighand;
1388
1389 rcu_read_lock();
1390 for (;;) {
1391 sighand = rcu_dereference(tsk->sighand);
1392 if (unlikely(sighand == NULL))
1393 break;
1394
1395 /*
1396 * This sighand can be already freed and even reused, but
1397 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398 * initializes ->siglock: this slab can't go away, it has
1399 * the same object type, ->siglock can't be reinitialized.
1400 *
1401 * We need to ensure that tsk->sighand is still the same
1402 * after we take the lock, we can race with de_thread() or
1403 * __exit_signal(). In the latter case the next iteration
1404 * must see ->sighand == NULL.
1405 */
1406 spin_lock_irqsave(&sighand->siglock, *flags);
1407 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408 break;
1409 spin_unlock_irqrestore(&sighand->siglock, *flags);
1410 }
1411 rcu_read_unlock();
1412
1413 return sighand;
1414 }
1415
1416 #ifdef CONFIG_LOCKDEP
lockdep_assert_task_sighand_held(struct task_struct * task)1417 void lockdep_assert_task_sighand_held(struct task_struct *task)
1418 {
1419 struct sighand_struct *sighand;
1420
1421 rcu_read_lock();
1422 sighand = rcu_dereference(task->sighand);
1423 if (sighand)
1424 lockdep_assert_held(&sighand->siglock);
1425 else
1426 WARN_ON_ONCE(1);
1427 rcu_read_unlock();
1428 }
1429 #endif
1430
1431 /*
1432 * send signal info to all the members of a group
1433 */
group_send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p,enum pid_type type)1434 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435 struct task_struct *p, enum pid_type type)
1436 {
1437 int ret;
1438
1439 rcu_read_lock();
1440 ret = check_kill_permission(sig, info, p);
1441 rcu_read_unlock();
1442
1443 if (!ret && sig)
1444 ret = do_send_sig_info(sig, info, p, type);
1445
1446 return ret;
1447 }
1448
1449 /*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
__kill_pgrp_info(int sig,struct kernel_siginfo * info,struct pid * pgrp)1454 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455 {
1456 struct task_struct *p = NULL;
1457 int retval, success;
1458
1459 success = 0;
1460 retval = -ESRCH;
1461 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463 success |= !err;
1464 retval = err;
1465 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466 return success ? 0 : retval;
1467 }
1468
kill_pid_info(int sig,struct kernel_siginfo * info,struct pid * pid)1469 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470 {
1471 int error = -ESRCH;
1472 struct task_struct *p;
1473
1474 for (;;) {
1475 rcu_read_lock();
1476 p = pid_task(pid, PIDTYPE_PID);
1477 if (p)
1478 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479 rcu_read_unlock();
1480 if (likely(!p || error != -ESRCH))
1481 return error;
1482
1483 /*
1484 * The task was unhashed in between, try again. If it
1485 * is dead, pid_task() will return NULL, if we race with
1486 * de_thread() it will find the new leader.
1487 */
1488 }
1489 }
1490
kill_proc_info(int sig,struct kernel_siginfo * info,pid_t pid)1491 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492 {
1493 int error;
1494 rcu_read_lock();
1495 error = kill_pid_info(sig, info, find_vpid(pid));
1496 rcu_read_unlock();
1497 return error;
1498 }
1499
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1500 static inline bool kill_as_cred_perm(const struct cred *cred,
1501 struct task_struct *target)
1502 {
1503 const struct cred *pcred = __task_cred(target);
1504
1505 return uid_eq(cred->euid, pcred->suid) ||
1506 uid_eq(cred->euid, pcred->uid) ||
1507 uid_eq(cred->uid, pcred->suid) ||
1508 uid_eq(cred->uid, pcred->uid);
1509 }
1510
1511 /*
1512 * The usb asyncio usage of siginfo is wrong. The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 * kernel_pid_t si_pid;
1516 * kernel_uid32_t si_uid;
1517 * sigval_t si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 * void __user *si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace. As the 32bit address will encoded in the low
1525 * 32bits of the pointer. Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer. So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
kill_pid_usb_asyncio(int sig,int errno,sigval_t addr,struct pid * pid,const struct cred * cred)1536 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537 struct pid *pid, const struct cred *cred)
1538 {
1539 struct kernel_siginfo info;
1540 struct task_struct *p;
1541 unsigned long flags;
1542 int ret = -EINVAL;
1543
1544 if (!valid_signal(sig))
1545 return ret;
1546
1547 clear_siginfo(&info);
1548 info.si_signo = sig;
1549 info.si_errno = errno;
1550 info.si_code = SI_ASYNCIO;
1551 *((sigval_t *)&info.si_pid) = addr;
1552
1553 rcu_read_lock();
1554 p = pid_task(pid, PIDTYPE_PID);
1555 if (!p) {
1556 ret = -ESRCH;
1557 goto out_unlock;
1558 }
1559 if (!kill_as_cred_perm(cred, p)) {
1560 ret = -EPERM;
1561 goto out_unlock;
1562 }
1563 ret = security_task_kill(p, &info, sig, cred);
1564 if (ret)
1565 goto out_unlock;
1566
1567 if (sig) {
1568 if (lock_task_sighand(p, &flags)) {
1569 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570 unlock_task_sighand(p, &flags);
1571 } else
1572 ret = -ESRCH;
1573 }
1574 out_unlock:
1575 rcu_read_unlock();
1576 return ret;
1577 }
1578 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580 /*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong. Should make it like BSD or SYSV.
1585 */
1586
kill_something_info(int sig,struct kernel_siginfo * info,pid_t pid)1587 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588 {
1589 int ret;
1590
1591 if (pid > 0)
1592 return kill_proc_info(sig, info, pid);
1593
1594 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1595 if (pid == INT_MIN)
1596 return -ESRCH;
1597
1598 read_lock(&tasklist_lock);
1599 if (pid != -1) {
1600 ret = __kill_pgrp_info(sig, info,
1601 pid ? find_vpid(-pid) : task_pgrp(current));
1602 } else {
1603 int retval = 0, count = 0;
1604 struct task_struct * p;
1605
1606 for_each_process(p) {
1607 if (task_pid_vnr(p) > 1 &&
1608 !same_thread_group(p, current)) {
1609 int err = group_send_sig_info(sig, info, p,
1610 PIDTYPE_MAX);
1611 ++count;
1612 if (err != -EPERM)
1613 retval = err;
1614 }
1615 }
1616 ret = count ? retval : -ESRCH;
1617 }
1618 read_unlock(&tasklist_lock);
1619
1620 return ret;
1621 }
1622
1623 /*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
send_sig_info(int sig,struct kernel_siginfo * info,struct task_struct * p)1627 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628 {
1629 /*
1630 * Make sure legacy kernel users don't send in bad values
1631 * (normal paths check this in check_kill_permission).
1632 */
1633 if (!valid_signal(sig))
1634 return -EINVAL;
1635
1636 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637 }
1638 EXPORT_SYMBOL(send_sig_info);
1639
1640 #define __si_special(priv) \
1641 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643 int
send_sig(int sig,struct task_struct * p,int priv)1644 send_sig(int sig, struct task_struct *p, int priv)
1645 {
1646 return send_sig_info(sig, __si_special(priv), p);
1647 }
1648 EXPORT_SYMBOL(send_sig);
1649
force_sig(int sig)1650 void force_sig(int sig)
1651 {
1652 struct kernel_siginfo info;
1653
1654 clear_siginfo(&info);
1655 info.si_signo = sig;
1656 info.si_errno = 0;
1657 info.si_code = SI_KERNEL;
1658 info.si_pid = 0;
1659 info.si_uid = 0;
1660 force_sig_info(&info);
1661 }
1662 EXPORT_SYMBOL(force_sig);
1663
force_fatal_sig(int sig)1664 void force_fatal_sig(int sig)
1665 {
1666 struct kernel_siginfo info;
1667
1668 clear_siginfo(&info);
1669 info.si_signo = sig;
1670 info.si_errno = 0;
1671 info.si_code = SI_KERNEL;
1672 info.si_pid = 0;
1673 info.si_uid = 0;
1674 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675 }
1676
force_exit_sig(int sig)1677 void force_exit_sig(int sig)
1678 {
1679 struct kernel_siginfo info;
1680
1681 clear_siginfo(&info);
1682 info.si_signo = sig;
1683 info.si_errno = 0;
1684 info.si_code = SI_KERNEL;
1685 info.si_pid = 0;
1686 info.si_uid = 0;
1687 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688 }
1689
1690 /*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
force_sigsegv(int sig)1696 void force_sigsegv(int sig)
1697 {
1698 if (sig == SIGSEGV)
1699 force_fatal_sig(SIGSEGV);
1700 else
1701 force_sig(SIGSEGV);
1702 }
1703
force_sig_fault_to_task(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1704 int force_sig_fault_to_task(int sig, int code, void __user *addr
1705 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706 , struct task_struct *t)
1707 {
1708 struct kernel_siginfo info;
1709
1710 clear_siginfo(&info);
1711 info.si_signo = sig;
1712 info.si_errno = 0;
1713 info.si_code = code;
1714 info.si_addr = addr;
1715 #ifdef __ia64__
1716 info.si_imm = imm;
1717 info.si_flags = flags;
1718 info.si_isr = isr;
1719 #endif
1720 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721 }
1722
force_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr))1723 int force_sig_fault(int sig, int code, void __user *addr
1724 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725 {
1726 return force_sig_fault_to_task(sig, code, addr
1727 ___ARCH_SI_IA64(imm, flags, isr), current);
1728 }
1729
send_sig_fault(int sig,int code,void __user * addr ___ARCH_SI_IA64 (int imm,unsigned int flags,unsigned long isr),struct task_struct * t)1730 int send_sig_fault(int sig, int code, void __user *addr
1731 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732 , struct task_struct *t)
1733 {
1734 struct kernel_siginfo info;
1735
1736 clear_siginfo(&info);
1737 info.si_signo = sig;
1738 info.si_errno = 0;
1739 info.si_code = code;
1740 info.si_addr = addr;
1741 #ifdef __ia64__
1742 info.si_imm = imm;
1743 info.si_flags = flags;
1744 info.si_isr = isr;
1745 #endif
1746 return send_sig_info(info.si_signo, &info, t);
1747 }
1748
force_sig_mceerr(int code,void __user * addr,short lsb)1749 int force_sig_mceerr(int code, void __user *addr, short lsb)
1750 {
1751 struct kernel_siginfo info;
1752
1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754 clear_siginfo(&info);
1755 info.si_signo = SIGBUS;
1756 info.si_errno = 0;
1757 info.si_code = code;
1758 info.si_addr = addr;
1759 info.si_addr_lsb = lsb;
1760 return force_sig_info(&info);
1761 }
1762
send_sig_mceerr(int code,void __user * addr,short lsb,struct task_struct * t)1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764 {
1765 struct kernel_siginfo info;
1766
1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768 clear_siginfo(&info);
1769 info.si_signo = SIGBUS;
1770 info.si_errno = 0;
1771 info.si_code = code;
1772 info.si_addr = addr;
1773 info.si_addr_lsb = lsb;
1774 return send_sig_info(info.si_signo, &info, t);
1775 }
1776 EXPORT_SYMBOL(send_sig_mceerr);
1777
force_sig_bnderr(void __user * addr,void __user * lower,void __user * upper)1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779 {
1780 struct kernel_siginfo info;
1781
1782 clear_siginfo(&info);
1783 info.si_signo = SIGSEGV;
1784 info.si_errno = 0;
1785 info.si_code = SEGV_BNDERR;
1786 info.si_addr = addr;
1787 info.si_lower = lower;
1788 info.si_upper = upper;
1789 return force_sig_info(&info);
1790 }
1791
1792 #ifdef SEGV_PKUERR
force_sig_pkuerr(void __user * addr,u32 pkey)1793 int force_sig_pkuerr(void __user *addr, u32 pkey)
1794 {
1795 struct kernel_siginfo info;
1796
1797 clear_siginfo(&info);
1798 info.si_signo = SIGSEGV;
1799 info.si_errno = 0;
1800 info.si_code = SEGV_PKUERR;
1801 info.si_addr = addr;
1802 info.si_pkey = pkey;
1803 return force_sig_info(&info);
1804 }
1805 #endif
1806
send_sig_perf(void __user * addr,u32 type,u64 sig_data)1807 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808 {
1809 struct kernel_siginfo info;
1810
1811 clear_siginfo(&info);
1812 info.si_signo = SIGTRAP;
1813 info.si_errno = 0;
1814 info.si_code = TRAP_PERF;
1815 info.si_addr = addr;
1816 info.si_perf_data = sig_data;
1817 info.si_perf_type = type;
1818
1819 /*
1820 * Signals generated by perf events should not terminate the whole
1821 * process if SIGTRAP is blocked, however, delivering the signal
1822 * asynchronously is better than not delivering at all. But tell user
1823 * space if the signal was asynchronous, so it can clearly be
1824 * distinguished from normal synchronous ones.
1825 */
1826 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1827 TRAP_PERF_FLAG_ASYNC :
1828 0;
1829
1830 return send_sig_info(info.si_signo, &info, current);
1831 }
1832
1833 /**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
force_sig_seccomp(int syscall,int reason,bool force_coredump)1841 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842 {
1843 struct kernel_siginfo info;
1844
1845 clear_siginfo(&info);
1846 info.si_signo = SIGSYS;
1847 info.si_code = SYS_SECCOMP;
1848 info.si_call_addr = (void __user *)KSTK_EIP(current);
1849 info.si_errno = reason;
1850 info.si_arch = syscall_get_arch(current);
1851 info.si_syscall = syscall;
1852 return force_sig_info_to_task(&info, current,
1853 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854 }
1855
1856 /* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
force_sig_ptrace_errno_trap(int errno,void __user * addr)1859 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860 {
1861 struct kernel_siginfo info;
1862
1863 clear_siginfo(&info);
1864 info.si_signo = SIGTRAP;
1865 info.si_errno = errno;
1866 info.si_code = TRAP_HWBKPT;
1867 info.si_addr = addr;
1868 return force_sig_info(&info);
1869 }
1870
1871 /* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
force_sig_fault_trapno(int sig,int code,void __user * addr,int trapno)1874 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875 {
1876 struct kernel_siginfo info;
1877
1878 clear_siginfo(&info);
1879 info.si_signo = sig;
1880 info.si_errno = 0;
1881 info.si_code = code;
1882 info.si_addr = addr;
1883 info.si_trapno = trapno;
1884 return force_sig_info(&info);
1885 }
1886
1887 /* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
send_sig_fault_trapno(int sig,int code,void __user * addr,int trapno,struct task_struct * t)1890 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891 struct task_struct *t)
1892 {
1893 struct kernel_siginfo info;
1894
1895 clear_siginfo(&info);
1896 info.si_signo = sig;
1897 info.si_errno = 0;
1898 info.si_code = code;
1899 info.si_addr = addr;
1900 info.si_trapno = trapno;
1901 return send_sig_info(info.si_signo, &info, t);
1902 }
1903
kill_pgrp(struct pid * pid,int sig,int priv)1904 int kill_pgrp(struct pid *pid, int sig, int priv)
1905 {
1906 int ret;
1907
1908 read_lock(&tasklist_lock);
1909 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910 read_unlock(&tasklist_lock);
1911
1912 return ret;
1913 }
1914 EXPORT_SYMBOL(kill_pgrp);
1915
kill_pid(struct pid * pid,int sig,int priv)1916 int kill_pid(struct pid *pid, int sig, int priv)
1917 {
1918 return kill_pid_info(sig, __si_special(priv), pid);
1919 }
1920 EXPORT_SYMBOL(kill_pid);
1921
1922 /*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures. This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions". In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create. If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
sigqueue_alloc(void)1931 struct sigqueue *sigqueue_alloc(void)
1932 {
1933 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1934 }
1935
sigqueue_free(struct sigqueue * q)1936 void sigqueue_free(struct sigqueue *q)
1937 {
1938 unsigned long flags;
1939 spinlock_t *lock = ¤t->sighand->siglock;
1940
1941 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942 /*
1943 * We must hold ->siglock while testing q->list
1944 * to serialize with collect_signal() or with
1945 * __exit_signal()->flush_sigqueue().
1946 */
1947 spin_lock_irqsave(lock, flags);
1948 q->flags &= ~SIGQUEUE_PREALLOC;
1949 /*
1950 * If it is queued it will be freed when dequeued,
1951 * like the "regular" sigqueue.
1952 */
1953 if (!list_empty(&q->list))
1954 q = NULL;
1955 spin_unlock_irqrestore(lock, flags);
1956
1957 if (q)
1958 __sigqueue_free(q);
1959 }
1960
send_sigqueue(struct sigqueue * q,struct pid * pid,enum pid_type type)1961 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962 {
1963 int sig = q->info.si_signo;
1964 struct sigpending *pending;
1965 struct task_struct *t;
1966 unsigned long flags;
1967 int ret, result;
1968
1969 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971 ret = -1;
1972 rcu_read_lock();
1973 t = pid_task(pid, type);
1974 if (!t || !likely(lock_task_sighand(t, &flags)))
1975 goto ret;
1976
1977 ret = 1; /* the signal is ignored */
1978 result = TRACE_SIGNAL_IGNORED;
1979 if (!prepare_signal(sig, t, false))
1980 goto out;
1981
1982 ret = 0;
1983 if (unlikely(!list_empty(&q->list))) {
1984 /*
1985 * If an SI_TIMER entry is already queue just increment
1986 * the overrun count.
1987 */
1988 BUG_ON(q->info.si_code != SI_TIMER);
1989 q->info.si_overrun++;
1990 result = TRACE_SIGNAL_ALREADY_PENDING;
1991 goto out;
1992 }
1993 q->info.si_overrun = 0;
1994
1995 signalfd_notify(t, sig);
1996 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997 list_add_tail(&q->list, &pending->list);
1998 sigaddset(&pending->signal, sig);
1999 complete_signal(sig, t, type);
2000 result = TRACE_SIGNAL_DELIVERED;
2001 out:
2002 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003 unlock_task_sighand(t, &flags);
2004 ret:
2005 rcu_read_unlock();
2006 return ret;
2007 }
2008
do_notify_pidfd(struct task_struct * task)2009 static void do_notify_pidfd(struct task_struct *task)
2010 {
2011 struct pid *pid;
2012
2013 WARN_ON(task->exit_state == 0);
2014 pid = task_pid(task);
2015 wake_up_all(&pid->wait_pidfd);
2016 }
2017
2018 /*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
do_notify_parent(struct task_struct * tsk,int sig)2025 bool do_notify_parent(struct task_struct *tsk, int sig)
2026 {
2027 struct kernel_siginfo info;
2028 unsigned long flags;
2029 struct sighand_struct *psig;
2030 bool autoreap = false;
2031 u64 utime, stime;
2032
2033 WARN_ON_ONCE(sig == -1);
2034
2035 /* do_notify_parent_cldstop should have been called instead. */
2036 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038 WARN_ON_ONCE(!tsk->ptrace &&
2039 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041 /* Wake up all pidfd waiters */
2042 do_notify_pidfd(tsk);
2043
2044 if (sig != SIGCHLD) {
2045 /*
2046 * This is only possible if parent == real_parent.
2047 * Check if it has changed security domain.
2048 */
2049 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050 sig = SIGCHLD;
2051 }
2052
2053 clear_siginfo(&info);
2054 info.si_signo = sig;
2055 info.si_errno = 0;
2056 /*
2057 * We are under tasklist_lock here so our parent is tied to
2058 * us and cannot change.
2059 *
2060 * task_active_pid_ns will always return the same pid namespace
2061 * until a task passes through release_task.
2062 *
2063 * write_lock() currently calls preempt_disable() which is the
2064 * same as rcu_read_lock(), but according to Oleg, this is not
2065 * correct to rely on this
2066 */
2067 rcu_read_lock();
2068 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070 task_uid(tsk));
2071 rcu_read_unlock();
2072
2073 task_cputime(tsk, &utime, &stime);
2074 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076
2077 info.si_status = tsk->exit_code & 0x7f;
2078 if (tsk->exit_code & 0x80)
2079 info.si_code = CLD_DUMPED;
2080 else if (tsk->exit_code & 0x7f)
2081 info.si_code = CLD_KILLED;
2082 else {
2083 info.si_code = CLD_EXITED;
2084 info.si_status = tsk->exit_code >> 8;
2085 }
2086
2087 psig = tsk->parent->sighand;
2088 spin_lock_irqsave(&psig->siglock, flags);
2089 if (!tsk->ptrace && sig == SIGCHLD &&
2090 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092 /*
2093 * We are exiting and our parent doesn't care. POSIX.1
2094 * defines special semantics for setting SIGCHLD to SIG_IGN
2095 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096 * automatically and not left for our parent's wait4 call.
2097 * Rather than having the parent do it as a magic kind of
2098 * signal handler, we just set this to tell do_exit that we
2099 * can be cleaned up without becoming a zombie. Note that
2100 * we still call __wake_up_parent in this case, because a
2101 * blocked sys_wait4 might now return -ECHILD.
2102 *
2103 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104 * is implementation-defined: we do (if you don't want
2105 * it, just use SIG_IGN instead).
2106 */
2107 autoreap = true;
2108 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109 sig = 0;
2110 }
2111 /*
2112 * Send with __send_signal as si_pid and si_uid are in the
2113 * parent's namespaces.
2114 */
2115 if (valid_signal(sig) && sig)
2116 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117 __wake_up_parent(tsk, tsk->parent);
2118 spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120 return autoreap;
2121 }
2122
2123 /**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed. If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)2136 static void do_notify_parent_cldstop(struct task_struct *tsk,
2137 bool for_ptracer, int why)
2138 {
2139 struct kernel_siginfo info;
2140 unsigned long flags;
2141 struct task_struct *parent;
2142 struct sighand_struct *sighand;
2143 u64 utime, stime;
2144
2145 if (for_ptracer) {
2146 parent = tsk->parent;
2147 } else {
2148 tsk = tsk->group_leader;
2149 parent = tsk->real_parent;
2150 }
2151
2152 clear_siginfo(&info);
2153 info.si_signo = SIGCHLD;
2154 info.si_errno = 0;
2155 /*
2156 * see comment in do_notify_parent() about the following 4 lines
2157 */
2158 rcu_read_lock();
2159 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161 rcu_read_unlock();
2162
2163 task_cputime(tsk, &utime, &stime);
2164 info.si_utime = nsec_to_clock_t(utime);
2165 info.si_stime = nsec_to_clock_t(stime);
2166
2167 info.si_code = why;
2168 switch (why) {
2169 case CLD_CONTINUED:
2170 info.si_status = SIGCONT;
2171 break;
2172 case CLD_STOPPED:
2173 info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 break;
2175 case CLD_TRAPPED:
2176 info.si_status = tsk->exit_code & 0x7f;
2177 break;
2178 default:
2179 BUG();
2180 }
2181
2182 sighand = parent->sighand;
2183 spin_lock_irqsave(&sighand->siglock, flags);
2184 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187 /*
2188 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189 */
2190 __wake_up_parent(tsk, parent);
2191 spin_unlock_irqrestore(&sighand->siglock, flags);
2192 }
2193
2194 /*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with. If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
ptrace_stop(int exit_code,int why,unsigned long message,kernel_siginfo_t * info)2206 static int ptrace_stop(int exit_code, int why, unsigned long message,
2207 kernel_siginfo_t *info)
2208 __releases(¤t->sighand->siglock)
2209 __acquires(¤t->sighand->siglock)
2210 {
2211 bool gstop_done = false;
2212
2213 if (arch_ptrace_stop_needed()) {
2214 /*
2215 * The arch code has something special to do before a
2216 * ptrace stop. This is allowed to block, e.g. for faults
2217 * on user stack pages. We can't keep the siglock while
2218 * calling arch_ptrace_stop, so we must release it now.
2219 * To preserve proper semantics, we must do this before
2220 * any signal bookkeeping like checking group_stop_count.
2221 */
2222 spin_unlock_irq(¤t->sighand->siglock);
2223 arch_ptrace_stop();
2224 spin_lock_irq(¤t->sighand->siglock);
2225 }
2226
2227 /*
2228 * After this point ptrace_signal_wake_up or signal_wake_up
2229 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230 * signal comes in. Handle previous ptrace_unlinks and fatal
2231 * signals here to prevent ptrace_stop sleeping in schedule.
2232 */
2233 if (!current->ptrace || __fatal_signal_pending(current))
2234 return exit_code;
2235
2236 set_special_state(TASK_TRACED);
2237 current->jobctl |= JOBCTL_TRACED;
2238
2239 /*
2240 * We're committing to trapping. TRACED should be visible before
2241 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242 * Also, transition to TRACED and updates to ->jobctl should be
2243 * atomic with respect to siglock and should be done after the arch
2244 * hook as siglock is released and regrabbed across it.
2245 *
2246 * TRACER TRACEE
2247 *
2248 * ptrace_attach()
2249 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2250 * do_wait()
2251 * set_current_state() smp_wmb();
2252 * ptrace_do_wait()
2253 * wait_task_stopped()
2254 * task_stopped_code()
2255 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2256 */
2257 smp_wmb();
2258
2259 current->ptrace_message = message;
2260 current->last_siginfo = info;
2261 current->exit_code = exit_code;
2262
2263 /*
2264 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2266 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267 * could be clear now. We act as if SIGCONT is received after
2268 * TASK_TRACED is entered - ignore it.
2269 */
2270 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271 gstop_done = task_participate_group_stop(current);
2272
2273 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278 /* entering a trap, clear TRAPPING */
2279 task_clear_jobctl_trapping(current);
2280
2281 spin_unlock_irq(¤t->sighand->siglock);
2282 read_lock(&tasklist_lock);
2283 /*
2284 * Notify parents of the stop.
2285 *
2286 * While ptraced, there are two parents - the ptracer and
2287 * the real_parent of the group_leader. The ptracer should
2288 * know about every stop while the real parent is only
2289 * interested in the completion of group stop. The states
2290 * for the two don't interact with each other. Notify
2291 * separately unless they're gonna be duplicates.
2292 */
2293 if (current->ptrace)
2294 do_notify_parent_cldstop(current, true, why);
2295 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296 do_notify_parent_cldstop(current, false, why);
2297
2298 /*
2299 * Don't want to allow preemption here, because
2300 * sys_ptrace() needs this task to be inactive.
2301 *
2302 * XXX: implement read_unlock_no_resched().
2303 */
2304 preempt_disable();
2305 read_unlock(&tasklist_lock);
2306 cgroup_enter_frozen();
2307 preempt_enable_no_resched();
2308 schedule();
2309 cgroup_leave_frozen(true);
2310
2311 /*
2312 * We are back. Now reacquire the siglock before touching
2313 * last_siginfo, so that we are sure to have synchronized with
2314 * any signal-sending on another CPU that wants to examine it.
2315 */
2316 spin_lock_irq(¤t->sighand->siglock);
2317 exit_code = current->exit_code;
2318 current->last_siginfo = NULL;
2319 current->ptrace_message = 0;
2320 current->exit_code = 0;
2321
2322 /* LISTENING can be set only during STOP traps, clear it */
2323 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325 /*
2326 * Queued signals ignored us while we were stopped for tracing.
2327 * So check for any that we should take before resuming user mode.
2328 * This sets TIF_SIGPENDING, but never clears it.
2329 */
2330 recalc_sigpending_tsk(current);
2331 return exit_code;
2332 }
2333
ptrace_do_notify(int signr,int exit_code,int why,unsigned long message)2334 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335 {
2336 kernel_siginfo_t info;
2337
2338 clear_siginfo(&info);
2339 info.si_signo = signr;
2340 info.si_code = exit_code;
2341 info.si_pid = task_pid_vnr(current);
2342 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344 /* Let the debugger run. */
2345 return ptrace_stop(exit_code, why, message, &info);
2346 }
2347
ptrace_notify(int exit_code,unsigned long message)2348 int ptrace_notify(int exit_code, unsigned long message)
2349 {
2350 int signr;
2351
2352 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353 if (unlikely(task_work_pending(current)))
2354 task_work_run();
2355
2356 spin_lock_irq(¤t->sighand->siglock);
2357 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358 spin_unlock_irq(¤t->sighand->siglock);
2359 return signr;
2360 }
2361
2362 /**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it. If already set, participate in the existing
2368 * group stop. If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself. Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched. The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
do_signal_stop(int signr)2384 static bool do_signal_stop(int signr)
2385 __releases(¤t->sighand->siglock)
2386 {
2387 struct signal_struct *sig = current->signal;
2388
2389 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391 struct task_struct *t;
2392
2393 /* signr will be recorded in task->jobctl for retries */
2394 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398 unlikely(sig->group_exec_task))
2399 return false;
2400 /*
2401 * There is no group stop already in progress. We must
2402 * initiate one now.
2403 *
2404 * While ptraced, a task may be resumed while group stop is
2405 * still in effect and then receive a stop signal and
2406 * initiate another group stop. This deviates from the
2407 * usual behavior as two consecutive stop signals can't
2408 * cause two group stops when !ptraced. That is why we
2409 * also check !task_is_stopped(t) below.
2410 *
2411 * The condition can be distinguished by testing whether
2412 * SIGNAL_STOP_STOPPED is already set. Don't generate
2413 * group_exit_code in such case.
2414 *
2415 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416 * an intervening stop signal is required to cause two
2417 * continued events regardless of ptrace.
2418 */
2419 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420 sig->group_exit_code = signr;
2421
2422 sig->group_stop_count = 0;
2423
2424 if (task_set_jobctl_pending(current, signr | gstop))
2425 sig->group_stop_count++;
2426
2427 t = current;
2428 while_each_thread(current, t) {
2429 /*
2430 * Setting state to TASK_STOPPED for a group
2431 * stop is always done with the siglock held,
2432 * so this check has no races.
2433 */
2434 if (!task_is_stopped(t) &&
2435 task_set_jobctl_pending(t, signr | gstop)) {
2436 sig->group_stop_count++;
2437 if (likely(!(t->ptrace & PT_SEIZED)))
2438 signal_wake_up(t, 0);
2439 else
2440 ptrace_trap_notify(t);
2441 }
2442 }
2443 }
2444
2445 if (likely(!current->ptrace)) {
2446 int notify = 0;
2447
2448 /*
2449 * If there are no other threads in the group, or if there
2450 * is a group stop in progress and we are the last to stop,
2451 * report to the parent.
2452 */
2453 if (task_participate_group_stop(current))
2454 notify = CLD_STOPPED;
2455
2456 current->jobctl |= JOBCTL_STOPPED;
2457 set_special_state(TASK_STOPPED);
2458 spin_unlock_irq(¤t->sighand->siglock);
2459
2460 /*
2461 * Notify the parent of the group stop completion. Because
2462 * we're not holding either the siglock or tasklist_lock
2463 * here, ptracer may attach inbetween; however, this is for
2464 * group stop and should always be delivered to the real
2465 * parent of the group leader. The new ptracer will get
2466 * its notification when this task transitions into
2467 * TASK_TRACED.
2468 */
2469 if (notify) {
2470 read_lock(&tasklist_lock);
2471 do_notify_parent_cldstop(current, false, notify);
2472 read_unlock(&tasklist_lock);
2473 }
2474
2475 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2476 cgroup_enter_frozen();
2477 schedule();
2478 return true;
2479 } else {
2480 /*
2481 * While ptraced, group stop is handled by STOP trap.
2482 * Schedule it and let the caller deal with it.
2483 */
2484 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485 return false;
2486 }
2487 }
2488
2489 /**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
do_jobctl_trap(void)2504 static void do_jobctl_trap(void)
2505 {
2506 struct signal_struct *signal = current->signal;
2507 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509 if (current->ptrace & PT_SEIZED) {
2510 if (!signal->group_stop_count &&
2511 !(signal->flags & SIGNAL_STOP_STOPPED))
2512 signr = SIGTRAP;
2513 WARN_ON_ONCE(!signr);
2514 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515 CLD_STOPPED, 0);
2516 } else {
2517 WARN_ON_ONCE(!signr);
2518 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2519 }
2520 }
2521
2522 /**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
do_freezer_trap(void)2532 static void do_freezer_trap(void)
2533 __releases(¤t->sighand->siglock)
2534 {
2535 /*
2536 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537 * let's make another loop to give it a chance to be handled.
2538 * In any case, we'll return back.
2539 */
2540 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541 JOBCTL_TRAP_FREEZE) {
2542 spin_unlock_irq(¤t->sighand->siglock);
2543 return;
2544 }
2545
2546 /*
2547 * Now we're sure that there is no pending fatal signal and no
2548 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549 * immediately (if there is a non-fatal signal pending), and
2550 * put the task into sleep.
2551 */
2552 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553 clear_thread_flag(TIF_SIGPENDING);
2554 spin_unlock_irq(¤t->sighand->siglock);
2555 cgroup_enter_frozen();
2556 schedule();
2557 }
2558
ptrace_signal(int signr,kernel_siginfo_t * info,enum pid_type type)2559 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560 {
2561 /*
2562 * We do not check sig_kernel_stop(signr) but set this marker
2563 * unconditionally because we do not know whether debugger will
2564 * change signr. This flag has no meaning unless we are going
2565 * to stop after return from ptrace_stop(). In this case it will
2566 * be checked in do_signal_stop(), we should only stop if it was
2567 * not cleared by SIGCONT while we were sleeping. See also the
2568 * comment in dequeue_signal().
2569 */
2570 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573 /* We're back. Did the debugger cancel the sig? */
2574 if (signr == 0)
2575 return signr;
2576
2577 /*
2578 * Update the siginfo structure if the signal has
2579 * changed. If the debugger wanted something
2580 * specific in the siginfo structure then it should
2581 * have updated *info via PTRACE_SETSIGINFO.
2582 */
2583 if (signr != info->si_signo) {
2584 clear_siginfo(info);
2585 info->si_signo = signr;
2586 info->si_errno = 0;
2587 info->si_code = SI_USER;
2588 rcu_read_lock();
2589 info->si_pid = task_pid_vnr(current->parent);
2590 info->si_uid = from_kuid_munged(current_user_ns(),
2591 task_uid(current->parent));
2592 rcu_read_unlock();
2593 }
2594
2595 /* If the (new) signal is now blocked, requeue it. */
2596 if (sigismember(¤t->blocked, signr) ||
2597 fatal_signal_pending(current)) {
2598 send_signal_locked(signr, info, current, type);
2599 signr = 0;
2600 }
2601
2602 return signr;
2603 }
2604
hide_si_addr_tag_bits(struct ksignal * ksig)2605 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606 {
2607 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608 case SIL_FAULT:
2609 case SIL_FAULT_TRAPNO:
2610 case SIL_FAULT_MCEERR:
2611 case SIL_FAULT_BNDERR:
2612 case SIL_FAULT_PKUERR:
2613 case SIL_FAULT_PERF_EVENT:
2614 ksig->info.si_addr = arch_untagged_si_addr(
2615 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616 break;
2617 case SIL_KILL:
2618 case SIL_TIMER:
2619 case SIL_POLL:
2620 case SIL_CHLD:
2621 case SIL_RT:
2622 case SIL_SYS:
2623 break;
2624 }
2625 }
2626
get_signal(struct ksignal * ksig)2627 bool get_signal(struct ksignal *ksig)
2628 {
2629 struct sighand_struct *sighand = current->sighand;
2630 struct signal_struct *signal = current->signal;
2631 int signr;
2632
2633 clear_notify_signal();
2634 if (unlikely(task_work_pending(current)))
2635 task_work_run();
2636
2637 if (!task_sigpending(current))
2638 return false;
2639
2640 if (unlikely(uprobe_deny_signal()))
2641 return false;
2642
2643 /*
2644 * Do this once, we can't return to user-mode if freezing() == T.
2645 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646 * thus do not need another check after return.
2647 */
2648 try_to_freeze();
2649
2650 relock:
2651 spin_lock_irq(&sighand->siglock);
2652
2653 /*
2654 * Every stopped thread goes here after wakeup. Check to see if
2655 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657 */
2658 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659 int why;
2660
2661 if (signal->flags & SIGNAL_CLD_CONTINUED)
2662 why = CLD_CONTINUED;
2663 else
2664 why = CLD_STOPPED;
2665
2666 signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668 spin_unlock_irq(&sighand->siglock);
2669
2670 /*
2671 * Notify the parent that we're continuing. This event is
2672 * always per-process and doesn't make whole lot of sense
2673 * for ptracers, who shouldn't consume the state via
2674 * wait(2) either, but, for backward compatibility, notify
2675 * the ptracer of the group leader too unless it's gonna be
2676 * a duplicate.
2677 */
2678 read_lock(&tasklist_lock);
2679 do_notify_parent_cldstop(current, false, why);
2680
2681 if (ptrace_reparented(current->group_leader))
2682 do_notify_parent_cldstop(current->group_leader,
2683 true, why);
2684 read_unlock(&tasklist_lock);
2685
2686 goto relock;
2687 }
2688
2689 for (;;) {
2690 struct k_sigaction *ka;
2691 enum pid_type type;
2692
2693 /* Has this task already been marked for death? */
2694 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695 signal->group_exec_task) {
2696 ksig->info.si_signo = signr = SIGKILL;
2697 sigdelset(¤t->pending.signal, SIGKILL);
2698 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2699 &sighand->action[SIGKILL - 1]);
2700 recalc_sigpending();
2701 goto fatal;
2702 }
2703
2704 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2705 do_signal_stop(0))
2706 goto relock;
2707
2708 if (unlikely(current->jobctl &
2709 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2710 if (current->jobctl & JOBCTL_TRAP_MASK) {
2711 do_jobctl_trap();
2712 spin_unlock_irq(&sighand->siglock);
2713 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2714 do_freezer_trap();
2715
2716 goto relock;
2717 }
2718
2719 /*
2720 * If the task is leaving the frozen state, let's update
2721 * cgroup counters and reset the frozen bit.
2722 */
2723 if (unlikely(cgroup_task_frozen(current))) {
2724 spin_unlock_irq(&sighand->siglock);
2725 cgroup_leave_frozen(false);
2726 goto relock;
2727 }
2728
2729 /*
2730 * Signals generated by the execution of an instruction
2731 * need to be delivered before any other pending signals
2732 * so that the instruction pointer in the signal stack
2733 * frame points to the faulting instruction.
2734 */
2735 type = PIDTYPE_PID;
2736 signr = dequeue_synchronous_signal(&ksig->info);
2737 if (!signr)
2738 signr = dequeue_signal(current, ¤t->blocked,
2739 &ksig->info, &type);
2740
2741 if (!signr)
2742 break; /* will return 0 */
2743
2744 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2745 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2746 signr = ptrace_signal(signr, &ksig->info, type);
2747 if (!signr)
2748 continue;
2749 }
2750
2751 ka = &sighand->action[signr-1];
2752
2753 /* Trace actually delivered signals. */
2754 trace_signal_deliver(signr, &ksig->info, ka);
2755
2756 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2757 continue;
2758 if (ka->sa.sa_handler != SIG_DFL) {
2759 /* Run the handler. */
2760 ksig->ka = *ka;
2761
2762 if (ka->sa.sa_flags & SA_ONESHOT)
2763 ka->sa.sa_handler = SIG_DFL;
2764
2765 break; /* will return non-zero "signr" value */
2766 }
2767
2768 /*
2769 * Now we are doing the default action for this signal.
2770 */
2771 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2772 continue;
2773
2774 /*
2775 * Global init gets no signals it doesn't want.
2776 * Container-init gets no signals it doesn't want from same
2777 * container.
2778 *
2779 * Note that if global/container-init sees a sig_kernel_only()
2780 * signal here, the signal must have been generated internally
2781 * or must have come from an ancestor namespace. In either
2782 * case, the signal cannot be dropped.
2783 */
2784 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2785 !sig_kernel_only(signr))
2786 continue;
2787
2788 if (sig_kernel_stop(signr)) {
2789 /*
2790 * The default action is to stop all threads in
2791 * the thread group. The job control signals
2792 * do nothing in an orphaned pgrp, but SIGSTOP
2793 * always works. Note that siglock needs to be
2794 * dropped during the call to is_orphaned_pgrp()
2795 * because of lock ordering with tasklist_lock.
2796 * This allows an intervening SIGCONT to be posted.
2797 * We need to check for that and bail out if necessary.
2798 */
2799 if (signr != SIGSTOP) {
2800 spin_unlock_irq(&sighand->siglock);
2801
2802 /* signals can be posted during this window */
2803
2804 if (is_current_pgrp_orphaned())
2805 goto relock;
2806
2807 spin_lock_irq(&sighand->siglock);
2808 }
2809
2810 if (likely(do_signal_stop(ksig->info.si_signo))) {
2811 /* It released the siglock. */
2812 goto relock;
2813 }
2814
2815 /*
2816 * We didn't actually stop, due to a race
2817 * with SIGCONT or something like that.
2818 */
2819 continue;
2820 }
2821
2822 fatal:
2823 spin_unlock_irq(&sighand->siglock);
2824 if (unlikely(cgroup_task_frozen(current)))
2825 cgroup_leave_frozen(true);
2826
2827 /*
2828 * Anything else is fatal, maybe with a core dump.
2829 */
2830 current->flags |= PF_SIGNALED;
2831
2832 if (sig_kernel_coredump(signr)) {
2833 if (print_fatal_signals)
2834 print_fatal_signal(ksig->info.si_signo);
2835 proc_coredump_connector(current);
2836 /*
2837 * If it was able to dump core, this kills all
2838 * other threads in the group and synchronizes with
2839 * their demise. If we lost the race with another
2840 * thread getting here, it set group_exit_code
2841 * first and our do_group_exit call below will use
2842 * that value and ignore the one we pass it.
2843 */
2844 do_coredump(&ksig->info);
2845 }
2846
2847 /*
2848 * PF_IO_WORKER threads will catch and exit on fatal signals
2849 * themselves. They have cleanup that must be performed, so
2850 * we cannot call do_exit() on their behalf.
2851 */
2852 if (current->flags & PF_IO_WORKER)
2853 goto out;
2854
2855 /*
2856 * Death signals, no core dump.
2857 */
2858 do_group_exit(ksig->info.si_signo);
2859 /* NOTREACHED */
2860 }
2861 spin_unlock_irq(&sighand->siglock);
2862 out:
2863 ksig->sig = signr;
2864
2865 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2866 hide_si_addr_tag_bits(ksig);
2867
2868 return ksig->sig > 0;
2869 }
2870
2871 /**
2872 * signal_delivered - called after signal delivery to update blocked signals
2873 * @ksig: kernel signal struct
2874 * @stepping: nonzero if debugger single-step or block-step in use
2875 *
2876 * This function should be called when a signal has successfully been
2877 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2878 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2879 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2880 */
signal_delivered(struct ksignal * ksig,int stepping)2881 static void signal_delivered(struct ksignal *ksig, int stepping)
2882 {
2883 sigset_t blocked;
2884
2885 /* A signal was successfully delivered, and the
2886 saved sigmask was stored on the signal frame,
2887 and will be restored by sigreturn. So we can
2888 simply clear the restore sigmask flag. */
2889 clear_restore_sigmask();
2890
2891 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2892 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2893 sigaddset(&blocked, ksig->sig);
2894 set_current_blocked(&blocked);
2895 if (current->sas_ss_flags & SS_AUTODISARM)
2896 sas_ss_reset(current);
2897 if (stepping)
2898 ptrace_notify(SIGTRAP, 0);
2899 }
2900
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2901 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2902 {
2903 if (failed)
2904 force_sigsegv(ksig->sig);
2905 else
2906 signal_delivered(ksig, stepping);
2907 }
2908
2909 /*
2910 * It could be that complete_signal() picked us to notify about the
2911 * group-wide signal. Other threads should be notified now to take
2912 * the shared signals in @which since we will not.
2913 */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2914 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2915 {
2916 sigset_t retarget;
2917 struct task_struct *t;
2918
2919 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2920 if (sigisemptyset(&retarget))
2921 return;
2922
2923 t = tsk;
2924 while_each_thread(tsk, t) {
2925 if (t->flags & PF_EXITING)
2926 continue;
2927
2928 if (!has_pending_signals(&retarget, &t->blocked))
2929 continue;
2930 /* Remove the signals this thread can handle. */
2931 sigandsets(&retarget, &retarget, &t->blocked);
2932
2933 if (!task_sigpending(t))
2934 signal_wake_up(t, 0);
2935
2936 if (sigisemptyset(&retarget))
2937 break;
2938 }
2939 }
2940
exit_signals(struct task_struct * tsk)2941 void exit_signals(struct task_struct *tsk)
2942 {
2943 int group_stop = 0;
2944 sigset_t unblocked;
2945
2946 /*
2947 * @tsk is about to have PF_EXITING set - lock out users which
2948 * expect stable threadgroup.
2949 */
2950 cgroup_threadgroup_change_begin(tsk);
2951
2952 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2953 tsk->flags |= PF_EXITING;
2954 cgroup_threadgroup_change_end(tsk);
2955 return;
2956 }
2957
2958 spin_lock_irq(&tsk->sighand->siglock);
2959 /*
2960 * From now this task is not visible for group-wide signals,
2961 * see wants_signal(), do_signal_stop().
2962 */
2963 tsk->flags |= PF_EXITING;
2964
2965 cgroup_threadgroup_change_end(tsk);
2966
2967 if (!task_sigpending(tsk))
2968 goto out;
2969
2970 unblocked = tsk->blocked;
2971 signotset(&unblocked);
2972 retarget_shared_pending(tsk, &unblocked);
2973
2974 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2975 task_participate_group_stop(tsk))
2976 group_stop = CLD_STOPPED;
2977 out:
2978 spin_unlock_irq(&tsk->sighand->siglock);
2979
2980 /*
2981 * If group stop has completed, deliver the notification. This
2982 * should always go to the real parent of the group leader.
2983 */
2984 if (unlikely(group_stop)) {
2985 read_lock(&tasklist_lock);
2986 do_notify_parent_cldstop(tsk, false, group_stop);
2987 read_unlock(&tasklist_lock);
2988 }
2989 }
2990
2991 /*
2992 * System call entry points.
2993 */
2994
2995 /**
2996 * sys_restart_syscall - restart a system call
2997 */
SYSCALL_DEFINE0(restart_syscall)2998 SYSCALL_DEFINE0(restart_syscall)
2999 {
3000 struct restart_block *restart = ¤t->restart_block;
3001 return restart->fn(restart);
3002 }
3003
do_no_restart_syscall(struct restart_block * param)3004 long do_no_restart_syscall(struct restart_block *param)
3005 {
3006 return -EINTR;
3007 }
3008
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)3009 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3010 {
3011 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3012 sigset_t newblocked;
3013 /* A set of now blocked but previously unblocked signals. */
3014 sigandnsets(&newblocked, newset, ¤t->blocked);
3015 retarget_shared_pending(tsk, &newblocked);
3016 }
3017 tsk->blocked = *newset;
3018 recalc_sigpending();
3019 }
3020
3021 /**
3022 * set_current_blocked - change current->blocked mask
3023 * @newset: new mask
3024 *
3025 * It is wrong to change ->blocked directly, this helper should be used
3026 * to ensure the process can't miss a shared signal we are going to block.
3027 */
set_current_blocked(sigset_t * newset)3028 void set_current_blocked(sigset_t *newset)
3029 {
3030 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3031 __set_current_blocked(newset);
3032 }
3033
__set_current_blocked(const sigset_t * newset)3034 void __set_current_blocked(const sigset_t *newset)
3035 {
3036 struct task_struct *tsk = current;
3037
3038 /*
3039 * In case the signal mask hasn't changed, there is nothing we need
3040 * to do. The current->blocked shouldn't be modified by other task.
3041 */
3042 if (sigequalsets(&tsk->blocked, newset))
3043 return;
3044
3045 spin_lock_irq(&tsk->sighand->siglock);
3046 __set_task_blocked(tsk, newset);
3047 spin_unlock_irq(&tsk->sighand->siglock);
3048 }
3049
3050 /*
3051 * This is also useful for kernel threads that want to temporarily
3052 * (or permanently) block certain signals.
3053 *
3054 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3055 * interface happily blocks "unblockable" signals like SIGKILL
3056 * and friends.
3057 */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)3058 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3059 {
3060 struct task_struct *tsk = current;
3061 sigset_t newset;
3062
3063 /* Lockless, only current can change ->blocked, never from irq */
3064 if (oldset)
3065 *oldset = tsk->blocked;
3066
3067 switch (how) {
3068 case SIG_BLOCK:
3069 sigorsets(&newset, &tsk->blocked, set);
3070 break;
3071 case SIG_UNBLOCK:
3072 sigandnsets(&newset, &tsk->blocked, set);
3073 break;
3074 case SIG_SETMASK:
3075 newset = *set;
3076 break;
3077 default:
3078 return -EINVAL;
3079 }
3080
3081 __set_current_blocked(&newset);
3082 return 0;
3083 }
3084 EXPORT_SYMBOL(sigprocmask);
3085
3086 /*
3087 * The api helps set app-provided sigmasks.
3088 *
3089 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3090 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3091 *
3092 * Note that it does set_restore_sigmask() in advance, so it must be always
3093 * paired with restore_saved_sigmask_unless() before return from syscall.
3094 */
set_user_sigmask(const sigset_t __user * umask,size_t sigsetsize)3095 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3096 {
3097 sigset_t kmask;
3098
3099 if (!umask)
3100 return 0;
3101 if (sigsetsize != sizeof(sigset_t))
3102 return -EINVAL;
3103 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3104 return -EFAULT;
3105
3106 set_restore_sigmask();
3107 current->saved_sigmask = current->blocked;
3108 set_current_blocked(&kmask);
3109
3110 return 0;
3111 }
3112
3113 #ifdef CONFIG_COMPAT
set_compat_user_sigmask(const compat_sigset_t __user * umask,size_t sigsetsize)3114 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3115 size_t sigsetsize)
3116 {
3117 sigset_t kmask;
3118
3119 if (!umask)
3120 return 0;
3121 if (sigsetsize != sizeof(compat_sigset_t))
3122 return -EINVAL;
3123 if (get_compat_sigset(&kmask, umask))
3124 return -EFAULT;
3125
3126 set_restore_sigmask();
3127 current->saved_sigmask = current->blocked;
3128 set_current_blocked(&kmask);
3129
3130 return 0;
3131 }
3132 #endif
3133
3134 /**
3135 * sys_rt_sigprocmask - change the list of currently blocked signals
3136 * @how: whether to add, remove, or set signals
3137 * @nset: stores pending signals
3138 * @oset: previous value of signal mask if non-null
3139 * @sigsetsize: size of sigset_t type
3140 */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)3141 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3142 sigset_t __user *, oset, size_t, sigsetsize)
3143 {
3144 sigset_t old_set, new_set;
3145 int error;
3146
3147 /* XXX: Don't preclude handling different sized sigset_t's. */
3148 if (sigsetsize != sizeof(sigset_t))
3149 return -EINVAL;
3150
3151 old_set = current->blocked;
3152
3153 if (nset) {
3154 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3155 return -EFAULT;
3156 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3157
3158 error = sigprocmask(how, &new_set, NULL);
3159 if (error)
3160 return error;
3161 }
3162
3163 if (oset) {
3164 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3165 return -EFAULT;
3166 }
3167
3168 return 0;
3169 }
3170
3171 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)3172 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3173 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3174 {
3175 sigset_t old_set = current->blocked;
3176
3177 /* XXX: Don't preclude handling different sized sigset_t's. */
3178 if (sigsetsize != sizeof(sigset_t))
3179 return -EINVAL;
3180
3181 if (nset) {
3182 sigset_t new_set;
3183 int error;
3184 if (get_compat_sigset(&new_set, nset))
3185 return -EFAULT;
3186 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3187
3188 error = sigprocmask(how, &new_set, NULL);
3189 if (error)
3190 return error;
3191 }
3192 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3193 }
3194 #endif
3195
do_sigpending(sigset_t * set)3196 static void do_sigpending(sigset_t *set)
3197 {
3198 spin_lock_irq(¤t->sighand->siglock);
3199 sigorsets(set, ¤t->pending.signal,
3200 ¤t->signal->shared_pending.signal);
3201 spin_unlock_irq(¤t->sighand->siglock);
3202
3203 /* Outside the lock because only this thread touches it. */
3204 sigandsets(set, ¤t->blocked, set);
3205 }
3206
3207 /**
3208 * sys_rt_sigpending - examine a pending signal that has been raised
3209 * while blocked
3210 * @uset: stores pending signals
3211 * @sigsetsize: size of sigset_t type or larger
3212 */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)3213 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3214 {
3215 sigset_t set;
3216
3217 if (sigsetsize > sizeof(*uset))
3218 return -EINVAL;
3219
3220 do_sigpending(&set);
3221
3222 if (copy_to_user(uset, &set, sigsetsize))
3223 return -EFAULT;
3224
3225 return 0;
3226 }
3227
3228 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)3229 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3230 compat_size_t, sigsetsize)
3231 {
3232 sigset_t set;
3233
3234 if (sigsetsize > sizeof(*uset))
3235 return -EINVAL;
3236
3237 do_sigpending(&set);
3238
3239 return put_compat_sigset(uset, &set, sigsetsize);
3240 }
3241 #endif
3242
3243 static const struct {
3244 unsigned char limit, layout;
3245 } sig_sicodes[] = {
3246 [SIGILL] = { NSIGILL, SIL_FAULT },
3247 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3248 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3249 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3250 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3251 #if defined(SIGEMT)
3252 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3253 #endif
3254 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3255 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3256 [SIGSYS] = { NSIGSYS, SIL_SYS },
3257 };
3258
known_siginfo_layout(unsigned sig,int si_code)3259 static bool known_siginfo_layout(unsigned sig, int si_code)
3260 {
3261 if (si_code == SI_KERNEL)
3262 return true;
3263 else if ((si_code > SI_USER)) {
3264 if (sig_specific_sicodes(sig)) {
3265 if (si_code <= sig_sicodes[sig].limit)
3266 return true;
3267 }
3268 else if (si_code <= NSIGPOLL)
3269 return true;
3270 }
3271 else if (si_code >= SI_DETHREAD)
3272 return true;
3273 else if (si_code == SI_ASYNCNL)
3274 return true;
3275 return false;
3276 }
3277
siginfo_layout(unsigned sig,int si_code)3278 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3279 {
3280 enum siginfo_layout layout = SIL_KILL;
3281 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3282 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3283 (si_code <= sig_sicodes[sig].limit)) {
3284 layout = sig_sicodes[sig].layout;
3285 /* Handle the exceptions */
3286 if ((sig == SIGBUS) &&
3287 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3288 layout = SIL_FAULT_MCEERR;
3289 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3290 layout = SIL_FAULT_BNDERR;
3291 #ifdef SEGV_PKUERR
3292 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3293 layout = SIL_FAULT_PKUERR;
3294 #endif
3295 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3296 layout = SIL_FAULT_PERF_EVENT;
3297 else if (IS_ENABLED(CONFIG_SPARC) &&
3298 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3299 layout = SIL_FAULT_TRAPNO;
3300 else if (IS_ENABLED(CONFIG_ALPHA) &&
3301 ((sig == SIGFPE) ||
3302 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3303 layout = SIL_FAULT_TRAPNO;
3304 }
3305 else if (si_code <= NSIGPOLL)
3306 layout = SIL_POLL;
3307 } else {
3308 if (si_code == SI_TIMER)
3309 layout = SIL_TIMER;
3310 else if (si_code == SI_SIGIO)
3311 layout = SIL_POLL;
3312 else if (si_code < 0)
3313 layout = SIL_RT;
3314 }
3315 return layout;
3316 }
3317
si_expansion(const siginfo_t __user * info)3318 static inline char __user *si_expansion(const siginfo_t __user *info)
3319 {
3320 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3321 }
3322
copy_siginfo_to_user(siginfo_t __user * to,const kernel_siginfo_t * from)3323 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3324 {
3325 char __user *expansion = si_expansion(to);
3326 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3327 return -EFAULT;
3328 if (clear_user(expansion, SI_EXPANSION_SIZE))
3329 return -EFAULT;
3330 return 0;
3331 }
3332
post_copy_siginfo_from_user(kernel_siginfo_t * info,const siginfo_t __user * from)3333 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3334 const siginfo_t __user *from)
3335 {
3336 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3337 char __user *expansion = si_expansion(from);
3338 char buf[SI_EXPANSION_SIZE];
3339 int i;
3340 /*
3341 * An unknown si_code might need more than
3342 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3343 * extra bytes are 0. This guarantees copy_siginfo_to_user
3344 * will return this data to userspace exactly.
3345 */
3346 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3347 return -EFAULT;
3348 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3349 if (buf[i] != 0)
3350 return -E2BIG;
3351 }
3352 }
3353 return 0;
3354 }
3355
__copy_siginfo_from_user(int signo,kernel_siginfo_t * to,const siginfo_t __user * from)3356 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3357 const siginfo_t __user *from)
3358 {
3359 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3360 return -EFAULT;
3361 to->si_signo = signo;
3362 return post_copy_siginfo_from_user(to, from);
3363 }
3364
copy_siginfo_from_user(kernel_siginfo_t * to,const siginfo_t __user * from)3365 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3366 {
3367 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3368 return -EFAULT;
3369 return post_copy_siginfo_from_user(to, from);
3370 }
3371
3372 #ifdef CONFIG_COMPAT
3373 /**
3374 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3375 * @to: compat siginfo destination
3376 * @from: kernel siginfo source
3377 *
3378 * Note: This function does not work properly for the SIGCHLD on x32, but
3379 * fortunately it doesn't have to. The only valid callers for this function are
3380 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3381 * The latter does not care because SIGCHLD will never cause a coredump.
3382 */
copy_siginfo_to_external32(struct compat_siginfo * to,const struct kernel_siginfo * from)3383 void copy_siginfo_to_external32(struct compat_siginfo *to,
3384 const struct kernel_siginfo *from)
3385 {
3386 memset(to, 0, sizeof(*to));
3387
3388 to->si_signo = from->si_signo;
3389 to->si_errno = from->si_errno;
3390 to->si_code = from->si_code;
3391 switch(siginfo_layout(from->si_signo, from->si_code)) {
3392 case SIL_KILL:
3393 to->si_pid = from->si_pid;
3394 to->si_uid = from->si_uid;
3395 break;
3396 case SIL_TIMER:
3397 to->si_tid = from->si_tid;
3398 to->si_overrun = from->si_overrun;
3399 to->si_int = from->si_int;
3400 break;
3401 case SIL_POLL:
3402 to->si_band = from->si_band;
3403 to->si_fd = from->si_fd;
3404 break;
3405 case SIL_FAULT:
3406 to->si_addr = ptr_to_compat(from->si_addr);
3407 break;
3408 case SIL_FAULT_TRAPNO:
3409 to->si_addr = ptr_to_compat(from->si_addr);
3410 to->si_trapno = from->si_trapno;
3411 break;
3412 case SIL_FAULT_MCEERR:
3413 to->si_addr = ptr_to_compat(from->si_addr);
3414 to->si_addr_lsb = from->si_addr_lsb;
3415 break;
3416 case SIL_FAULT_BNDERR:
3417 to->si_addr = ptr_to_compat(from->si_addr);
3418 to->si_lower = ptr_to_compat(from->si_lower);
3419 to->si_upper = ptr_to_compat(from->si_upper);
3420 break;
3421 case SIL_FAULT_PKUERR:
3422 to->si_addr = ptr_to_compat(from->si_addr);
3423 to->si_pkey = from->si_pkey;
3424 break;
3425 case SIL_FAULT_PERF_EVENT:
3426 to->si_addr = ptr_to_compat(from->si_addr);
3427 to->si_perf_data = from->si_perf_data;
3428 to->si_perf_type = from->si_perf_type;
3429 to->si_perf_flags = from->si_perf_flags;
3430 break;
3431 case SIL_CHLD:
3432 to->si_pid = from->si_pid;
3433 to->si_uid = from->si_uid;
3434 to->si_status = from->si_status;
3435 to->si_utime = from->si_utime;
3436 to->si_stime = from->si_stime;
3437 break;
3438 case SIL_RT:
3439 to->si_pid = from->si_pid;
3440 to->si_uid = from->si_uid;
3441 to->si_int = from->si_int;
3442 break;
3443 case SIL_SYS:
3444 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3445 to->si_syscall = from->si_syscall;
3446 to->si_arch = from->si_arch;
3447 break;
3448 }
3449 }
3450
__copy_siginfo_to_user32(struct compat_siginfo __user * to,const struct kernel_siginfo * from)3451 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3452 const struct kernel_siginfo *from)
3453 {
3454 struct compat_siginfo new;
3455
3456 copy_siginfo_to_external32(&new, from);
3457 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3458 return -EFAULT;
3459 return 0;
3460 }
3461
post_copy_siginfo_from_user32(kernel_siginfo_t * to,const struct compat_siginfo * from)3462 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3463 const struct compat_siginfo *from)
3464 {
3465 clear_siginfo(to);
3466 to->si_signo = from->si_signo;
3467 to->si_errno = from->si_errno;
3468 to->si_code = from->si_code;
3469 switch(siginfo_layout(from->si_signo, from->si_code)) {
3470 case SIL_KILL:
3471 to->si_pid = from->si_pid;
3472 to->si_uid = from->si_uid;
3473 break;
3474 case SIL_TIMER:
3475 to->si_tid = from->si_tid;
3476 to->si_overrun = from->si_overrun;
3477 to->si_int = from->si_int;
3478 break;
3479 case SIL_POLL:
3480 to->si_band = from->si_band;
3481 to->si_fd = from->si_fd;
3482 break;
3483 case SIL_FAULT:
3484 to->si_addr = compat_ptr(from->si_addr);
3485 break;
3486 case SIL_FAULT_TRAPNO:
3487 to->si_addr = compat_ptr(from->si_addr);
3488 to->si_trapno = from->si_trapno;
3489 break;
3490 case SIL_FAULT_MCEERR:
3491 to->si_addr = compat_ptr(from->si_addr);
3492 to->si_addr_lsb = from->si_addr_lsb;
3493 break;
3494 case SIL_FAULT_BNDERR:
3495 to->si_addr = compat_ptr(from->si_addr);
3496 to->si_lower = compat_ptr(from->si_lower);
3497 to->si_upper = compat_ptr(from->si_upper);
3498 break;
3499 case SIL_FAULT_PKUERR:
3500 to->si_addr = compat_ptr(from->si_addr);
3501 to->si_pkey = from->si_pkey;
3502 break;
3503 case SIL_FAULT_PERF_EVENT:
3504 to->si_addr = compat_ptr(from->si_addr);
3505 to->si_perf_data = from->si_perf_data;
3506 to->si_perf_type = from->si_perf_type;
3507 to->si_perf_flags = from->si_perf_flags;
3508 break;
3509 case SIL_CHLD:
3510 to->si_pid = from->si_pid;
3511 to->si_uid = from->si_uid;
3512 to->si_status = from->si_status;
3513 #ifdef CONFIG_X86_X32_ABI
3514 if (in_x32_syscall()) {
3515 to->si_utime = from->_sifields._sigchld_x32._utime;
3516 to->si_stime = from->_sifields._sigchld_x32._stime;
3517 } else
3518 #endif
3519 {
3520 to->si_utime = from->si_utime;
3521 to->si_stime = from->si_stime;
3522 }
3523 break;
3524 case SIL_RT:
3525 to->si_pid = from->si_pid;
3526 to->si_uid = from->si_uid;
3527 to->si_int = from->si_int;
3528 break;
3529 case SIL_SYS:
3530 to->si_call_addr = compat_ptr(from->si_call_addr);
3531 to->si_syscall = from->si_syscall;
3532 to->si_arch = from->si_arch;
3533 break;
3534 }
3535 return 0;
3536 }
3537
__copy_siginfo_from_user32(int signo,struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3538 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3539 const struct compat_siginfo __user *ufrom)
3540 {
3541 struct compat_siginfo from;
3542
3543 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3544 return -EFAULT;
3545
3546 from.si_signo = signo;
3547 return post_copy_siginfo_from_user32(to, &from);
3548 }
3549
copy_siginfo_from_user32(struct kernel_siginfo * to,const struct compat_siginfo __user * ufrom)3550 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3551 const struct compat_siginfo __user *ufrom)
3552 {
3553 struct compat_siginfo from;
3554
3555 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3556 return -EFAULT;
3557
3558 return post_copy_siginfo_from_user32(to, &from);
3559 }
3560 #endif /* CONFIG_COMPAT */
3561
3562 /**
3563 * do_sigtimedwait - wait for queued signals specified in @which
3564 * @which: queued signals to wait for
3565 * @info: if non-null, the signal's siginfo is returned here
3566 * @ts: upper bound on process time suspension
3567 */
do_sigtimedwait(const sigset_t * which,kernel_siginfo_t * info,const struct timespec64 * ts)3568 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3569 const struct timespec64 *ts)
3570 {
3571 ktime_t *to = NULL, timeout = KTIME_MAX;
3572 struct task_struct *tsk = current;
3573 sigset_t mask = *which;
3574 enum pid_type type;
3575 int sig, ret = 0;
3576
3577 if (ts) {
3578 if (!timespec64_valid(ts))
3579 return -EINVAL;
3580 timeout = timespec64_to_ktime(*ts);
3581 to = &timeout;
3582 }
3583
3584 /*
3585 * Invert the set of allowed signals to get those we want to block.
3586 */
3587 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3588 signotset(&mask);
3589
3590 spin_lock_irq(&tsk->sighand->siglock);
3591 sig = dequeue_signal(tsk, &mask, info, &type);
3592 if (!sig && timeout) {
3593 /*
3594 * None ready, temporarily unblock those we're interested
3595 * while we are sleeping in so that we'll be awakened when
3596 * they arrive. Unblocking is always fine, we can avoid
3597 * set_current_blocked().
3598 */
3599 tsk->real_blocked = tsk->blocked;
3600 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3601 recalc_sigpending();
3602 spin_unlock_irq(&tsk->sighand->siglock);
3603
3604 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3605 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3606 HRTIMER_MODE_REL);
3607 spin_lock_irq(&tsk->sighand->siglock);
3608 __set_task_blocked(tsk, &tsk->real_blocked);
3609 sigemptyset(&tsk->real_blocked);
3610 sig = dequeue_signal(tsk, &mask, info, &type);
3611 }
3612 spin_unlock_irq(&tsk->sighand->siglock);
3613
3614 if (sig)
3615 return sig;
3616 return ret ? -EINTR : -EAGAIN;
3617 }
3618
3619 /**
3620 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3621 * in @uthese
3622 * @uthese: queued signals to wait for
3623 * @uinfo: if non-null, the signal's siginfo is returned here
3624 * @uts: upper bound on process time suspension
3625 * @sigsetsize: size of sigset_t type
3626 */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct __kernel_timespec __user *,uts,size_t,sigsetsize)3627 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3628 siginfo_t __user *, uinfo,
3629 const struct __kernel_timespec __user *, uts,
3630 size_t, sigsetsize)
3631 {
3632 sigset_t these;
3633 struct timespec64 ts;
3634 kernel_siginfo_t info;
3635 int ret;
3636
3637 /* XXX: Don't preclude handling different sized sigset_t's. */
3638 if (sigsetsize != sizeof(sigset_t))
3639 return -EINVAL;
3640
3641 if (copy_from_user(&these, uthese, sizeof(these)))
3642 return -EFAULT;
3643
3644 if (uts) {
3645 if (get_timespec64(&ts, uts))
3646 return -EFAULT;
3647 }
3648
3649 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3650
3651 if (ret > 0 && uinfo) {
3652 if (copy_siginfo_to_user(uinfo, &info))
3653 ret = -EFAULT;
3654 }
3655
3656 return ret;
3657 }
3658
3659 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct old_timespec32 __user *,uts,size_t,sigsetsize)3660 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3661 siginfo_t __user *, uinfo,
3662 const struct old_timespec32 __user *, uts,
3663 size_t, sigsetsize)
3664 {
3665 sigset_t these;
3666 struct timespec64 ts;
3667 kernel_siginfo_t info;
3668 int ret;
3669
3670 if (sigsetsize != sizeof(sigset_t))
3671 return -EINVAL;
3672
3673 if (copy_from_user(&these, uthese, sizeof(these)))
3674 return -EFAULT;
3675
3676 if (uts) {
3677 if (get_old_timespec32(&ts, uts))
3678 return -EFAULT;
3679 }
3680
3681 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3682
3683 if (ret > 0 && uinfo) {
3684 if (copy_siginfo_to_user(uinfo, &info))
3685 ret = -EFAULT;
3686 }
3687
3688 return ret;
3689 }
3690 #endif
3691
3692 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct __kernel_timespec __user *,uts,compat_size_t,sigsetsize)3693 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3694 struct compat_siginfo __user *, uinfo,
3695 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3696 {
3697 sigset_t s;
3698 struct timespec64 t;
3699 kernel_siginfo_t info;
3700 long ret;
3701
3702 if (sigsetsize != sizeof(sigset_t))
3703 return -EINVAL;
3704
3705 if (get_compat_sigset(&s, uthese))
3706 return -EFAULT;
3707
3708 if (uts) {
3709 if (get_timespec64(&t, uts))
3710 return -EFAULT;
3711 }
3712
3713 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3714
3715 if (ret > 0 && uinfo) {
3716 if (copy_siginfo_to_user32(uinfo, &info))
3717 ret = -EFAULT;
3718 }
3719
3720 return ret;
3721 }
3722
3723 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32,compat_sigset_t __user *,uthese,struct compat_siginfo __user *,uinfo,struct old_timespec32 __user *,uts,compat_size_t,sigsetsize)3724 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3725 struct compat_siginfo __user *, uinfo,
3726 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3727 {
3728 sigset_t s;
3729 struct timespec64 t;
3730 kernel_siginfo_t info;
3731 long ret;
3732
3733 if (sigsetsize != sizeof(sigset_t))
3734 return -EINVAL;
3735
3736 if (get_compat_sigset(&s, uthese))
3737 return -EFAULT;
3738
3739 if (uts) {
3740 if (get_old_timespec32(&t, uts))
3741 return -EFAULT;
3742 }
3743
3744 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3745
3746 if (ret > 0 && uinfo) {
3747 if (copy_siginfo_to_user32(uinfo, &info))
3748 ret = -EFAULT;
3749 }
3750
3751 return ret;
3752 }
3753 #endif
3754 #endif
3755
prepare_kill_siginfo(int sig,struct kernel_siginfo * info)3756 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3757 {
3758 clear_siginfo(info);
3759 info->si_signo = sig;
3760 info->si_errno = 0;
3761 info->si_code = SI_USER;
3762 info->si_pid = task_tgid_vnr(current);
3763 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3764 }
3765
3766 /**
3767 * sys_kill - send a signal to a process
3768 * @pid: the PID of the process
3769 * @sig: signal to be sent
3770 */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)3771 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3772 {
3773 struct kernel_siginfo info;
3774
3775 prepare_kill_siginfo(sig, &info);
3776
3777 return kill_something_info(sig, &info, pid);
3778 }
3779
3780 /*
3781 * Verify that the signaler and signalee either are in the same pid namespace
3782 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3783 * namespace.
3784 */
access_pidfd_pidns(struct pid * pid)3785 static bool access_pidfd_pidns(struct pid *pid)
3786 {
3787 struct pid_namespace *active = task_active_pid_ns(current);
3788 struct pid_namespace *p = ns_of_pid(pid);
3789
3790 for (;;) {
3791 if (!p)
3792 return false;
3793 if (p == active)
3794 break;
3795 p = p->parent;
3796 }
3797
3798 return true;
3799 }
3800
copy_siginfo_from_user_any(kernel_siginfo_t * kinfo,siginfo_t __user * info)3801 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3802 siginfo_t __user *info)
3803 {
3804 #ifdef CONFIG_COMPAT
3805 /*
3806 * Avoid hooking up compat syscalls and instead handle necessary
3807 * conversions here. Note, this is a stop-gap measure and should not be
3808 * considered a generic solution.
3809 */
3810 if (in_compat_syscall())
3811 return copy_siginfo_from_user32(
3812 kinfo, (struct compat_siginfo __user *)info);
3813 #endif
3814 return copy_siginfo_from_user(kinfo, info);
3815 }
3816
pidfd_to_pid(const struct file * file)3817 static struct pid *pidfd_to_pid(const struct file *file)
3818 {
3819 struct pid *pid;
3820
3821 pid = pidfd_pid(file);
3822 if (!IS_ERR(pid))
3823 return pid;
3824
3825 return tgid_pidfd_to_pid(file);
3826 }
3827
3828 /**
3829 * sys_pidfd_send_signal - Signal a process through a pidfd
3830 * @pidfd: file descriptor of the process
3831 * @sig: signal to send
3832 * @info: signal info
3833 * @flags: future flags
3834 *
3835 * The syscall currently only signals via PIDTYPE_PID which covers
3836 * kill(<positive-pid>, <signal>. It does not signal threads or process
3837 * groups.
3838 * In order to extend the syscall to threads and process groups the @flags
3839 * argument should be used. In essence, the @flags argument will determine
3840 * what is signaled and not the file descriptor itself. Put in other words,
3841 * grouping is a property of the flags argument not a property of the file
3842 * descriptor.
3843 *
3844 * Return: 0 on success, negative errno on failure
3845 */
SYSCALL_DEFINE4(pidfd_send_signal,int,pidfd,int,sig,siginfo_t __user *,info,unsigned int,flags)3846 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3847 siginfo_t __user *, info, unsigned int, flags)
3848 {
3849 int ret;
3850 struct fd f;
3851 struct pid *pid;
3852 kernel_siginfo_t kinfo;
3853
3854 /* Enforce flags be set to 0 until we add an extension. */
3855 if (flags)
3856 return -EINVAL;
3857
3858 f = fdget(pidfd);
3859 if (!f.file)
3860 return -EBADF;
3861
3862 /* Is this a pidfd? */
3863 pid = pidfd_to_pid(f.file);
3864 if (IS_ERR(pid)) {
3865 ret = PTR_ERR(pid);
3866 goto err;
3867 }
3868
3869 ret = -EINVAL;
3870 if (!access_pidfd_pidns(pid))
3871 goto err;
3872
3873 if (info) {
3874 ret = copy_siginfo_from_user_any(&kinfo, info);
3875 if (unlikely(ret))
3876 goto err;
3877
3878 ret = -EINVAL;
3879 if (unlikely(sig != kinfo.si_signo))
3880 goto err;
3881
3882 /* Only allow sending arbitrary signals to yourself. */
3883 ret = -EPERM;
3884 if ((task_pid(current) != pid) &&
3885 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3886 goto err;
3887 } else {
3888 prepare_kill_siginfo(sig, &kinfo);
3889 }
3890
3891 ret = kill_pid_info(sig, &kinfo, pid);
3892
3893 err:
3894 fdput(f);
3895 return ret;
3896 }
3897
3898 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct kernel_siginfo * info)3899 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3900 {
3901 struct task_struct *p;
3902 int error = -ESRCH;
3903
3904 rcu_read_lock();
3905 p = find_task_by_vpid(pid);
3906 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3907 error = check_kill_permission(sig, info, p);
3908 /*
3909 * The null signal is a permissions and process existence
3910 * probe. No signal is actually delivered.
3911 */
3912 if (!error && sig) {
3913 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3914 /*
3915 * If lock_task_sighand() failed we pretend the task
3916 * dies after receiving the signal. The window is tiny,
3917 * and the signal is private anyway.
3918 */
3919 if (unlikely(error == -ESRCH))
3920 error = 0;
3921 }
3922 }
3923 rcu_read_unlock();
3924
3925 return error;
3926 }
3927
do_tkill(pid_t tgid,pid_t pid,int sig)3928 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3929 {
3930 struct kernel_siginfo info;
3931
3932 clear_siginfo(&info);
3933 info.si_signo = sig;
3934 info.si_errno = 0;
3935 info.si_code = SI_TKILL;
3936 info.si_pid = task_tgid_vnr(current);
3937 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3938
3939 return do_send_specific(tgid, pid, sig, &info);
3940 }
3941
3942 /**
3943 * sys_tgkill - send signal to one specific thread
3944 * @tgid: the thread group ID of the thread
3945 * @pid: the PID of the thread
3946 * @sig: signal to be sent
3947 *
3948 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3949 * exists but it's not belonging to the target process anymore. This
3950 * method solves the problem of threads exiting and PIDs getting reused.
3951 */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)3952 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3953 {
3954 /* This is only valid for single tasks */
3955 if (pid <= 0 || tgid <= 0)
3956 return -EINVAL;
3957
3958 return do_tkill(tgid, pid, sig);
3959 }
3960
3961 /**
3962 * sys_tkill - send signal to one specific task
3963 * @pid: the PID of the task
3964 * @sig: signal to be sent
3965 *
3966 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3967 */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)3968 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3969 {
3970 /* This is only valid for single tasks */
3971 if (pid <= 0)
3972 return -EINVAL;
3973
3974 return do_tkill(0, pid, sig);
3975 }
3976
do_rt_sigqueueinfo(pid_t pid,int sig,kernel_siginfo_t * info)3977 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3978 {
3979 /* Not even root can pretend to send signals from the kernel.
3980 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3981 */
3982 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3983 (task_pid_vnr(current) != pid))
3984 return -EPERM;
3985
3986 /* POSIX.1b doesn't mention process groups. */
3987 return kill_proc_info(sig, info, pid);
3988 }
3989
3990 /**
3991 * sys_rt_sigqueueinfo - send signal information to a signal
3992 * @pid: the PID of the thread
3993 * @sig: signal to be sent
3994 * @uinfo: signal info to be sent
3995 */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3996 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3997 siginfo_t __user *, uinfo)
3998 {
3999 kernel_siginfo_t info;
4000 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4001 if (unlikely(ret))
4002 return ret;
4003 return do_rt_sigqueueinfo(pid, sig, &info);
4004 }
4005
4006 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4007 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4008 compat_pid_t, pid,
4009 int, sig,
4010 struct compat_siginfo __user *, uinfo)
4011 {
4012 kernel_siginfo_t info;
4013 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4014 if (unlikely(ret))
4015 return ret;
4016 return do_rt_sigqueueinfo(pid, sig, &info);
4017 }
4018 #endif
4019
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,kernel_siginfo_t * info)4020 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4021 {
4022 /* This is only valid for single tasks */
4023 if (pid <= 0 || tgid <= 0)
4024 return -EINVAL;
4025
4026 /* Not even root can pretend to send signals from the kernel.
4027 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4028 */
4029 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4030 (task_pid_vnr(current) != pid))
4031 return -EPERM;
4032
4033 return do_send_specific(tgid, pid, sig, info);
4034 }
4035
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)4036 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4037 siginfo_t __user *, uinfo)
4038 {
4039 kernel_siginfo_t info;
4040 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4041 if (unlikely(ret))
4042 return ret;
4043 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4044 }
4045
4046 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)4047 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4048 compat_pid_t, tgid,
4049 compat_pid_t, pid,
4050 int, sig,
4051 struct compat_siginfo __user *, uinfo)
4052 {
4053 kernel_siginfo_t info;
4054 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4055 if (unlikely(ret))
4056 return ret;
4057 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4058 }
4059 #endif
4060
4061 /*
4062 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4063 */
kernel_sigaction(int sig,__sighandler_t action)4064 void kernel_sigaction(int sig, __sighandler_t action)
4065 {
4066 spin_lock_irq(¤t->sighand->siglock);
4067 current->sighand->action[sig - 1].sa.sa_handler = action;
4068 if (action == SIG_IGN) {
4069 sigset_t mask;
4070
4071 sigemptyset(&mask);
4072 sigaddset(&mask, sig);
4073
4074 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4075 flush_sigqueue_mask(&mask, ¤t->pending);
4076 recalc_sigpending();
4077 }
4078 spin_unlock_irq(¤t->sighand->siglock);
4079 }
4080 EXPORT_SYMBOL(kernel_sigaction);
4081
sigaction_compat_abi(struct k_sigaction * act,struct k_sigaction * oact)4082 void __weak sigaction_compat_abi(struct k_sigaction *act,
4083 struct k_sigaction *oact)
4084 {
4085 }
4086
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)4087 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4088 {
4089 struct task_struct *p = current, *t;
4090 struct k_sigaction *k;
4091 sigset_t mask;
4092
4093 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4094 return -EINVAL;
4095
4096 k = &p->sighand->action[sig-1];
4097
4098 spin_lock_irq(&p->sighand->siglock);
4099 if (k->sa.sa_flags & SA_IMMUTABLE) {
4100 spin_unlock_irq(&p->sighand->siglock);
4101 return -EINVAL;
4102 }
4103 if (oact)
4104 *oact = *k;
4105
4106 /*
4107 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4108 * e.g. by having an architecture use the bit in their uapi.
4109 */
4110 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4111
4112 /*
4113 * Clear unknown flag bits in order to allow userspace to detect missing
4114 * support for flag bits and to allow the kernel to use non-uapi bits
4115 * internally.
4116 */
4117 if (act)
4118 act->sa.sa_flags &= UAPI_SA_FLAGS;
4119 if (oact)
4120 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4121
4122 sigaction_compat_abi(act, oact);
4123
4124 if (act) {
4125 sigdelsetmask(&act->sa.sa_mask,
4126 sigmask(SIGKILL) | sigmask(SIGSTOP));
4127 *k = *act;
4128 /*
4129 * POSIX 3.3.1.3:
4130 * "Setting a signal action to SIG_IGN for a signal that is
4131 * pending shall cause the pending signal to be discarded,
4132 * whether or not it is blocked."
4133 *
4134 * "Setting a signal action to SIG_DFL for a signal that is
4135 * pending and whose default action is to ignore the signal
4136 * (for example, SIGCHLD), shall cause the pending signal to
4137 * be discarded, whether or not it is blocked"
4138 */
4139 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4140 sigemptyset(&mask);
4141 sigaddset(&mask, sig);
4142 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4143 for_each_thread(p, t)
4144 flush_sigqueue_mask(&mask, &t->pending);
4145 }
4146 }
4147
4148 spin_unlock_irq(&p->sighand->siglock);
4149 return 0;
4150 }
4151
4152 #ifdef CONFIG_DYNAMIC_SIGFRAME
sigaltstack_lock(void)4153 static inline void sigaltstack_lock(void)
4154 __acquires(¤t->sighand->siglock)
4155 {
4156 spin_lock_irq(¤t->sighand->siglock);
4157 }
4158
sigaltstack_unlock(void)4159 static inline void sigaltstack_unlock(void)
4160 __releases(¤t->sighand->siglock)
4161 {
4162 spin_unlock_irq(¤t->sighand->siglock);
4163 }
4164 #else
sigaltstack_lock(void)4165 static inline void sigaltstack_lock(void) { }
sigaltstack_unlock(void)4166 static inline void sigaltstack_unlock(void) { }
4167 #endif
4168
4169 static int
do_sigaltstack(const stack_t * ss,stack_t * oss,unsigned long sp,size_t min_ss_size)4170 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4171 size_t min_ss_size)
4172 {
4173 struct task_struct *t = current;
4174 int ret = 0;
4175
4176 if (oss) {
4177 memset(oss, 0, sizeof(stack_t));
4178 oss->ss_sp = (void __user *) t->sas_ss_sp;
4179 oss->ss_size = t->sas_ss_size;
4180 oss->ss_flags = sas_ss_flags(sp) |
4181 (current->sas_ss_flags & SS_FLAG_BITS);
4182 }
4183
4184 if (ss) {
4185 void __user *ss_sp = ss->ss_sp;
4186 size_t ss_size = ss->ss_size;
4187 unsigned ss_flags = ss->ss_flags;
4188 int ss_mode;
4189
4190 if (unlikely(on_sig_stack(sp)))
4191 return -EPERM;
4192
4193 ss_mode = ss_flags & ~SS_FLAG_BITS;
4194 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4195 ss_mode != 0))
4196 return -EINVAL;
4197
4198 /*
4199 * Return before taking any locks if no actual
4200 * sigaltstack changes were requested.
4201 */
4202 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4203 t->sas_ss_size == ss_size &&
4204 t->sas_ss_flags == ss_flags)
4205 return 0;
4206
4207 sigaltstack_lock();
4208 if (ss_mode == SS_DISABLE) {
4209 ss_size = 0;
4210 ss_sp = NULL;
4211 } else {
4212 if (unlikely(ss_size < min_ss_size))
4213 ret = -ENOMEM;
4214 if (!sigaltstack_size_valid(ss_size))
4215 ret = -ENOMEM;
4216 }
4217 if (!ret) {
4218 t->sas_ss_sp = (unsigned long) ss_sp;
4219 t->sas_ss_size = ss_size;
4220 t->sas_ss_flags = ss_flags;
4221 }
4222 sigaltstack_unlock();
4223 }
4224 return ret;
4225 }
4226
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)4227 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4228 {
4229 stack_t new, old;
4230 int err;
4231 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4232 return -EFAULT;
4233 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4234 current_user_stack_pointer(),
4235 MINSIGSTKSZ);
4236 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4237 err = -EFAULT;
4238 return err;
4239 }
4240
restore_altstack(const stack_t __user * uss)4241 int restore_altstack(const stack_t __user *uss)
4242 {
4243 stack_t new;
4244 if (copy_from_user(&new, uss, sizeof(stack_t)))
4245 return -EFAULT;
4246 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4247 MINSIGSTKSZ);
4248 /* squash all but EFAULT for now */
4249 return 0;
4250 }
4251
__save_altstack(stack_t __user * uss,unsigned long sp)4252 int __save_altstack(stack_t __user *uss, unsigned long sp)
4253 {
4254 struct task_struct *t = current;
4255 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4256 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4257 __put_user(t->sas_ss_size, &uss->ss_size);
4258 return err;
4259 }
4260
4261 #ifdef CONFIG_COMPAT
do_compat_sigaltstack(const compat_stack_t __user * uss_ptr,compat_stack_t __user * uoss_ptr)4262 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4263 compat_stack_t __user *uoss_ptr)
4264 {
4265 stack_t uss, uoss;
4266 int ret;
4267
4268 if (uss_ptr) {
4269 compat_stack_t uss32;
4270 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4271 return -EFAULT;
4272 uss.ss_sp = compat_ptr(uss32.ss_sp);
4273 uss.ss_flags = uss32.ss_flags;
4274 uss.ss_size = uss32.ss_size;
4275 }
4276 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4277 compat_user_stack_pointer(),
4278 COMPAT_MINSIGSTKSZ);
4279 if (ret >= 0 && uoss_ptr) {
4280 compat_stack_t old;
4281 memset(&old, 0, sizeof(old));
4282 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4283 old.ss_flags = uoss.ss_flags;
4284 old.ss_size = uoss.ss_size;
4285 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4286 ret = -EFAULT;
4287 }
4288 return ret;
4289 }
4290
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)4291 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4292 const compat_stack_t __user *, uss_ptr,
4293 compat_stack_t __user *, uoss_ptr)
4294 {
4295 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4296 }
4297
compat_restore_altstack(const compat_stack_t __user * uss)4298 int compat_restore_altstack(const compat_stack_t __user *uss)
4299 {
4300 int err = do_compat_sigaltstack(uss, NULL);
4301 /* squash all but -EFAULT for now */
4302 return err == -EFAULT ? err : 0;
4303 }
4304
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)4305 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4306 {
4307 int err;
4308 struct task_struct *t = current;
4309 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4310 &uss->ss_sp) |
4311 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4312 __put_user(t->sas_ss_size, &uss->ss_size);
4313 return err;
4314 }
4315 #endif
4316
4317 #ifdef __ARCH_WANT_SYS_SIGPENDING
4318
4319 /**
4320 * sys_sigpending - examine pending signals
4321 * @uset: where mask of pending signal is returned
4322 */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,uset)4323 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4324 {
4325 sigset_t set;
4326
4327 if (sizeof(old_sigset_t) > sizeof(*uset))
4328 return -EINVAL;
4329
4330 do_sigpending(&set);
4331
4332 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4333 return -EFAULT;
4334
4335 return 0;
4336 }
4337
4338 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending,compat_old_sigset_t __user *,set32)4339 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4340 {
4341 sigset_t set;
4342
4343 do_sigpending(&set);
4344
4345 return put_user(set.sig[0], set32);
4346 }
4347 #endif
4348
4349 #endif
4350
4351 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4352 /**
4353 * sys_sigprocmask - examine and change blocked signals
4354 * @how: whether to add, remove, or set signals
4355 * @nset: signals to add or remove (if non-null)
4356 * @oset: previous value of signal mask if non-null
4357 *
4358 * Some platforms have their own version with special arguments;
4359 * others support only sys_rt_sigprocmask.
4360 */
4361
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)4362 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4363 old_sigset_t __user *, oset)
4364 {
4365 old_sigset_t old_set, new_set;
4366 sigset_t new_blocked;
4367
4368 old_set = current->blocked.sig[0];
4369
4370 if (nset) {
4371 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4372 return -EFAULT;
4373
4374 new_blocked = current->blocked;
4375
4376 switch (how) {
4377 case SIG_BLOCK:
4378 sigaddsetmask(&new_blocked, new_set);
4379 break;
4380 case SIG_UNBLOCK:
4381 sigdelsetmask(&new_blocked, new_set);
4382 break;
4383 case SIG_SETMASK:
4384 new_blocked.sig[0] = new_set;
4385 break;
4386 default:
4387 return -EINVAL;
4388 }
4389
4390 set_current_blocked(&new_blocked);
4391 }
4392
4393 if (oset) {
4394 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4395 return -EFAULT;
4396 }
4397
4398 return 0;
4399 }
4400 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4401
4402 #ifndef CONFIG_ODD_RT_SIGACTION
4403 /**
4404 * sys_rt_sigaction - alter an action taken by a process
4405 * @sig: signal to be sent
4406 * @act: new sigaction
4407 * @oact: used to save the previous sigaction
4408 * @sigsetsize: size of sigset_t type
4409 */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)4410 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4411 const struct sigaction __user *, act,
4412 struct sigaction __user *, oact,
4413 size_t, sigsetsize)
4414 {
4415 struct k_sigaction new_sa, old_sa;
4416 int ret;
4417
4418 /* XXX: Don't preclude handling different sized sigset_t's. */
4419 if (sigsetsize != sizeof(sigset_t))
4420 return -EINVAL;
4421
4422 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4423 return -EFAULT;
4424
4425 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4426 if (ret)
4427 return ret;
4428
4429 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4430 return -EFAULT;
4431
4432 return 0;
4433 }
4434 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)4435 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4436 const struct compat_sigaction __user *, act,
4437 struct compat_sigaction __user *, oact,
4438 compat_size_t, sigsetsize)
4439 {
4440 struct k_sigaction new_ka, old_ka;
4441 #ifdef __ARCH_HAS_SA_RESTORER
4442 compat_uptr_t restorer;
4443 #endif
4444 int ret;
4445
4446 /* XXX: Don't preclude handling different sized sigset_t's. */
4447 if (sigsetsize != sizeof(compat_sigset_t))
4448 return -EINVAL;
4449
4450 if (act) {
4451 compat_uptr_t handler;
4452 ret = get_user(handler, &act->sa_handler);
4453 new_ka.sa.sa_handler = compat_ptr(handler);
4454 #ifdef __ARCH_HAS_SA_RESTORER
4455 ret |= get_user(restorer, &act->sa_restorer);
4456 new_ka.sa.sa_restorer = compat_ptr(restorer);
4457 #endif
4458 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4459 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4460 if (ret)
4461 return -EFAULT;
4462 }
4463
4464 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4465 if (!ret && oact) {
4466 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4467 &oact->sa_handler);
4468 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4469 sizeof(oact->sa_mask));
4470 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4471 #ifdef __ARCH_HAS_SA_RESTORER
4472 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4473 &oact->sa_restorer);
4474 #endif
4475 }
4476 return ret;
4477 }
4478 #endif
4479 #endif /* !CONFIG_ODD_RT_SIGACTION */
4480
4481 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)4482 SYSCALL_DEFINE3(sigaction, int, sig,
4483 const struct old_sigaction __user *, act,
4484 struct old_sigaction __user *, oact)
4485 {
4486 struct k_sigaction new_ka, old_ka;
4487 int ret;
4488
4489 if (act) {
4490 old_sigset_t mask;
4491 if (!access_ok(act, sizeof(*act)) ||
4492 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4493 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4494 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4495 __get_user(mask, &act->sa_mask))
4496 return -EFAULT;
4497 #ifdef __ARCH_HAS_KA_RESTORER
4498 new_ka.ka_restorer = NULL;
4499 #endif
4500 siginitset(&new_ka.sa.sa_mask, mask);
4501 }
4502
4503 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4504
4505 if (!ret && oact) {
4506 if (!access_ok(oact, sizeof(*oact)) ||
4507 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4508 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4509 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4510 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4511 return -EFAULT;
4512 }
4513
4514 return ret;
4515 }
4516 #endif
4517 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)4518 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4519 const struct compat_old_sigaction __user *, act,
4520 struct compat_old_sigaction __user *, oact)
4521 {
4522 struct k_sigaction new_ka, old_ka;
4523 int ret;
4524 compat_old_sigset_t mask;
4525 compat_uptr_t handler, restorer;
4526
4527 if (act) {
4528 if (!access_ok(act, sizeof(*act)) ||
4529 __get_user(handler, &act->sa_handler) ||
4530 __get_user(restorer, &act->sa_restorer) ||
4531 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4532 __get_user(mask, &act->sa_mask))
4533 return -EFAULT;
4534
4535 #ifdef __ARCH_HAS_KA_RESTORER
4536 new_ka.ka_restorer = NULL;
4537 #endif
4538 new_ka.sa.sa_handler = compat_ptr(handler);
4539 new_ka.sa.sa_restorer = compat_ptr(restorer);
4540 siginitset(&new_ka.sa.sa_mask, mask);
4541 }
4542
4543 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4544
4545 if (!ret && oact) {
4546 if (!access_ok(oact, sizeof(*oact)) ||
4547 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4548 &oact->sa_handler) ||
4549 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4550 &oact->sa_restorer) ||
4551 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4552 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4553 return -EFAULT;
4554 }
4555 return ret;
4556 }
4557 #endif
4558
4559 #ifdef CONFIG_SGETMASK_SYSCALL
4560
4561 /*
4562 * For backwards compatibility. Functionality superseded by sigprocmask.
4563 */
SYSCALL_DEFINE0(sgetmask)4564 SYSCALL_DEFINE0(sgetmask)
4565 {
4566 /* SMP safe */
4567 return current->blocked.sig[0];
4568 }
4569
SYSCALL_DEFINE1(ssetmask,int,newmask)4570 SYSCALL_DEFINE1(ssetmask, int, newmask)
4571 {
4572 int old = current->blocked.sig[0];
4573 sigset_t newset;
4574
4575 siginitset(&newset, newmask);
4576 set_current_blocked(&newset);
4577
4578 return old;
4579 }
4580 #endif /* CONFIG_SGETMASK_SYSCALL */
4581
4582 #ifdef __ARCH_WANT_SYS_SIGNAL
4583 /*
4584 * For backwards compatibility. Functionality superseded by sigaction.
4585 */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)4586 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4587 {
4588 struct k_sigaction new_sa, old_sa;
4589 int ret;
4590
4591 new_sa.sa.sa_handler = handler;
4592 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4593 sigemptyset(&new_sa.sa.sa_mask);
4594
4595 ret = do_sigaction(sig, &new_sa, &old_sa);
4596
4597 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4598 }
4599 #endif /* __ARCH_WANT_SYS_SIGNAL */
4600
4601 #ifdef __ARCH_WANT_SYS_PAUSE
4602
SYSCALL_DEFINE0(pause)4603 SYSCALL_DEFINE0(pause)
4604 {
4605 while (!signal_pending(current)) {
4606 __set_current_state(TASK_INTERRUPTIBLE);
4607 schedule();
4608 }
4609 return -ERESTARTNOHAND;
4610 }
4611
4612 #endif
4613
sigsuspend(sigset_t * set)4614 static int sigsuspend(sigset_t *set)
4615 {
4616 current->saved_sigmask = current->blocked;
4617 set_current_blocked(set);
4618
4619 while (!signal_pending(current)) {
4620 __set_current_state(TASK_INTERRUPTIBLE);
4621 schedule();
4622 }
4623 set_restore_sigmask();
4624 return -ERESTARTNOHAND;
4625 }
4626
4627 /**
4628 * sys_rt_sigsuspend - replace the signal mask for a value with the
4629 * @unewset value until a signal is received
4630 * @unewset: new signal mask value
4631 * @sigsetsize: size of sigset_t type
4632 */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)4633 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4634 {
4635 sigset_t newset;
4636
4637 /* XXX: Don't preclude handling different sized sigset_t's. */
4638 if (sigsetsize != sizeof(sigset_t))
4639 return -EINVAL;
4640
4641 if (copy_from_user(&newset, unewset, sizeof(newset)))
4642 return -EFAULT;
4643 return sigsuspend(&newset);
4644 }
4645
4646 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)4647 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4648 {
4649 sigset_t newset;
4650
4651 /* XXX: Don't preclude handling different sized sigset_t's. */
4652 if (sigsetsize != sizeof(sigset_t))
4653 return -EINVAL;
4654
4655 if (get_compat_sigset(&newset, unewset))
4656 return -EFAULT;
4657 return sigsuspend(&newset);
4658 }
4659 #endif
4660
4661 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)4662 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4663 {
4664 sigset_t blocked;
4665 siginitset(&blocked, mask);
4666 return sigsuspend(&blocked);
4667 }
4668 #endif
4669 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)4670 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4671 {
4672 sigset_t blocked;
4673 siginitset(&blocked, mask);
4674 return sigsuspend(&blocked);
4675 }
4676 #endif
4677
arch_vma_name(struct vm_area_struct * vma)4678 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4679 {
4680 return NULL;
4681 }
4682
siginfo_buildtime_checks(void)4683 static inline void siginfo_buildtime_checks(void)
4684 {
4685 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4686
4687 /* Verify the offsets in the two siginfos match */
4688 #define CHECK_OFFSET(field) \
4689 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4690
4691 /* kill */
4692 CHECK_OFFSET(si_pid);
4693 CHECK_OFFSET(si_uid);
4694
4695 /* timer */
4696 CHECK_OFFSET(si_tid);
4697 CHECK_OFFSET(si_overrun);
4698 CHECK_OFFSET(si_value);
4699
4700 /* rt */
4701 CHECK_OFFSET(si_pid);
4702 CHECK_OFFSET(si_uid);
4703 CHECK_OFFSET(si_value);
4704
4705 /* sigchld */
4706 CHECK_OFFSET(si_pid);
4707 CHECK_OFFSET(si_uid);
4708 CHECK_OFFSET(si_status);
4709 CHECK_OFFSET(si_utime);
4710 CHECK_OFFSET(si_stime);
4711
4712 /* sigfault */
4713 CHECK_OFFSET(si_addr);
4714 CHECK_OFFSET(si_trapno);
4715 CHECK_OFFSET(si_addr_lsb);
4716 CHECK_OFFSET(si_lower);
4717 CHECK_OFFSET(si_upper);
4718 CHECK_OFFSET(si_pkey);
4719 CHECK_OFFSET(si_perf_data);
4720 CHECK_OFFSET(si_perf_type);
4721 CHECK_OFFSET(si_perf_flags);
4722
4723 /* sigpoll */
4724 CHECK_OFFSET(si_band);
4725 CHECK_OFFSET(si_fd);
4726
4727 /* sigsys */
4728 CHECK_OFFSET(si_call_addr);
4729 CHECK_OFFSET(si_syscall);
4730 CHECK_OFFSET(si_arch);
4731 #undef CHECK_OFFSET
4732
4733 /* usb asyncio */
4734 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4735 offsetof(struct siginfo, si_addr));
4736 if (sizeof(int) == sizeof(void __user *)) {
4737 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4738 sizeof(void __user *));
4739 } else {
4740 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4741 sizeof_field(struct siginfo, si_uid)) !=
4742 sizeof(void __user *));
4743 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4744 offsetof(struct siginfo, si_uid));
4745 }
4746 #ifdef CONFIG_COMPAT
4747 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4748 offsetof(struct compat_siginfo, si_addr));
4749 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4750 sizeof(compat_uptr_t));
4751 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4752 sizeof_field(struct siginfo, si_pid));
4753 #endif
4754 }
4755
signals_init(void)4756 void __init signals_init(void)
4757 {
4758 siginfo_buildtime_checks();
4759
4760 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4761 }
4762
4763 #ifdef CONFIG_KGDB_KDB
4764 #include <linux/kdb.h>
4765 /*
4766 * kdb_send_sig - Allows kdb to send signals without exposing
4767 * signal internals. This function checks if the required locks are
4768 * available before calling the main signal code, to avoid kdb
4769 * deadlocks.
4770 */
kdb_send_sig(struct task_struct * t,int sig)4771 void kdb_send_sig(struct task_struct *t, int sig)
4772 {
4773 static struct task_struct *kdb_prev_t;
4774 int new_t, ret;
4775 if (!spin_trylock(&t->sighand->siglock)) {
4776 kdb_printf("Can't do kill command now.\n"
4777 "The sigmask lock is held somewhere else in "
4778 "kernel, try again later\n");
4779 return;
4780 }
4781 new_t = kdb_prev_t != t;
4782 kdb_prev_t = t;
4783 if (!task_is_running(t) && new_t) {
4784 spin_unlock(&t->sighand->siglock);
4785 kdb_printf("Process is not RUNNING, sending a signal from "
4786 "kdb risks deadlock\n"
4787 "on the run queue locks. "
4788 "The signal has _not_ been sent.\n"
4789 "Reissue the kill command if you want to risk "
4790 "the deadlock.\n");
4791 return;
4792 }
4793 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4794 spin_unlock(&t->sighand->siglock);
4795 if (ret)
4796 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4797 sig, t->pid);
4798 else
4799 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4800 }
4801 #endif /* CONFIG_KGDB_KDB */
4802