1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/srcu.h>
26 #include <linux/uuid.h>
27 #include <linux/xarray.h>
28 
29 struct module;
30 struct request_queue;
31 struct elevator_queue;
32 struct blk_trace;
33 struct request;
34 struct sg_io_hdr;
35 struct blkcg_gq;
36 struct blk_flush_queue;
37 struct kiocb;
38 struct pr_ops;
39 struct rq_qos;
40 struct blk_queue_stats;
41 struct blk_stat_callback;
42 struct blk_crypto_profile;
43 
44 extern const struct device_type disk_type;
45 extern struct device_type part_type;
46 extern struct class block_class;
47 
48 /* Must be consistent with blk_mq_poll_stats_bkt() */
49 #define BLK_MQ_POLL_STATS_BKTS 16
50 
51 /* Doing classic polling */
52 #define BLK_MQ_POLL_CLASSIC -1
53 
54 /*
55  * Maximum number of blkcg policies allowed to be registered concurrently.
56  * Defined here to simplify include dependency.
57  */
58 #define BLKCG_MAX_POLS		6
59 
60 #define DISK_MAX_PARTS			256
61 #define DISK_NAME_LEN			32
62 
63 #define PARTITION_META_INFO_VOLNAMELTH	64
64 /*
65  * Enough for the string representation of any kind of UUID plus NULL.
66  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
67  */
68 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
69 
70 struct partition_meta_info {
71 	char uuid[PARTITION_META_INFO_UUIDLTH];
72 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
73 };
74 
75 /**
76  * DOC: genhd capability flags
77  *
78  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
79  * removable media.  When set, the device remains present even when media is not
80  * inserted.  Shall not be set for devices which are removed entirely when the
81  * media is removed.
82  *
83  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
84  * doesn't appear in sysfs, and can't be opened from userspace or using
85  * blkdev_get*. Used for the underlying components of multipath devices.
86  *
87  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
88  * scan for partitions from add_disk, and users can't add partitions manually.
89  *
90  */
91 enum {
92 	GENHD_FL_REMOVABLE			= 1 << 0,
93 	GENHD_FL_HIDDEN				= 1 << 1,
94 	GENHD_FL_NO_PART			= 1 << 2,
95 };
96 
97 enum {
98 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
99 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
100 };
101 
102 enum {
103 	/* Poll even if events_poll_msecs is unset */
104 	DISK_EVENT_FLAG_POLL			= 1 << 0,
105 	/* Forward events to udev */
106 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
107 	/* Block event polling when open for exclusive write */
108 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
109 };
110 
111 struct disk_events;
112 struct badblocks;
113 
114 struct blk_integrity {
115 	const struct blk_integrity_profile	*profile;
116 	unsigned char				flags;
117 	unsigned char				tuple_size;
118 	unsigned char				interval_exp;
119 	unsigned char				tag_size;
120 };
121 
122 struct gendisk {
123 	/*
124 	 * major/first_minor/minors should not be set by any new driver, the
125 	 * block core will take care of allocating them automatically.
126 	 */
127 	int major;
128 	int first_minor;
129 	int minors;
130 
131 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
132 
133 	unsigned short events;		/* supported events */
134 	unsigned short event_flags;	/* flags related to event processing */
135 
136 	struct xarray part_tbl;
137 	struct block_device *part0;
138 
139 	const struct block_device_operations *fops;
140 	struct request_queue *queue;
141 	void *private_data;
142 
143 	struct bio_set bio_split;
144 
145 	int flags;
146 	unsigned long state;
147 #define GD_NEED_PART_SCAN		0
148 #define GD_READ_ONLY			1
149 #define GD_DEAD				2
150 #define GD_NATIVE_CAPACITY		3
151 #define GD_ADDED			4
152 #define GD_SUPPRESS_PART_SCAN		5
153 #define GD_OWNS_QUEUE			6
154 
155 	struct mutex open_mutex;	/* open/close mutex */
156 	unsigned open_partitions;	/* number of open partitions */
157 
158 	struct backing_dev_info	*bdi;
159 	struct kobject *slave_dir;
160 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
161 	struct list_head slave_bdevs;
162 #endif
163 	struct timer_rand_state *random;
164 	atomic_t sync_io;		/* RAID */
165 	struct disk_events *ev;
166 #ifdef  CONFIG_BLK_DEV_INTEGRITY
167 	struct kobject integrity_kobj;
168 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
169 
170 #ifdef CONFIG_BLK_DEV_ZONED
171 	/*
172 	 * Zoned block device information for request dispatch control.
173 	 * nr_zones is the total number of zones of the device. This is always
174 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
175 	 * bits which indicates if a zone is conventional (bit set) or
176 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
177 	 * bits which indicates if a zone is write locked, that is, if a write
178 	 * request targeting the zone was dispatched.
179 	 *
180 	 * Reads of this information must be protected with blk_queue_enter() /
181 	 * blk_queue_exit(). Modifying this information is only allowed while
182 	 * no requests are being processed. See also blk_mq_freeze_queue() and
183 	 * blk_mq_unfreeze_queue().
184 	 */
185 	unsigned int		nr_zones;
186 	unsigned int		max_open_zones;
187 	unsigned int		max_active_zones;
188 	unsigned long		*conv_zones_bitmap;
189 	unsigned long		*seq_zones_wlock;
190 #endif /* CONFIG_BLK_DEV_ZONED */
191 
192 #if IS_ENABLED(CONFIG_CDROM)
193 	struct cdrom_device_info *cdi;
194 #endif
195 	int node_id;
196 	struct badblocks *bb;
197 	struct lockdep_map lockdep_map;
198 	u64 diskseq;
199 
200 	/*
201 	 * Independent sector access ranges. This is always NULL for
202 	 * devices that do not have multiple independent access ranges.
203 	 */
204 	struct blk_independent_access_ranges *ia_ranges;
205 };
206 
disk_live(struct gendisk * disk)207 static inline bool disk_live(struct gendisk *disk)
208 {
209 	return !inode_unhashed(disk->part0->bd_inode);
210 }
211 
212 /**
213  * disk_openers - returns how many openers are there for a disk
214  * @disk: disk to check
215  *
216  * This returns the number of openers for a disk.  Note that this value is only
217  * stable if disk->open_mutex is held.
218  *
219  * Note: Due to a quirk in the block layer open code, each open partition is
220  * only counted once even if there are multiple openers.
221  */
disk_openers(struct gendisk * disk)222 static inline unsigned int disk_openers(struct gendisk *disk)
223 {
224 	return atomic_read(&disk->part0->bd_openers);
225 }
226 
227 /*
228  * The gendisk is refcounted by the part0 block_device, and the bd_device
229  * therein is also used for device model presentation in sysfs.
230  */
231 #define dev_to_disk(device) \
232 	(dev_to_bdev(device)->bd_disk)
233 #define disk_to_dev(disk) \
234 	(&((disk)->part0->bd_device))
235 
236 #if IS_REACHABLE(CONFIG_CDROM)
237 #define disk_to_cdi(disk)	((disk)->cdi)
238 #else
239 #define disk_to_cdi(disk)	NULL
240 #endif
241 
disk_devt(struct gendisk * disk)242 static inline dev_t disk_devt(struct gendisk *disk)
243 {
244 	return MKDEV(disk->major, disk->first_minor);
245 }
246 
blk_validate_block_size(unsigned long bsize)247 static inline int blk_validate_block_size(unsigned long bsize)
248 {
249 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
250 		return -EINVAL;
251 
252 	return 0;
253 }
254 
blk_op_is_passthrough(blk_opf_t op)255 static inline bool blk_op_is_passthrough(blk_opf_t op)
256 {
257 	op &= REQ_OP_MASK;
258 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
259 }
260 
261 /*
262  * Zoned block device models (zoned limit).
263  *
264  * Note: This needs to be ordered from the least to the most severe
265  * restrictions for the inheritance in blk_stack_limits() to work.
266  */
267 enum blk_zoned_model {
268 	BLK_ZONED_NONE = 0,	/* Regular block device */
269 	BLK_ZONED_HA,		/* Host-aware zoned block device */
270 	BLK_ZONED_HM,		/* Host-managed zoned block device */
271 };
272 
273 /*
274  * BLK_BOUNCE_NONE:	never bounce (default)
275  * BLK_BOUNCE_HIGH:	bounce all highmem pages
276  */
277 enum blk_bounce {
278 	BLK_BOUNCE_NONE,
279 	BLK_BOUNCE_HIGH,
280 };
281 
282 struct queue_limits {
283 	enum blk_bounce		bounce;
284 	unsigned long		seg_boundary_mask;
285 	unsigned long		virt_boundary_mask;
286 
287 	unsigned int		max_hw_sectors;
288 	unsigned int		max_dev_sectors;
289 	unsigned int		chunk_sectors;
290 	unsigned int		max_sectors;
291 	unsigned int		max_segment_size;
292 	unsigned int		physical_block_size;
293 	unsigned int		logical_block_size;
294 	unsigned int		alignment_offset;
295 	unsigned int		io_min;
296 	unsigned int		io_opt;
297 	unsigned int		max_discard_sectors;
298 	unsigned int		max_hw_discard_sectors;
299 	unsigned int		max_secure_erase_sectors;
300 	unsigned int		max_write_zeroes_sectors;
301 	unsigned int		max_zone_append_sectors;
302 	unsigned int		discard_granularity;
303 	unsigned int		discard_alignment;
304 	unsigned int		zone_write_granularity;
305 
306 	unsigned short		max_segments;
307 	unsigned short		max_integrity_segments;
308 	unsigned short		max_discard_segments;
309 
310 	unsigned char		misaligned;
311 	unsigned char		discard_misaligned;
312 	unsigned char		raid_partial_stripes_expensive;
313 	enum blk_zoned_model	zoned;
314 
315 	/*
316 	 * Drivers that set dma_alignment to less than 511 must be prepared to
317 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
318 	 * due to possible offsets.
319 	 */
320 	unsigned int		dma_alignment;
321 };
322 
323 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
324 			       void *data);
325 
326 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
327 
328 #ifdef CONFIG_BLK_DEV_ZONED
329 
330 #define BLK_ALL_ZONES  ((unsigned int)-1)
331 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
332 			unsigned int nr_zones, report_zones_cb cb, void *data);
333 unsigned int bdev_nr_zones(struct block_device *bdev);
334 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
335 			    sector_t sectors, sector_t nr_sectors,
336 			    gfp_t gfp_mask);
337 int blk_revalidate_disk_zones(struct gendisk *disk,
338 			      void (*update_driver_data)(struct gendisk *disk));
339 
340 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
341 				     unsigned int cmd, unsigned long arg);
342 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
343 				  unsigned int cmd, unsigned long arg);
344 
345 #else /* CONFIG_BLK_DEV_ZONED */
346 
bdev_nr_zones(struct block_device * bdev)347 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
348 {
349 	return 0;
350 }
351 
blkdev_report_zones_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)352 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
353 					    fmode_t mode, unsigned int cmd,
354 					    unsigned long arg)
355 {
356 	return -ENOTTY;
357 }
358 
blkdev_zone_mgmt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)359 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
360 					 fmode_t mode, unsigned int cmd,
361 					 unsigned long arg)
362 {
363 	return -ENOTTY;
364 }
365 
366 #endif /* CONFIG_BLK_DEV_ZONED */
367 
368 /*
369  * Independent access ranges: struct blk_independent_access_range describes
370  * a range of contiguous sectors that can be accessed using device command
371  * execution resources that are independent from the resources used for
372  * other access ranges. This is typically found with single-LUN multi-actuator
373  * HDDs where each access range is served by a different set of heads.
374  * The set of independent ranges supported by the device is defined using
375  * struct blk_independent_access_ranges. The independent ranges must not overlap
376  * and must include all sectors within the disk capacity (no sector holes
377  * allowed).
378  * For a device with multiple ranges, requests targeting sectors in different
379  * ranges can be executed in parallel. A request can straddle an access range
380  * boundary.
381  */
382 struct blk_independent_access_range {
383 	struct kobject		kobj;
384 	sector_t		sector;
385 	sector_t		nr_sectors;
386 };
387 
388 struct blk_independent_access_ranges {
389 	struct kobject				kobj;
390 	bool					sysfs_registered;
391 	unsigned int				nr_ia_ranges;
392 	struct blk_independent_access_range	ia_range[];
393 };
394 
395 struct request_queue {
396 	struct request		*last_merge;
397 	struct elevator_queue	*elevator;
398 
399 	struct percpu_ref	q_usage_counter;
400 
401 	struct blk_queue_stats	*stats;
402 	struct rq_qos		*rq_qos;
403 
404 	const struct blk_mq_ops	*mq_ops;
405 
406 	/* sw queues */
407 	struct blk_mq_ctx __percpu	*queue_ctx;
408 
409 	unsigned int		queue_depth;
410 
411 	/* hw dispatch queues */
412 	struct xarray		hctx_table;
413 	unsigned int		nr_hw_queues;
414 
415 	/*
416 	 * The queue owner gets to use this for whatever they like.
417 	 * ll_rw_blk doesn't touch it.
418 	 */
419 	void			*queuedata;
420 
421 	/*
422 	 * various queue flags, see QUEUE_* below
423 	 */
424 	unsigned long		queue_flags;
425 	/*
426 	 * Number of contexts that have called blk_set_pm_only(). If this
427 	 * counter is above zero then only RQF_PM requests are processed.
428 	 */
429 	atomic_t		pm_only;
430 
431 	/*
432 	 * ida allocated id for this queue.  Used to index queues from
433 	 * ioctx.
434 	 */
435 	int			id;
436 
437 	spinlock_t		queue_lock;
438 
439 	struct gendisk		*disk;
440 
441 	/*
442 	 * queue kobject
443 	 */
444 	struct kobject kobj;
445 
446 	/*
447 	 * mq queue kobject
448 	 */
449 	struct kobject *mq_kobj;
450 
451 #ifdef  CONFIG_BLK_DEV_INTEGRITY
452 	struct blk_integrity integrity;
453 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
454 
455 #ifdef CONFIG_PM
456 	struct device		*dev;
457 	enum rpm_status		rpm_status;
458 #endif
459 
460 	/*
461 	 * queue settings
462 	 */
463 	unsigned long		nr_requests;	/* Max # of requests */
464 
465 	unsigned int		dma_pad_mask;
466 
467 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
468 	struct blk_crypto_profile *crypto_profile;
469 	struct kobject *crypto_kobject;
470 #endif
471 
472 	unsigned int		rq_timeout;
473 	int			poll_nsec;
474 
475 	struct blk_stat_callback	*poll_cb;
476 	struct blk_rq_stat	*poll_stat;
477 
478 	struct timer_list	timeout;
479 	struct work_struct	timeout_work;
480 
481 	atomic_t		nr_active_requests_shared_tags;
482 
483 	struct blk_mq_tags	*sched_shared_tags;
484 
485 	struct list_head	icq_list;
486 #ifdef CONFIG_BLK_CGROUP
487 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
488 	struct blkcg_gq		*root_blkg;
489 	struct list_head	blkg_list;
490 #endif
491 
492 	struct queue_limits	limits;
493 
494 	unsigned int		required_elevator_features;
495 
496 	int			node;
497 #ifdef CONFIG_BLK_DEV_IO_TRACE
498 	struct blk_trace __rcu	*blk_trace;
499 #endif
500 	/*
501 	 * for flush operations
502 	 */
503 	struct blk_flush_queue	*fq;
504 
505 	struct list_head	requeue_list;
506 	spinlock_t		requeue_lock;
507 	struct delayed_work	requeue_work;
508 
509 	struct mutex		sysfs_lock;
510 	struct mutex		sysfs_dir_lock;
511 
512 	/*
513 	 * for reusing dead hctx instance in case of updating
514 	 * nr_hw_queues
515 	 */
516 	struct list_head	unused_hctx_list;
517 	spinlock_t		unused_hctx_lock;
518 
519 	int			mq_freeze_depth;
520 
521 #ifdef CONFIG_BLK_DEV_THROTTLING
522 	/* Throttle data */
523 	struct throtl_data *td;
524 #endif
525 	struct rcu_head		rcu_head;
526 	wait_queue_head_t	mq_freeze_wq;
527 	/*
528 	 * Protect concurrent access to q_usage_counter by
529 	 * percpu_ref_kill() and percpu_ref_reinit().
530 	 */
531 	struct mutex		mq_freeze_lock;
532 
533 	int			quiesce_depth;
534 
535 	struct blk_mq_tag_set	*tag_set;
536 	struct list_head	tag_set_list;
537 
538 	struct dentry		*debugfs_dir;
539 	struct dentry		*sched_debugfs_dir;
540 	struct dentry		*rqos_debugfs_dir;
541 	/*
542 	 * Serializes all debugfs metadata operations using the above dentries.
543 	 */
544 	struct mutex		debugfs_mutex;
545 
546 	bool			mq_sysfs_init_done;
547 
548 	/**
549 	 * @srcu: Sleepable RCU. Use as lock when type of the request queue
550 	 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member
551 	 */
552 	struct srcu_struct	srcu[];
553 };
554 
555 /* Keep blk_queue_flag_name[] in sync with the definitions below */
556 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
557 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
558 #define QUEUE_FLAG_HAS_SRCU	2	/* SRCU is allocated */
559 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
560 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
561 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
562 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
563 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
564 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
565 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
566 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
567 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
568 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
569 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
570 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
571 #define QUEUE_FLAG_WC		17	/* Write back caching */
572 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
573 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
574 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
575 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
576 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
577 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
578 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
579 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
580 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
581 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
582 #define QUEUE_FLAG_SQ_SCHED     30	/* single queue style io dispatch */
583 
584 #define QUEUE_FLAG_MQ_DEFAULT	((1UL << QUEUE_FLAG_IO_STAT) |		\
585 				 (1UL << QUEUE_FLAG_SAME_COMP) |	\
586 				 (1UL << QUEUE_FLAG_NOWAIT))
587 
588 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
589 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
590 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
591 
592 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
593 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
594 #define blk_queue_has_srcu(q)	test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags)
595 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
596 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
597 #define blk_queue_noxmerges(q)	\
598 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
599 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
600 #define blk_queue_stable_writes(q) \
601 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
602 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
603 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
604 #define blk_queue_zone_resetall(q)	\
605 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
606 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
607 #define blk_queue_pci_p2pdma(q)	\
608 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
609 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
610 #define blk_queue_rq_alloc_time(q)	\
611 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
612 #else
613 #define blk_queue_rq_alloc_time(q)	false
614 #endif
615 
616 #define blk_noretry_request(rq) \
617 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
618 			     REQ_FAILFAST_DRIVER))
619 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
620 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
621 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
622 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
623 
624 extern void blk_set_pm_only(struct request_queue *q);
625 extern void blk_clear_pm_only(struct request_queue *q);
626 
627 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
628 
629 #define dma_map_bvec(dev, bv, dir, attrs) \
630 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
631 	(dir), (attrs))
632 
queue_is_mq(struct request_queue * q)633 static inline bool queue_is_mq(struct request_queue *q)
634 {
635 	return q->mq_ops;
636 }
637 
638 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)639 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
640 {
641 	return q->rpm_status;
642 }
643 #else
queue_rpm_status(struct request_queue * q)644 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
645 {
646 	return RPM_ACTIVE;
647 }
648 #endif
649 
650 static inline enum blk_zoned_model
blk_queue_zoned_model(struct request_queue * q)651 blk_queue_zoned_model(struct request_queue *q)
652 {
653 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
654 		return q->limits.zoned;
655 	return BLK_ZONED_NONE;
656 }
657 
blk_queue_is_zoned(struct request_queue * q)658 static inline bool blk_queue_is_zoned(struct request_queue *q)
659 {
660 	switch (blk_queue_zoned_model(q)) {
661 	case BLK_ZONED_HA:
662 	case BLK_ZONED_HM:
663 		return true;
664 	default:
665 		return false;
666 	}
667 }
668 
669 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)670 static inline unsigned int disk_nr_zones(struct gendisk *disk)
671 {
672 	return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
673 }
674 
disk_zone_no(struct gendisk * disk,sector_t sector)675 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
676 {
677 	if (!blk_queue_is_zoned(disk->queue))
678 		return 0;
679 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
680 }
681 
disk_zone_is_seq(struct gendisk * disk,sector_t sector)682 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
683 {
684 	if (!blk_queue_is_zoned(disk->queue))
685 		return false;
686 	if (!disk->conv_zones_bitmap)
687 		return true;
688 	return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
689 }
690 
disk_set_max_open_zones(struct gendisk * disk,unsigned int max_open_zones)691 static inline void disk_set_max_open_zones(struct gendisk *disk,
692 		unsigned int max_open_zones)
693 {
694 	disk->max_open_zones = max_open_zones;
695 }
696 
disk_set_max_active_zones(struct gendisk * disk,unsigned int max_active_zones)697 static inline void disk_set_max_active_zones(struct gendisk *disk,
698 		unsigned int max_active_zones)
699 {
700 	disk->max_active_zones = max_active_zones;
701 }
702 
bdev_max_open_zones(struct block_device * bdev)703 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
704 {
705 	return bdev->bd_disk->max_open_zones;
706 }
707 
bdev_max_active_zones(struct block_device * bdev)708 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
709 {
710 	return bdev->bd_disk->max_active_zones;
711 }
712 
713 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)714 static inline unsigned int disk_nr_zones(struct gendisk *disk)
715 {
716 	return 0;
717 }
disk_zone_is_seq(struct gendisk * disk,sector_t sector)718 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
719 {
720 	return false;
721 }
disk_zone_no(struct gendisk * disk,sector_t sector)722 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
723 {
724 	return 0;
725 }
bdev_max_open_zones(struct block_device * bdev)726 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
727 {
728 	return 0;
729 }
730 
bdev_max_active_zones(struct block_device * bdev)731 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
732 {
733 	return 0;
734 }
735 #endif /* CONFIG_BLK_DEV_ZONED */
736 
blk_queue_depth(struct request_queue * q)737 static inline unsigned int blk_queue_depth(struct request_queue *q)
738 {
739 	if (q->queue_depth)
740 		return q->queue_depth;
741 
742 	return q->nr_requests;
743 }
744 
745 /*
746  * default timeout for SG_IO if none specified
747  */
748 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
749 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
750 
751 /* This should not be used directly - use rq_for_each_segment */
752 #define for_each_bio(_bio)		\
753 	for (; _bio; _bio = _bio->bi_next)
754 
755 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
756 				 const struct attribute_group **groups);
add_disk(struct gendisk * disk)757 static inline int __must_check add_disk(struct gendisk *disk)
758 {
759 	return device_add_disk(NULL, disk, NULL);
760 }
761 void del_gendisk(struct gendisk *gp);
762 void invalidate_disk(struct gendisk *disk);
763 void set_disk_ro(struct gendisk *disk, bool read_only);
764 void disk_uevent(struct gendisk *disk, enum kobject_action action);
765 
get_disk_ro(struct gendisk * disk)766 static inline int get_disk_ro(struct gendisk *disk)
767 {
768 	return disk->part0->bd_read_only ||
769 		test_bit(GD_READ_ONLY, &disk->state);
770 }
771 
bdev_read_only(struct block_device * bdev)772 static inline int bdev_read_only(struct block_device *bdev)
773 {
774 	return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
775 }
776 
777 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
778 bool disk_force_media_change(struct gendisk *disk, unsigned int events);
779 
780 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
781 void rand_initialize_disk(struct gendisk *disk);
782 
get_start_sect(struct block_device * bdev)783 static inline sector_t get_start_sect(struct block_device *bdev)
784 {
785 	return bdev->bd_start_sect;
786 }
787 
bdev_nr_sectors(struct block_device * bdev)788 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
789 {
790 	return bdev->bd_nr_sectors;
791 }
792 
bdev_nr_bytes(struct block_device * bdev)793 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
794 {
795 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
796 }
797 
get_capacity(struct gendisk * disk)798 static inline sector_t get_capacity(struct gendisk *disk)
799 {
800 	return bdev_nr_sectors(disk->part0);
801 }
802 
sb_bdev_nr_blocks(struct super_block * sb)803 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
804 {
805 	return bdev_nr_sectors(sb->s_bdev) >>
806 		(sb->s_blocksize_bits - SECTOR_SHIFT);
807 }
808 
809 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
810 
811 void put_disk(struct gendisk *disk);
812 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
813 
814 /**
815  * blk_alloc_disk - allocate a gendisk structure
816  * @node_id: numa node to allocate on
817  *
818  * Allocate and pre-initialize a gendisk structure for use with BIO based
819  * drivers.
820  *
821  * Context: can sleep
822  */
823 #define blk_alloc_disk(node_id)						\
824 ({									\
825 	static struct lock_class_key __key;				\
826 									\
827 	__blk_alloc_disk(node_id, &__key);				\
828 })
829 
830 int __register_blkdev(unsigned int major, const char *name,
831 		void (*probe)(dev_t devt));
832 #define register_blkdev(major, name) \
833 	__register_blkdev(major, name, NULL)
834 void unregister_blkdev(unsigned int major, const char *name);
835 
836 bool bdev_check_media_change(struct block_device *bdev);
837 int __invalidate_device(struct block_device *bdev, bool kill_dirty);
838 void set_capacity(struct gendisk *disk, sector_t size);
839 
840 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
841 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
842 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
843 int bd_register_pending_holders(struct gendisk *disk);
844 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)845 static inline int bd_link_disk_holder(struct block_device *bdev,
846 				      struct gendisk *disk)
847 {
848 	return 0;
849 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)850 static inline void bd_unlink_disk_holder(struct block_device *bdev,
851 					 struct gendisk *disk)
852 {
853 }
bd_register_pending_holders(struct gendisk * disk)854 static inline int bd_register_pending_holders(struct gendisk *disk)
855 {
856 	return 0;
857 }
858 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
859 
860 dev_t part_devt(struct gendisk *disk, u8 partno);
861 void inc_diskseq(struct gendisk *disk);
862 dev_t blk_lookup_devt(const char *name, int partno);
863 void blk_request_module(dev_t devt);
864 
865 extern int blk_register_queue(struct gendisk *disk);
866 extern void blk_unregister_queue(struct gendisk *disk);
867 void submit_bio_noacct(struct bio *bio);
868 struct bio *bio_split_to_limits(struct bio *bio);
869 
870 extern int blk_lld_busy(struct request_queue *q);
871 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
872 extern void blk_queue_exit(struct request_queue *q);
873 extern void blk_sync_queue(struct request_queue *q);
874 
875 /* Helper to convert REQ_OP_XXX to its string format XXX */
876 extern const char *blk_op_str(enum req_op op);
877 
878 int blk_status_to_errno(blk_status_t status);
879 blk_status_t errno_to_blk_status(int errno);
880 
881 /* only poll the hardware once, don't continue until a completion was found */
882 #define BLK_POLL_ONESHOT		(1 << 0)
883 /* do not sleep to wait for the expected completion time */
884 #define BLK_POLL_NOSLEEP		(1 << 1)
885 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
886 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
887 			unsigned int flags);
888 
bdev_get_queue(struct block_device * bdev)889 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
890 {
891 	return bdev->bd_queue;	/* this is never NULL */
892 }
893 
894 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
895 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
896 
bio_zone_no(struct bio * bio)897 static inline unsigned int bio_zone_no(struct bio *bio)
898 {
899 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
900 }
901 
bio_zone_is_seq(struct bio * bio)902 static inline unsigned int bio_zone_is_seq(struct bio *bio)
903 {
904 	return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
905 }
906 
907 /*
908  * Return how much of the chunk is left to be used for I/O at a given offset.
909  */
blk_chunk_sectors_left(sector_t offset,unsigned int chunk_sectors)910 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
911 		unsigned int chunk_sectors)
912 {
913 	if (unlikely(!is_power_of_2(chunk_sectors)))
914 		return chunk_sectors - sector_div(offset, chunk_sectors);
915 	return chunk_sectors - (offset & (chunk_sectors - 1));
916 }
917 
918 /*
919  * Access functions for manipulating queue properties
920  */
921 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
922 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
923 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
924 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
925 extern void blk_queue_max_discard_segments(struct request_queue *,
926 		unsigned short);
927 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
928 		unsigned int max_sectors);
929 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
930 extern void blk_queue_max_discard_sectors(struct request_queue *q,
931 		unsigned int max_discard_sectors);
932 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
933 		unsigned int max_write_same_sectors);
934 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
935 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
936 		unsigned int max_zone_append_sectors);
937 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
938 void blk_queue_zone_write_granularity(struct request_queue *q,
939 				      unsigned int size);
940 extern void blk_queue_alignment_offset(struct request_queue *q,
941 				       unsigned int alignment);
942 void disk_update_readahead(struct gendisk *disk);
943 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
944 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
945 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
946 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
947 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
948 extern void blk_set_stacking_limits(struct queue_limits *lim);
949 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
950 			    sector_t offset);
951 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
952 			      sector_t offset);
953 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
954 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
955 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
956 extern void blk_queue_dma_alignment(struct request_queue *, int);
957 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
958 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
959 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
960 
961 struct blk_independent_access_ranges *
962 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
963 void disk_set_independent_access_ranges(struct gendisk *disk,
964 				struct blk_independent_access_ranges *iars);
965 
966 /*
967  * Elevator features for blk_queue_required_elevator_features:
968  */
969 /* Supports zoned block devices sequential write constraint */
970 #define ELEVATOR_F_ZBD_SEQ_WRITE	(1U << 0)
971 
972 extern void blk_queue_required_elevator_features(struct request_queue *q,
973 						 unsigned int features);
974 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
975 					      struct device *dev);
976 
977 bool __must_check blk_get_queue(struct request_queue *);
978 extern void blk_put_queue(struct request_queue *);
979 
980 void blk_mark_disk_dead(struct gendisk *disk);
981 
982 #ifdef CONFIG_BLOCK
983 /*
984  * blk_plug permits building a queue of related requests by holding the I/O
985  * fragments for a short period. This allows merging of sequential requests
986  * into single larger request. As the requests are moved from a per-task list to
987  * the device's request_queue in a batch, this results in improved scalability
988  * as the lock contention for request_queue lock is reduced.
989  *
990  * It is ok not to disable preemption when adding the request to the plug list
991  * or when attempting a merge. For details, please see schedule() where
992  * blk_flush_plug() is called.
993  */
994 struct blk_plug {
995 	struct request *mq_list; /* blk-mq requests */
996 
997 	/* if ios_left is > 1, we can batch tag/rq allocations */
998 	struct request *cached_rq;
999 	unsigned short nr_ios;
1000 
1001 	unsigned short rq_count;
1002 
1003 	bool multiple_queues;
1004 	bool has_elevator;
1005 	bool nowait;
1006 
1007 	struct list_head cb_list; /* md requires an unplug callback */
1008 };
1009 
1010 struct blk_plug_cb;
1011 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1012 struct blk_plug_cb {
1013 	struct list_head list;
1014 	blk_plug_cb_fn callback;
1015 	void *data;
1016 };
1017 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1018 					     void *data, int size);
1019 extern void blk_start_plug(struct blk_plug *);
1020 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1021 extern void blk_finish_plug(struct blk_plug *);
1022 
1023 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1024 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1025 {
1026 	if (plug)
1027 		__blk_flush_plug(plug, async);
1028 }
1029 
1030 int blkdev_issue_flush(struct block_device *bdev);
1031 long nr_blockdev_pages(void);
1032 #else /* CONFIG_BLOCK */
1033 struct blk_plug {
1034 };
1035 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1036 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1037 					 unsigned short nr_ios)
1038 {
1039 }
1040 
blk_start_plug(struct blk_plug * plug)1041 static inline void blk_start_plug(struct blk_plug *plug)
1042 {
1043 }
1044 
blk_finish_plug(struct blk_plug * plug)1045 static inline void blk_finish_plug(struct blk_plug *plug)
1046 {
1047 }
1048 
blk_flush_plug(struct blk_plug * plug,bool async)1049 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1050 {
1051 }
1052 
blkdev_issue_flush(struct block_device * bdev)1053 static inline int blkdev_issue_flush(struct block_device *bdev)
1054 {
1055 	return 0;
1056 }
1057 
nr_blockdev_pages(void)1058 static inline long nr_blockdev_pages(void)
1059 {
1060 	return 0;
1061 }
1062 #endif /* CONFIG_BLOCK */
1063 
1064 extern void blk_io_schedule(void);
1065 
1066 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1067 		sector_t nr_sects, gfp_t gfp_mask);
1068 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1069 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1070 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1071 		sector_t nr_sects, gfp_t gfp);
1072 
1073 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1074 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1075 
1076 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1077 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1078 		unsigned flags);
1079 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1080 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1081 
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1082 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1083 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1084 {
1085 	return blkdev_issue_discard(sb->s_bdev,
1086 				    block << (sb->s_blocksize_bits -
1087 					      SECTOR_SHIFT),
1088 				    nr_blocks << (sb->s_blocksize_bits -
1089 						  SECTOR_SHIFT),
1090 				    gfp_mask);
1091 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1092 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1093 		sector_t nr_blocks, gfp_t gfp_mask)
1094 {
1095 	return blkdev_issue_zeroout(sb->s_bdev,
1096 				    block << (sb->s_blocksize_bits -
1097 					      SECTOR_SHIFT),
1098 				    nr_blocks << (sb->s_blocksize_bits -
1099 						  SECTOR_SHIFT),
1100 				    gfp_mask, 0);
1101 }
1102 
bdev_is_partition(struct block_device * bdev)1103 static inline bool bdev_is_partition(struct block_device *bdev)
1104 {
1105 	return bdev->bd_partno;
1106 }
1107 
1108 enum blk_default_limits {
1109 	BLK_MAX_SEGMENTS	= 128,
1110 	BLK_SAFE_MAX_SECTORS	= 255,
1111 	BLK_DEF_MAX_SECTORS	= 2560,
1112 	BLK_MAX_SEGMENT_SIZE	= 65536,
1113 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1114 };
1115 
queue_segment_boundary(const struct request_queue * q)1116 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1117 {
1118 	return q->limits.seg_boundary_mask;
1119 }
1120 
queue_virt_boundary(const struct request_queue * q)1121 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1122 {
1123 	return q->limits.virt_boundary_mask;
1124 }
1125 
queue_max_sectors(const struct request_queue * q)1126 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1127 {
1128 	return q->limits.max_sectors;
1129 }
1130 
queue_max_bytes(struct request_queue * q)1131 static inline unsigned int queue_max_bytes(struct request_queue *q)
1132 {
1133 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1134 }
1135 
queue_max_hw_sectors(const struct request_queue * q)1136 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1137 {
1138 	return q->limits.max_hw_sectors;
1139 }
1140 
queue_max_segments(const struct request_queue * q)1141 static inline unsigned short queue_max_segments(const struct request_queue *q)
1142 {
1143 	return q->limits.max_segments;
1144 }
1145 
queue_max_discard_segments(const struct request_queue * q)1146 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1147 {
1148 	return q->limits.max_discard_segments;
1149 }
1150 
queue_max_segment_size(const struct request_queue * q)1151 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1152 {
1153 	return q->limits.max_segment_size;
1154 }
1155 
queue_max_zone_append_sectors(const struct request_queue * q)1156 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1157 {
1158 
1159 	const struct queue_limits *l = &q->limits;
1160 
1161 	return min(l->max_zone_append_sectors, l->max_sectors);
1162 }
1163 
1164 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1165 bdev_max_zone_append_sectors(struct block_device *bdev)
1166 {
1167 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1168 }
1169 
bdev_max_segments(struct block_device * bdev)1170 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1171 {
1172 	return queue_max_segments(bdev_get_queue(bdev));
1173 }
1174 
queue_logical_block_size(const struct request_queue * q)1175 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1176 {
1177 	int retval = 512;
1178 
1179 	if (q && q->limits.logical_block_size)
1180 		retval = q->limits.logical_block_size;
1181 
1182 	return retval;
1183 }
1184 
bdev_logical_block_size(struct block_device * bdev)1185 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1186 {
1187 	return queue_logical_block_size(bdev_get_queue(bdev));
1188 }
1189 
queue_physical_block_size(const struct request_queue * q)1190 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1191 {
1192 	return q->limits.physical_block_size;
1193 }
1194 
bdev_physical_block_size(struct block_device * bdev)1195 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1196 {
1197 	return queue_physical_block_size(bdev_get_queue(bdev));
1198 }
1199 
queue_io_min(const struct request_queue * q)1200 static inline unsigned int queue_io_min(const struct request_queue *q)
1201 {
1202 	return q->limits.io_min;
1203 }
1204 
bdev_io_min(struct block_device * bdev)1205 static inline int bdev_io_min(struct block_device *bdev)
1206 {
1207 	return queue_io_min(bdev_get_queue(bdev));
1208 }
1209 
queue_io_opt(const struct request_queue * q)1210 static inline unsigned int queue_io_opt(const struct request_queue *q)
1211 {
1212 	return q->limits.io_opt;
1213 }
1214 
bdev_io_opt(struct block_device * bdev)1215 static inline int bdev_io_opt(struct block_device *bdev)
1216 {
1217 	return queue_io_opt(bdev_get_queue(bdev));
1218 }
1219 
1220 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1221 queue_zone_write_granularity(const struct request_queue *q)
1222 {
1223 	return q->limits.zone_write_granularity;
1224 }
1225 
1226 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1227 bdev_zone_write_granularity(struct block_device *bdev)
1228 {
1229 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1230 }
1231 
1232 int bdev_alignment_offset(struct block_device *bdev);
1233 unsigned int bdev_discard_alignment(struct block_device *bdev);
1234 
bdev_max_discard_sectors(struct block_device * bdev)1235 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1236 {
1237 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1238 }
1239 
bdev_discard_granularity(struct block_device * bdev)1240 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1241 {
1242 	return bdev_get_queue(bdev)->limits.discard_granularity;
1243 }
1244 
1245 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1246 bdev_max_secure_erase_sectors(struct block_device *bdev)
1247 {
1248 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1249 }
1250 
bdev_write_zeroes_sectors(struct block_device * bdev)1251 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1252 {
1253 	struct request_queue *q = bdev_get_queue(bdev);
1254 
1255 	if (q)
1256 		return q->limits.max_write_zeroes_sectors;
1257 
1258 	return 0;
1259 }
1260 
bdev_nonrot(struct block_device * bdev)1261 static inline bool bdev_nonrot(struct block_device *bdev)
1262 {
1263 	return blk_queue_nonrot(bdev_get_queue(bdev));
1264 }
1265 
bdev_stable_writes(struct block_device * bdev)1266 static inline bool bdev_stable_writes(struct block_device *bdev)
1267 {
1268 	return test_bit(QUEUE_FLAG_STABLE_WRITES,
1269 			&bdev_get_queue(bdev)->queue_flags);
1270 }
1271 
bdev_write_cache(struct block_device * bdev)1272 static inline bool bdev_write_cache(struct block_device *bdev)
1273 {
1274 	return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1275 }
1276 
bdev_fua(struct block_device * bdev)1277 static inline bool bdev_fua(struct block_device *bdev)
1278 {
1279 	return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1280 }
1281 
bdev_nowait(struct block_device * bdev)1282 static inline bool bdev_nowait(struct block_device *bdev)
1283 {
1284 	return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
1285 }
1286 
bdev_zoned_model(struct block_device * bdev)1287 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1288 {
1289 	struct request_queue *q = bdev_get_queue(bdev);
1290 
1291 	if (q)
1292 		return blk_queue_zoned_model(q);
1293 
1294 	return BLK_ZONED_NONE;
1295 }
1296 
bdev_is_zoned(struct block_device * bdev)1297 static inline bool bdev_is_zoned(struct block_device *bdev)
1298 {
1299 	struct request_queue *q = bdev_get_queue(bdev);
1300 
1301 	if (q)
1302 		return blk_queue_is_zoned(q);
1303 
1304 	return false;
1305 }
1306 
bdev_op_is_zoned_write(struct block_device * bdev,blk_opf_t op)1307 static inline bool bdev_op_is_zoned_write(struct block_device *bdev,
1308 					  blk_opf_t op)
1309 {
1310 	if (!bdev_is_zoned(bdev))
1311 		return false;
1312 
1313 	return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES;
1314 }
1315 
bdev_zone_sectors(struct block_device * bdev)1316 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1317 {
1318 	struct request_queue *q = bdev_get_queue(bdev);
1319 
1320 	if (!blk_queue_is_zoned(q))
1321 		return 0;
1322 	return q->limits.chunk_sectors;
1323 }
1324 
queue_dma_alignment(const struct request_queue * q)1325 static inline int queue_dma_alignment(const struct request_queue *q)
1326 {
1327 	return q ? q->limits.dma_alignment : 511;
1328 }
1329 
bdev_dma_alignment(struct block_device * bdev)1330 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1331 {
1332 	return queue_dma_alignment(bdev_get_queue(bdev));
1333 }
1334 
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1335 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1336 					struct iov_iter *iter)
1337 {
1338 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1339 				   bdev_logical_block_size(bdev) - 1);
1340 }
1341 
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1342 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1343 				 unsigned int len)
1344 {
1345 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1346 	return !(addr & alignment) && !(len & alignment);
1347 }
1348 
1349 /* assumes size > 256 */
blksize_bits(unsigned int size)1350 static inline unsigned int blksize_bits(unsigned int size)
1351 {
1352 	unsigned int bits = 8;
1353 	do {
1354 		bits++;
1355 		size >>= 1;
1356 	} while (size > 256);
1357 	return bits;
1358 }
1359 
block_size(struct block_device * bdev)1360 static inline unsigned int block_size(struct block_device *bdev)
1361 {
1362 	return 1 << bdev->bd_inode->i_blkbits;
1363 }
1364 
1365 int kblockd_schedule_work(struct work_struct *work);
1366 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1367 
1368 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1369 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1370 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1371 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1372 
1373 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1374 
1375 bool blk_crypto_register(struct blk_crypto_profile *profile,
1376 			 struct request_queue *q);
1377 
1378 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1379 
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1380 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1381 				       struct request_queue *q)
1382 {
1383 	return true;
1384 }
1385 
1386 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1387 
1388 enum blk_unique_id {
1389 	/* these match the Designator Types specified in SPC */
1390 	BLK_UID_T10	= 1,
1391 	BLK_UID_EUI64	= 2,
1392 	BLK_UID_NAA	= 3,
1393 };
1394 
1395 #define NFL4_UFLG_MASK			0x0000003F
1396 
1397 struct block_device_operations {
1398 	void (*submit_bio)(struct bio *bio);
1399 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1400 			unsigned int flags);
1401 	int (*open) (struct block_device *, fmode_t);
1402 	void (*release) (struct gendisk *, fmode_t);
1403 	int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op);
1404 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1405 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1406 	unsigned int (*check_events) (struct gendisk *disk,
1407 				      unsigned int clearing);
1408 	void (*unlock_native_capacity) (struct gendisk *);
1409 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1410 	int (*set_read_only)(struct block_device *bdev, bool ro);
1411 	void (*free_disk)(struct gendisk *disk);
1412 	/* this callback is with swap_lock and sometimes page table lock held */
1413 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1414 	int (*report_zones)(struct gendisk *, sector_t sector,
1415 			unsigned int nr_zones, report_zones_cb cb, void *data);
1416 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1417 	/* returns the length of the identifier or a negative errno: */
1418 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1419 			enum blk_unique_id id_type);
1420 	struct module *owner;
1421 	const struct pr_ops *pr_ops;
1422 
1423 	/*
1424 	 * Special callback for probing GPT entry at a given sector.
1425 	 * Needed by Android devices, used by GPT scanner and MMC blk
1426 	 * driver.
1427 	 */
1428 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1429 };
1430 
1431 #ifdef CONFIG_COMPAT
1432 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1433 				      unsigned int, unsigned long);
1434 #else
1435 #define blkdev_compat_ptr_ioctl NULL
1436 #endif
1437 
1438 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1439 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1440 						struct writeback_control *);
1441 
blk_wake_io_task(struct task_struct * waiter)1442 static inline void blk_wake_io_task(struct task_struct *waiter)
1443 {
1444 	/*
1445 	 * If we're polling, the task itself is doing the completions. For
1446 	 * that case, we don't need to signal a wakeup, it's enough to just
1447 	 * mark us as RUNNING.
1448 	 */
1449 	if (waiter == current)
1450 		__set_current_state(TASK_RUNNING);
1451 	else
1452 		wake_up_process(waiter);
1453 }
1454 
1455 unsigned long bdev_start_io_acct(struct block_device *bdev,
1456 				 unsigned int sectors, enum req_op op,
1457 				 unsigned long start_time);
1458 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1459 		unsigned long start_time);
1460 
1461 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time);
1462 unsigned long bio_start_io_acct(struct bio *bio);
1463 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1464 		struct block_device *orig_bdev);
1465 
1466 /**
1467  * bio_end_io_acct - end I/O accounting for bio based drivers
1468  * @bio:	bio to end account for
1469  * @start_time:	start time returned by bio_start_io_acct()
1470  */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1471 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1472 {
1473 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1474 }
1475 
1476 int bdev_read_only(struct block_device *bdev);
1477 int set_blocksize(struct block_device *bdev, int size);
1478 
1479 int lookup_bdev(const char *pathname, dev_t *dev);
1480 
1481 void blkdev_show(struct seq_file *seqf, off_t offset);
1482 
1483 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1484 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1485 #ifdef CONFIG_BLOCK
1486 #define BLKDEV_MAJOR_MAX	512
1487 #else
1488 #define BLKDEV_MAJOR_MAX	0
1489 #endif
1490 
1491 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1492 		void *holder);
1493 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1494 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
1495 void bd_abort_claiming(struct block_device *bdev, void *holder);
1496 void blkdev_put(struct block_device *bdev, fmode_t mode);
1497 
1498 /* just for blk-cgroup, don't use elsewhere */
1499 struct block_device *blkdev_get_no_open(dev_t dev);
1500 void blkdev_put_no_open(struct block_device *bdev);
1501 
1502 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
1503 void bdev_add(struct block_device *bdev, dev_t dev);
1504 struct block_device *I_BDEV(struct inode *inode);
1505 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
1506 		loff_t lend);
1507 
1508 #ifdef CONFIG_BLOCK
1509 void invalidate_bdev(struct block_device *bdev);
1510 int sync_blockdev(struct block_device *bdev);
1511 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1512 int sync_blockdev_nowait(struct block_device *bdev);
1513 void sync_bdevs(bool wait);
1514 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1515 void printk_all_partitions(void);
1516 #else
invalidate_bdev(struct block_device * bdev)1517 static inline void invalidate_bdev(struct block_device *bdev)
1518 {
1519 }
sync_blockdev(struct block_device * bdev)1520 static inline int sync_blockdev(struct block_device *bdev)
1521 {
1522 	return 0;
1523 }
sync_blockdev_nowait(struct block_device * bdev)1524 static inline int sync_blockdev_nowait(struct block_device *bdev)
1525 {
1526 	return 0;
1527 }
sync_bdevs(bool wait)1528 static inline void sync_bdevs(bool wait)
1529 {
1530 }
bdev_statx_dioalign(struct inode * inode,struct kstat * stat)1531 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1532 {
1533 }
printk_all_partitions(void)1534 static inline void printk_all_partitions(void)
1535 {
1536 }
1537 #endif /* CONFIG_BLOCK */
1538 
1539 int fsync_bdev(struct block_device *bdev);
1540 
1541 int freeze_bdev(struct block_device *bdev);
1542 int thaw_bdev(struct block_device *bdev);
1543 
1544 struct io_comp_batch {
1545 	struct request *req_list;
1546 	bool need_ts;
1547 	void (*complete)(struct io_comp_batch *);
1548 };
1549 
1550 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1551 
1552 #endif /* _LINUX_BLKDEV_H */
1553